Chapter 2

Analysis of Systemic Risk: A Dynamic
Vine Copula-Based ARMA-EGARCH
Model

Kuan-Heng Chen and Khaldoun Khashanah

2.1 Introduction

The definition of systemic risk from the report to G20 Finance Ministers and
Governors agreed upon among the International Monetary Fund (IMF), Bank for
International Settlements (BIS), and Financial Stability Board (FSB) [1] is that “(i)
caused by an impairment of all or parts of the financial system and (ii) has the
potential to have serious negative consequences for the real economy”. Further-
more, “G-20 members consider an institution, market or instrument as systemic if
its failure or malfunction causes widespread distress, either as a direct impact or as a
trigger for broader contagion.” A common factor from the various definitions of
systemic risk is that a trigger event causes a chain of adverse economic conse-
quences, referred to as a “domino effect”. Given the definition of systemic risk
quoted above, measuring systemic risk is done by estimating the probability of
failure of an institution that is the cause of a distress for the financial system.
Therefore, we only consider the Value-at-Risk (VaR), the potential loss in value of
an asset or portfolio for a given time period and probability, as the risk measure-
ment. In addition, the VaR ratio of a sector to the system (S&P 500 Index), which
interprets that the sector risk provides to the entire system, is present.

Girardi and Ergiin [2] modified the CoVaR methodology that is proposed by
Adrian and Brunnermeier [3] which used the dynamic conditional correlation
GARCH, while Hakwa et al. [4] modified the methodology based on copula
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modeling. We present dynamic vine Copula-based ARMA-EGARCH (1, 1) VaR
measure into a high dimensional analysis in systemic risk.

Sklar [5] introduced the copula to describe the dependence structure between
variables. Patton [6] defined the conditional version of Sklar’s theorem, which
extends the copula applications to the time series analysis. Otani and Imai [7]
presented a basket credit default swaps (CDSs) pricing model with nested Archi-
medean copulas. However, multivariate Archimedean copulas are limited in that
there are only one or two parameters to capture the dependence structure. Joe [8]
introduced a construction of multivariate distribution based on pair-copula con-
struction (PCC), while Aas et al. were the first to recognize that the pair-copula
construction (PCC) principle can be used with arbitrary pair-copulas, referred to as
the graphical structure of R-vines [9]. Furthermore, Dissmann et al. [10] developed
an automated algorithm of jointly searching for an appropriate R-vines tree struc-
tures, the pair-copula families and their parameters. Accordingly, a high dimen-
sional joint distribution can be decomposed to bivariate and conditional bivariate
copulas arranged together according to the graphical structure of a regular vine.
Besides, Rockinger and Jondeau [11] was the first to introduce the copula-based
GARCH modeling. Afterwards, Lee and Long [12] concluded that copula-based
GARCH models outperform the dynamic conditional correlation model, the varying
correlation model and the BEKK model. In addition, Fang et al. [13] investigated
that using Akaike Information Criterion (AIC) as a tool for choosing copula from a
couple of candidates is more efficient and accurate than the multiplier
goodness-of-fit test method.

During 2008, the subprime mortgage crisis was a systemic collapse triggered by
the financial industry. The purpose of this paper is to present an application of the
estimation of systemic risk in terms of the VaR/ES ratio by using the dynamic vine
copula-based ARMA-EGARCH (1, 1) model. To compute systemic risk for our
system, we use S&P 500 sector indices and S&P 500 index to be our components
and system, respectively. Since the parameters change over time, we calibrate the
parameters every ten steps to capture a change of the structure. This scalable
prototype of US financial system with limited dimensionality can be easily tailored
to any underlying sector, country or financial market.

This paper has four sections. The first section briefly introduces existing research
regarding systemic risk. The second section describes the definition of the VaR/ES
ratio, and outlines the methodology of vine Copula-based EGARCH (1, 1) mod-
eling. The third section describes the data and explains the results of VaR/ES ratio.
The fourth section concludes our findings.
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2.2 Methodology
2.2.1 Risk Methodology

The definition of Value-at-Risk (VaR) is that the maximum loss at most is (1-a)
probability given by a period [14]. People usually determine a as 95 %, 99 %, or
99.9 % to be their confidence level. In this study, we use the Copula-based
ARMA-EGARCH (1, 1) methodology to obtain the dynamic VaR from each sector.

