
Chapter 2
Data Coding and Image Compression

—The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point.

Shannon, Claude

2.1 Introduction

The need for compression of images becomes apparent when one counts the number
of bits needed to represent the information contentwithin each image. Let us consider,
for example, the storage space required by the following types of images:

• A color image of compact size, say 512×512 pixels at 8 bpp and 3 color channels
requires about 6.3 × 106 bits (768 KB).

• A digitized at 12 µm color negative photo of 24× 36 mm (35mm), 3000× 2000
pixels at 8 bpp, requires 144 × 106 bits (about 17.5 MB).

• A digitized at 70µm radiogram of 11 × 17 inch, 5000 × 6000 pixels at 12 bpp,
requires 360 × 106 bits (about 44 MB).

• A multispectral LANDSAT image of 6000 × 6000 pixels per spectral band at 8
bpp for 6 spectral bands, requires 1.73 × 109 bits (about 211 MB).

These examples, and thosementioned in the Preface indicate the need for amethod to
tackle with this massive amount of data. In the following paragraphs an introduction
into the realm of data compression is given and approaches for image compression
are presented.

© Springer Nature Singapore Pte Ltd. 2017
G. Pavlidis, Mixed Raster Content, Signals and Communication Technology,
DOI 10.1007/978-981-10-2830-4_2

49

50 2 Data Coding and Image Compression

2.2 Quantification of Information

Since Information Theory can provide answers to two fundamental questions, “what
is the ultimate data compression” (Entropy), and “what is the ultimate transmission
rate of communication” (channel capacity) (Cover and Thomas 2006), questions
which are also fundamental in the explorations in this treatise, it is important to
include an introduction on these subjects. A need that naturally arises is to model and
quantify ‘information’. Fortunately, this issue has been addressed back one century
ago. Hartley in his seminal paper in 1928 (Hartley 1928) realized that

...as commonly used, information is a very elastic term, and it will first be necessary to set
up for it a more specific meaning...

so his first care was about measuring information. Information communication was
the context in this work. Hartley noticed that during the communication of a mes-
sage, the precision of the information depends upon what other sequences might
have been chosen. He realized that whenever new information became available
towards completing the communicated message, ambiguity lowered, by excluding
any other possibilities for the communicated meaning. Furthermore, by realizing
that the symbols that comprise the information, in terms of quality and quantity,
constitute an integral part of a process to measure the information, he first tried to
eliminate undesirable side effects of this insight that are imposed by non-physical
(like psychological) quantities. For example, the number of symbols available to two
persons that speak different languages to communicate is negligible as compared to
the available number of symbols to two persons speaking the same language. Hart-
ley’s approach was to propose that any physical system that transmits information
should be indifferent to the content and interpretation and should focus on the ability
of the system to distinguish the transmitted symbols.

Hartley assumed a system able to transmit s symbols by doing a number of n
possible selections (arrangements of s symbols into sequences of n members). He
deduced that the amount of information should be proportional to the number of
selections n

H = Kn (2.1)

where K a constant that depends on the number of symbols s available at each
selection. By comparing two such systems that produce the same amount of possible
sequences he found that

sn1
1 = sn2

2
H = K1n1 = K2n2

}
⇒ K1

log s1
= K2

log s2
(2.2)

where snk
k the number of possible distinguishable sequences of system k. Apparently

this relation holds only if
K = K0 log s (2.3)

2.2 Quantification of Information 51

with K0 being the same for all systems, which may be omitted by making the base
of the logarithm arbitrary. Then connecting (2.3) with (2.1),

H = n log s ⇒ H = log sn (2.4)

This is equivalent to stating that a practical measure of information is the logarithm
of the number of possible symbol sequences. If for example n = 1 (that is there is a
single selection available) then the amount of information is equal to the logarithm of
the number of symbols. Hartley, by introducing a logarithmicmeasure of information
for communication (the logarithm of the alphabet size), had hacked his ways into the
world of information and defined the first means to quantify it.

Shannon took on the work by Hartley and build a complete Mathematical The-
ory of Communication (Shannon 1948). Shannon approved Hartley’s choice of a
logarithmic measure for various reasons and pointed out that the choice of the loga-
rithmic base corresponds to the choice of a unit for measuring information. So, if the
base is two (2) then information is measured in binary digits, or bits (suggested by
J.W. Tukey). Shannon distinguished the systems into two major categories of study,
the Discrete Noiseless Systems and the Discrete Systems with Noise. He defined the
Discrete Channel as

the system in which a sequence of choices from a finite set of elementary symbols can be
transmitted from one point to another, where each symbol is assumed to have a certain
duration in time

Shannon then proceeded to define the Discrete Source of information using mathe-
matical formalism, by realizing that such a source would produce a message symbol
by symbol according to certain probabilities depending on the particular symbols and
preceding symbol choices. Apparently what this formulation describes is a stochastic
process. Shannon turned it also the other way around and stated that

...any stochastic process that produces a discrete sequence of symbols chosen from a finite
set may be considered a discrete source.

This was a crucial step in defining a mathematical description of a source of informa-
tion. Building on this, Shannon defined the various series of approximations, like the
zero-order, first-order, etc., in symbols and symbol sequences, bringing the notions
of Markov processes1 into the new information theory. Shannon further restricted the
domain of interest into those Markov processes which exhibit a means of statistical
homogeneity. The special case of processes that correspond to this domain are the
ergodic processes, which exhibit the property that any collection of random sam-
ples from an ergodic process must represent the average statistical properties of the
entire process. Subsequently, an ergodic source produces sequences with the same
statistical properties.

1Shannon used the older spelling ‘Markoff’ for the famousRussianmathematicianAndrei Andreye-
vich Markov.

52 2 Data Coding and Image Compression

After representing the discrete information sources as ergodic Markov sources,
Shannon searched for a quantity to measure the amount of information produced
by such sources, which can also be the rate at which information is produced by
these sources. Supposing a set of possible events with corresponding probabilities
p1, p2, ..., pn he searched for a measure H(p1, p2, ..., pn) with the following proper-
ties:

• H should be continuous in the pi.
• If all the pi are equal, pi = 1

n , then H should be a monotonic increasing function
of n.

• If a choice be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H.

By elaborating on these desired properties, Shannon concluded that this measure is

H = −K
n∑

i=1

pi log pi (2.5)

Shannon realized that quantities of the form

H = −
n∑

i=1

pi log pi (2.6)

play a central role in quantifying information and thus the name entropy was coined
to describe them, as they are directly related to the same definition of entropy in sta-
tistical mechanics. According to this definition, the entropy of two random variables
with probabilities p and q = 1 − p is H = −(p log p + q log q) which gives rise to
the famous bell-shaped graph shown in Fig. 2.1.

This quantity, the entropy H, has some interesting properties that further support
its usability as an information measure:

1. It is a positive value except for one single case, where a single event is certain,
thus the entropy collapses to zero,

H =
{

= 0, pi = 0, ∀i, except for one pj = 1

> 0, otherwise
(2.7)

2. The entropy is maximized for equally probable events, thus the most uncertain
situation is successfully captured,

H = Hmax = log n, pi = 1

n
(2.8)

3. The entropy of a joint event of events x and y with p(i, j) probability of joint
occurrence of i for the first and j for the second is,

2.2 Quantification of Information 53

Fig. 2.1 Entropy of two
random variables with
probabilities p and (1 − p)

H(x, y) = −
∑

i,j

p(i, j) log p(i, j)

while

{
H(x) = −∑

i,j p(i, j) log
∑

j p(i, j)

H(y) = −∑
i,j p(i, j) log

∑
i p(i, j)

(2.9)

and it is easily shown that,

H(x, y) ≤ H(x) + H(y) (2.10)

with equality holding for the case of the events being independent (p(i, j) =
p(i)p(j)).

4. Any equalization of the probabilities pi, p2, ..., pn or averaging of the form,

pi′ =
∑

j

aijpj,
∑

i

aij =
∑

j

aij = 1, ∀aij ≥ 0 (2.11)

increases the entropy H.
5. Supposing two random events as in the 3rd case, the conditional entropy of y,

Hx(y) (modern notation for conditional entropy using the symbolism H(y|x), but
the original Shannon’s notation is used here), is defined as the average of the
entropy of y for each value of x, weighted according to the probability of getting
that particular x,

Hx(y) = −
∑

i,j

p(i, j) log pi(j) (2.12)

54 2 Data Coding and Image Compression

where

pi(j) = p(i, j)∑
j p(i, j)

(2.13)

is the conditional probability that y has the value j. Apparently, (2.12) quantifies
the amount of uncertainty regarding ywhen x is known, on the average.Combining
(2.12) with (2.13),

Hx(y) = −
∑

i,j

p(i, j) log p(i, j) +
∑

i,j

p(i, j) log
∑

j

p(i, j)

= H(x, y) − H(x) ⇔ H(x, y) = H(x) + Hx(y)

(2.14)

6. Combining the 3rd (2.10) and the 5th (2.14) properties,

H(x) + H(y) ≥ H(x, y) = H(x) + Hx(y) ⇔ H(y) ≥ Hx(y) (2.15)

which indicates that the knowledge of x decreases the uncertainty of y, unless the
events x and y are independent.

The theory of entropy expanded to describe the uncertainty in an information
source, which produced two very significant theorems limiting the data rates that can
be attained in a compression system. By defining,

GN = − 1

N

∑
i

p(Bi) log p(Bi) (2.16)

p(Bi) being the probability of a sequence Bi of source symbols, and the summation
defined over all sequences containingN symbols. This GN is a monotonic decreasing
function of N and

lim
N→∞ GN = H (2.17)

This describes the zero-order case, where there is no dependence on previously
produced symbols. In all other cases, where the probability of a sequence Bi being
followed by a symbol sj is denoted by p(Bi, sj), where also the conditional probability

of sj after Bi is pBi(sj) = p(Bi,sj)

p(Bi)
,

FN = −
∑

i,j

p(Bi, sj) log pBi(sj) (2.18)

summing over all blocks Bi of N −1 symbols and over all symbols sj. Then FN is also
a monotonic decreasing function of N , and by combining (2.16) with (2.18) holds
that,

2.2 Quantification of Information 55

FN = NGN − (N − 1)GN−1

GN = 1

N

N∑
n=1

FN

FN ≤ GN , lim
N→∞ FN = H

(2.19)

These very important results show that a series of approximations to H can be
obtained by considering only the statistical structure of the sequences over the N
symbols, and FN is a better approximation, in fact being the N-th order approxima-
tion to the information source. FN is the conditional entropy of the next symbol when
knowing the N − 1 preceding symbols. Shannon defined the ratio of the entropy of
a source to the maximum value as the relative entropy of the source, identifying this
as the maximum compression possible, and defined as redundancy the one minus the
relative entropy.

At the time Shannon published this theory it was thought to be impossible to send
information at a positive ratewith negligible probability of error. Shannon proved that
the probability of error could be made nearly zero for all communication rates below
channel capacity. Shannon’s fundamental theorem for a noiseless channel, today
referenced as the noiseless coding theorem, stated that it is impossible to encode
the output of a source in such a way as to transmit at an average rate less than or
equal to C

H , where C the channel capacity (bits per second) and H the entropy of the
source (bits per sample). In this theoryShannondefined the upper limit of anypossible
compression (the entropyH) for a randomprocesses such asmusic, speech or images,
by identifying that in such processes there is an irreducible complexity below which
the signal cannot be compressed. Shannon argued that if the entropy of the source is
less than the capacity of the channel, asymptotically error-free communication can
be achieved (Cover and Thomas 2006).

Some typical examples of source entropy computations are as follows (bit-rates
are reported typically in Bits Per Sample (bps)). Given X = {a, b, c, d, e} with all
symbols equiprobable (p(a) = ... = p(e) = 1/5), then the entropy of X would be,

H(X) = −5 × 1

5
log2

1

5
= 2.32 bps (2.20)

and a typical message produced by such a source could be (Shannon 1948),

B D C B C E C C C A D C B D D A A E C E E A
A B B D A E E C A C E E B A E E C B C E A D

When the probabilities of the symbols change, say, p(a) = 1/2.5, p(b) = p(e) =
1/10, p(c) = p(d) = 1/5, then the entropy of X becomes

H(X) = − 1

2.5
log2

1

2.5
− 1

10
log2

1

10
− 1

5
log2

1

5
− (2.21)

− 1

5
log2

1

5
− 1

10
log2

1

10
= 2.12 bps

56 2 Data Coding and Image Compression

and a typical message produced by such a source could be (Shannon 1948),

A A A C D C B D C E A A D A D A C E D A
E A D C A B E D A D D C E C A A A A A D

Results change dramatically when joint and conditional probabilities are at work,

X =

⎧⎪⎨
⎪⎩

a p(a) = 9/27

b p(b) = 16/27

c p(c) = 2/27

pi(j) =
⎛
⎝pa(a) = 0 pa(b) = 4/5 pa(c) = 1/5

pb(a) = 1/2 pb(b) = 1/2 pb(c) = 0
pc(a) = 1/2 pc(b) = 2/5 pc(c) = 1/10

⎞
⎠

p(i, j) =
⎛
⎝p(a, a) = 0 p(a, b) = 4/15 p(a, c) = 1/15

p(b, a) = 8/27 p(b, b) = 8/27 p(b, c) = 0
p(c, a) = 1/27 p(c, b) = 4/135 p(c, c) = 1/135

⎞
⎠

(2.22)

a typical message produced by such a source would be (Shannon 1948),

A B B A B A B A B A B A B A B B B A B B
B B B A B A B A B A B A B B B A C A C A
B B A B B B B A B B A B A C B B B A B A

This scales up considerably when moving from a source of symbols to a source of
more complicated output, say words. Furthermore, by imposing a second-order word
approximation and using the total English alphabet, Shannon was able to produce
sequences such as (Shannon 1948),

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHERMETHOD FOR THE LET-
TERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEX-
PECTED

which represents a sentence that could, actually, make some sense, even though
Shannon’s primary concern had to do with the decoupling of the message and the
meaning.

When Shannon’s attention switched to the case of channels with noise, then the
focus had to be shifted from the compact representation of information to the reliable
communication. Building on entropy as the measure of uncertainty, Shannon found
it reasonable to use the conditional entropy of the message, knowing the received
signal, as a measure of the missing information, which represents the amount of
information needed at the received to correct the corrupted message,

R = R(x) − Ry(x) (2.23)

R being the transmission rate, R(x) the rate that corresponds to the H(x) entropy of
the source and Ry(x) the rate that corresponds to the Hy(x) conditional entropy of the

2.2 Quantification of Information 57

source given the message received at the receiver. In a typical example, supposing
two possible symbols 0 and 1, and a transmission at a rate of 1000 symbols per
second with probabilities p0 = p1 = 1/2, and assuming that during transmission the
noise alters 1 in 100 received symbols, if a 0 is received the a posteriori probability
that a 0 was transmitted is 0.99, and that a 1 was transmitted is 0.01. Hence,

Hy(x) = −[0.99 log2 0.99 + 0.01 log2 0.01] = 0.081 bits per symbol (2.24)

which corresponds to Ry(x) = 81 bits per second in this case. Then the system is
transmitting at a rate R = R(x) − Ry(x) = 1000 − 81 = 919 bits per second. In the
extreme case where a 0 is equally likely to be received as a 0 or 1 and similarly for
1, the a posteriori probabilities are 1/2, 1/2 and

Hy(x) = [0.5 log2 0.5 + 0.5 log2 0.5] = 1 bits per symbol (2.25)

which amounts to Ry(x) = 1000 bits per second. The rate of transmission is then
R = R(x) − Ry(x) = 1000− 1000 = 0 as expected. On this intuition, Shannon built
his definition of the capacity of a channel asC = max(H(x)−Hy(x)) (with the ‘max’
in respect to all possible information sources used as input to the channel) and stated
his fundamental theorem for a discrete channel with noise, today referenced also as
the noisy coding theorem, which defines the limits for the rate of information that
can be transmitted over a noisy channel keeping the error at a specific range. More
formally, If the rate of the source is less than or equal to the capacity of the channel
there exists a coding system such that the output of the source can be transmitted
over the channel with an arbitrarily small frequency of errors.

A major achievement of the theory set out by Hartley and Shannon was the fun-
damental modeling of information as a probabilistic process, which can be measured
in a manner that agrees with intuition. According to this modeling, a random event
x with a probability of occurrence p(x) is said to convey an amount of information
content defined as (Gonzalez and Woods 1992)

I(x) = log
1

p(x)
= − log p(x) (2.26)

where I(x) is the self-information of x. Apparently, the self-information of an event
is inversely related to the probability of its occurrence. So, for example, in the case
of a certain event (p(x) = 1) there is no self-information (I(x) = 0) to attribute to
this event. Intuitively, there is no meaning in transmitting a message about this event
since its occurrence is certain. In any other case, (2.26) states that the more surprising
the event is, the more the information content it conveys.

Other scientists built upon those theories or took their own path into the realm
of information theory, such as Fisher who defined the notion of sufficient statistic
(Fisher 1922) (T(X) is sufficient relative to {fθ (x)} ⇔ if I(θ; X) = I(θ; T(X)) for
all distributions on θ), Lehmann and Scheffe who introduced the minimal sufficient
statistic (Lehmann and Scheffe 1950), Kullback and Leibler who defined the rela-

58 2 Data Coding and Image Compression

tive entropy (or Kullback–Leibler distance, information divergence, cross entropy)
(Kullback and Leibler 1951) (D(p||q) = ∑

x p(x) log p(x)
q(x)), and Fano who proved

his Fano’s inequality, giving a lower bound on the error probability of any decoder
(Fano 1952) (Pe = PrX̂(Y)
= X ⇒ H(Pe)+ Pe log |X | ≥ H(X|Y), X denoting the
support of X).

Any process that produces information can be considered as a source of symbol
sequences, which are pre-selected from a finite set. The very text of this treatise, for
example, is written using a source that includes all the American Standard Code for
Information Interchange (ASCII) symbols (basically, Unicode symbols). Similarly,
a computer performs calculations using binary data, which can be considered as
sequences of symbols created by a source with a binary alphabet (0 and 1). Thus an
n-bpp digital image is created by a source with an alphabet of 2n symbols (which
represents all possible values). The classification of terms of the sequence generated
by a source-image can be based on the values of adjacent pixels resulting in a one-
dimensional scanning (1-D raster scan), or may be based on values resulting from
two-dimensional image regions (2-D blocks of pixels). The development of models
for different input images makes it easier to measure the information carried by the
symbol sequences (Rabbani and Jones 1991a). Let us consider a couple of simple
examples from the image processing domain to see how the very basic theory of
entropy applies in two-dimensional signals. Suppose there is a simple graylevel (or
grayscale) image shown in Fig. 2.2.

This image comprises of the following pixel values

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Suppose also that the image is represented with an 8 bpp resolution, which corre-
sponds to a source producing 256 (28) different integer values ranging in [0, 255]. If
all these values are equiprobable then this particular image is one of the 28×8×8 =

Fig. 2.2 Simple graylevel
image

2.2 Quantification of Information 59

2512 ≈ 1.34 × 10154 equally probable 8 × 8 images that can be produced by the
specific source. In this image, four symbols (gray values) are present,

p(g) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1 = 40 p(40) = 0.375 (counts of ‘40’ divided by all image pixels)

g2 = 80 p(80) = 0.250

g3 = 160 p(160) = 0.125

g4 = 200 p(200) = 0.250

where g the variable for the gray values. If a uniform distribution is assumed
(equiprobable gray values) then apparently the source the produces such images is
characterized by an entropy of 8 bpp. If the entropy of the specific image is examined
then according to the fundamental law of entropy (2.6),

H = −
∑

g

p(g) log2 p(g) ≈ 1.9056 bpp

which amounts to 1.9056 × 8 × 8 = 122 total bits and is the first-order entropy
approximation, since all pixel values are supposed to be independent. A second-
order approximation may be attained if the image is converted to one line of pixels
and all pairs be counted,

40 40 40 80 80 160 200 200 40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200 40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200 40 40 40 80 80 160 200 200
40 40 40 80 80 160 200 200 40 40 40 80 80 160 200 200

It is easy to identify the gray level pairs listed in Table2.1. In this case, the entropy
is estimated by (2.6) as 2.75/2 = 1.375 bpp, with the division by 2 imposed by the
fact that pixels are taken in pairs. Apparently, a better estimate of the entropy is
achieved, and it is expected that higher-order approximations provide even better
estimates for a considerable computational cost, though. It should be noted that if

Table 2.1 Second-order entropy approximation with gray level pairs

Gray level pair Counts Probabilities

(40, 40) 16 0.250

(40, 80) 8 0.125

(80, 80) 8 0.125

(80, 160) 8 0.125

(160, 200) 8 0.125

(200, 200) 8 0.125

(200, 40) 8 0.125

60 2 Data Coding and Image Compression

the pixels are statistically independent any higher-order approximation collapses to
the first-order approximation.

