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Abstract We prove the many-particle limit passage of interacting particle systems
described by gradient flows. The limiting equation is a gradient flowwhich describes
the evolution of the particle density. Our proofmethods rely on variational techniques
such asΓ -convergence of the particle configuration energies and stability of gradient
flows. The interacting particle systems under consideration model the motion of
dislocations in metals. Since the collective motion of dislocations is the main driving
force of plastic deformation of metals, we aim to contribute with our analysis to the
current understanding of plasticity.

1 Disagreeing Plasticity Models

A large field of ongoing research studies plastic deformation of metals. Plastic defor-
mation is an irreversible process, in which permanent changes within the material
result in a macroscopic change of shape. These permanent changes are the collective
behaviour of curve-like defects in the atomic lattice of the metal. Such defects are
called dislocations. It is typical for metals to contain many dislocations (as much as
1000 km of dislocation curve in a cubic millimetre [19, p. 20]). Because of this large
amount of dislocations, there is a general belief that plasticity can be described in
terms of upscaled quantities such as the dislocation density.

This belief has led to several different dislocation density models in the engi-
neering literature, see for instance [1, 16, 17]. The discrepancies between these
models arise from using different phenomenological closure assumptions. These
assumptions are needed to bridge the gap between dislocations interacting on the
micro-scale and their collective behaviour on the macro-scale. As a consequence of
these different continuummodels, it remains unclear towhat extent they approximate
discrete dislocation dynamics. This brings us to the main question:
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Which dislocation density models are the discrete-to-continuum limit of the
dynamics of individual dislocations as the number of dislocations tends to
infinity?

The main challenge in answering this question is to control the non-local and
singular interactions between dislocations. Such interactions are not captured by
similar discrete-to-continuum problems that are solved in, for example [6, 8, 18, 23,
27], because in those results the interactions are either local or bounded.

Instead, for non-local and singular interactions, different mathematical tools are
needed to pass to the many-particle limit. Several such tools are developed, for
instance, in [2, 11–15, 21]. We wish to expand this set of tools by connecting several
more discrete dislocation models to their continuum counterparts, with the ultimate
aim to validate the different models in the engineering literature. More precisely,
we consider two scenarios for discrete dislocation dynamics: pile-ups of dislocation
walls [25] in Sect. 2, and mixed positive and negative dislocations in two dimensions
[16, 17] in Sect. 3.

2 Upscaling of Dislocation Walls

After introducing in Sect. 2.1 the model for the dynamics of dislocation walls, we
describe in Sect. 2.2 the related upscaling results.

2.1 Pile-Up of Dislocation Walls

The idealised setting of dislocation walls (proposed in [20, 29]) allows to study a
two-dimensional dislocation geometry by means of a one-dimensional problem. A
dislocation wall is a vertically periodic arrangement of equidistant dislocations. We
consider a pile-up of n + 1 dislocation walls (based on the setting in [25]), which are
trapped in a finite domain and subjected to a constant external force (see Fig. 1a).

The unknowns are the n horizontal positions of the dislocations walls given by

Ωn := {xn = (xn1 , . . . , x
n
n ) ∈ R

n : 0 =: x0 < xn1 < · · · < xnn ≤ Ln}.

The energy related to a dislocation wall configuration is
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Fig. 1 a Pile-up of dislocations ‘⊥’ arranged in wall structures. bQualitative plot of the interaction
potential V

En : Ωn → [0,∞], En = E int
n + EF

n + EL
n , (1)

E int
n (xn) = 1

n2

n∑

k=1

n−k∑

j=0

�nV
(
�n(x

n
j+k − xnj )

)
, EF

n (x
n) = 1

n

n∑

i=1

xni ,

EL
n (xn) = χ{xnn≤Ln/�n} :=

{
0, if xnn ≤ Ln/�n,
∞, otherwise.

Here, V is the interaction potential between walls, which is illustrated in Fig. 1b and
defined by

V : R → [0,∞], V (r) := r coth r − log |2 sinh r |. (2)

The parameters Ln and �n correspond to the two characteristic length scales in the
pile-up problem. Relative to the vertical distance between two neighbouring dislo-
cations within a wall, Ln is the distance between the barriers, and �n is the length
scale at which the dislocation walls spread when the interaction energy is balanced
with the external forcing term.