We denote VaR' 7/ ratio, the sector i’s risk contribution to the system j (S&P 500

t,1—a
index) at the confidence level a, by

L VaR: | _
VaR'7!  Ratio= —51=¢
' VaRt] l-a

The higher VaR:l_f/_' . ratio indicates that the sector is the risk provider to the
system. In addition, the methodology can be easily extended from the VaR ratio to

the expected shortfall (ES) ratio.

2.2.2 Univariate ARMA-EGARCH Model

Engle is the first researcher to introduce the ARCH model, which deals with
volatility clustering, usually referred to as conditional heteroskedasticity. Bollerslev
[15] extended the ARCH model to the generalized ARCH (GARCH) model. Chen
and Khashanah [16] implemented ARMA (p, q)-GARCH (1, 1) with the Student’s t
distributed innovations for the marginal to account for the time-varying volatility,
whereas the Student’s t distributed innovations cannot explain the skewness. In
addition, to overcome the leverage effect in financial time series, we use the
exponential GARCH (EGARCH) model in handling asymmetric effects between
positive and negative asset returns proposed by Nelson [17]. According to the
augmented Dickey—Fuller (ADF) test, all the series are stationary. Therefore,
ARMA (p, q)-EGARCH (1, 1) with the skewed Student’s t distributed innovation
can then be written as [18]

P q
r,=/l,+ '2119[}'}_1"" 'Zlgjgt_j'i'gt,
i= j=

€ =01y,
ln((r,Z) =k + & z—1+&(|z—1| —EB{lz-1]}) + B, 1“("'?—1)
where r; is the log return, , is the drift term, &, is the error term, &, capture the size

effect, and the standardized innovation term z; is the skewed Student’s t distribution.
The skewed student’s t density function can be expressed as [19]
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Z
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where f is a univariate pdf that is symmetric around 0, Iy is the indicator function on
S, n is the asymmetric parameter, and n=1 for the symmetric Student’s t distri-
bution. In addition, the correlated random variables can be flexible and easily
estimated under an overwhelming feature of Copula-based ARMA-EGARCH
model.

2.2.3 Sklar’s Theory

Sklar’s Theorem [5] states that given random variables Xi, X», ..., X, with con-
tinuous distribution functions Fy, F, ..., F, and joint distribution function H, and
there exists a unique copula C such that for all x=(x1,x2, ...,x,) €R"

H(x)=C(Fi(x1), F2(x2), - ... Fu(xs))

If the joint distribution function is n-times differentiable, then taking the nth
cross-partial derivative of the equation:

dl’l
f(X],xz, . ,xn) = mH()C)

=———C(Fi(x1), ..., Fp(x)) - ﬁﬁ(xf)

dul...aun i=1

—e(Fi(x1), - Falt)) - l_ljlfi(xi)

where u; is the probability integral transform of x;.

For the purpose of estimating the VaR or ES based on time series data, Patton [6]
defined the conditional version of Sklar’s theorem. Let F) , and F,, be the con-
tinuous conditional distributions of x;| ;- and x,|S;_1, given the conditioning set
S,-1, and let H, be the joint conditional bivariate distribution of (X;,X|S,-1).
Then, there exists a unique conditional copula C, such that

Hy(x1,%2|S21) = C(Fu i (x1Se= 1), Fo, (x2S 2 1) S8 =1)

2.2.4 Parametric Copulas

Joe [9] and Nelsen [20] gave comprehensive copula definitions for each family.
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(1) The bivariate Gaussian copula is defined as:

C(ur, uz;p) zq)p(q)_l(”l)’q)_l("?))

where @, is the bivariate joint normal distribution with linear correlation coefficient
p and @ is the standard normal marginal distribution.