The case changes even more if the image pixels are subtracted to form a new
‘difference’ image,2 ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0
40 0 0 40 0 80 40 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this case the symbols are reduced to three (0, 40, 80) with probabilities,

p(g) :

⎧⎪⎨
⎪⎩

g1 = 0 p(0) = 0.500

g2 = 40 p(40) = 0.375

g3 = 80 p(80) = 0.125

and the estimated entropy is 1.4056 bpp. Thus, by taking a ‘difference’ image, an
image that encodes the difference of the adjacent pixel values, even with a first-order
approximation, a lower entropy is measured, which corresponds to fewer bits to
describe the original image data (90 bits in this example).

It should be noted here that the entropy estimate provided by (2.6) can be computed
using matrix operations. In case the probabilities of the symbols p(xi) are arranged in
a row vector P then the computation of entropy can become a matrix multiplication,

H = −PT · logP = [
p(x1) · · · p(xn)

] ·
⎡
⎢⎣
log p(x1)

...

log p(xn)

⎤
⎥⎦ (2.27)

where the T notation denotes the transpose and the logarithm operates on each of the
elements of the matrix, producing a row vector of the logarithms of the probabilities.

2.2.1 Discrete Memoryless Sources

The simplest form of an information source is what is referenced as a Discrete Mem-
oryless Source (DMS), wherein the output symbols are statistically independent. A
DMS S is characterized by its alphabet S = {s1, s2, ..., sn} and the corresponding

2Each new pixel (to the right of the first) represents the difference of its original value and the value
of the previous pixel.

2.2 Quantification of Information 61

probabilities P = p(s1), p(s2), ..., p(sn). An important concept is the average infor-
mation provided by this DMS, but before defining it, one should define a way of
quantifying information in an event. Quantification of information content should,
of course, have some practical consequences; for example, it is reasonable to accept
that the emergence of a less probable event (or symbol) contains more information
than the appearance of a more probable (expected). It should be also noted that the
information content of several independent events, regarded as a new fact, is the sum
of the information of independent events (Rabbani and Jones 1991a).

Defining I(si) the information received by the appearance of a particular symbol
si in terms of probability,

I(si) = logk

(
1

p(si)

)
(2.28)

where the base of the logarithm, k, determines the information unit. If k = 2, the
information is binary (in the form of bits).

Taking the average value of this quantity for all possible symbols of the DMS, the
average information per symbol, H(S), known as entropy may be computed as:

H(S) =
n∑

i=1

p(si)I(si) = −
n∑

i=1

p(si) log2 p(si) bps (2.29)

As an example, consider one DMS S producing four symbols, S = {A, B, C, D}
with probabilities P(A) = 0.60, P(B) = 0.30, P(C) = 0.05, P(D) = 0.05.
By using (2.29) the source entropy is H(S) = −[0.6 log2 0.6 + 0.3 log2 0.3 + 2 ×
0.05 log2 0.05] ≈ 1.4bps.

The entropy of a source can be interpreted in two ways. By definition is the
average value of information per symbol of the input source. It can also be defined as
the average value of information per input source symbol that an observer needs to
spend in order to alleviate the uncertainty of the source. For example, an observer is
likely to want to recognize a symbol of the unknown source asking simple questions
that require YES/NO (or TRUE/FALSE) answers. Each question is equivalent to an
information bit. The observer needs to devise smart methods to minimize the average
number of questions, which are required for the disclosure of a symbol or even a
number of symbols. As intelligent though a method could be, it could never reveal
symbols with an average number of binary questions less than the entropy of the
source (Rabbani and Jones 1991a).

2.2.2 Extensions of Discrete Memoryless Sources

It is often useful to deal with symbol tables rather than pure symbols. Consider one
DMS S with an alphabet of length n. Consider also that the output of the source is

62 2 Data Coding and Image Compression

grouped in sets of N symbols. Each group is considered to be a new symbol of an
extended new source SN , which has an alphabet size nN . This new source is called
the N-th extension of S. Since the sources ‘have no memory’, the probability of a
symbol σi = (si1, si2, ..., siN) in SN is given (Rabbani and Jones 1991a):

p(σi) = p(si1)p(si2)...p(siN) (2.30)

It can therefore be shown that the entropy per symbol of the extended source SN

is N times the entropy per symbol of the source S:

H(SN) = N × H(S) (2.31)

2.2.3 Markov Sources

Themodel of aDMS is too restrictive formany applications. In practice, it is observed
that there is a previous section of a message to major influence the likelihood of the
next symbol (i.e. the source has a ‘memory’). Thus, in digital images, the probability
of a pixel to get a specific value may depend significantly on the values of the
pixels preceding. Sources with this feature are modeled as Markov or Markovian
Sources (MS). An mth-order MS is a source, at which the probability of a symbol
depends on the previous m symbols (m being a finite number). This probability in
this case is a conditional probability expressed as p(si|sj1 , sj2 , ..., sjm), where i, jp(p =
1, .., m) = 1, 2, ..., n. So an mth-order MS has nm states. For an ergodic MS there is
a unique probability distribution on the set of states, called stationary or equilibrium
distribution (Rabbani and Jones 1991a). For the computation of the entropy of an
mth-order MS the work is as follows (Rabbani and Jones 1991a):

• First calculate the entropy given that the source is in a particular state sj1 , sj2 , ..., sjm :

H(S|sj1 , sj2 , ..., sjm) = −
n∑

i=1

p(sj1 , sj2 , ..., sjm) logp(sj1 , sj2 , ..., sjm) (2.32)

• Then sum, for all possible states, the products of the probabilities that the source
are in that state with the corresponding entropy:

H(S) =
∑
Sm

p(sj1 , sj2 , ..., sjm)H(S|sj1 , sj2 , ..., sjm) (2.33)

Figure2.3 depicts an example of a state diagram of a second orderMarkov process
with binary alphabet S = 0, 1. The conditional probabilities are

2.2 Quantification of Information 63

Fig. 2.3 Example of a states
diagram for a Markov
process

p(0|0, 0) = p(1|1, 1) = 0.8

p(1|0, 0) = p(0|1, 1) = 0.2

p(0|0, 1) = p(0|1, 0) = p(1|1, 0) = p(1|0, 1) = 0.5

(2.34)

There are four possible states (0, 0), (0, 1), (1, 0) and (1, 1). Because of the sym-
metry the stationary probability distribution for these states satisfies

p(0, 0) = p(1, 1)

p(0, 1) = p(1, 0)
(2.35)

In addition, the source will be in one of the given states at any time. So,

p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) = 1 (2.36)

Apparently, there are two ways to reach state (0, 0),

• either by encountering a 0 symbol while the system is in state (0, 0) with 0.8
probability

• or by encountering a 0 symbolwhile the system is in state (1, 0)with 0.5 probability

Similarly, for state (0, 1),

p(0, 0) = 0.5 p(0, 1) + 0.8 p(0, 0)

p(0, 1) = 0.2 p(0, 0) + 0.5 p(0, 1)
(2.37)

64 2 Data Coding and Image Compression

The solution of these equations leads to

p(0, 0) = p(1, 1) = 5/14

p(0, 1) = p(1, 0) = 2/14
(2.38)

Then the entropy can be calculated as

H(S) = −
∑
23

p(si1 , si2 , si) log2(si|si1 , si2) = 0.801 bps (2.39)

2.2.4 The Theorem of Lossless Coding

According to the theory proposed by Shannon, there is a direct relation between the
entropy and the information content. In this approach any source S can be simply
considered being ergodic with an alphabet of size n, and entropy H(S). Whenever
segments of N input symbols from this source are being encoded into binary words,
∀δ > 0, it is possible, by choosing a large enough N , to create a code in such a
way that the average number of bits per input symbol L, will satisfy the inequality
(Rabbani and Jones 1991a)

H(S) ≤ L < H(S) + δ (2.40)

This inequality is usually referenced as the theorem of lossless coding and
expresses the fact that each source may be losslessly encoded with a code, in which
the average number of bits per symbol for any input symbol is close, but never less
than the entropy of the source. But while the theorem assures of the existence of a
code that can achieve a value close to the entropy of the source, it does not provide
any information on the way of its creation. In practice, variable sized codes with
extended source models are being used to achieve the desired performance (Rabbani
and Jones 1991a). A code is called compact (for a given source), when its average
length is less than or equal to the average length of all other codes that satisfy the
prefix codes condition3 for the same source and the same alphabet.

2.3 Digital Image Compression

After the necessary introduction to the information theory based essentially on the
probability theory, the transition to the study of more complex sources can be done
with two-dimensional data: the digital images. The examples presented thus far

3The prefix condition, which represents a necessary and sufficient condition for the creation of
variable length codes, states that no code can be the beginning of another code for the same alphabet.

2.3 Digital Image Compression 65

indicate that the digitization of images leads to amassive amount of data. The amount,
though, of bits actually required to describe the information of an image can be
much smaller due to the existence of information redundancy. The main objective
of research in image compression is to reduce the number of bits required for the
representation, by removing such redundancies. These redundancies are either of
statistical nature and can be identified through proper modeling of the source, or of
optical nature directly connected to the HVS, identified by appropriate modeling of
theHVS itself. At the same time, establishing fundamental limits for the performance
of each type of compression method to a specific kind of image, through the use of
the basic principles of information theory are also considered. Apart from these basic
objectives of the relevant research it is necessary to develop various algorithms that
can ‘fit’ in different applications. There are several approaches to image compression,
but generally all fall into two basic categories, lossless and lossy image compression
(Fig. 2.4):

• Lossless compression—or reversible coding, in which the reconstructed image
(decompressed) after compression is numerically identical to the original image
(at pixel level). Obviously, lossless compression is ideal, since no part of the
original information is likely to be lost or distorted. In this way, however, only
small compression ratios can be achieved, typically of the order of 2 : 1. This
type of compression has to do with the modeling of statistical characteristics of
the image.

Fig. 2.4 General categorization of compression methods

66 2 Data Coding and Image Compression

• Lossy compression—or irreversible coding, wherein the reconstructed image is
degenerate with respect to the original. Lossy compression can achieve signifi-
cantly higher compression ratios. However, compression is achieved at the cost
of increasing distortion, i.e. losing parts of the original data. It is important that
the degeneration of the reconstructed image may or may not be noticeable, or it
is possible to select the level and nature of distortions that might be acceptable.
This type of compression makes heavy use of the concept of HVS modeling and
exploitation of redundancies of an optical nature. The term compression “without
noticeable losses” is often used to describe compression methods with losses that
result in images with no noticeable degeneration (under normal or specific viewing
conditions). It should be noted that the scope of the term “noticeable loss” in the
definition of “compression without noticeable loss” is quite subjective and should
be used with caution. Clearly, a method that implements compression with “no
noticeable losses” that is specifically designed for display (e.g. for a computer
screen of 19 in. and for an observer at a distance of about one meter) could be
largely insufficient for other purposes, such as e.g. for printing on paper or on
film.

In lossy compression it is allowed (or is tacitly accepted) to produce errors in
order to increase the compression ratio. These errors can be quantified by distortion
estimators. Usually this distortion is denoted as D(I, Î) and expresses the qualitative
difference between an original image I ≡ i[x, y] and a reconstruction Î ≡ î[x, y]
from the compressed image.4

A widespread distortion estimator is the Mean Squared Error (MSE) defined as:

MSE = 1

N1 · N2

N1−1∑
x=0

N2−1∑
y=0

(i[x, y] − î[x, y])2 (2.41)

In image compression, this estimator is expressed through another equivalent
estimator, PSNR, which takes the place of an objective image quality estimator, and
is defined as:

PSNR = 10 log10
(2B − 1)2

MSE
= 20 log10

2B − 1

RMSE
(2.42)

whereB is the color depth of the image in bpp and RootMean Squared Error (RMSE)
is the square root of the MSE. PSNR is expressed in dB and is the most widespread
mathematical formulation of the qualitative difference between two images.

Along with the assessment of the distortion, there is also the assessment of the
efficiency of compression. Since the objective of compression is the representation
of an original image by a string consisting of bits (usually referenced as a bitstream),
the aim is to maintain the length of this string as short as possible. In the general case
an image of dimensions N1 × N2 with a color depth of B bpp requires N1 × N2 × B

4This is a typical symbolism for digital images. Every image consists of a sequence of two-
dimensional samples. The parameters x and y represent these two dimensions: 0 ≤ x < N1, 0 ≤
y < N2,N1 andN2 being the image dimensions in the horizontal and vertical directions respectively.

2.3 Digital Image Compression 67

Table 2.2 Typical compression performance values

Lossless High quality lossy Medium quality lossy Low quality lossy

(B-3) bpp 1 bpp 0.5 bpp 0.25 bpp

bits for a complete representation. After compressing this image, the compression
ratio may be defined as:

compression ratio = N1N2B

‖c‖ (2.43)

where ‖c‖ is the length of the final bitstream c.
Equally, the data rate (or bit-rate) in bpp is defined as (Taubman and Marcellin

2002b):

bit − rate = ‖c‖
N1N2

(2.44)

For the case of lossy compression, the compression rate (bit-rate) is an important
performance measure, particularly since the least significant bits of large color depth
images can be removed without significant (noticeable) optical distortion. The mea-
sure, therefore, of the average number of bits spent for each sample of the image is
usually themost importantmeasure of compression efficiency, regardless of the accu-
racywithwhich these sampleswere represented initially. Table2.2 presents indicative
values of compression rate for natural images (photographs of the real world) in bpp,
both for the case of lossless and lossy compression, adopting a convention that the
encoded lossy images are being viewed in typical monitor resolution of 90 pixels per
inch (or 22 pixels per mm) (Taubman and Marcellin 2002b). It should be noted that
the values are indicative for each color channel (i.e. directly applicable to images of
gray tones) and can show considerable variations depending on the image content.

2.3.1 Exploiting Redundancy for Compression

Without compression, an image is represented, generally, by a large amount of bits.
Compression is only possible if some of those bits can be regarded as redundant or
in some cases irrelevant. Two main categories of redundancy can be distinguished:

• spatial or statistical redundancy, and
• spectral redundancy or color correlation

In parallel, various application specifics render some of the information content of
images irrelevant. This is a very important aspect relating to a potentially large amount
of data able to be discarded, but it will not be discussed here, as it is application-
dependent.

68 2 Data Coding and Image Compression

2.3.1.1 Spatial and Statistical Redundancy

Consider the simple case of a binary image N1 × N2 consisting of white and black
pixels, and suppose each pixel is treated as an integer of B bits long. The image will
then be represented by N1 × N2 × B bits. If an encoding-decoding system knows a
priori that the image is binary, it is then able to use only one bit for each pixel and
thereby achieve a compression ratio of B : 1. But in the general case, the systemmay
just assume that some subset of combinations of pixels exhibits a higher incidence
rate than others. So if it is known that the next sample belongs with high probability
to the set {0, 1} then it is expected to spend a little more than 1 bit for the actual value
of the sample. This is indicated by the theory of entropy, which shows the smallest
amount of data expected to be consumed for the representation of a random variable
(image samples in this case). This is the overall of the a priori knowledge for the
input image regarded as a random variable.

Additionally, the systemmay assume that a small pixel neighborhood is very likely
to exhibit small and smooth variation.Making this assumption, the system can benefit
from previous pixel values to reduce the number of bits required to represent the next.
The assumption is based on probability theory. This relative a priori knowledge can
be described by the joint probability of two random variables, and thus the expected
number of bits are already known through conditional entropy.

So what is readily understood is that if in a given image the number of pixels
needed to extract robust statistics to predict new pixel values, then the compression
rate is expected to be high.

2.3.1.2 Spectral Redundancy

Considering any digital color image as a union of numerous point spread functions
(on each pixel) on the three dimensions color dimensions R, G and B, leads to an
obvious recognition of inter-pixel color dependencies. That is, color variations in
small regions of natural color images are expected to be limited or at least gradual.
The consequence of this is that color images do not exhibit abrupt color changes,
since there is usually a significant amount of color correlation. The obvious way
to tackle with such correlation would be to apply a transformation to another color
space that is decorrelated, minimizing the amount of redundancy in the color space
of the image. Theoretically, the optimum (in a least squares sense) transformation
in this case would be the Karhunen-Loeve Transform (KLT), or otherwise to apply
the Principal Component Analysis (PCA) on the color space. This typically means
that the covariance matrix of the image color pixels be computed, the eigenvalues of
the covariance matrix be extracted and the corresponding eigenvectors be identified.
The three eigenvectors, which are orthogonal, define a newcolor space for the image
which has the least possible color redundancy (from a statistical point of view).
Figure2.5 shows how the principal components of a color image would look like
after the application of PCA on the image color space.

2.3 Digital Image Compression 69

Fig. 2.5 KLT color space representation of a color image

In addition, it is known, according to many studies, that a human observer is
significantly less sensitive to sudden changes in chromaticity than in luminance.
This feature of the HVS is usually modeled by adopting a linear and sometimes
a non-linear transformation of the original RGB representation of an image into a
luminance-chromaticity representation (typically followed by a downsampling of
the chromaticity channels). An example of this transformation is the transformation
of RGB to YCbCr (Taubman and Marcellin 2002b):

⎛
⎝ Y

Cb

Cr

⎞
⎠ =

⎛
⎝ 0.299 0.587 0.1140

−0.169 −0.331 0.5000
0.500 −0.419 −0.0813

⎞
⎠
⎛
⎝ R

G
B

⎞
⎠ (2.45)

Usually, after the application of the transformation, subsampling of the chromatic-
ity channels (Cb, Cr) takes place either in the horizontal, or in the vertical direction
or both. Important research in the field of modeling of the HVS (as already reported
in the previous chapter), has made other similar transformations possible, which
lead to different color systems. In those systems (such as CIELAB and sCIELAB)
a linearization of the distances between colors as perceived by the HVS is targeted.
In any case, conversion to another color system and sub-sampling of the channels
with less visual importance leads to discarding of a significant amount of samples,
without imposing a significant (noticeable) visual distortion, by just exploiting the
characteristics (limitations) of the HVS.

2.3.2 Structure of a Basic Compression System

An abstraction of a compression-decompression system is shown in Fig. 2.6 as two
mappings M and M−1 respectively. To achieve lossless compression, M−1 = M−1

should hold. In lossy compression, mapping M is not reversible, so the notation M−1

is used to indicate that the decompression system is an approximate inverse.

70 2 Data Coding and Image Compression

Fig. 2.6 Compression as a mapping

The compression system may be considered as one large Look-Up Table (LUT)
with 2N1N2B values. In the general case of designing an encoder M of fixed-length
code words, an obvious way is to use the relation

c = M(I) = argmin
c′

D(I, M−1(c′)) (2.46)

where D with a measure of the distortion and ‖c‖ the fixed coding length imposed
by the particular encoder, for which the decoder can be regarded as a LUT with 2‖c‖
values.

This condition is sufficient to maintain the LUT in a small number of elements
both to the compressor and the decompressor. Thus, the compressor produces the
string whose reconstruction by the decompression will be the most equivalent to the
original image, based on the measure of distortion estimation. This approach results
in that the mapping M−1 is the reverse of M:

M(M−1(c)) = c (2.47)

Such a compression system is immune to distortion due to a repetitive compression-
decompression.