Regarding the dynamics, we follow the well-known linear drag law for modelling
dislocation movement, which results in the following gradient flow

⎧
⎨

⎩

d

dt
xn(t) = −n∇En

(
xn(t)

)
, t > 0,

xn(0) = xninit,
(3)

for some initial condition xninit ∈ Ωn . Since En is strictly convex and has compact
level sets, the minimisation problem of En over Ωn and the gradient flow (3) have
unique solutions.
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2.2 Discrete-to-continuum Limit

We are interested in the limits of n-indexed sequences of gradient flows (3). For
brevity, we assume for the asymptotic behaviour of the parameters Ln and �n that
1 � �n � n and Ln � �n as n → ∞. In [31, 32] any scaling regime for Ln and �n is
considered. Themain difference for �n � 1 and �n 	 n is that the interaction energy
E int
n is scaled differently, and for Ln � �n that xn is replaced by Lnxn/�n .
To give a meaning to the convergence of gradient flows, we first define notions of

convergence for a sequence of n-tuples (xn) via the embedding

πn : Ωn → P([0,∞)), πn(x
n) := 1

n

n∑

i=1

δxni ,

whereP([0,∞)) is the space of probability measures. We consider convergence in
either the narrow (or weak) topology

πn(x
n) ⇀ μ :⇐⇒ ∀ϕ ∈ C∞

c ([0,∞)) :
∫

ϕ d(πn(x
n)) →

∫
ϕ dμ,

or with respect to the stronger 2-Wasserstein distance denoted byW2 (see e.g. [4] for
an introduction to the Wasserstein distance).

Our first main result (which is an extension of [15, Theorem 1]) gives a precise
meaning to the convergence of the sequence of energies En

Theorem 1 (Γ -convergence [15, 32]) Let 1 � �n � n and Ln/�n → γ ∈ (0,∞] as
n → ∞. Then for all sequences (xn) such that xn ∈ Ωn and En(xn) bounded, it holds
that (πn(xn)) has a narrowly converging subsequence. Moreover, En Γ -converges
with respect to the narrow topology to

E : P([0,∞)) → [0,∞], E(μ) := Eint(μ) +
∫ ∞

0
x dμ(x) + χ{suppμ⊂ [0,γ ]},

(4)

where Eint depends on the asymptotic behaviour of �n (see Table1).

We remark that we impose the conditions 1 � �n � n and Ln � �n for brevity,
and that the full result can be found in [15, 32].

We briefly mention the main arguments in the proof of Theorem 1. Prokhorov’s
Theorem gives a convenient characterisation of pre-compactness in the narrow topol-
ogy, which is easily seen to be satisfied if En(xn) is bounded uniformly in n.

We prove Γ -convergence by establishing its defining inequalities
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Table 1 Dependence of E int, the interaction part of the limit energy (4), on the asymptotic behaviour
of �n

Regime E int(μ)

�n → �
�

2

∫ ∞

0

∫ ∞

0
V (�(x − y)) dμ(y) dμ(x)

1 � �n � n

⎧
⎨

⎩

( ∫ ∞

0
V

) ∫ ∞

0
ρ2, if dμ(x) = ρ(x)dx,

∞, otherwise

�n

n
→ α

⎧
⎨

⎩
α

∫ ∞

0
Veff

(
α

ρ(x)

)
ρ(x) dx, if dμ(x) = ρ(x)dx,

∞, otherwise

We define Veff (r) := ∑∞
k=1 V (kr)

∀μ ∈ P([0,∞)) ∀ xn ∈ Ωn such that πn(x
n) ⇀ μ : lim inf

n→∞ En(x
n) ≥ E(μ),

(5a)

∀μ ∈ P([0,∞)) ∃ yn ∈ Ωn such that πn(y
n) ⇀ μ : lim sup

n→∞
En(y

n) ≤ E(μ).

(5b)

Themain challenge in proving these inequalities is in controlling the interaction term
E int
n (1). The limsup-inequality (5b) is established by choosing the wall positions yni

to be ‘locally equi-spaced’, by which the high values of V around its singularity are
avoided as much as possible.

For proving the liminf-inequality (5a), the scaling regime of �n is crucial. If
�n → � ∈ (0,∞), then �nV (�n·) → �V (�·), and the basic properties of the nar-
row convergence of πn(xn) are enough to show (5a). However, if �n → ∞, then
�nV (�n·) ⇀ (

∫
R
V )δ0 in the narrow topology, which is too weak for concluding (5a)

with the basic properties of the narrow convergence of πn(xn). Instead, the convexity
of V on the positive half-line is exploited to prove (5a). When �n → ∞ fast enough
as n → ∞ (i.e. �n ∼ n), then part of the discreteness of En remains visible in the
continuum limit through Veff (see Table1).

As a direct consequence of Theorem 1, the minimisers of En converge in the
narrow topology to a minimiser of E . Moreover, Theorem 1 is crucial for the proof
of the convergence of the gradient flows defined in (3). While Fig. 2 gives an intuitive
meaning to the convergence concept for gradient flows, Theorem 2 states the precise
notion of convergence.

Theorem 2 (Convergence of gradient flows [31]) Let μinit ∈ P([0,∞)). Then
for any xninit ∈ Ωn such that W2(πn(xninit), μinit) → 0 as n → ∞, it holds for the
solutions xn(t) and μ(t) to the gradient flows of En and E, respectively, that
W2(πn(xn(t)), μ(t)) → 0 pointwise as n → ∞ for all t > 0.