(2) The bivariate student’s t copula is defined by the following:

Clur, uz pov) =1, (1) (1), 1 ' (u2))
where p is the linear correlation coefficient and v is the degree of freedom.

(3) The Clayton generator is given by ¢(u) =u~? — 1 with 6 € (0, ), its copula
is defined by

C(ul,ug;e)z(ul_a+u2_a—1)_1/9

(4) The Gumbel generator is given by ¢(u) = ( — Inu)’ with €1, ), and the
bivariate Gumbel copula is given by

C(ur,uz;0) = exp(—{(— 1nu1)9+(— lnuz)e}w)

(5) The Frank generator is given by ¢(u)= In[(e=% —1)fe~% —1)] with
0 € (—0,0)U (0, 00), and the bivariate Frank copula is defined by

(e—Hul _ 1)(6_6M2 _ l)
e ?—1 )

1
C(uy,up;0)= — éln(l +

(6) The Joe generator is @(u) =u~? — 1, and the Joe copula is given by

Clur, uz;0) =1 - (0 + 1’ —w°m?)'”, with 0 € [1, 00)

(7) The BB1 (Clayton-Gumbel) copula with 6 € (0, 0) NS € [1, o) is
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Cluy,up;0,6) = (1+ [(Mf9—1)5+ (uz_e—l)&} 1/5) ny

(8) The BB6 (Joe-Gumbel) copula with € [1,00) NS €0, o0) is

s 0.5)=1- (1= oxpf ~[(= (1))’ + (- (-] "} )

(9) The BB7 (Joe-Clayton) copula with 8 € [1,00) N5 € [0, ) is

Cluy,up;0,6)=1- (1_ [(l_ﬁi))—é_'_(l_ﬁg)_é_l] _1/5)1/6

(10) The BB8 (Frank-Joe) copula with 8 €[1,00) N5 € (0,1] is

C(ul,ul;ﬂ,é) =

SR

10
1 0 0
(1— [l—m(l—(l—&u) (1= (1—-6up) )] )

2.2.5 Vine Copulas

Even though it is simple to generate multivariate Archimedean copulas, they are
limited in that there are only one or two parameters to capture the dependence
structure. Vine copula method allows a joint distribution to be built from bivariate
and conditional bivariate copulas arranged together according to the graphical
structure of a regular vine, which is a more flexible measure to capture the
dependence structure among assets. It is well known that any multivariate density
function can be decomposed as

f(xl, e ,Xn) =f(xn|x1, e ,Xn_l) .. .f(X3 |X1,X2)f()€2|)€1 )f(xl)

Moreover, the conditional densities can be written as copula functions. For
instance, the first and second conditional density can be decomposed as
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flrlxr) =ci2(Fi(x1), F2(x2)) - f(x2),
F(xslxr, x2) = €31 (Fayn (xalxr ), Fap(xsfx1)) - 3 (x3 v )
= ca 31 (Fap (%2 |x1), Fan (x3]x1)) - €1,3(F1(x1), F3(x3)) - f3(x3)

After rearranging the terms, the joint density can be written as

Flx1,x2,x3) = g 351 (Fap (2 |x1), Fapp (xs]x1)) - e1,2(Fi (x1), Fa(x2))
“c13(F1(x1), F3(x3)) - fi(xn) - f2 (x2) - f3(x3)

The summary of vine copulas is given by Kurowicka and Joe [21], and the
general n-dimensional canonical vine copula, in which one variable plays a pivotal
role, can be written as

n n—1ln—j

Flen oox) = T fla) x H jCj,j+i\1,.4.,j—1

k=1 j=li=1

Similarly, D-vines are constructed by choosing a specific order for the variables,
and the general n-dimensional D-vine copula can be written as

n n—1n—j
flx, ooox) = Hf(xk)x H H Cioigjli+1,.i+j—1
k=1 j=1i=1

Dissmann et al. [10] proposed that the automated algorithm involves searching
for an appropriate R-vine tree structure, the pair-copula families, and the parameter
values of the chosen pair-copula families based on AIC, which is summarized in
Table 2.1.