This is basically the idea behindVectorQuantization (VQ), the generality ofwhich
is very attractive. However, the exponential increase in the size of the LUT with the
increase in complexity, renders it an impractical solution (except for small images
with few samples). It is therefore necessary to implement a separation of the various
complementary structures within the mappings M and M−1. The basic structure of a
general compression scheme, as it stands following this distinction, and is the basis
for almost all today’s compression systems, is presented in Fig. 2.7. The first step is to
transform the input into a new set of samples, particularly suitable for compression.
In the second step, the new samples are quantized. During the final third step, the
quantized samples are encoded to form the final compression bitstream.

In the following paragraphs, a description of the key parts of a structured com-
pression system is presented. In this presentation it is considered that any color space
transformation has already occurred on the input image data.

2.3.2.1 Transformation

The term image transform typically refers to a class of unitary matrices used for the
representation of images. Similarly to the one-dimensional case, where a signal may

2.3 Digital Image Compression 71

Fig. 2.7 Elements of a structured compression system

be represented by a series of (orthogonal) basis functions, images are represented by
a series of two-dimensional basis functions or basis images. In the one-dimensional
case, a continuous functionmay be expressed as a series expansion using orthonormal
(orthogonal unitary) coordinate vectors, in order to produce a set of coefficients,
which may be used to represent the original function,

J = TI ⇔ J(u) =
N−1∑
x=0

T(u, x)I(x), 0 ≤ u ≤ N − 1 (2.48)

where T is the orthonormal transformation matrix and I the input data matrix. Since
the transformation is orthonormal it holds that T−1 = T∗T , and the inversion of the
transformation is,

I = T−1J ⇔ I(x) =
N−1∑
u=0

J(u)T∗(u, x), 0 ≤ x ≤ N − 1 (2.49)

Apparently, Eq. (2.49) can be viewed as a series expansion of I(x). In this repre-
sentation, the columns of T−1 are the basis vectors of I. It is also apparent in this
expansion that the elements J(u) are the coefficients that are needed to scale the basis
vectors in order to reconstruct the original data (Jain 1988).

In image processing, the signals are two-dimensional and the above approach
scales up to the following pair of transformations,

J(u, v) =
N−1∑
x=0

N−1∑
y=0

Tu,v(x, y)I(x, y), 0 ≤ u, v ≤ N − 1

I(x, y) =
N−1∑
u=0

N−1∑
v=0

J(u, v)T∗
u,v(x, y), 0 ≤ x, y ≤ N − 1

(2.50)

where Tu,v(x, y) is a set of orthonormal basis functions satisfying the orthogonality
and the completeness properties,

72 2 Data Coding and Image Compression

N−1∑
x=0

N−1∑
y=0

Tu,v(x, y)T∗
u′,v′(x, y) = δ(u − u′, v − v′)

N−1∑
u=0

N−1∑
v=0

Tu,v(x, y)T∗
u,v(x

′, y′) = δ(x − x′, y − y′)

(2.51)

‘δ’ denoting the impulse function. The J(u, v) elements are the transform coefficient
and the set of all transform coefficients J � {J(u, v)} is the transformed image (Jain
1988). In this context, the transformation matrix T is also called the transformation
kernel and a two-dimensional transformation is said to be separable if its kernel can
be written as a multiplication of two kernels acting on the two spatial dimensions of
the data,

Tu,v(x, y) = TC(u, x) · TR(v, y) (2.52)

where the C , R indices denote the column- and row-wise one-dimensional operation
respectively. Thus an image transform can be written as,

J(u, v) =
N−1∑
y=0

[N−1∑
x=0

TC(u, x)I(x, y)
]
TR(v, y) (2.53)

With all these representations converted into matrix form,

J = TC · I · TT
R (2.54)

while the inverse transforms follow the same formalism (Pratt 1991).
In image compression, the transformation (or simply transform) is responsible

for the conversion of input samples to a format that allows for easier and more
efficient quantization and encoding. A transformation captures inherent statistical
dependencies among samples in the original data, so that the transformed sample
would include only small local correlation. In the ideal case, the samples after the
application of the transformation must be statistically independent. Additionally, the
transformation must separate the information into parts that can be characterized
as ‘important’ or not, so that the redundant (less or non-important) information be
quantized with higher quantization level or even be eliminated. Specifically, in the
unitary transformation J = T · I holds that,

‖J‖2 � J∗TJ = I∗TT∗TTI = I∗T I � ‖I‖2 ⇒ ‖J‖2 = ‖I‖2 (2.55)

which states that the signal energy is preserved. In addition, this equation shows that
a unitary transformation is a simple rotation in the N-dimensional vector space, or
the components of J are the projections of I on the new basis (Jain 1988).

2.3 Digital Image Compression 73

In addition, since in unitary transforms the energy is preserved, if the transforma-
tion concentrates the energy of the signal to a small amount of coefficients would
significantly aid in the compression. The fact is that unitary transforms actually do
pack a large fraction of the energy into few coefficients. If µI and �I represent
the mean value and the covariance of an input data vector I then the corresponding
quantities for the transform coefficients are,

µJ � E[J] = E[TI] = TE[I] = TµI

�J = E
[
(J − µJ)(J − µJ)

∗T
]

= T
(
E
[
(I − µI)(I − µI)

∗T
])
T∗T = T�IT∗T

(2.56)

In the diagonal of �I lie the variances of the transform coefficients,

σ 2
J (k) = [�J]k,k = [

T�IT∗T
]

k,k
(2.57)

and since T is unitary,

N−1∑
k=0

|μJ(k)|2 = µ∗T
J µJ = µ∗T

I T∗TTµI =
N−1∑
n=0

|μI(n)|2 (2.58)

N−1∑
k=0

σ 2
J (k) = Tr

[
T�IT∗T

] = Tr[�I] =
N−1∑
n=0

σ 2
I (n) (2.59)

so,
N−1∑
k=0

E[|J(k)|2] =
N−1∑
n=0

E[|I(n)|2] (2.60)

and the average energy E[|J(k)|2] of the transform coefficients J(k) tends to be
unevenly distributed, even though the energy in the input might be evenly distrib-
uted. In addition, the off-diagonal elements of the covariance matrix �J tend to
become small compared to the diagonal elements, which indicates that the transform
coefficients tend to be uncorrelated (Jain 1988).

Last but certainly not least, the eigenvalues and the determinant of unitary trans-
form matrices have unity magnitude and the entropy of the input signal is preserved
during such a transformation, which states that unitary transformations preserve the
information content of a signal (Jain 1988).

Known transformations that satisfy these requirements are either those which
usually act on parts of the images (block transforms) as the Karhunen-Loeve trans-
form, the Fourier transform and the cosine transform, or global transforms applied
into spectral regions (sub-band transforms), as the Wavelet transform. In subsequent
paragraphs a brief and comprehensive description of these transformations as applied
in (2D data) image compression is included.

74 2 Data Coding and Image Compression

In order to adopt a more practical description and notation in the context of image
compression, the operators of transformations are being defined in relation to their
Point Spread Function (PSF). The PSF of an operator T is the result of the application
of the operator on a point source, and for the case of 2-D are

T
[
point source

] = point spread function, or

T
[
δ(x − α, y − β)] = h(x, α, y, β)

(2.61)

where δ(x−α, y−β) is an impulse function that expresses a point source of intensity
1 at point (α, β). The physical meaning of function h(c, α, y, β) is that it expresses
how the input value in position (x, y) affects the output value at position (α, β).

When the operator is linear and the point source is c times more intense, then the
result of the operator is c times larger, thus is

T [c · δ(x − α, y − β)] = c · h(x, α, y, β) (2.62)

Considering an image as a collection of such point sources each of different
intensity, one may, ultimately, represent the image as the sum of all these point
sources. In this case, the result of applying an operator characterized by a PSF
h(x, α, y, β) to a square N × N image I(x, y) can be written as

J(α, β) =
N−1∑
x=0

N−1∑
y=0

I(x, y)h(x, α, y, β) (2.63)

where the value of (α, β) is a linear combination of the values at all image locations
(x, y) weighted by the PSF of the transformation.

Apparently, the problem in image compression is to define a transformation
h(x, α, y, β) such that the input image can be losslessly represented with fewer bits.
Additionally, if the effect expressed by the PSF of a linear transformation is indepen-
dent of the actual position but depends on the relative position of pixels that affect
and are affected, then the PSF is translation invariant,

h(c, α, y, β) = h(x − α, y − β) (2.64)

and then (2.63) expresses a convolution

J(α, β) =
N−1∑
x=0

N−1∑
y=0

I(x, y)h(x − α, y − β) (2.65)

Further, if the columns are influenced independently of the rows of the image, the
PSF is separable,

h(c, α, y, β) = hc(x, α) · hr(y, β) (2.66)

2.3 Digital Image Compression 75

where the index c is used for the columns, while the index r for the rows, and thus
(2.63) is written as the sequential application of two one-dimensional transforma-
tions,

J(α, β) =
N−1∑
x=0

hc(x, α)

N−1∑
y=0

I(x, y)hr(y, β) (2.67)

And if the PSF is translation invariant and separable, then (2.63) is written as a
sequence of two one-dimensional convolutions,

J(α, β) =
N−1∑
x=0

hc(x − α)

N−1∑
y=0

I(x, y)hr(y − β) (2.68)

To transform these equations into matrix form, (2.67) can be expressed as

J = hT
c · I · hr (2.69)

The transformation in this equation is unitary if matrices hc and hr are unitary.
The concept of unitary is similar to that of the orthogonal except that it relates to
complex-valued quantities (of unit magnitude).

Reversing (2.69), the image I can be recovered as

I = hc · J · hT
r (2.70)

which in the form of elements is written as

I(x, y) =
N−1∑
α=0

N−1∑
β=0

J(α, β)hr(y, β)hc(x, α) (2.71)

where for constants α and β, hc and hr are vectors. Their product is of N × N
dimension. Taking all possible combinations of columns ofhr and rowsofhc thebasis
matrices are produced. Thus, Eq. (2.71) is the expression of the original image with
respect to these basis matrices. Finally, the data obtained from the transformation of
the original image are the coefficients with which each of the basis images (matrices)
must be multiplied before being summed with the others to reconstruct the entire
image.

Karhunen-Loeve Transform

Supposing aGaussian randomvariable I = (I1, I2, ..., Ik), the covarianceσi,j between
Ii and Ij is defined as

σi,j = E
[
(Ii − μi)(Ij − μj)

]
(2.72)

where μi, μj, are the mean values of Ii and Ij respectively. The k × k covariance
matrix of the random variable I is

76 2 Data Coding and Image Compression

�I = [σi,j]k
i,j=1 (2.73)

If A is the k × k orthogonal matrix whose rows are the eigenvectors of �I , then the
Karhunen-Loeve Transform (KLT) of I is defined as

YT = A · IT (2.74)

Vector Y is a Gaussian variable with statistically independent elements.
In practice, the question is to find the set of basis images, which are optimal for a

family of images with similar statistical characteristics. To answer this question, the
assumption that images are ergodic processes is made, namely:

• the mean value over the total family of images equals to the spatial mean in each
of the images (Fig. 2.8)

• the covariance matrix over the total family of images is equal to the covariance
matrix of each of the images

Of course, the ergodicity assumption is correct only in the case of uniform noise.
But it can be approximately correct for small portions of an image. The application of
the transformation on a graylevel (one-color-channel) image I of N × N dimensions
involves:

1. Conversion of the image I to a column vector i of N2 × 1 dimensions, by putting
the columns one below the other

2. Calculation of the covariance matrix � that is of size N2 × N2

3. Calculation of the eigenvalues of the covariance matrix
4. Calculation of the corresponding eigenvectors
5. Creation of matrix A of the eigenvectors (as rows) using an ordering imposed by

sorting the eigenvalues in a decreasing order
6. Compute the transformed image is: Ĩ = A(I − µ) where µ a vector with all

elements equal to the mean value of the image

Fig. 2.8 Ergodicity in
images

2.3 Digital Image Compression 77

This transformation is optimal from the energy standpoint; if only a limited num-
ber of the KLT transform coefficients are stored, they are expected to hold the most
part of the total energy in comparison to all other transformations. Unfortunately, the
basis functions of the KLT dependent on the image and require the calculation of the
covariance. Thus, a fast KLT algorithm is not possible if the transformation is applied
to the entire image (global). Therefore, the KLT is limited to only few applications
in image compression (Rabbani and Jones 1991a). Nevertheless, alternative imple-
mentations have already been proposed based on the assumed ergodicity in natural
digital images and that KLT is equivalent to Singular Value Decomposition (SVD),
which decomposes the original data into three matrices (factorization) in the typical
form I = U�VT , representing the new coordinate system to project the original
image (columns and rows of matrices U,V) and the amount of scaling to apply (on
the diagonal of �—the variances). Figure2.9 shows an example of the KLT on a
graylevel image. The original image is shown on the left; the two noisy images on
the right represent the U and VT matrices. The graph below the noisy images is a
portion of the graphical representation of the variances in the diagonal of �, which
illustrates how the most of the energy is concentrated in the first values. The image
can then be represented by a limited amount of basis vectors and variances to impose
efficient coding and, consequently, significant compression. Figure2.10 shows the
reconstruction that can be achieved by using a limited number of dimensions, by
discarding (setting to zero) a number of variances in �. Specifically, the first recon-
struction is attained by keeping only the first element in � containing almost no

Fig. 2.9 KLT (PCA) on a graylevel image

78 2 Data Coding and Image Compression

Fig. 2.10 Progressive reconstruction of the graylevel image undergone KLT

valuable information; what is really surprising is that by keeping only about 100
elements in � a very good reconstruction can be achieved, like in the case of 118
elements that results in 30.57 dB PSNR, which is fairly a threshold above which
images are considered of an acceptable quality. It should be noted that all elements
of the diagonal of � are 1536 for this example, so the 290 elements are just a small
19% fraction of the original data producing a significant 37.67dB quality.

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is often used in the spectral analysis and filter
design. Following the line of unitary transforms, for anM ×N input matrix I (image),
the two-dimensional DFT is defined as

J(u, v) =
M−1∑
x=0

N−1∑
y=0

I(x, y)e−2π i(ux
M + vy

N), i = √−1 (2.75)

whereas the inverse transform is defined as:

I(x, y) = 1

M · N

M−1∑
u=0

N−1∑
v=0

J(u, v)e2π i(ux
M + vy

N), i = √−1 (2.76)

2.3 Digital Image Compression 79

The DFT decomposes an image into its spectral bands. The parameters u, v are
called spatial frequencies of the transformation. The kernel of the transformation
may be separated as follows

e−2π i(ux
M + vy

N) = e− 2π iux
M · e− 2π ivy

N (2.77)

so that the two-dimensional transformation is implemented by two successive one-
dimensional transformations,

J(u, v) =
M−1∑
x=0

e− 2π iux
M

N−1∑
y=0

I(x, y)e− 2π ivy
N

=
M−1∑
x=0

J(x, v)e− 2π iux
M

where J(x, v) =
N−1∑
y=0

I(x, y)e− 2π ivy
N

(2.78)

Extensive study has been performed on fast implementations of DFT (such as the
Fast Fourier Transform (FFT)), which typically exhibit a computational complexity
of O(N log2 N) for a transformation of N-points (Rabbani and Jones 1991a). In gen-
eral, the transform coefficients generated by the DFT are complex numbers so their
storage and handling is problematic. Actually there are 2N2 transform coefficients,
but because of the symmetry of the conjugate elements, it holds that

J(u, v) = J∗(−u + lN,−v + mN) (2.79)

for l, m = 0, 1, 2, and J∗ the complex conjugate of J . Thus, almost half of the
elements are redundant, which is a disadvantage of theDFT.Another disadvantage of
the DFT is the occurrence of false spectral components due to indirect periodicity in
the image boundaries.When the DFT is used for compression with high compression
ratio, these spurious components can lead to the appearance of sudden changes
(blocking artifacts) between the parts of the image in which the transformation is
applied. To express the transformation in the form of matrices, according to what
has been defined in the introductory paragraphs, it suffices to define the functions hr

and hc

hc(x, u) = e−i 2πxu
M , hr(y, v) = e−i 2πyv

N (2.80)

Figures2.11, 2.12, 2.13, 2.14, and 2.15 show an example of the application of
the DFT and the possible reconstructions using a limited amount of the transform
coefficients. In this example only the magnitude of the complex coefficients is con-
sidered. The reconstruction is begin done by applying a filtering on the transform
domain, zeroing out most of the transform coefficients as shown in the figures. It
is apparent that the transform successfully compacts the image data into only a few

80 2 Data Coding and Image Compression

Fig. 2.11 DFT representation of a graylevel image by applying an FFT

Fig. 2.12 Reconstruction using 0.014% of the DFT coefficients at 19.78dB PSNR

Fig. 2.13 Reconstruction using 0.34% of the DFT coefficients at 22.70dB PSNR

2.3 Digital Image Compression 81

Fig. 2.14 Reconstruction using 1.34% of the DFT coefficients at 26.07dB PSNR

Fig. 2.15 Reconstruction using 10.25% of the DFT coefficients at 33.05dB PSNR

transform coefficients, achieving an acceptable image quality (a good approximation
of the original image data) with a very limited amount of data.

Discrete Cosine Transform

For practical applications in image processing the DFT cannot be the first choice as
it poses computational difficulties by producing complex valued coefficients. This
issue along with a need for fast and practical implementations of KLT gave rise to
real-valued related transformations, such as the Discrete Cosine Transform (DCT).
The DCT is defined by the transformation matrix C = {C(u, x)},

C(u, x) =
⎧⎨
⎩
√

1
N u = 0, 0 ≤ x ≤ N − 1√
2
N cos

(2x+1)uπ

2N 1 ≤ u ≤ N − 1, 0 ≤ x ≤ N − 1
(2.81)

The two-dimensional DCT of a square N × N matrix I is defined as

82 2 Data Coding and Image Compression

J(u, v) =
N−1∑
x=0

N−1∑
y=0

C(u, x)I(x, y)C(v, y)

J(u, v) =
N−1∑
x=0

N−1∑
y=0

I(x, y)c(u)c(v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N

J(u, v) = c(u)c(v)
N−1∑
x=0

N−1∑
y=0

I(x, y)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N

(2.82)

with,

c(ξ) =
⎧⎨
⎩
√

1
N , ξ = 0√
2
N , otherwise

Alternatively, the forward DCT can be found in the literature defined as,

J(u, v) = 2

N
c(u)c(v)

N−1∑
x=0

N−1∑
y=0

I(x, y)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(2.83)

with,

c(ξ) =
{√

1
2 , ξ = 0

1, otherwise

The inverse two-dimensional DCT is defined as:

I(x, y) =
N−1∑
u=0

N−1∑
v=0

c(u)c(v)J(u, v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(2.84)

with,

c(ξ) =
⎧⎨
⎩
√

1
N , ξ = 0√
2
N , otherwise

or by using the alternative formulation,

I(x, y) = 2

N

N−1∑
u=0

N−1∑
v=0

c(u)c(v)J(u, v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(2.85)

with,

c(ξ) =
{√

1
2 , ξ = 0

1, otherwise

2.3 Digital Image Compression 83

Fig. 2.16 DCT representation of a graylevel image

Fig. 2.17 Reconstruction using 50 of the DCT coefficients (0.05%) at 20.69dB PSNR

A practical example of the application of DCT on a graylevel image is shown in
Figs. 2.16, 2.17, 2.18, 2.19, and 2.20. The first image shows a representation of the
original image and the transform coefficients after the transformation. The following
images present gradual reconstructions using an increasing amount of transform
coefficients.5 Apparently, DCT is also good at producing compact representations
of images as with only a small fraction of the coefficients it is able to produce a
high quality reconstruction, as shown in Fig. 2.20, in which a reconstruction using
just 35% of the coefficients led to an image with 39.8dBs of quality. It is noted that
the black regions in the transform domain denote the coefficient being zeroed out.
The diagonal scheme used is in line with the ordering of increasing frequency in two
dimensions.

For natural images that usually exhibit a high correlation among neighboring
pixels, the performance of the DCT approaches that of KLT. It can be shown that
for a source that is modeled as a first-order Markovian, and since the correlation of

5It should be noted that in this example the transform has been applied once on the total image area,
which is not the usual case. Usually, these transforms are being applied in a block-by-block basis,
typically of 8 × 8 pixels.