Instead of giving the definition of ‘the gradient flow of E’ in terms of an evolution
variational inequality (cf. [4]), we list in (6) the formally derived evolution equations
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n → ∞

gradient flow of E (6)

n → ∞

gradient flow of En (3)
xninit

μinit μ (t)

xn(t)

Fig. 2 The gradient flows of En converge to the gradient flow of E if this diagram commutes for
all xninit ∈ Ωn such that πn(xninit) ⇀ μinit

from these inequalities. These equations are equipped with an initial condition and
zero-flux boundary conditions at both sides of the domain.

∂

∂t
ρt = (

ρt + ρt (�V (� ·) ∗ ρt )
′)′

if �n → �, (6a)

∂

∂t
ρt =

(
ρt +

[ ∫

R

V

]
ρtρ

′
t

)′
if 1 � �n � n, (6b)

∂

∂t
ρt =

(
ρt + α3

ρ2
t
V ′′
eff

(α

ρ t

)
ρ ′
t

)′
if

�n

n
→ α. (6c)

The proof of Theorem 2 relies, in addition to Theorem 1, on the convexity of En

and E , which are themain conditions underwhich the general theory [5, Theorem6.1]
concerning the convergence of gradient flows applies. In addition to these conditions,
it is also required that there exists a sequence (yn) as in (5b) for which πn(yn)
converges in the 2-Wasserstein distance.

While Theorems1 and 2 connect different continuum dislocation density models,
they do not quantify how well any of the continuummodels approximate the discrete
model for a fixed number of dislocations. We plan to face this challenge in the near
future.

3 Upscaling of Mixed Positive and Negative Dislocations

In Sect. 3.1 we describe the scenario of mixed positive and negative dislocations,
which is closely related to [16, 17]. Section3.2 treats the upscaling of the related
energy functionals, and Sect. 3.3 concerns evolutionary convergence of the related
gradient flows. The proofs of these results are documented in [30, Chaps. 5 and 8],
which is intended to be submitted for publication with A. Garroni, M.A. Peletier,
and L. Scardia.
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3.1 Setting

In contrast to the dislocation walls in Fig. 1a, we now consider a finite number n ∈ N

of dislocations without any imposed configuration. In this setting, a dislocation is
characterised by its position xni ∈ R

2 (we do not consider barriers) and its orientation
bni = ±1. The result of dislocations having a different orientation is that dislocations
with opposite orientation interact with opposite force with respect to two dislocations
with the same orientation.

The naive approach for defining an interaction energy is to consider

Ẽn( · ; bn) : (R2)n → R, Ẽn(x
n; bn) := 1

2n2

n∑

i=1

n∑

j=1
j �=i

bni b
n
j V (xni − xnj ),

where V is the interaction potential in two dimensions given by

V : R2 → (−∞,∞], V (r) := r21
|r |2 − log |r |. (7)

The problem with this approach is that Ẽn is unbounded from below. In fact, any
small energy value can be obtained by taking two dislocations of opposite orientation
close enough. Therefore, variational techniques are not suited for the upscaling of Ẽn .

We solve this problem by introducing an approximation to the energy Ẽn . The
usual approximation in the literature consists of regularising the singularity in V . In
contrast to choosing a specific regularisation, which is commonly done (for instance,
the different regularisations used in [3, 7, 9, 22, 24]), we consider a large class of
regularisations (specified below). For any such regularisation Vn of V , we consider
the energy

En( · ; bn) : (R2)n → R, En(x
n; bn) := 1

2n2

n∑

i=1

n∑

j=1

bni b
n
j Vn(x

n
i − xnj ). (8)

3.2 Γ -Convergence

We follow a similar program as in Sect. 2.2. To any given xn ∈ (R2)n and bn ∈
{−1, 1}n , we associate the signed finite Borel measure κn := 1

n

∑n
i=1 biδxni . In terms

of κn , the energy in (8) reads

En(x
n; bn) = 1

2

∫
Vn ∗ κn dκn,
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which we denote by En(κn). We use the following modified version of the narrow
topology:

κn
c

⇀ κ :⇐⇒

⎧
⎪⎨

⎪⎩

κn ⇀ κ, and
∞⋃

n=1

supp κn is bounded.
(9)

The additional condition concerning the support of κn is artificial. It allows us to
focus on the collective behaviour of the non-local dislocation interaction while side-
stepping technical difficulties when dislocations spread infinitely far.