Table 2.1 Sequential ] Algorithm. Sequential method to select an R-Vine modell.
method to select an R-Vine Calculate the empirical Kendall’s tau for all possible variable
model pairs.

2. Select the tree that maximizes the sum of absolute values of
Kendall’s taus.

3. Select a copula for each pair and fit the corresponding
parameters based on AIC.

4. Transform the observations using the copula and parameters
from Step 3. To obtain the transformed values.

5. Use transformed observations to calculate empirical
Kendall’s taus for all possible pairs.

6. Proceed with Step 2. Repeat until the R-Vine is fully
specified.
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2.2.6 Tail Dependence

Tail dependence looks at the concordance and discordance in the tail, or extreme
values of u; and u,. It concentrates on the upper and lower quadrant tails of the joint
distribution function. Given two random variables u; ~ F; and u, ~ F, with copula
C, the coefficients of tail dependency are given by [22, 20]

C )

A= lir(r)l P[F1(u1) <u|F2(up) <u] = lirg (u u)’
u—0+ u—0* u
C ’

Ay = lir? P[F1(u1) > u|F2(up) > u] = 1ir111 (1, u)
u—1- u—>1- u

where C is said to have lower (upper) tail dependency iff 4, #0 (Ay #0). The
interpretation of the tail dependency is that it measures the probability of two
random variables both taking extreme values as shown in Table 2.2 [22, 20].

2.2.7 Estimation Method

Generally, the two-step separation procedure is called the Inference functions for
the margin method (IFM) [9]. It implies that the joint log-likelihood is simply the
sum of univariate log-likelihoods and the copula log-likelihood is shown as below.

logf(x)= 3 logfi(x;) + log e(Fi(x1), ..., Falxn)

i=1

Table 2.2 The coefficients of tail dependency

Family Lower tail dependence Upper tail dependence
Gaussian - -

st o () e (-
Clayton 2-1# -

Gumbel - 2-21#

Frank - -

Joe - 220

BB1 015 0 _olk

BB6 - 221

BB7 2-14 2-2#

BBS - 2 —218if §=1, otherwise 0

Note:—represents that there is no tail dependency
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Therefore, it is convenient to use this two-step procedure to estimate the
parameters by maximum log-likelihood, where marginal distributions and copulas
are estimated separately.

2.3 Data and Empirical Findings

2.3.1 Data Representation

We use indices prices instead of other financial instruments or financial accounting
numbers. One of the main reasons is that an index price could reflect a timely
financial environment in contrast to financial accounting numbers that are published
quarterly. Furthermore, indices can easily be constructed and tell us which sector
contributes more risk to the entire market. Standard and Poor separates the 500
members in the S&P 500 index into 10 different sector indices based on the Global
Industrial Classification Standard (GICS). All data is acquired from Bloomberg,
sampled at daily frequency from January 1, 1995 to June 5, 2009. We separate the
sample into two parts, the in-sample estimation period is from January 1, 1995 to
December 31, 2007 (3271 observations) and the out-of-sample forecast validation
period is from January 1, 2008 to June 5, 2009 (360 observations). Since the
parameters change over time, we recalibrate the parameters every ten steps in the
out-sample dataset. In other words, we calibrate the parameters 36 times. The
following tables only show the results for the first calibration.

The summary statistics of these indices are listed in Table 2.3 as well as the
statistical hypothesis testing. The statistical hypothesis testing for the unit-root
based on Augmented Dickey-Fuller (ADF) test, and the results show that the values
of 1 in ADF test rejects the null hypothesis of a unit root in a univariate time series.
The results of Jarque-Bera (J-B) test reject that the distributions of returns are
normality, and the results of Engle’s ARCH test show that the indices’ returns
present conditional heteroscedasticity at the 5 % significance level. In addition, we
assign an identification number to each sector.