84 2 Data Coding and Image Compression

Fig. 2.18 Reconstruction using 200 of the DCT coefficients (0.85%) at 24.88dB PSNR

Fig. 2.19 Reconstruction using 546 of the DCT coefficients (6.3%) at 31.68dB PSNR

Fig. 2.20 Reconstruction using 1296 of the DCT coefficients (35.6%) at 39.82dB PSNR

2.3 Digital Image Compression 85

adjacent pixels tends to unity, the DCT basis functions are similar to those of the
KLT. Theoretically, one of the properties of random processes that are stationary
in the wide sense (Wide-Sense Stationary (WSS)) is that their Fourier coefficients
are uncorrelated. As the number of coefficients increases, DFT and DCT, as well as
other similar transformations, in the frequency domain, diagonalize the covariance
matrix of the source. Therefore, these transformations are asymptotically equivalent
to the KLT for WSS sources, up to an extent of a special reordering of the transform
coefficients (like the well known zig-zag ordering of the DCT coefficients during the
application of JPEG compression—as will be described in following paragraphs).
Although most of the images cannot be readily modeled asWSS processes, the DCT
has proven to be a robust approximation to the KLT for natural images.

Following the definitions in previous paragraphs and in accordance with the defi-
nition of the inverse DCT in (2.85), the DCT basis functions (or basis images in this
case) are defined as

b(u, v, x, y)x,y=0,...,N−1 = c(u)c(v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(2.86)

The basis functions ofDCT for an image of size 8×8 pixels are shown in Fig. 2.21.
Like the DFT, the DCT has a fast implementation with computational complexity
O(N logN) for a transformation of N points. Nevertheless, DCT is more efficient in
compression applications, as it does not exhibit the phenomenon of occurrence of
spurious spectral components. The characteristic transformation matrices, as defined
in (2.70), are calculated for the case of an 8 × 8 pixels image, are

hc = hr =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904
0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619
0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157
0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536
0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778
0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913
0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.87)

The DFT is a mapping into a Discrete Fourier Series (DFS) of a sequence of
finite length and therefore, exhibits an indirect periodicity, which is illustrated in
Fig. 2.22a (Rabbani and Jones 1991a). This periodicity is the result of the sampling
in the frequency domain. During the reconstruction of the original sequence in this
way, discontinuities between the encoded parts emerge. These discontinuities lead
to spurious high frequency components, which can cause significant degradation in
the efficiency of the transformation. Though these spurious components are not part
of the original sequence, they are required for reconstructing the boundaries in the
periodic sequence.

86 2 Data Coding and Image Compression

Fig. 2.21 The 8 × 8 2-D
DCT basis images

Fig. 2.22 Periodicities of
a DFT and b DCT

Striving for improved efficiency of transformation through the rejection of these
components leads to errors in the reconstruction at the region boundaries. In image
coding, wherein the image is divided into non-overlapping parts to form two-
dimensional sequences, such errors in the reconstruction result in the appearance
of intense deformation at the boundaries between adjacent segments. To eliminate
these inconsistencies in the boundaries, the original sequence of N points can be
extended to a 2N-point sequence by mirroring the original image at the boundaries.
The extended sequence is repeated to form a periodic sequence that is required for
the DFS representation. As shown in Fig. 2.22b, this periodic sequence exhibits no
such discontinuities in the boundaries and no spurious spectral components in the
DCT.

The process of calculating the 2N-point DFT of the extended sequence (from the
N-point original) is identical to the calculation of the DCT of the original sequence.
Actually, a DCT can be computed as a 2N-point FFT. Due to its symmetry DCT
exhibits two main advantages over DFT, namely,

• The DCT does not generate spurious spectral components, and thus, the efficiency
of coding remains high, while simultaneously, diminishing the blocking artifacts
at the boundaries of the coding regions.

2.3 Digital Image Compression 87

Fig. 2.23 Tiling of test image ‘lena’ into 8× 8 non-overlapping image blocks, zoomed-in portion
of the image and a magnified selected image block

• The DCT calculations require only real numbers, while the DFT calculations
involve complex numbers.

These advantages rendered DCT the most widely-used compression transform for
both static andmoving images (video). In overall, DCT can lead to efficient compres-
sion when the spatial correlation between neighboring pixels is significant, usually
the case in natural images.

Finally, since the transform has been defined in 2-D and the corresponding basis
images have been shown let us consider how the transform actually represents a
color image. In practice, DCT (like many of the transforms) is being applied on non-
overlapping image blocks, which simplifies the computations and make extremely
fast parallel implementations possible. Figure2.23 presents such a tiling on the color
image ‘lena’, which separates the image into 8 × 8 non-overlapping image blocks.
Suppose during a sequential encoding process, the current block is the one in the
pixel locations (250–257, 250–257) as shown in the figure. The values of the pixels
in this image block, shown only for the green (G) channel,6 are,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

157 176 177 174 190 186 187 183
166 177 180 183 187 188 181 167
177 181 188 189 194 185 160 95
181 184 189 193 185 143 81 74
188 192 192 179 133 75 77 76
193 195 175 108 67 61 74 77
200 169 93 53 69 57 70 72
163 74 52 53 59 65 61 65

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6The green channel was selected because it is easy to follow; the upper left triangular region of the
image, which is yelowish is expected to exhibit higher values in this channel than those in the rest
of the block, which shows up redish.

88 2 Data Coding and Image Compression

Application of the transform on this image block and channel results in the matrix,

DCTG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1112 204 5 20 1 −2 −4 10
285 −112 −112 −12 −23 −6 −6 −3
−60 −118 78 40 5 2 3 2
17 37 48 −61 −15 −12 −9 3

−21 −8 −37 −5 35 2 9 −3
2 16 2 24 −7 −22 −4 1

−4 −3 −8 −2 −17 16 8 3
7 2 1 7 0 6 −17 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the values rounded to the nearest integer for better visualization.
Apparently, the first coefficient (top-left) is significantly higher than all the other

(in absolute values). So, what do actually these coefficient values represent? Clearly,
they represent the weight (multiplier) of the appropriate basis image so that the
weighted summation of all coefficients and basis images would approximate the
original image. This is graphically depicted in Fig. 2.24 where above each of the
basis images the corresponding weight has been added. This is equivalent to a series
expansion, in which the image block is decomposed into,

I =
8∑

x=1

8∑
y=1

c(x, y) · b(x, y) = [c1 ... cx·y]
⎡
⎢⎣

b1
...

bx·y

⎤
⎥⎦

Fig. 2.24 DCT domain
representation of image

2.3 Digital Image Compression 89

where c(x, y) the coefficient from the DCT matrix and b(x, y) the basis image
(Fig. 2.21). Geometrically, this can be viewed as the representation in a linear image
space, in which the basis images are the unit vectors of the axes and the coefficients
are the coordinates.

Four entirely different scenarios of reconstruction are being reviewed in the exam-
ple depicted in Fig. 2.25. Specifically, the first scenario represents the reconstruction
possible if only the first row of DCT coefficients matrix are being used. In the sec-
ond scenario, the main diagonal coefficients have been selected and all others were
discarded. In the third scenario the coefficients from the first row and first column
of the matrix have been used for the reconstruction. Finally, for the fourth scenario
the upper-left triangular part of the matrix has been used for a reconstruction. In all
scenarios, Fig. 2.25 presents the original image block data, the reconstructed data
using the limited number of coefficients and the difference between the two, with
values exaggerated for emphasis. Each reconstruction is titled by the RMSE and the
quality in PSNR dBs.

Discrete Sine Transform

The Discrete Sine Transform (DST) is defined similarly to the definition of DCT by
the transformation matrix C = {C(u, x)},

C(u, x) =
√

2

N + 1
sin

(x + 1)(u + 1)π

N + 1
(2.88)

The two-dimensional DST of a square N × N matrix I is defined as

J(u, v) =
N−1∑
x=0

N−1∑
y=0

C(u, x)I(x, y)C(v, y)

J(u, v) =
N−1∑
x=0

N−1∑
y=0

I(x, y)

√
2

N + 1
sin

(x + 1)(u + 1)π

N + 1

√
2

N + 1
sin

(y + 1)(v + 1)π

N + 1

J(u, v) = 2

N + 1

N−1∑
x=0

N−1∑
y=0

I(x, y)sin
(x + 1)(u + 1)π

N + 1
sin

(y + 1)(v + 1)π

N + 1

(2.89)
The inverse two-dimensional DST is defined as:

I(u, v) = 2

N + 1

N−1∑
x=0

N−1∑
y=0

J(x, y)sin
(x + 1)(u + 1)π

N + 1
sin

(y + 1)(v + 1)π

N + 1
(2.90)

A practical example of the application of DST on a graylevel image is shown in
Figs. 2.26, 2.27, 2.28, 2.29, and 2.30. The first image shows a representation of the
original image and the transform coefficients after the transformation. The following
images present gradual reconstructions using an increasing amount of transform

90 2 Data Coding and Image Compression

Fig. 2.25 Reconstructions of a block from image ‘lena’ from a limited number of DCT coefficients

2.3 Digital Image Compression 91

Fig. 2.26 DST representation of a graylevel image

Fig. 2.27 Reconstruction using 50 of the DST coefficients (0.05%) at 19.95dB PSNR

Fig. 2.28 Reconstruction using 200 of the DST coefficients (0.85%) at 24.52dB PSNR

92 2 Data Coding and Image Compression

Fig. 2.29 Reconstruction using 546 of the DST coefficients (6.3%) at 31.37dB PSNR

Fig. 2.30 Reconstruction using 1296 of the DST coefficients (35.6%) at 39.82dB PSNR

coefficients.7 Apparently, DST is also good at producing compact representations
of images as with only a small fraction of the coefficients it is able to produce a
high quality reconstruction, as shown in Fig. 2.30, in which a reconstruction using
just 35% of the coefficients led to an image with 39.8dBs of quality, very close the
quality achieved in DCT. Also in this example, the black regions in the transform
domain denote the coefficient being zeroed out using the usual diagonal scheme, in
line with the ordering of increasing frequency in two dimensions.

In DST the 2-D basis functions (images) are

b(u, v, x, y)x,y=0,...,N−1 = 2

N + 1
sin

(x + 1)(u + 1)π

N + 1
sin

(y + 1)(v + 1)π

N + 1
(2.91)

7Again, as in the case of the example given for DCT, the transform has been applied once on the
total image area, which is not the usual case; in the usual case the transform is being applied in a
block-by-block basis, typically of 8 × 8 pixels.

2.3 Digital Image Compression 93

Fig. 2.31 The 8 × 8 2-D
basis functions (images) of
DST

A representation of these basis functions (basis images) appears in Fig. 2.31. The
characteristic transformation matrix, as in the case of the DCT, is defined, for the
case of an 8 × 8 pixels image, as

hc = hr =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1612 0.3030 0.4082 0.4642 0.4642 0.4082 0.3030 0.1612
0.3030 0.4642 0.4082 0.1612 −0.1612 −0.4082 −0.4642 −0.3030
0.4082 0.4082 0.0000 −0.4082 −0.4082 0.0000 0.4082 0.4082
0.4642 0.1612 −0.4082 −0.3030 0.3030 0.4082 −0.1612 −0.4642
0.4642 −0.1612 −0.4082 0.3030 0.3030 −0.4082 −0.1612 0.4642
0.4082 −0.4082 0.0000 0.4082 −0.4082 0.0000 0.4082 −0.4082
0.3030 −0.4642 0.4082 −0.1612 −0.1612 0.4082 −0.4642 0.3030
0.1612 −0.3030 0.4082 −0.4642 0.4642 −0.4082 0.3030 −0.1612

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.92)

Discrete Hartley Transform

The Discrete Hartley Transform (DHT) has been proposed by an alternative to the
Fourier transforms by Bracewell (1983), based on a previous work by Hartley (1942)
based on the DFT (2.75) as,

J = Re{JF} − Im{JF} (2.93)

where J the Hartley transformed signal, JF the Fourier transformed signal, and Re{}
and Im{} the real and imaginary parts of the transform. Formulating this equation
using the notation in (2.75), requires to consider two approaches as pointed out by
(Watson and Poirson 1986). These two approaches involve a slight variation in the
definition of the basis functions (in the general case of M × N 2-D signals) as,

94 2 Data Coding and Image Compression

b(u, v, x, y) =
{
cas

(
2π

(
ux
M + vy

N

))
cas

(
2πux

M

)
case

(
2πvy

N

) (2.94)

where cas(θ) = cos(θ)+sin(θ), which has been shown to be an orthogonal function.
The first definition gives the following definition for the transform,

J(u, v) =
M−1∑
x=0

N−1∑
y=0

I(x, y)cas

(
2πux

M
+ 2πvy

N

)
(2.95)

The alternative definition of the basis functions gives rise to the following defin-
ition of the transform,

J(u, v) =
M−1∑
x=0

N−1∑
y=0

I(x, y)cas
2πux

M
cas

2πvy

N
(2.96)

The inverse transform is defined as,

I(x, y) = 1

MN

M−1∑
u=0

N−1∑
v=0

J(u, v)cas
2πux

M
cas

2πvy

N
(2.97)

which is typically a separable 2-D transform and was the preferred representation
by Hartley. Apparently, the Hartley Transform is equivalent to the typical Fourier
Transform and the choice between them is a matter of the application.

A representation of the basis functions (basis images) for an 8 × 8 transform
appears in Fig. 2.32. An example of the application of DHT is shown in Figs. 2.33
and 2.34 for the case of a graylevel image. The coefficients in Fig. 2.33 have been
shifted to the centered of the spatial range exactly as in the case of the DFT. The
three-dimensional representation of the transform coefficients magnitude shown in
Fig. 2.34 reveals how this transform concentrates the image energy near the mean
value and practically only in low spatial frequencies, achieving a rather compact
representation. This graph shows the pseudo-colored logarithm of the coefficient
magnitudes for better representation.

Walsh-Hadamard Transform

There is a family of transformations, which generalize the Fourier transforms, in
which the basis functions are non-sinusoidal. The are all based on discretized ver-
sions of Walsh functions,8 to formulate the transformation matrices hc and hr . These
matrices may be defined in various ways, the simpler being by the use of Hadamard
matrices,

8A family of special piecewise constant functions assuming only the two values, ±1.

2.3 Digital Image Compression 95

Fig. 2.32 The 8 × 8 2-D basis functions (images) of DHT

Fig. 2.33 Example of the application of DHT on a gray level image

H2n =
√
1

2

(
H2n−1 H2n−1

H2n−1 −H2n−1

)
, H0 = 1, n > 0 (2.98)

where the
√

1
2 normalization factor is sometimes omitted. This definition produces

2n × 2n matrices for n > 0 with all elements ±1 and a normalization factor that
changes as 1/2

n
2 , so as to have the elements defined as

(H2n)i,j = 1

2
n
2
(−1)i·j (2.99)

with the dot product being the bitwise dot product of the binary representations of i
and j. The rows of such a matrix are Walsh functions.

96 2 Data Coding and Image Compression

Fig. 2.34 Three-
dimensional pseudo-colored
representation of the DHT
transform coefficients

According to this definition,

H2 =
√
1

2

(
1 1
1 −1

)
, H4 = 1

2

⎛
⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ (2.100)

Scaling up to get the typical 8 × 8 transformation matrix for n = 3 produces,

hc = hr = H8 = 1

2
√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.101)

A ‘curiosity’ in the formation of the basis images (the 2-D case) is that a reordering of
the computed function should be imposed in order to get the basis images in gradually
incrementing spatial frequency in both dimensions. This reordering is imposed on
the bit-levels of the coordinates—that is all coordinates are converted to their binary
representation and everything is computed on their bits using a right-hand MSB
notation—(leaving out the scaling factor) as

(H2n)u,v,x,y = (−1)
∑b−1

j=0 (g(uj)xj+g(vj)yj) with g(ξj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ0,

ξb−1 + ξb−2

...
...

ξ0 + ξ1

(2.102)

2.3 Digital Image Compression 97

where b are the total bitplanes needed to describe the numbers involved and all
summations are considered in modulo-2 arithmetic, that is the modulo-2 is taken
after each summation. If the binary representations are taken as column vectors then
these summations are transformed to dot products as,

(H2n)u,v,x,y = (−1)(g(u)T ·x+g(v)T ·y) mod 2 (2.103)

with g defined as in (2.102) and the reordering imposed on the elements of the
corresponding vectors.

A representation of the basis images appears in Figs. 2.35 and 2.36 for the 4 × 4
and 8×8 transform respectively. A practical example of the application ofWHT on a
graylevel image is shown in Figs. 2.37, 2.38, 2.39, 2.40, 2.41 and 2.42. The first image
shows a representation of the original image and the transform coefficients produced
by the transformation, whereas the other images present gradual reconstructions
using an increasing amount of transform coefficients. As in the previous examples,
the black regions in the transform domain denote the coefficient being zeroed out.

Due to the computational simplicity of Walsh-Hadamard Transform (WHT) in
comparison to Fourier transforms, since the WHT does not involve multiplications
or divisions (only±1 factors), this transform is significantly more appealing in appli-
cations that have access to low computational resources. It has been used for image
compression when the computational power of computer was not strong enough
to support images of high dimensions in limited time. NASA made heavy use of
the WHT during the 1960s and early 1970s space missions for photo compression,
‘real-time’ video transmission and error correction over unreliable channels.

Fig. 2.35 The 4 × 4 2-D
basis images of WHT

98 2 Data Coding and Image Compression

Fig. 2.36 The 8 × 8 2-D basis images of WHT

Fig. 2.37 WHT representation of a graylevel image

Fig. 2.38 Reconstruction using 2% of the WHT coefficients at 23.75dB PSNR

2.3 Digital Image Compression 99

Fig. 2.39 Reconstruction using 8% of the WHT coefficients at 27.09dB PSNR

Fig. 2.40 Reconstruction using 18% of the WHT coefficients at 30.27dB PSNR

Fig. 2.41 Reconstruction using 32% of the WHT coefficients at 32.52dB PSNR

100 2 Data Coding and Image Compression

Fig. 2.42 Reconstruction using 50% of the WHT coefficients at 36.79dB PSNR

Haar Transform

Alfred Haar in his seminal 1910 theory of orthogonal function systems (Haar 1910),
defined the so called orthogonal function system χ , as the most representative of the
class of orthogonal systems as,

χ0(s) = 1, ∀s ∈ [0, 1]

χ1(s) =
{
1 0 ≤ s < 1

2

−1 1
2 ≤ s < 1

χ
(1)
2 (s) =

⎧⎪⎨
⎪⎩

√
2 0 ≤ s < 1

4

−√
2 1

4 < s < 1
2

0 1
2 < s ≤ 0

χ
(2)
2 (s) =

⎧⎪⎨
⎪⎩
0 0 ≤ s < 1

2√
2 1

2 < s < 3
4

−√
2 3

4 < s ≤ 0

(2.104)

so, by dividing the interval [0, 1] into 2n equal parts andbydenoting these subintervals
by i(1)n , i(2)n , . . . , i(2

n)
n ,

χ(k)
n (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 s ∈ i(1)n , i(2)n , . . . , i(2k−2)
n√

2n−1 s ∈ i(2k−1)
n

−√
2n−1 s ∈ i(2

k)
n

0 s ∈ i(2k+1)
n , . . . , i(2

n)
n

k = 1, 2, . . . , 2n−1

(2.105)

At points 0 and 1, each functionχ(k)
n (s) is assigned the value it assumes in the intervals[

0, 1
2n

]
or

[
1 − 1

2n , 1
]
. According to this definition, χ(k)

n (s) is a piecewise constant

2.3 Digital Image Compression 101

functionwith discontinuities only in the points 2k−2
2n , 2k−1

2n , 2k
2n ,whereχ(k)

n (s) assumes
(by agreement) a value equal to the arithmetic means of the values in the intervals
adjoining at those points. Using this definition, infinitely many function χ form a
complete orthogonal function system. Haar proved that this system is orthogonal and
complete.