We motivate the Γ -convergence theorem below in terms of the main assumptions
that we put on Vn . We observe [30, Proposition 5.3.1] that V can be split as

V = W ∗ W + V0

for some W ∈ L1(R2) and V0 ∈ C(R2). Then, we define

Vn := Wn ∗ Wn + V n
0 (10)

for some Wn → W in L1(R2) and V n
0 → V0 in L∞

loc(R
2) as n → ∞, such that Vn

converges uniformly toV in any annulus centred around0.These are the core assump-
tions which we need on Vn . For the precise assumptions on Vn we refer to [30]. The
main gain of the structure of Vn as in (10) is that the energy can be written as

En(κn) =
∫

R2
(Wn ∗ κn)

2 +
∫

V n
0 ∗ κn dκn,

which is crucial for our proof of the following theorem:

Theorem 3 (Γ -convergence [30]) If Vn(0)/n → 0asn → ∞, then En Γ -converges
with respect to the modified narrow topology (9) to

E : {
κ ∈ M (R2) : ‖κ‖T V ≤ 1

} → [0,∞], E(κ) :=
∫

V ∗ κ dκ. (11)

Here, M (R2) is the space of finite Borel measures on R
2. The condition

Vn(0)/n → 0 as n → ∞ ensures that the energy contribution of the self-interactions
(i.e. i = j in (8)) vanishes in the limit. Regarding the case in which Vn(0) � n, the
only known Γ -convergence result of En is proved in [10, 14] for a specific regular-
isation Vn .
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3.3 Convergence of Gradient Flows

A special feature of (edge) dislocations is that they move horizontally. Together with
the linear drag law, their motion is described by the following gradient flow:

⎧
⎨

⎩

dx

dt
(t) = −nP∇En(x(t); b), t ∈ (0, T ],

x(0) = xinit,
(12)

where P ∈ R2n×2n is the diagonal projection matrix characterised by its diagonal
given by (1, 0, 1, 0, . . . , 1, 0). As a consequence of the horizontal movement, the
vertical coordinates of the dislocation positions can be considered as parameters.

Next we focus our attention on positive dislocations only, i.e. bni = 1 for all i =
1, . . . , n. Consequently, we characterise their positions by the probability measure
μn := 1

n

∑n
i=1 δxni , and we use the restriction of the energy functionals En (8) and E

(11) toP(R2) without changing notation.

Conjecture 1 (Convergence of gradient flows [30]) Let μinit ∈ P(R2) be such
that E(μinit) < ∞ and suppμinit bounded. If Vn(0)/n → 0, then for any recovery
sequence μn

init (in the sense of (5b)) converging to μinit as n → ∞, it holds for the
solutions μn(t) to (12) that there exists a solution μ(t) to the gradient flow of E such

that, along a subsequence, μn(t)
c

⇀ μ(t) pointwise as n → ∞ for all t ∈ [0, T ].
Up to a few technical conjectures, the proof of Conjecture 1 is complete. It relies

on the framework developed in [26, 28]. Other than Γ -convergence, an important
requirement of this framework is that a similar liminf-inequality to (5a) holds for
the slope of the energy, which is a generalisation for the length of the gradient
for functionals defined on metric spaces. To prove this inequality, we require more
regularity on ∂1Vn . Again, we refer to [30] for the details.

The gradient flow of E is characterised in terms of an energy-dissipation inequal-
ity, which we can formally write as

d

dt
μ = ∂1(μ∂1V ∗ μ), in D ′(

R
2 × (0, T )

)
,

where ∂1 denotes differentiation in the horizontal direction.
In future work, we aim to complete the proof of Conjecture 1, and extend it to

mixed positive and negative dislocations. The challenge for proving this extension
is to control the singularity in V , which may require us to put more restrictions on
the regularisation Vn .
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4 Implications for Plasticity Models

With the three theorems above and Conjecture 1we have partially answered ourmain
question in Sect. 1 about connecting discrete dislocation models with continuum
dislocation models for several scenarios. Here, we elaborate on the implications of
our results to existing dislocation density models.

The main result of [15] is that the local arrangement of dislocations, measured in
terms of the parameter �n , can drastically change the pile-up profile of the dislocation
density in equilibrium. Theorems1 and 2 give a precise meaning to the extension
of this statement to finite domains and to the dynamics of dislocation walls. As a
result, it seems that an accurate two-dimensional model for the dislocation density
should depend on more detailed information on the local arrangement of disloca-
tions. Highly speculating, such a model may unite the currently available dislocation
density models.

Theorem 3 and Conjecture 1 are closely related to the setting in [16, 17]. These
theorems are consistent with the continuum model in [16], but only if the regu-
larisation of the interaction potential converges slowly enough as n → ∞. This is
surprising, because the derivation of the continuum model in [16] does not rely on
any regularisation. This suggests that the regularisation in the discrete model should
converge, instead, fast enough to obtain the continuum gradient flow proposed in
[16]. In the near future we aim to shed more light on this peculiar observation.
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