2.3.2 Results for the Marginal Models

We estimate the parameters of p and q by minimizing Akaike information criterion
(AIC) values for possible values ranging from zero to five. Table 2.4 lists the
parameters which are estimated by minimized AIC values, and statistical hypothesis
tests for the residuals are based on the Jarque-Bera (J-B) test and the Engle’s ARCH
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test. The results show that using the skewed Student’s t innovation distribution for
the residual terms is appropriately fitted to the return data because the degree of
freedom is usually smaller than 15 and Jarque-Bera test rejects the null hypothesis
of normality. In addition, the asymmetric parameter is not equal to one.
Using EGARCH (1, 1) model is appropriate because the result of the Engle’s
ARCH test of residuals shows no conditional heteroscedasticity, and parameter f is
usually larger than 0.9, which indicates the conditional volatility is time-dependent.

2.3.3 Results for the Copula Models

After the estimation of each marginal, we consider the set of standardized residuals
from the ARMA-EGARCH (1, 1) model and transform them into a set of uniform
variables. All the transformed residuals of the Kolmogorov-Smirnov test are 0,
indicating that the distribution of transformed residuals and the uniform distribution
are from the same continuous distribution, which null hypothesis cannot be rejected
at the 5 % significance level. Using the Student’s t copula as our benchmark with a
degree of freedom of 10.1289, AIC values in Table 2.5 show that vine copula-based
model outperforms Student’s t copula-based model in high-dimensional modeling.

The catalogue of pair-copula families includes elliptical copulas such as Gaus-
sian and Student’s t, single parameter Archimedean copulas such as Clayton, Frank,
and Gumbel, alongside two parameter families such as BB1, BB6, BB7, and BBS.
All various copulas implemented are in the VineCopula library in R [23].

2.3.4 Results for the Copula VaR and Copula VaR Ratio

We empirically examine which sector dominates more risk contributions on sys-
temic risk with 10,000 Monte Carlo simulations using vine Copula-based
ARMA-EGARCH (1, 1) modeling. The results of residuals, fitted by
ARMA-EGARCH (1, 1) with the skewed student’s t innovations, are shown in
Fig. 2.1. Using the vine copula, the tree structure in tree level one is shown in
Fig. 2.2. The results of the worst 5 % return loss, shown in Fig. 2.3, are not sur-
prising that the financial industry has the largest risk during 2008 financial crisis. As

Table 2.5 Estimation for the copula models from in-sample data for the first calibration

Number of parameters Log-likelihood AIC
Gaussian copula 55 15259 —30408.4
Student’s t copula 56 16074 —32038
Vine copula 96 16242 —32292.6
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Fig. 2.1 The scatter plot of residuals for the first calibration

1=FIN ® ©)

2=INFT
3=COND @
4=ENRS

5=HLTH

6=INDU

7=UTIL @ @
8=CONS

9=MATR @

10=TELS

11=5&P 500

©®

Fig. 2.2 The plot of vine copula structure in tree one for the first calibration

seen in Fig. 2.4 and Fig. 2.5, we realize that the financial sector contributed more
risk during the subprime crisis from 2008 to 2009, while the consumer staples
sector is the major risk receiver. Hence, this measure is a simplified and efficient
methodology to analyze systemic risk.
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Fig. 2.3 The one-day ahead worst 5 % return loss for each sector index
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Fig. 2.4 The one-day ahead VaR at the 95 % confidence level
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Fig. 2.5 The one-day ahead VaR ratio at the 95 % confidence level

2.4 Conclusion

The evidence in our paper shows that not only does vine Copula-based
ARMA-EGARCH (1, 1) outperform the Gaussian and the Student’s t
copula-based ARMA-EGARCH (1, 1) based on AIC values, but also is the skewed
student’s t innovations more appropriate than using the student’s t innovations.

In addition, using vine Copula-based ARMA-EGARCH model to forecast
Copula VaR and Copula VaR ratio, we develop a real-time and useful way to
evaluate systemic risk. Moreover, the VaR ratio provides the information of the risk
contribution from each sector. This approach is very general and can be tailored to
any underlying country and financial market easily.
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