The Haar Transform (HT) was developed as a family of transformations, in which
the characteristic transformation tables hc and hr are discretized forms of Haar
functions. The HT is essentially a simple compression process. In one dimension,
the HT transforms a vector of two elements x = (x1 x2)T to a vector y = (y1 y2)T ,
as follows (

y1
y2

)
= H ·

(
x1
x2

)
, where H = 1√

2

(
1 1
1 −1

)
(2.106)

or, in simple form y = H·x, and according to the definition ofH, y1 and y2 are the sum
and the difference of x1 and x2, divided by

√
2 for energy conservation. It should be

noted that thematrixH is orthonormal (comprises of orthogonal unit-length vectors),
and therefore,H−1 = HT = H (asH is symmetric,HT = H). Therefore, the inverse
transformation can be solved by (2.106) as follows

y = H · x ⇔ H−1 · y = H−1 · H · x ⇔ HT · y = I · x ⇔ H · y = x(
x1
x2

)
= HT ·

(
y1
y2

)
, where HT = H = 1√

2

(
1 1
1 −1

)
(2.107)

In two dimensions, x and y are 2× 2 matrices. Since the HT is separable it can be
applied first to the columns and then the rows of x. The relation which expresses the
process is y = H · x · HT , and the inverse HT becomes x = HT · y · H. Specifically,
what happens during the HT is that given the input matrix x

x =
(

a b
c d

)
(2.108)

then the output of the transform is

y = 1

2

(
a + b + c + d a − b + c − d
a + b − c − d a − b − c + d

)
(2.109)

Equations (2.108) and (2.109) correspond to the following filtering procedures
(which take into account the halving factor):

• Top-Left: a + b + c + d = mean value or a 2D low-pass filter (LL—Low in both
dimensions)

• Top-Right: a − b + c − d = average horizontal gradient or horizontal high-pass
and vertical low-pass filter (HL)

• Bottom-Left: a + b − c − d = average vertical gradient or horizontal low-pass
and vertical high-pass filter (LH)

102 2 Data Coding and Image Compression

• Bottom-Right: a−b−c+d = diagonal gradient or 2Dhigh-pass filter (HH—High
in both dimensions)

An example of the HT on a graylevel image is shown in Fig. 2.43, where only
one step in the overall possible decomposition is being depicted. Apparently, the
application of the transform results in a band-based decomposition of the original
image. One step of the transform produces four bands, which correspond to a low-
pass filtered replica of the original image (upper-left quarter) usually denoted as the
LL band, and three high-pass filtered replicas (the three dark quarter images) that
capture the horizontal (HL), vertical (LH) anddiagonal (HH)high spatial frequencies.
The three high frequency bands are displayed in log-scale for better illustration.
Figure2.44 shows the histograms of all these images. Apparently the histogram of
the LL band is very similar to that of the original image, whereas the histograms of
the high frequency bands are similar to two-sided geometric distributions centered

Fig. 2.43 The result of the application of a 1-step HT on a digital image

Fig. 2.44 The histograms of the images in Fig. 2.43

2.3 Digital Image Compression 103

Table 2.3 Energy levels per image band after HT

LL (%) HL (%) LH (%) HH (%)

96.5 2.2 0.9 0.4

around zero. The energy is unevenly distributed among the transformbands, as shown
in Table2.3, which lists the relative energy levels in each band normalized to the total
energy of the image.

In order to create transform matrices of any size, one has to begin with the Haar
functions,

hp,q(x) = 1√
N

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 p = q = 0, x ∈ [0, 1]
2

p
2

q−1
2p ≤ x <

q− 1
2

2p

−2
p
2

q− 1
2

2p ≤ x <
q
2p

0 otherwise for x ∈ [0, 1]

(2.110)

where,
0 ≤ p ≤ n − 1

q = 0, 1 p = 0

1 ≤ q ≤ 2p p
= 0

N = 2n

(2.111)

By discretizing the values of x at m/N, m = 0, ..., N −1 these functions produce the
transformation matrices. This way, the characteristic 8× 8 transformation matrix, as
defined in previous cases, is given for N = 8 as

hc = hr = 1√
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −√

2 −√
2 0 0 0 0

0 0 0 0
√
2

√
2 −√

2 −√
2

2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.112)

Wavelet Transform

Supposing a real or complex function ψ(t) with the following properties:

• the integral of the function equals zero:

∫ ∞

−∞
ψ(t)dt = 0 (2.113)

104 2 Data Coding and Image Compression

Fig. 2.45 The biorthogonal
6.8 wavelet

• the function is square integrable (or has finite energy):

∫ ∞

−∞
|ψ(t)|2dt < ∞ (2.114)

• the function satisfies the convention:

C ≡
∫ ∞

−∞
|�(ω)|2

|ω| dω (2.115)

where�(ω) the Fourier transform ofψ(t), then the functionψ(t) is amother wavelet
or simply a wavelet.

And while the assumption expressed in (2.115) is useful for the formulation of the
inverse transformation, the first two conditions are sufficient for the definition of the
Continuous-timeWavelet Transform (CWT) and explain the reason why the function
is called wavelet (wavelet). The first condition (2.113) contains the information that
the function itself is characterized as an oscillation or has a wavy nature. Unlike a
continuous sinusoidal function, it is a ‘small’ wave. The second condition (2.114)
ensures that most of the function energy is limited to a finite temporal duration. These
two conditions are satisfied relatively easy and there is a multitude of functions that
are suitable as mother wavelets (Rao and Bopardikar 1998).

Figure2.45 illustrates the ‘famous’ biorthogonal 6.8 wavelet.9 This wavelet takes
values in a closed region, i.e. it has a finite duration. On the contrary, there is the
possibility of infinite duration wavelets, such as the Morlet wavelet, as illustrated in
Fig. 2.46. This wavelet is created through the modulation of a cosine function by a
Gaussian function. While it is of infinite duration, most of the energy is confined to

9‘Famous’ due to its acceptance and usage in image compression applications, like in the Joint
Photographic Experts Group 2000 (JPEG2000) image compression standard.

2.3 Digital Image Compression 105

Fig. 2.46 The Morlet
wavelet

a finite duration. As shown in the graph, more than 99% of the energy is confined
within the time frame |t| ≤ 2.5 s (Rao and Bopardikar 1998).

Consider a square integrable function f (t). The CWT of this function relative to
the wavelet is defined (Rao and Bopardikar 1998)

W (a, b) ≡
∞∫

−∞
f (t)

1√|a|ψ
∗
(

t − b

a

)
dt (2.116)

where a and b are real numbers and ∗ indicates the complex conjugate. Accordingly,
this transformation is a function of two variables. It should be noted that both f (t)
andψ(t) belong to the L2(R) space of the square integrable functions, which is called
the set of energy signals. Defining:

ψa,b(t) ≡ 1√|a|ψ
∗
(

t − b

a

)
(2.117)

(2.116) can be written as:

W (a, b) ≡
∞∫

−∞
f (t)ψ∗

a,b(t)dt (2.118)

It should also be noted that:
ψ1,0(t) = ψ(t) (2.119)

106 2 Data Coding and Image Compression

The normalization factor 1/
√|a| guarantees that the energy remains constant for

all a and b, so
∞∫

−∞
|ψa,b(t)|2dt =

∞∫
−∞

|ψ(t)|2dt (2.120)

for every a and b. For a given value of a, the functionψa,b(t) expresses the translation
(or shifting) of ψa,0(t) by b on the horizontal time axis. In addition, from

ψa,0(t) ≡ 1√|a|ψ
∗
(

t

a

)
(2.121)

can be concluded that ψa,0(t) is an extension in time and scale (magnitude) of ψ(t).
Since a determines the size of the time extension or expansion, it is called the expan-
sion or scale variable. When a > 1, ψ(t) is expanded on the time axis, and when
0 < a < 1 it is retracted. Negative values of a result in a time reversal while scaling.
Thus, since theCWT is created by scaling and shifting of a function, thewavelet trans-
form is called mother wavelet (Rao and Bopardikar 1998). It should be emphasized
that the biggest advantage of Wavelet-based transforms over Fourier-based trans-
forms is that they provide a better time and frequency domain localization, obeying,
of course, the uncertainty principle, as expressed in time-frequency analysis

tψ
ωψ = cψ (2.122)

where cψ is a constant dependent on thewavelet used,
tψ themean squared duration
and
ωψ the mean squared frequency range. It is understood that the smaller the
value of the constant cψ the more accurate time-frequency analysis can this wavelet
achieve (Rao and Bopardikar 1998).

Finally,when the third conditionof themotherwavelet, as expressedbyEq. (2.115)
is satisfied for 0 < C < ∞, then the inverse CWT is defined as

f (t) = 1

C

∞∫
a=−∞

∞∫
b=−∞

1

|a|2 W (a, b)ψa,b(t)dadb (2.123)

It should of course be noted that this is a sufficient but not a necessary condition
for achieving a mapping of all CWT in L2(R). To discretize CWT, the following
representation is adopted

f (t) =
∞∑

k=−∞

∞∑
l=−∞

d(k, l)2−k/2ψ(2−kt − 1) (2.124)

It is worth noting that unlike Eq. (2.123), in which continuous shifts and scalings
are involved, Eq. (2.124) involves discrete values. Scaling takes values of the form

2.3 Digital Image Compression 107

Fig. 2.47 The ‘cells’ of
time-frequency analysis that
correspond to a dyadic
sampling

a = 2k (where k is an integer), whereas for each scaling 2k , the shift takes values of
the form b = 2kl (where l is an integer). Thus, the values of d(k, l) relate to values
of the transformation at a = 2k and b = 2kl, which corresponds to sampling the
coefficients (a, b) on a grid, as shown in the Fig. 2.47. This process is called dyadic
sampling because successive discrete values of scale and the corresponding sampling
intervals differ by a factor of two (2) (Rao and Bopardikar 1998).

The two-dimensional sequence d(k, l) is called the Discrete Wavelet Transform
(DWT) of f (t). As is evident, the DWT remains a transformation of a continuous
signal. The discretization refers only to the variables a and b. In this sense, it is
analogous toFourier series,which represent in a discrete frequency domain (periodic)
a continuous (in time) signal. For this reason, the DWT is referred to as Continuous-
Time Wavelet Series.

For the application of Wavelet Transform (WT) in images, a two-dimensional
transformation is required. It turns out, however, that the WT is separable, and there-
fore, it is possible to sequentially apply two one-dimensional transformations (e.g.,
first on the rows and then the columns of the image), which greatly simplifies the
calculations. Key features of use of the WT in compression are (Rao and Bopardikar
1998):

• it involves the idea of the multi-resolution image representation
• it applies (or at least could apply) to the entire image and, therefore, it does not
suffer from blocking artifacts (evident in DCT)

• it can be used (by applying integer wavelet filter coefficients) for simultaneous
lossless and lossy coding, and embedding of both in the same output file

• it can provide decomposition of the image in spectral bands, where each band can
be quantized according to the importance of the visual content

The one-dimensional transform is implemented by applying two analysis filters
followed by downsampling, as shown in Fig. 2.48. The one-dimensional sample
sequence is filtered by a low pass and a high pass filter, is then sub-sampled by a
factor of 2, which ultimately results in a representation of a low and a high frequency
band. Of course, the inverse transform is the exact reverse procedure (Rabbani and
Joshi 2002; Rabbani and Cruz 2001).

108 2 Data Coding and Image Compression

Fig. 2.48 Analysis filter
bank

Two methods leading to the same result can be applied to compute the transfor-
mation (Rabbani and Joshi 2002; Rabbani and Cruz 2001):

• convolution
• lifting: an alternative method to compute the transform coefficients using the fol-
lowing three-step process:

1. separation: initially the input signal is divided into two sequences, taking samples
in even locations (or times) for one sequence and samples in odd locations for
the other. This step is commonly called the lazy wavelet transform

2. prediction and update: assuming that the input signal shows a significant cor-
relation between successive samples, one may deduce with some certainty that
an even sample can predict the value of the neighboring odd sample. Then the
output is updated with corrections in the prediction that preceded. The process
in this step can be expressed as:

(soddi−1 , seveni−1) ← S(si)soddi−1− = P(seveni−1)seveni−1+ = U(soddi−1) (2.125)

and graphically represented in the Fig. 2.49, and can be textually description as
follows:
– separation S of the input into even and odd samples
– prediction P of odd samples from previous even samples
– update U of predicted value

3. normalization: at the final stage, the output of the previous step is normalized to
form the final transform coefficients.

Figure2.50 shows the result of applying the DWT on an image. The two steps are
shown, in which the transformation is applied sequentially due to the separability.
During the first step theDWT is applied to the columns of the original image resulting
in an image like the one shown in Fig. 2.50a. At the second step, the transformation
is applied to the rows of the image produced by the first step resulting in the image
shown in Fig. 2.50b. It should be noted that the values of the parts of the images that
reflect the high frequency content (the ‘noisy’ gray regions) have been normalized
to allow a better representation.

2.3 Digital Image Compression 109

Fig. 2.49 Representation of the lifting method for WT

Fig. 2.50 DWT as a separable image transformation: a the transformation on the columns of the
image and b the transformation on the rows of the image after the first step

Statistics in the Transform Domain

Both Pratt (1991) and Jain (1988) in their analysis of the image transforms provide
further insight on the transform domain statistics in an attempt to support the need
for those transforms in order to decorrelate the input data before further processing
for compression. In this analysis, the first and second moments of the transform
coefficients have been analyzed. If a square image I of size N ×N is considered to be
a two-dimensional ergodic process with known mean and covariance function then
its unitary transform

J(u, v) =
N−1∑
x=0

N−1∑
y=0

I(x, y)T(x, y; u, v) (2.126)

is also a stochastic process with a mean value

110 2 Data Coding and Image Compression

E {J(u, v)} =
N−1∑
x=0

N−1∑
y=0

E {I(x, y)} T(x, y; u, v) (2.127)

with E {I(x, y)} being the mean of I(x, y). Thus, the covariance function can be
written as

�J (u1, v1; u2, v2) =
∑
x1

∑
x2

∑
y1

∑
y2

�I (x1, y1; x2, y2)T(x1, y1; u1, v1)T
∗(x2, y2; u2, v2)

(2.128)

where�I(x1, y1; x2, y2) is the covariance function of I(x, y). Also, the variance func-
tion of J(u, v) is

σ 2
J (u, v) = �J(u, v; u, v) (2.129)

These equations can be simplified in notation by adopting a matrix representation,
thus

J = TI is the unitary transform

mJ = TmI is the mean of the transform coefficients

�J = T�IT∗T is the covariance matrix of the coefficients

VJ = diag [�J] is the vector of variances of the coefficients

(2.130)

Analysis of the performance of KLT reveals that this is the only unitary transform
that performs a complete decorrelation for an arbitrary image achieving the best
energy compaction of all unitary transforms (Pratt 1991). Apparently this is due to
the fact that the variance function of the KLT coefficients equals the corresponding
eigenvalue, that is

σ 2
J (u, v) = λ(u, v) (2.131)

Transformations other than the KLT result in at least some residual correlation
between the transform coefficients, thus

W∑
w=0

λ(w) ≥
W∑

w=0

σ 2(w) W < N2 (2.132)

In addition, in order to derive analytic representations for the first and second
moments of the transform coefficients of arbitrary image transforms, it is usually
assumed that images are WSS; thus the mean value of an image is a constant E{I}
and the covariance function assumes the functional form �I(x1 − x2, y1 − y2). In
addition, if the transform is orthogonal the summation

∑
x

∑
y T(x, y; u, v) yields

zero for all non-zero-th basis functions

E{J(u, v)} = E{I}
∑

x

∑
y

T(x, y; u, v) = 0 ∀u, v
= 0 (2.133)

2.3 Digital Image Compression 111

Even though the input image is considered to be WSS this is not expected to be true
for the transform coefficients, unless the transform kernel is space invariant. It can
be shown that the Fourier transform is such a transform and an analytic representa-
tion for the first and second moments is possible, whereas for Hadamard, Haar and
other transforms no closed form expressions have been developed for the covariance
functions of those transforms.

Furthermore, based on the central limit theorem it is possible to approximate the
probability densities of the transform coefficients by adopting a typical Gaussian
distribution with the previously mentioned first and second moments. Thus the prob-
ability densities of the Fourier coefficients can be defined,

p (Re {JF(u, v)}) =
√
2πσ 2

J (u, v) e
−Re{J2F (u,v)}

2σ2J (u,v)

p (Im {JF(u, v)}) =
√
2πσ 2

J (u, v) e
−Im{J2F (u,v)}

2σ2J (u,v)

(2.134)

whereRe{}, Im{} represent the real and imaginary parts of the transform.The assumed
Gaussian probability density of the real and imaginary parts imply that themagnitude
of the transform is modeled by a Rayleigh distribution and the phase is modeled by
a uniform distribution, that is

p (‖JF(u, v)‖) = ‖JF(u, v)‖
σ 2

J (u, v)
e

−‖J2F (u,v)‖
2σ2J (u,v)

p (∠JF(u, v)) = 1

2π
− π ≤ ∠JF(u, v) ≤ π

(2.135)

The probability density of coefficients of unitary transforms other than the Fourier
transform are usually modeled by Gaussian or Laplacian densities as follows,

p (J(u, v)) =
√
2πσ 2

J (u, v) e
−J2(u,v)

2σ2J (u,v)

p (J(u, v)) =
√
2πσ 2

J (u, v) e
−√

2|J(u,v)|
σJ (u,v)

(2.136)

To illustrate the effect of the image transforms and to provide a representation of
the covariance matrices of the transform coefficients Fig. 2.51 displays the covari-
ance matrices of the transform coefficients of various image transforms. In order
to make the illustration printable and readable the logarithm of the covariances of
the coefficients are being displayed. In all these graphical representations of covari-
ancematrices, a more distinguishable and highly contrasted diagonal denotes a better
decorrelation by the corresponding transform. The figure includes the original image
and the covariance matrix of the initial image pixels, which exhibit high correlation
as indicated by the multiple bright regions throughout the whole surface of its covari-
ance matrix. The DFT coefficients are represented only by their magnitude and not
any information regarding the phase. In addition, the (1-step) Haar coefficients have

112 2 Data Coding and Image Compression

Fig. 2.51 Covariance matrices of various image transform coefficients

Fig. 2.52 Normalized log variance in each of the image transforms

been normalized individually in each of the four bands purely for illustration pur-
poses; as expected the upper-left quarter of the matrix is equivalent to the covariance
matrix of the initial image as it is simply a low-pass filtered replica of the original data,
thus displays a large amount of correlation in bright regions. In addition, Fig. 2.52
shows a plot of the variances computed in each of the transforms, in normalized
logarithmic scale; variances are shown as found in the covariance matrices without
reordering or sorting (thus the ‘mirroring’ in the DFT magnitude is apparent).

2.3 Digital Image Compression 113

2.3.2.2 Quantization

Quantization is usually defined as the dividing of a quantity into a discrete number
of small pieces, which are usually integer multiples of a common base quantity.
The oldest (and most common) example of quantization is that of rounding: every
real number x may be rounded to the nearest integer q(x) with a quantization error
e = |q(x) − x|. Generally, it can be assumed that a quantizer consists of a set of
intervals or ‘cells’ S = {Si; i ∈ I}, where the set of indices I is often a collection of
consecutive integers (often starting with 0 or 1), along with a set of reconstruction
values or points or levels C = {yi; i ∈ I}, so that in overall the quantizer q is defined
by the equation q(x) = yi for x ∈ Si, which may eventually be represented by the
formula (Gray and Neuhoff 1998)

q(x) =
∑

i

yilsi(x) (2.137)

where

lsi =
{
1 x ∈ S

0 otherwise

In order for this definition to have a substantial meaning, an assumption is made
that S is a partition on the axis of the real numbers. This means that the intervals
are independent and complete. The general definition also applies in the simplest
case of rounding when Si = (i − 1/2, i + 1/2] and yi = i for all integers i. Even
more generally, the intervals may take the form Si = (ai−1, ai] in which ai (called
thresholds) form an ascending sequence. The width of the interval Si is the length of
the ai−ai−1. The function q(x) is usually called quantization rule. A simple quantizer
with five levels is shown in Fig. 2.53. A quantizer is called uniform when the levels
are equally spaced by a fixed distance δ among them, and the thresholds ai are at the
centers of the intervals. In all other cases the quantizer is called non-uniform.

The quality of a quantizer is evaluated by comparing the final outcome with the
initial input. A commonway of doing this is by defining a distortion measure—which
quantifies the cost or the distortion that occurs in the reconstruction of the input to
the quantizer output—and taking the average distortion as a measure of assessing
the quality of the system, wherein lower average distortion means better quality.
The most commonly used estimator is that of the squared error d(x, x̂) = |x − x̂|2,
(x̂ representing the quantized value of x). In practice, the average value is a sample

Fig. 2.53 A quantizer of five levels (a0 = −∞, a5 = ∞)

114 2 Data Coding and Image Compression

average when the quantization is applied to sequences of real numbers, but in the
general case data are taken as elements that share a common probability density
function f (x) corresponding to a random variable X, and the average distortion is
converted to a statistical expectation (Gray and Neuhoff 1998)

D(q) = E[d(X, q(X))] =
∑

i

∫
Si

d(x, yi)f (x)dx (2.138)

When the distortion is estimated by means of a squared error, D(q) is converted to
MSE, a special case, which is often used.

It is desirable that the average distortion is maintained as low as possible by
increasing the number of intervals (negligible average distortion may be achieved
when there are many small quantization intervals). However, additional cost is
imposed in the form of extra bits of information that must be created to describe the
quantizer, which creates a digital representation problem in light of a limited capac-
ity. A simple method for estimating this cost is as follows: the quantizer encodes an
input x to a binary representation or codeword corresponding to a quantization index
i, thus determining the quantization level to be used for the reconstruction. If there
are N possible levels and all the binary representations or codewords are of the same
length, the binary vectors will need (�log2 N� + 1) bits. This results to an estimate
rate in bps

R(q) = log2 N (2.139)

This quantizer that leads to fixed length binary representations is called fixed-rate
quantizer.

In overall, the target of quantization is the encoding of input samples, characterized
by a probability density function, into a form with the least number of bits (low rate)
in such away as to ensure the reconstruction of the input signal at the greatest possible
precision (with low distortion). What immediately becomes clear is that there is a
trade-off in quantization: distortion against data rate (and vice versa). This trade-off
can be quantified by a rate-distortion function δ(R), which is defined as the minimum
distortion by a quantizer with a rate less or equal to R

δ(R) = inf
q:R(q)≤R

D(q) (2.140)

It is also possible to define, alternatively, the function r(D), as the lowest rate of a
fixed-rate quantizer with distortion less or equal to D.

Up to this point, the descriptionwas about the so-calledfixed-rate scalar quantizer,
in which each sample of the input is encoded independently into a binary string of
fixed length. There, of course, are many other alternative forms of quantization,
which achieve better results in terms of rate-distortion. Some indicative cases are
(Gray and Neuhoff 1998):

• scalar quantizer with memory, where a prediction technique is applied to predict
the current sample by storing one or more previous samples (like the Differential

2.3 Digital Image Compression 115

Pulse Code Modulation (DPCM) method, which is considered by many to belong
to the quantization rather than the coding methods)

• variable-rate quantizer, which has a partition at intervals and a dictionary of quan-
tization levels just as the fixed-rate quantizer, but uses a variable length binary
representations of the intervals. In this category belong the entropy constrained
scalar quantizers, which are designed to introduce the smallest average distortion
under a pre-conditioned entropy

• vector (or multidimensional) quantizer, which is the generalization of the scalar
quantizer in n-dimensions, providing a general model of quantization, which can
be applied to vectors without structural constraints.

To generate optimal scalar quantizers the Lloyd-Max method (Lloyd 1982) is
typically applied, in which:

• to create an optimum quantizer with L quantization intervals, the quantization
levels are initialized as yi, i = 1, .., L and the decision end-points are

x0 = −∞, xL+1 = ∞, xi = yi + yi+1

2
, i = 1, ..., L (2.141)

• then the system performs iterations to achieve convergence or until the error is
within desired limits, following the equations

yi =
∫ xi

xi−1
xp(x)dx∫ xi

xi−1
p(x)dx

, xi = yi + yi+1

2
, i = 1, ..., L (2.142)

This expression of yi indicates that it should be selected iteratively as the centroid
of probability densities in the quantization interval [xi−1, xi]. It is worth noting that
when the probability density function satisfies the condition d2p(x)/dx2 < 0, which
is satisfied for Gaussian and Laplacian distributions, the algorithm converges to a
global minimum (in respect to distortion). The Lloyd-Max method generalizes for
the case of optimum vector quantizers into the generalized Lloyd-Max method or the
Linde-Buzo-Gray (LBG) method (Linde et al. 1980), in which the following occur:

• initialization of levels yi, i = 1, .., L
• segmentation of the set of all learning vectors tj into Si sets, for which the vector

yi is the closest:
tj ∈ Si ⇐⇒ d(yi, tj) ≤ d(yk, tj),∀k (2.143)

• redefinition of yi as the center of mass of Si:

yi = 1

#Si

∑
xi∈Si

xj (2.144)

• repetition of the last two steps until convergence

116 2 Data Coding and Image Compression

Although vector quantizers are generally better in performance, scalar quantizers
are preferable in compressionmethods due to their significantly easy implementation
and themuch lower memory requirements. Scalar quantizers can be actually found at
the heart ofmost wide-spread image compression standards, inmany forms and alter-
natives, but with the same aim, in truncating the image data. It is the step within lossy
image compression systems that generates the most (if not all) the degeneration of
the original data, which is counter-balanced by the strong positive effect it produces
for the entropy coding steps that usually follow. In the JPEG image compression stan-
dard, quantization is practically implemented in the form of an element-wise matrix
operation on the 8 × 8 block it applies, using the following 8 × 8 reference quanti-
zation matrices for the luminance (qY) and chrominance (qC) channels respectively
(ISO-IEC-CCITT 1993b; Pennebaker and Mitchell 1993; Wallace 1991)

qY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

qC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.145)

The open source implementation of JPEG from the Independent JPEG Group
(IJG) (Independent JPEG Group 2000) includes the following formula for the gener-
ation of the quantizationmatrices based on the referencematrices (2.145), depending
on the coefficient of the desired quality defined by the user (f)

Qξ = qξ × ek, k = 6 ln2
50 − f

50
(2.146)

where Qξ the estimated quantization matrix, f the quality factor defined by the
user and ln ≡ loge the operator for the natural logarithm and ξ = {Y , C}. For f
ranging in the percentage interval ([0, 100]), it holds that the intermediate variable
k ∈ [−4.159, 4.159], while its exponential representation ek ∈ [0.0156, 64.0000].
As f increases, k and ek decrease to allow for a consequent milder quantization.
A graphical representation of ek is shown in Fig. 2.54.

2.3 Digital Image Compression 117

Fig. 2.54 Plot of the quantization factor ek against the user-selected quality factor f

The quantization levels in the reference matrices (2.145) emerged from observing
that after theDCT,which is applied to the original image datawhen compressingwith
JPEG, there is a particular spectral behavior, as expressed by the occurrence of large
or small values to transform coefficients, which corresponds to specific frequencies,
and therefore, other coefficients should be quantized with more and others with less
tolerance.

The latest standard in image compression, JPEG2000, the quantizer is a typical
dead-zone uniform scalar quantizer (Rabbani and Joshi 2002; Rabbani and Cruz
2001), as it is called due to that the central interval (−1, 1] is twice as long as the
other quantization intervals, and centered around zero (0). In this case, and because
the transformation that is applied before quantization is the DWT, which leads to an
analysis to multiple spectral bands, within the quantizer there is a special configura-
tion on the spectral band inwhich it is acting (taking advantage of the features present
in each zone). So for a given zone b a different quantization step
b is defined. The
choice of the quantization step in each zone is essentially defined by the user and
may be based on modeling of the HVS, similarly to how the quantization matrices
are defined in JPEG. The quantization rule in JPEG2000 is

q = sign(c)

⌊ |x|

b

⌋
(2.147)

where x is the sample at the input of the quantizer, sign(x) the sign of the input
sample and
b the quantization step in the respective spectral band.

In conclusion, quantization is responsible for the distortion introduced in a com-
pression process. So when lossless compression is required quantization should not

118 2 Data Coding and Image Compression

be applied. In the process of quantization each sample or group of samples is mapped
to a quantization level or a pointer to the dictionary of the quantizer and the input
signal is trimmed substantially.

A simple example of image-domain-based quantization is shown in Figs. 2.55
and 2.56, which present typical examples of un-dithered uniform graylevel and color
quantization into various number of levels each. In addition, Fig. 2.57 shows an
example of the application of non-uniform, minimum variance color quantization.
Each graylevel/color-quantized image is titled with the number of levels, the error
estimation and the estimated quality in PSNR dBs.

A simple example of transform-domain-based quantization is shown in Figs. 2.56,
2.58, and 2.60, which present the effect of the quantization of the DCT transform
coefficients using three different quantization matrices, based on the IJG JPEG quan-
tization recommendation (2.145) and (2.146). The original image has been initially
converter to theYCbCr color space and then transformed and quantized using an 8×8

Fig. 2.55 Uniform quantization of a full-range graylevel image into various number of levels

2.3 Digital Image Compression 119

Fig. 2.56 Uniform quantization of a full-range color image into various number of colors

pixels block partitioning, then de-quantized and inverse transformed, to provide a
reconstruction and an estimate of the distortion imposed by the quantization.

Figure2.58 presents the result of quantization using quality factor 1, which pro-
duces a reconstructed image with an average per-channel quality of about 22 dB,
with a maximum pixel difference of 190 and an average RMSE 20, as detailed in
Table2.4. (2.145) and (2.146) produce the quantization matrices in (2.148).

qY = qC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.148)

120 2 Data Coding and Image Compression

Fig. 2.57 Minimumvariance quantization of a full-range color image into various number of colors

Fig. 2.58 Quantization in the DCT domain using quality factor 1

2.3 Digital Image Compression 121

Table 2.4 Comparison between the original and the transform-domain-quantized image for quality
factor 1

Channel Max difference RMSE PSNR (dB)

Red 194 19.817 22.190

Green 185 16.983 23.531

Blue 198 23.359 20.762

Figure2.59 shows the result of quantization using quality factor 25, which pro-
duces a reconstructed image with an average per-channel quality of about 26 dB,
with a maximum pixel difference of 133 and an average RMSE 12, as detailed in
Table2.5. In this case the quantization matrices are differentiated and defined as
shown in (2.149).

qY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

128 88 80 128 192 255 255 255
96 96 112 152 208 255 255 255

112 104 128 192 255 255 255 255
112 136 176 232 255 255 255 255
144 176 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

qC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

136 144 192 255 255 255 255 255
144 168 208 255 255 255 255 255
192 208 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.149)

Finally, Fig. 2.60 shows the result of quantization using quality factor 50, which
produces a reconstructed image with an average per-channel quality of about 35
dB (with a very small RMSE of about 4.5 on the average), as detailed in Table2.6.
According to the IJG definition (2.145) and (2.146), in this case the quantization
matrices are exactly equal to the reference matrices in (2.145).

It is really obvious that in all cases of the transform-domain-quantization a best
reconstruction is guaranteed for the Green channel, then the Red and last the Blue,
which is actually in line with the human vision modeling (the HVS model) and the
predominant role of the Green channel.

122 2 Data Coding and Image Compression

Fig. 2.59 Quantization in the DCT domain using quality factor 25

Table 2.5 Comparison between the original and the transform-domain-quantized image for quality
factor 25

Channel Max difference RMSE PSNR (dB)

Red 118 12.358 26.292

Green 110 10.227 27.936

Blue 133 13.543 25.497

2.3.2.3 Encoding

The purpose of encoding (many times referred to simply as ‘coding’) is to exploit
statistical redundancy among quantized samples (samples that have undergone quan-
tization) to minimize the length of the final codestream (or bitstream). The stages
preceding coding, namely transformation and quantization, limit the correlations on
a strictly local level. In the ideal case all the input samples to the encoder are statisti-
cally independent. In this case these samples can be encoded independently and the
only statistical redundancy that can be considered is the one related to the variance
in the distribution of their probabilities. In the general case, however, it is almost
impossible to ensure statistical independence of quantized samples. Nevertheless,
so long as these inter-dependencies are limited to a narrow (spatial or temporal)
interval, it is usually possible to design efficient coding systems with easily managed
complexity. Known encoders produce codes that can either be of fixed or of variable
length; among the most famous are the Huffman and Arithmetic encoders. Various
widely used coding methods are listed in the following paragraphs, some of the
accompanied by example implementations and examples; Huffman and Arithmetic
coding are presented in more detail.

2.3 Digital Image Compression 123

Fig. 2.60 Quantization in the DCT domain using quality factor 50

Table 2.6 Comparison between the original and the transform-domain-quantized image for quality
factor 50

Channel Max difference RMSE PSNR (dB)

Red 48 4.764 34.572

Green 43 3.932 36.238

Blue 67 5.230 33.760

Pulse Code Modulation

Pulse Code Modulation (PCM) was introduced during the development of a digital
audio broadcasting standard (Sayood 1996). Today, the term is used for every encod-
ing method related to encoding of an analog signal. The method is not connected to
any specific method of compression: it simply implies the quantization and digitiza-
tion of an analog signal. The signal range is divided into intervals, and each interval
is assigned a unique index. For the encoding of an input sample, the interval to which
it belongs is being tracked and the appropriate interval index is stored. The sampling
of the signal occurs at regular intervals. Thus, the sequence of the signal in time or
space can be stored as a sequence of digits (bits) of a pre-determent rate. An example
of the application of PCM is shown in Figs. 2.61, 2.62, 2.63, and 2.64. The original
signal is a 8 Kbps (8192 bps) one-dimensional signal.

Apparently in PCM the first process is sampling with the sampling rate being
based on the Nyquist rate (fs ≥ 2fmax). The output of the sampling process is a
discrete (in time) signal. This discrete signal is fed to a quantizer which, ultimately,
makes the signal digital. At the final stage, an encoder converts the digital signal to a
sequence of binary digits or bits. The quantization step size can be simply defined as

 = R(x)

q , withR(x) the range of the input signal x and q the quantization levels; this

124 2 Data Coding and Image Compression

Fig. 2.61 PCM on an 8 Kbps signal using 4 bits at 4 Kbps rate and SQNR 56.41 dB

Fig. 2.62 PCM on an 8 Kbps signal using 6 bits at 6 Kbps rate and SQNR 68.45 dB

simplifies to
 = 2
q if−1 ≤ x ≤ 1. The error introduced by PCM is the quantization

error (or quantization noise) ε = q(x) − x and it can be shown that the quality of the
encoding can be estimated by the signal to quantization noise ratio as,

2.3 Digital Image Compression 125

Fig. 2.63 PCM on an 8 Kbps signal using 8 bits at 8 Kbps rate and SQNR 80.49 dB

Fig. 2.64 PCM on an 8 Kbps signal using 10 bits at 10 Kbps rate and SQNR 92.54 dB

SQNR = 10 log

(∑
q2

x

2

12

)
dB (2.150)

where
∑

q2
x is the quantized signal power and
2

12 is the quantization noise power.

126 2 Data Coding and Image Compression

Differential Pulse Code Modulation

Differential Pulse Code Modulation (DPCM) is an encoding scheme based on PCM
which adds a prediction functionality. Prediction in DPCM is considered in two
approaches; in the first approach, prediction of the current value is made by knowing
the previous value; in the second approach the difference relative to the output of a
local model of the decoder process is considered (a decoder is incorporated in the
encoder). In the simple (first) case the indices do not correspond to sample values
(as in PCM), but to differences between successive samples (Sayood 1996). If, for
example, a horizontal row of pixels of an image is encoded, an index may represent a
difference in luminance between the current pixel to the previous one. It is known that
there are many types of signals in which mostly small changes between successive
samples appear.

When this method is applied to such signals, the indices that represent small
differences are very frequent. By using entropy coding these indices can be greatly
reduced in value and thus lead to better compression ratios, since, as will later be
explained, a new distribution of samples emerges that approximates the Laplacian
distribution or the so-called two-sided geometric distribution. Thismethod is a simple
example of predictive encoding, since, essentially, a predicting of the next value is
being made according to the current. If the prediction is correct, the result is an index
corresponding to a very small value, while if the prediction is wrong, the size of
the index may be bigger than what the simple PCM would produce. An example of
the application of DPCM on a full color (24-bpp) image is shown in Fig. 2.65. The
DPCM image levels have been normalized for better illustration. The histograms of
the luminance of the original image and the DPCM image are shown in Fig. 2.66.

Run-Length Encoding

Certain types of data may exhibit repetitive sequences of samples. This is strongly
evident in binary images of digital documents, inwhich very largewhite regions (page
background) may be found. A simple idea to efficiently compress such signals is to
replace the sequence of repeated samples by a quantity that represents their number
(Sayood 1996; Golomb 1966). According to the method of Run-Length Encoding
(RLE), an original sample represented by a particular symbol is considered the start
of a sequence, which lasts as long as consecutive samples have the same value. In
the end, this sequence is replaced by the sample value and the sequence length.

A typical example would be as follows: given a sequence of two symbols
‘W’ and ‘B’

WWWWWWWWWBBBBBWWWWWWWWWWWW
BBBWWWWWWWWWBBBBBBBBBB
WWWWWWWBBBBBBBBBB
WWWWWWWWWWWWWWWWWWWW
BBBWWWWWWWWWWBB

2.3 Digital Image Compression 127

Fig. 2.65 DPCM representation of a color image; the range of values is [−255, 255]

Fig. 2.66 Histograms of luminance channel in the original and the DPCM images

then according to RLE this sequence would be encoded as

W9B5W12B3W9B10W7B10W20B3W10B2

which represents the samemessageof the original 100 symbols usingonly 29 symbols
(which is a 71% compression). Clearly RLE results in very compact representations,
especially in cases of large sequences of repeating symbols. It is effectively being
applied in the standard JPEG encoding scheme for the efficient formation of the final
bitstream of the compressed data, as will be shown in the corresponding section.
In a way, RLE could be viewed as a simplified special case of a dictionary-based
encoding scheme (described in the following paragraphs), in which only single sym-
bols represent the dictionary and no patterns of consecutive different symbols (like
words) are being exploited along with lookup tables for reference.

128 2 Data Coding and Image Compression

Table 2.7 Average results of RLE test on 100 natural and 100 text/graphics images

Image type Gain (%) Bitrate (bpp)

Natural images 17.3 6.61

Text/graphics images 97.7 0.18

A test on 100 graylevel natural images and on 100 graylevel and binary textual,
line-art and synthetic graphics printed or handwritten images reveals the apparent
advantage of using RLE in non-natural images as summarized in Table2.7. In the
reported results, ‘gain’ refers to the conservation of storage that can be achieved
(compression), which attains the enormous amount of 97.7%, (a data rate less than
0.2 bpp) for the case of non-natural images. The method is only of limited interest
when applied to natural images, as only a 16% gain has been achieved (6.61 bpp
average data rate). Original images were treated as 8 bpp (luminance) images.

Figure2.67 shows a typical example of two binary images where only the black
pixels are considered to convey information (as in traditional fax applications). In
these images, a simple RLE coding would result a significant amount of data com-
pression up to a 87%. The particular example used an alternative implementation

Fig. 2.67 Two typical binary images encoded using RLE

2.3 Digital Image Compression 129

Fig. 2.68 RLE encoding rule and example

of RLE which is graphically depicted in Fig. 2.68, in which the encoding starts by
the current row number (zero being the first row and column) complemented by the
column positions than mark the beginning and ending of consecutive black pixels
(the data).

Figure2.69 presents a closeup in just 100 rows of the first image, along with a
vertically stretched replica of the image rows for a better illustration of the corre-
sponding row-wise and column-wise pixel counts (the histogram-like graphs at the
bottom and right of the stretched image). Taking the first row in the image the RLE
output of this single row is

500 486 490 495 497 502 506 547 549 557 559 563 567 609
612 623 629 664 666 673 676 680 685 722 725 738 745 790
792 797 799 847 851 930 934 941 944 949 955 991 995 997
1010 1052 1064 1119 1121 1170 1173 1181 1183 1231 1247
1249 1251 1292 1306 1376 1381 1397 1404 1443 1455 1459
1463 1537 1541 1548 1550 1589 1594 1604 1608 1649 1652
1658 1662 1745 1757 1808 1812 1869 1875

with the first entry denoting the image row index and each pair of entries denoting the
location (column) of the beginning and ending of a series of black pixels. This single

Fig. 2.69 Part of a binary image and the horizontal and vertical pixel counts

130 2 Data Coding and Image Compression

row is represented by 83 integers in the range [486, 1875], so apparently 16-bit integer
representations are required. This means that this row requires 83 × 2 × 8 = 1,328
bits to be perfectly reconstructed. The original image row is of 2,396 binary pixels
(2,396 bits). Thus, RLE of this row results to a 44.6% compression, or a 1.8:1
compression ratio, which is relatively low, although expected, since this particular
image row contains a significant amount of information (black pixels). In the overall
image portion, 7,497 (16-bit) RLE values are needed to represent the 239,600 binary
pixels, which amounts to 49.9% compression or an approximate 2:1 compression
ratio. Apparently, other RLE rules and approaches are expected yield significantly
different compression results.

Shannon-Fano Coding

For a given resource, the optimum compression rate that can be achieved is the
one determined by the entropy of the source. Entropy, as already mentioned, is
the measure of uncertainty of a source of information. Based on this principle, the
basic idea behind the Shannon-Fano Coding (SFC) (Sayood 1996) is as follows:
through the use of variable length codes, symbols are encoded according to their
probabilities, using less bits to the symbolswith the highest probability of occurrence,
in compliance with the original Shannon theory. The method is considered to be
suboptimal in the sense that it does not achieve the lowest possible code length but it
guarantees that all code lengths are within one bit of their theoretical ideal set by the
Shannon entropy. Although based on Shannon’s theory, the method is co-attributed
to Robert Fano, who published it as a technical report at MIT (Fano 1949).

SFC is a recursive process in which all symbols are assigned a codeword. Initially
the symbols are arranged according to their probability in descending order, and then
separated into two sets with total probabilities close to being equal. Then the first
digit of the codeword of all symbols is being created, using “0” for the first set and
“1” for the second. This process is repeated until no more sets remain with more
than one members and all codewords have been assigned to all symbols. The process
results in symbol with prefix codes (no other symbol has the same prefix).

Themethod is efficient in producing variable-length codeswhen the partitioning is
as close as possible to being of equal probability. Although computationally simple,
the method is almost never being used because it requires the a partitioning to equal
probability sets is possible, in order to be efficient. Nevertheless, SFC is being used
in the IMPLODE compression method in the ZIP compression.

The implementation of SFC is a simple tree-defining algorithm as follows:

1. Definition of the underlying probabilitymass function, by counting the occurrence
of symbols

2. Ordering of the sequence of symbols in the order of descending probability
3. Division of the sequence into two parts having approximately equal total proba-

bility
4. Assignment of the binary digit “0” to the first set and of the digit “1” to the second

set, so that all set symbols start with the same digit

2.3 Digital Image Compression 131

5. Repetition of steps 3 and 4 for each of the two sets, to subdivide the sets and assign
the appropriate additional digits to the corresponding codes until all symbols have
become leaves on the tree that is being constructed

In a simple example of 10 symbols SI = {A, B, C, D, E, F, G, H, I, J} with corre-
sponding occurrences fI ={3, 8, 10, 5, 1, 2, 1, 7, 4, 9}, I = 1, ..., N , N = 10, the
probabilities are shown in Table2.8. The symbols are ordered in descending order
of their probability and the sequence becomes {C, J, B, H, D, I, A, F, E, G}. Then
the recursive splitting of the sequence into two sets takes place until all sets have
only one symbol. Figure2.70 shows graphically the overall process that results in
the assignment of a single prefix code for each of the input symbols as shown in the
table embedded in the figure. In this figure the red color denotes the “0” code paths,

Table 2.8 SFC example using 10 symbols with various probabilities

A B C D E F G H I J

3 8 10 5 1 2 1 7 4 9

0.06 0.16 0.2 0.1 0.02 0.04 0.02 0.14 0.08 0.18

Fig. 2.70 Example of the formation of a Shannon-Fano tree of codes

132 2 Data Coding and Image Compression

whereas the blue color denotes the “1” code paths. Using (2.29) the entropy of this
source is Hi = 3.009 bps. The data rate is estimated

∑
i∈SI

bits(i) × fi∑
i∈SI

fi
=

= 1

50
[2 3 3 3 3 3 4 5 6 6] [10 9 8 7 5 4 3 2 1 1]T = 3.06 bps (2.151)

Dictionary Methods

Dictionary Methods exploit the fact that many types of data exhibit repeated identical
symbol sequences (patterns). Thus, it becomes possible to construct a ‘dictionary’ of
‘model’ sequences or structures from the original data and to replace the data with
corresponding indices. Dictionary methods apply efficiently in text compression and
generally ASCII files with a specific structure. They can also operate efficiently on
graphics images or digitized text, but not in natural images (such as photographs).
The most widespread form is expressed with the known Lempel-Ziv (LZ) algorithm
(Ziv and Lempel 1978), and can be found in standard image storage formats such as
TIFF for lossless compression (which yields a compression ration of around 2:1).

Huffman Coding

Huffman codes (Huffman 1952) are a subset of a large family of uniquely decodable
variable-length codes. A Huffman code is generated by calculating the probabilities
of the source symbols and the corresponding efficiency-indices so that the resultant
code isminimized in length. It has beenproven thatHuffman codes have theminimum
average length as compared to all other codes. Given a source with finite alphabet of
symbols

SI = s0, s1, ..., sk−1 (2.152)

following a corresponding probability distribution function fI , it is reasonable to
search for an optimal coding method, where the average length of the codeword be
minimal through all uniquely decodable codes. This optimal encoder is not expected
to be unique. David Huffman developed an algorithm for finding a set of lengths that
satisfy the relation ∑

i∈SI

2−l+i ≤ 1 (2.153)

whichminimizes themean codeword rate. This equation expresses the characteristics
which the lengths (li) must meet so that the codeword be uniquely decodable, as
a necessary condition (Kraft–McMillan theorem (McMillan 1956)). Assuming the
alphabet is sorted so that fI(s0) ≤ fI(s1) ≤ ... ≤ fI(sk−1), Huffman coding is based
on the observation that

Among all the optimal codes, at least one has la0 = la1 = ... = lmax , the maximum codeword
length, such that the codes cs0 and cs1 differ only in their last bit.

2.3 Digital Image Compression 133

This observation indicates that the optimization problem can be reduced to finding
only K − 1 codewords. This problem can now be expressed as follows: Determine
the lengths that satisfy

K−1∑
k=1

2−lsk ≤ 1 (2.154)

which minimize the quantity

R = (fI(s0) + fI(s1)) · (ls′
1
+ 1) +

K−1∑
k=2

fI(sk)lsk =

= fI(s0) + fI(s1) +
∑
i′∈SI

f ′
I (i

′)li
(2.155)

where I ′ a new random variable with symbols alphabet

SI ′ = s′
1, s′

2, ..., s′
K−1 (2.156)

and

fI ′(i) =
{

fI(a0) + fI(a1) i = a′
1

fI(i) otherwise
(2.157)

Thus, the problem is identical to the original, but with a reduced alphabet. This
reasoning leads naturally to the following algorithm, which iteratively reduces the
problem of generating optimal codewords to the simplest problem, where there is
only a binary alphabet (Cover and Thomas 2006; Taubman and Marcellin 2002b).

In order to create Huffman codewords (Taubman and Marcellin 2002b) classifi-
cation of elements of the alphabet should take place, so that

fI(s0) ≤ fI(s1) ≤ · · · ≤ fI(sK−1) (2.158)

If K = 2, cs0 = “0” and cs1 = “1” are instantly defined, otherwise,

• a new alphabet is being created SI ′ = s′
1, s′

2, ..., s′
K−1, and a probability distribution

function such that (2.157) holds.
• the creation algorithm is being applied recursively to find the optimal codewords

cs′
1
, cs′

2
, ..., cs′

K−1
for S′

I , f ′
I• the codeword cs′

1
is being expanded by complementing either with “0” or “1” for

the production of cs0 , cs1 respectively.

Re-using the simple 10-symbols example defined and presented for the case of
Shannon-FanoCoding, and reviewing that the symbols areSi = {A, B, C, D, E, F, G,

H, I, J}with correspondingoccurrence frequencies fi = {3, 8, 10, 5, 1, 2, 1, 7, 4, 9},
i = 1, ..., N, N = 10, as shown in Table2.8, and that the symbols are ordered in a
descending frequency of occurrence ordering {C, J, B, H, D, I, A, F, E, G}, then the

134 2 Data Coding and Image Compression

Fig. 2.71 Example of creating Huffman codes

method proposed by Huffman for generating the codes of those symbols is depicted
in Fig. 2.71. In this figure the red color denotes the “0” code paths, whereas the blue
color denotes the “1” code paths. The final resulting codes are shown as a table
embedded in the same figure. Typically, using (2.29) the entropy of this source is
Hi = 3.009 bps. The data rate of the Huffman-encoded symbols is estimated as

∑
i∈SI

bits(i) × fi∑
i∈SI

fi
=

= 1

50
[2 2 3 3 4 4 4 5 6 6] [10 9 8 7 5 4 3 2 1 1]T = 3.06 bps (2.159)

2.3 Digital Image Compression 135

Apparently, in this example the resulting compact representation is equivalent to the
one provided by Shannon-Fano Coding, although the codes are different, and is very
close to the entropy limit.

Golomb Coding

In 1966, Solomon Golomb presented a mental experiment in which a special roulette
game is being played in a way that it produces binary outcomes (reporting whether
a “0” is encountered or not—a “0” would have a probability of 1/37 in this case).
He realized that in cases of sequences of infinite outcomes, or more generally of
largely un-balanced event probabilities, a Huffman coding would not be applicable
(Golomb 1966). His insight was that a run length of n favorable events10 of prob-
ability p between successive unfavorable events with probability q = 1 − p would
have a probability of pnq, n = 0, 1, 2, ..., which is approximated by no other than
the geometric distribution.11 Golomb realized that a shift towards the study of dis-
tributions for the discrete case should initiate, at a time when Gaussian distributions
dominated the representations of every process being studied. He tried to shape the
form of Huffman coding when applied to the geometric distribution, which is a more
accurate representation of processes in the discrete case, and especially in the case
in which p � q. Apparently, Golomb was concerned about encoding run-lengths,
so this method is primarily applicable to positive integer values, and may exhibit
slightly different implementations whether the encoded inputs are natural numbers
(including zero) or strictly integer numbers.

Golomb introduced a parameter m, which controls the coding process by dividing
any input x into two parts, namely the quotient q and the remainder r of the division
of the input by the parameter m as

q =
⌊ x

m

⌋

r = x − qm
(2.160)

The quotient q undergoes a typical unary encoding, whereas the remainder r under-
goes a truncated binary encoding and the two binary representations are concatenated
to form the final Golomb code.

In unary encoding a natural number n is assigned a binary codeword of n 1’s
followed by a 0, thus U(3) = 1110, or U(5) = 111110. In the case of a strictly
positive integer n the assignment corresponds to (n−1) 1’s, thus U>0(3) = 110. The
original Golomb coding accepts the first approach and considers natural numbers
(including zero).

In truncated binary encoding, things get complicated, as a number is represented
by its binary code that is truncated to the number of bits actually needed for a
correct representation and one-to-one reconstruction, following a prefix code creation
process. For example by encoding n = 6 coming from an alphabet of k = 5 bits,

10It should be noted that the definition of what is ‘favorable’ purely depends on the context.
11For simplicity, geometric is a distribution sharply concentrated around the mean value with only
small values around it being probable (small variance).

136 2 Data Coding and Image Compression

truncated encoding outputs T(6; 5) = 110, whereas a typical binary encoding would
output B(6; 5) = 00110. Practically, truncated binary encoding requires the size of
the alphabet from which the input number is selected. Then it computes the bits
needed to encode the length of the alphabet and an offset of numbers to advancewhile
converting to the binary representation. Given an input number x and an alphabet of
length m,

k = ⌊
log2 m

⌋
o = 2k+1 − m

CODE =
{
bin(x, k), x < u

bin(x + o, k + 1), x ≥ u

(2.161)

where bin(ξ, b) is the binary representation or binary encoding of ξ using b bits.
Apparently, the first o-bits of the code are assigned k bits whereas the last (m − o)-
bits are assigned (k + 1) bits, by skipping o numbers in the middle of the alphabet
range. Any number less than the offset will be simply binary represented using k bits,
whereas any number larger than the offset will be increased by this offset and then
binary encoded using (k + 1) bits. It should be noted that the offset purely depends
upon the alphabet size.

Two MATLAB function included in this section implement the Golomb coding
process; the first implements the truncated binary encoding algorithm and the second
the complete Golomb coding procedure. These functions can either encode a single
natural number or a vector of natural numbers. Obviously, the truncated encoding
function is generic, and it can be used in other settings also. The results of theGolomb
coding function have been tested against all examples provided by Golomb himself
in the original 1966 paper (Golomb 1966).

function code = truncated_binary_code(x, varargin)
if nargin==1,

if length(x) > 1
m = length(x);

else
error(’You need to specify the alphabet size!’);

end
else

m = varargin{1};
end
if find(x > m-1)

error(’Cannot compute code for X>M-1!’);
end
% initialize
code = cell(length(x),1);
% compute the bits needed to encode the alphabet
k = floor(log2(m));
% compute the offset of numbers to skip while advancing
o = 2^(k+1)-m;
% since u is known then the assignmens is as follows:
% the first o-bits are assigned typical binary codes of number X
% whereas the last (m-o)-bits are assigned (k+1)-length binary codes of number

(X+1)
for i=1:length(x)

if x(i) < o,

2.3 Digital Image Compression 137

code{i} = dec2bin(x(i),k);
else

code{i} = dec2bin(x(i)+o,k+1);
end

end

function code = golomb_code(num, param)
% get the two parts of the number to encode
q = dix(num/param);
r = rem(num,param);
% produce unary of q
ql = length(q);
code1 = cell(ql,1);
for j=1:ql

code1{j} = ’’;
for i=1:q(j)

code1{j}(i) = ’1’;
end
code1{j}(end+1) = ’0’;

end
% produce the truncated binary code of r
code2 = truncated_binary_code(r, param);
% concatenate code1 and code2 to produce final code
code = cell(ql,1);
for j=1:ql

code{j} = [code1{j}, code2{j}];
end

The Golomb coding method was independently rediscovered by Tanaka and Gar-
cia in 1982 (Tanaka and Leon-Garcia 1982) and One et al. in 1989 as MELCODE
(Ono et al. 1989).

Elias and Arithmetic Coding

A special case of codes, the universal codes, are those which map source messages
to codewords with an average length that is bounded by a linear combination of the
entropy, L ≤ α(H + β); that is universal codes achieve an average length that is less
than a multiple of the optimal code. Apparently, in universal codes, the amount of
compression depends on the values of α and β, so these codes are usually defined
as asymptotically optimal codes, with the obvious asymptotically optimal code cor-
responding to α = 1, β = 0. In these codes it is sufficient to know the probability
distribution to the extent that the source messages can be ranked in probability order,
so that decreasing probability symbols get increasingly larger codeword lengths, thus
achieving universality.

A universal code may be considered as providing an enumeration of a sequence
of symbols, giving, actually, a representation of the integers that enumerate the
sequence. Peter Elias, in his seminal paper in 1975 (Elias 1975), gave rise to a
whole family of universal coding methods that map positive integers onto binary
codewords.

The simplest of the Elias codes is the Elias gamma code, which simply maps a
natural number x ∈ N by a binary code that is constructed by concatenating

⌊
log2 x

⌋
“0” with the binary representation of the number;

⌊
log2 x + 1

⌋
is the total number

138 2 Data Coding and Image Compression

of bits required to represent the natural number. For example, the Elias gamma code
for number x = 15 is produced by concatenating

⌊
log2 15 = 3

⌋
zeros with its binary

representation 1111, thusCγ = 0001111. Decoding starts by counting the number of
zeros n at the beginning of each decoded sequence of bits. If there is no zero (n = 0)
at the beginning then the number to be decoded is obviously “1”; in any other case
(n > 0), the decoder reads the following n + 1 bits and decodes the corresponding
binary number. A MATLAB implementation of the Elias gamma coding method is
presented in the following listing.12

function y = elias_gamma_code(x)
bts = floor(log2(x));
dts = dec2bin(x);
nbts = bts+1;
nums = length(x);
for i = 1:nums

sbts = ’’;
if bts(1,i)>0

sbts = num2str(zeros(1,bts(i)));
sbts = strrep(sbts, ’ ’, ’’);

end
sz = length(dts(i,:));
bg = sz-nbts(i)+1; if bg<1, bg=1; end;
snum = [sbts dts(i,bg:sz)];
y(i,1:length(snum)) = snum;

end

Amore complex and sophisticated Elias code is the Elias delta code, which builds
upon the gamma code. Encoding of a natural number using delta coding requires to
concatenate Cγ

(⌊
log2 x

⌋ + 1
)
with a modified binary representation of the number.

Themodification of the binary representation consists in discarding the first bit of the
representation which is expected to be always a “1” for any number. For example,
the Elias delta code for x = 15, the binary representation is 1111 → 111, whereas
Cγ

(⌊
log2 x

⌋ + 1
) = Cγ (4+1) = 00100, thusCδ(15) = 00100111. To decode delta

codes, the procedure begins with the decoding of the embedded gamma code, which
is at the beginning of the delta code (using the procedure described for the gamma
codes); this provides with knowledge regarding the number of bits b in the binary
representation that follows. Then the decoder simply decodes the following b − 1
bits after complementing with a preceding “1”. A MATLAB implementation of the
Elias delta coding method is presented in the following listing.13

function y = elias_delta_code(x)
bts = elias_gamma_code(floor(log2(x))+1);
dts = dec2bin(x);
nums = length(x);
for i = 1:nums

sdts = deblank(dts(i, strfind(dts(i,:),’1’):end));
sdts = sdts(2:end);

12This MATLAB function can be executed either for a scalar (single) or for a vector input and will
respond with the appropriate results.
13This MATLAB function can be executed either for a scalar (single) or for a vector input and will
respond with the appropriate results.

2.3 Digital Image Compression 139

b = deblank(bts(i,:));
d = sdts;
snum = [b d];
y(i,1:length(snum)) = snum;

end

Table2.9 presents some representative examples of gamma and delta codes for
selected natural numbers. Clearly the number of bits required by each of these codes
(both gamma and delta) is

Lγ (x) = 2
⌊
log2 x

⌋ + 1

Lδ(x) = Lγ (
⌊
log2 x

⌋ + 1) + ⌊
log2 x

⌋
= 2

⌊
log2(

⌊
log2 x

⌋ + 1)
⌋ + 1 + ⌊

log2 x
⌋ (2.162)

In the case of a random variable X with uniform distribution on {1, 2, ..., N} and
entropy H(X) = log2 N bps, the expected lengths for the gamma and delta codes are
respectively

E
[
Lγ (X)

] = 1

N

N∑
x=1

(
2
⌊
log2 x

⌋ + 1
)

E [Lδ(X)] = 1

N

N∑
x=1

(
2
⌊
log2(

⌊
log2 x

⌋ + 1)
⌋ + 1 + ⌊

log2 x
⌋) (2.163)

An even more advanced method that is the third in the family of Elias coding
methods, is the one that generates the Elias omega codes, or the recursive Elias
codes, due to their recursive generation. These codes can also be applied to natural
numbers and are more efficient in compact representations of small numbers. There
are two alternative methods to generate the omega codes.

According to the first method, in order to encode a natural number x the code starts
with a “0” and iteratively builds up as now bits are concatenated at the beginning of
the code, as follows

1. Start by placing a “0” at the end of the code
2. Stop encoding if x = 1
3. Insert the binary representation of x at the beginning of the code
4. Change x, to be equal the number of bits just inserted minus one (x = ⌊

log2 x
⌋
)

5. Go back to step 2

The second method is an iterative application of Elias gamma coding and update
of the input, which builds the code by changing bits at the beginning of it, as follows

1. Apply Elias gamma coding on x and generate code
2. Set x = ⌊

log2 x
⌋
and go back to step 1 to replace the preceding “0”s until only

one “0” is left
3. Move the left “0” to the end of the code

140 2 Data Coding and Image Compression

As an example, the Elias omega code for x = 15 is Cω = 1111110. Omega codes
that can be generated by both these methods are listed in Table2.9. A MATLAB
implementation of the Elias omega coding method is presented in the following
listing.14

function y = elias_omega_code(x, varargin)
method = 1;
if nargin>1,

method = varargin{1};
end
if method == 1,

% METHOD 1:
% To code a number N:
% Place a "0" at the end of the code.
% If N=1, stop; encoding is complete.
% Prepend the binary representation of N to the beginning of the code.
% This will be at least two bits, the first bit of which is a 1.
% Let N equal the number of bits just prepended, minus one.
% Return to step 2 to prepend the encoding of the new N.
% As described in: https://en.wikipedia.org/wiki/Elias_omega_coding
y = [’0’];
while x ~= 1,

dts = dec2bin(x);
y = [dts y];
x = length(dts)-1;

end
else

% METHOD 2:
% Call Elias gamma coding
% Recursively apply Elias gamma coding on the num of zeros at front
% Move the first zero to the end
y = elias_gamma_code(x);
N = strfind(y, ’1’); N = N(1)-1;
while N>1

yy = elias_gamma_code(N);
y = [yy y(N+1:end)];
N = strfind(y, ’1’); N = N(1)-1;

end
y = [y(2:end) y(1)];

end

Elias actually suggested the method now known as arithmetic coding; arithmetic
coding was presented by Abramson in his Information Theory and Coding in 1963
(Abramson 1963), but remained almost a scientific curiosity until practical imple-
mentations were presented by researchers among which Rissanen, Pasco, Rubin and
Witten (Rissanen 1976; Pasco 1976; Rubin 1979; Rissanen and Langdon 1979; Wit-
ten et al. 1987) can be identified as the most prominent. Arithmetic coding plays
an important role in various image compression standards, such as the famous Joint
Bilevel Image Group (JBIG) and JPEG (and respectively the newer Joint Bilevel
Image Group 2 (JBIG2) and JPEG2000). There are two main factors in arithmetic
coding: the probabilities of symbols and coding intervals. The probabilities of sym-
bols define and yield compression efficiency and they determine the size of the
intervals for the encoding process. Through an iterative process of updating prob-

14This MATLAB function can be executed only for scalar inputs.

2.3 Digital Image Compression 141

Table 2.9 Elias gamma, delta and omega codes of natural numbers

x Cγ (x) Cδ(x) Cω(x)

1 1 1 0

2 010 0100 100

3 011 0101 110

4 00100 01100 101000

5 00101 01101 101010

6 00110 01110 101100

7 00111 01111 101110

8 0001000 00100000 1110000

9 0001001 00100001 1110010

10 0001010 00100010 1110100

20 000010100 001010100 10100101000

30 000011110 001011110 10100111100

40 00000101000 0011001000 101011010000

50 00000110010 0011010010 101011100100

100 0000001100100 00111100100 1011011001000

abilities of symbols and intervals, all symbols go through the encoder and the end
result converges to a real number (theoretically of infinite accuracy between 0 and 1).
An arithmetic encoder can be regarded as an encoding device that receives as input
the symbols to be encoded and the corresponding estimate for the probability dis-
tribution, and produces a string of a length equal to the combination of the ideal
code-lengths of the input symbols (Rissanen and Langdon 1979).

Simply described, in arithmetic coding a message is represented by the interval
[0, 1) on the real axis, and is supposed to be governed by an underlying probability
distribution. Each symbol of the message has a probability of occurrence (described
by a source model) and is being processed sequentially. During this process each
symbol narrows the overall interval according to its probability. Apparently, as the
interval becomes smaller and smaller with the intercepted symbols, the amount of
binary digits required to define it grows respectively. Since the narrowing of the inter-
val depends upon the probability of the processed symbol, high probability symbols
narrow the interval less than low probability, which implies that high probability
symbols contribute fewer bits to the final code. Obviously, in arithmetic coding there
exists no one-to-one correspondence between source symbols and output codes, as an
entire sequence of symbols is encoded to a single arithmetic code. After the encod-
ing of all message symbols the initial interval [0, 1) is diminished to an interval
represented by the product of all probabilities of encoded symbols

P = p(s1) × p(s2) × p(s3) × ... × p(sN)

142 2 Data Coding and Image Compression

The interval precision expressed as the number of bits required to represent the
interval is

− log2 P = −
∑

i

log2(p(si))

The algorithm originally attributed to Elias (on a DMS) can be understood as a
mappingof each symbol of a source to a distinct interval on the real axis [cn, cn+an) ⊆
[0, 1), so that the length of this interval is equal to fI(sn) the probability of the symbol
sn in the message I . The algorithm is recursive and is summarized in the following
steps (Taubman and Marcellin 2002b)

• Initialize c0 = 0 and a0 = 1 so that the initial interval is [0, 1)
• For each symbol intercepted n = 0, 1, ...

– Update an+1 ← anfI(sn)

– Update cn+1 ← cn + anFI(sn)

where FI is the cumulative distribution

FI(sj) =
j−1∑
k=0

fI(sk), SI = s0, s1, ...

In order for this to work, both the encoder and the decoder need to have access to
the same distribution function fI (and hence to the FI), otherwise they should both
be able to make the same assumptions about the underlying distribution. In practice
the iterative process of the generation of arithmetic codes has been simplified as a
recursive update of the interval start point and its length; thus for amessage expressed
by the sequence of symbols S = {s1, s2, ..., sN } governed by a source model that
includes the symbol probabilities

p(l) = p(sk = l), l = 0, 1, ..., M − 1, k = 1, 2, ..., N

M being the number of symbols the source can produce, and a cumulative distribution
practically defined as

c(l) =
l−1∑
j=0

p(j), j = 0, 1, ..., M, c(0) ≡ 0, c(M) ≡ 1

the process defines the interval

�k(S) = [αk, βk) , k = 0, 1, ..., N, 0 ≤ αk ≤ αk+1, βk+1 ≤ βk ≤ 1

2.3 Digital Image Compression 143

This interval is represented for simplicity as |b, l〉 with b its starting point (also
referenced as the ‘base’) and l its length,

|b, l〉 = [α, β), b = α, l = β − α

Then this interval is being iteratively narrowed according to the symbols intercepted
using

�0(S) = |b0, l0〉 = |0, 1〉
�k(S) = |bk, kk〉 = |bk−1 + c(sk)lk−1, p(sk)lk−1〉, k = 1, 2, ..., N

(2.164)

A MATLAB implementation of the arithmetic coding method is presented in the
following listings, first for the encoder and then the decoder.

%
% implementation of the Elias/Arithmetic encoding
%
% implementation is based on
% Amir Said, "Introduction to Arithmetic Coding Theory and Practice",
% Hewlett-Packard Laboratories Report, HPL-2004-76, Palo Alto, CA, April 2004
% https://software.intel.com/sites/default/files/m/b/6/3/HPL-2004-76.pdf
%
function varargout = elias_arithmetic_encode(symbol_probabilities, symbol_indices)

%% check input and initialize
if (sum(symbol_probabilities)- 1) > eps,

error(’Probabilities of symbols do not add up to 1!’);
end
c = [0 cumsum(symbol_probabilities)];
l = 1;
b = 0;
%% run the main algorithm
for i=1:length(symbol_indices)

j = symbol_indices(i);
b = b + c(j)*l;
l = l*symbol_probabilities(j);

end
%% produce the output
code = b+l/2; % compute the code
bin_code = num2bin(code); % convert the code to binary form
%% handle the output
switch nargout

case 0
fprintf([’| The code is in [%.12f,%.12f] --> [%.12f]\n’,...

’| Represented by the binary code [%s]\n’],...
b,b+l,code,bin_code);

case 1
varargout{1} = code;

otherwise
varargout{1} = code;
varargout{2} = bin_code;

end

144 2 Data Coding and Image Compression

%
% implementation of the Elias/Arithmetic decoding
%
% implementation is based on
% Amir Said, "Introduction to Arithmetic Coding Theory and Practice",
% Hewlett-Packard Laboratories Report, HPL-2004-76, Palo Alto, CA, April 2004
% https://software.intel.com/sites/default/files/m/b/6/3/HPL-2004-76.pdf
%
function varargout = elias_arithmetic_decode(symbol_probabilities, elias_code,

num_symbols)
%% check input and initialize
if (sum(symbol_probabilities)- 1) > eps,

error(’Probabilities of symbols do not add up to 1!’);
end
c = [0 cumsum(symbol_probabilities)];
s = [];
%% run the main algorithm
for i=1:num_symbols

% find the upper bound of the interval that includes the current code
s(end+1) = find(c<elias_code, 1, ’last’);
% normalize the code to [0,1)
elias_code = (elias_code-c(s(end))) / symbol_probabilities(s(end));

end
%% handle the output
switch nargout

case 0
disp(s);

otherwise
varargout{1} = s;

end

If for example, there is a source that produces four (4) symbols S = {1, 2, 3, 4}
with a corresponding probabilities p(sk) = {0.2, 0.4, 0.3, 0.1} and this source pro-
duces the messageM = {2, 2, 1, 3, 3, 2, 1, 4, 3, 2} then the encoding of this message
would proceed as follows:

• The cumulative distribution is computed by the probabilities resulting c =
{0, 0.2, 0.6, 0.9, 1}. The lower bound of the initial interval is set to zero (0) and
the length of this interval to unity (1).

• The first symbol in the message is a “2” with a probability of 0.4, which points to
the interval |0.2, 0.4〉.

• The second symbol is also a “2”, which narrows the interval to |0.28, 0.16〉.
• The third symbol is a “1”, which narrows the interval to |0.28, 0.032〉.
• The fourth symbol is a “3”, which narrows the interval to

|0.2992, 0.0096〉.
• The fifth symbol is also a “3”, which narrows the interval to

|0.30496, 0.0028〉.
• Then comes a “2”, which zooms in the interval

|0.305536, 0.001152〉.
• A “1”, narrows the interval to |0.305536, 2.304 × 10−4〉.
• A “4”, narrows the interval to |0.30574336, 2.304 × 10−5〉.
• A “3”, narrows the interval to |0.305757184, 6.912 × 10−6〉.

2.3 Digital Image Compression 145

• And the final symbol “2”, narrows the interval to
|0.3057585664, 2.7648 × 10−6〉. This corresponds to the interval
[0.305758566400, 0.305761331200).

• The easiest way to get a single number in the final interval is to get themiddle point,
which in this case is 0.3057599488, or, in binary form, is 0.0100111001000110
0100100010110100.

Typically this process is followed by another step tominimize the length of the binary
code by estimating the number of bits to keep from the length of the final interval.

Decoding of this output to reconstruct the original message (the sequence of sym-
bols M = {2, 2, 1, 3, 3, 2, 1, 4, 3, 2}) is straightforward. The output of the encoder
(0.3057599488) passes though an iterative process that tracks the interval the code
belongs to (in the cumulative distribution) and normalizes the interval to become
[0, 1). Apparently the decoder has no clue on when to stop the process, so additional
data, like the number of encoded symbols, have to be stored and passed to the decoder
for a proper decoding.

An in-depth analysis of the theory and practical application of arithmetic coding
can be found in (Said 2004), where important implementation concepts are being
presented.

Practical implementations of arithmetic encoders produce strings that exceed the
ideal length (at approximately 6%). A typical practical arithmetic encoder is shown
in Fig. 2.72. In general, the probability of a sample having a specific value is influ-
enced by the values of adjacent samples. Thus, the probabilities of the symbols can
be estimated, provided that the values of neighboring symbols are known. For a given
neighborhood of symbols, every possible combination of symbols reflects a contex-
tual pattern. The arithmetic coder is very efficient in coding sequences where the
probabilities are changing for every contextual pattern. Figure2.73 shows a causal
neighborhood of pixels in an image.

Statistical Modeling

The entropy coder presented in previous paragraphs, along with others not refer-
enced here, use a statistical model of the source that produces the symbols being
encoded. Apparently the assumption of such an underlying model is crucial for any

Fig. 2.72 Typical arithmetic
encoder

Fig. 2.73 Causal region for
the conditional probability
estimation

146 2 Data Coding and Image Compression

coding process, as it is responsible for determining both the alphabet of the source
symbols and the entropy bound for any possible coding rate achievable. Presuppos-
ing a stationary model where the probabilities of the symbols do not change then,
according to the theory of Shannon, the entropy of the source is the ultimate limit for
any possible data compression. Nevertheless, this model is far from being accurate
and in practice many techniques are being employed to alter the description of the
symbols in order to achieve a lower limit and be able to design far more efficient
coding schemes. In the classic textbook on JPEG, Pennebaker and Mitchell (Pen-
nebaker and Mitchell 1993) briefly and intuitively presented four possible ways to
improve the entropy and achieve better compression rates by,

• Changing the alphabet
According to this approach, the source alphabet may be altered using possibly very
simple observations on the occurrences of the symbols in intercepted messages
produced by the source. For example, in natural images it is typical that run-
lengths of identical pixel values are very probably so instead of using an alphabet
consisting of the values of those pixels, one might consider encode the state of
intercepting the same value. This way, the ‘same value state’ would be assigned
significantly less bits (being the most frequent) and the new alphabet would be
expected to be of reduced entropy.

• Removing redundancy
In addition to the identification of patterns in the occurrence of the symbols of the
alphabet presented in the previous approach, it is highly likely that some of the
state transitions (described by the newly adopted alphabet) are improbable (there
is no way of them to happen), apparently like each state change to itself. Removing
these cases from the alphabet, a new, reduced alphabet is created and the entropy
is further reduced as redundant symbols are being discarded.

• Grouping symbols
Pushing further the development of the alphabet created so far with the two pre-
vious approaches, another improvement is expected to stem from the grouping of
consecutive occurrences of alphabet symbols. A complete alphabet for all possi-
ble combinations could be created this way, lowering even more the number of
bits per symbol needed for highly likely combined symbol occurrences. Typically,
the probability for the occurrence of two symbols in a row (joint occurrence) is
represented by the product of the probabilities of the individual symbols, thus less
probable symbol transitions are highlighted whereas high probable transitions are
suppressed in terms of the bits needed to represent them, which has a significant
positive impact in the entropy of the new complex alphabet.

• Using conditional probabilities
If the assumed statistical independence of the symbols of the alphabet in the
previous approaches is discarded, then the source is no longer memoryless, and
becomes an x-order Markov process. In thismodeling of the source, the occurrence
of a symbol is expected to be influenced (up to an order) by previously intercepted
symbols. By employing conditional probabilities of the symbols these influences
are being captured and efficiently represented as newly defined (more complex)

2.3 Digital Image Compression 147

alphabet symbols that can impose a further reduction in the entropy. Actually,
it has long been recognized that this approach yield very efficient alphabets and
significantly reduced redundancy that guarantees a more compact representation
in a compression attempt. Widely used methods, like JPEG, heavily rely on this
approach to define what is usually referenced the context of a decision during
entropy coding.

The approaches are not simple theoretical curiosities, but rather important practical
strategies to remove large portions of the redundancy inherent in any source of
information that produces sequences of symbols to be encoded. By targeting to
remove this redundancy, it is expected to achieve a reduction in the entropy of the
source, and create a highly efficient alphabet for use in an encoding process. In
addition, the approaches aim at providing a more accurate statistical model of the
source (either by supposing a statistical independence or by usingMarkovmodeling),
which is of paramount importance in many data encoding schemes that rely on
probabilities, such as the entropy coding schemes,which have gained high acceptance
in numerous applications over many decades of data compression developments.

2.3.3 Lossy Coding and Rate-Distortion Theory

Transformation, quantization and encoding of arbitrary real numbers is at the core of
any data coding method. Unfortunately, real numbers require an infinite amount of
bits to be accurately represented. Thus, it is expected that a finite representation of a
continuous random variable cannot be perfect. In such a context, one has to consider
to trade-off between accuracy and size of any possible representation. Upon this
basic notion, a rate-distortion theory has been created that relates the minimum
expected distortion achievable at a particular data rate, given the source statistics
and an arbitrary distortion measure. Assuming a source that produces a sequence of
independent identically distributed random variables with probability p(x), x ∈ X ,
and assuming that the alphabet is finite, the encoder describes the source sequenceXn

by and index fn(Xn) ∈ {1, 2, ..., 2nR} and the decoder represents Xn by and estimate
X̂n ∈ X . In this respect, a distortion function or distortion measure is defined as a
mapping from the set of source and reproduction alphabet pairs to the set of non-
negative real numbers d : X × X̂ → R+. Accordingly, the distortion d(x, x̂) is a
measure of the cost of representing x by x̂. Typical distortion measures usually being
used are the Hamming distortion

d(x, x̂) =
{
0 x = x̂

1 x
= x̂
(2.165)

148 2 Data Coding and Image Compression

or the squared-error distortion d(x, x̂) = (x− x̂)2. In addition, the distortion between
sequences xn and x̂n is defined as

d(xn, x̂n) = 1

n

n∑
i=1

d(xi, x̂i) (2.166)

thus the average per symbol distortion is equivalent to the distortion for a sequence.
The rate-distortion function R(D) is the infimum of rates R such that (R, D) is

in the rate-distortion region of the source for a given distortion D. Looking at it the
other way around, the distortion-rate function D(R) is the infimum of all distortions
D such that (R, D) is in the rate-distortion region of the source for a given rate R, as
already presented in (2.140). Accordingly, the information rate-distortion function
R(I)(D) is defined as,

R(I)(D) = min
p(x̂|x):∑(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂) (2.167)

with the minimization over all conditionals p(x̂|x) for which p(x, x̂) = p(x)p(x̂|x)
satisfies the expected distortion constraint. Additionally, it can be proved that the def-
inition of the rate-distortion function is equal to the latter information rate-distortion
function definition, thus R(D) = R(I)(D) for an independent identically distributed
source X with a distribution p(x) and a bounded distortion function d(x, x̂) (Cover
and Thomas 2006).

In (Cover and Thomas 2006) is shown that for a binary (Bernoulli) source and
considering a Hamming distortion, the rate-distortion function is defined as

R(D) =
{

H(p) − H(D) 0 ≤ D ≤ min{p, 1 − p}
0 D > min{p, 1 − p} (2.168)

whereas for a Gaussian source N (0, σ 2) with a squared-error distortion, the rate-
distortion function is defined as

R(D) =
{

1
2 log

σ 2

D 0 ≤ D ≤ σ 2

0 D > σ 2
(2.169)

Apparently, there are cases in which ‘good’ approximations of an input are con-
sidered ‘enough’ as regards an expected outcome. In those cases, one trades off infor-
mation ‘quality’ for a more compact (compressed) representation, as it is in those
cases only that one is able to surpass the entropy barriers. Shannon already described
these cases in his basic information theory, where he realized and put forward that
in such conditions one should considered a balance between the compression rate
achieved and the distortion that is imposed on the data.

As alreadymentioned on the general compressionmethods in the previous section,
when applying lossy compression methods the degeneration of the original image is

2.3 Digital Image Compression 149

Fig. 2.74 The basic
framework of lossy
compression

permitted in order to further reduce the length of the generated compression string.
Distortions can either be visible or not.Generally, a higher compression is achieved as
the quality of the final image is continuously reduced (or respectively as the require-
ments for image quality are being reduced the compression efficiency is increased).
The basic framework of a lossy compression method is shown in Fig. 2.74.

It includes three basic processes: transformation, quantization and coding to an
output code-string. The value of each process in the overall compression depends on
the technique used. Of course, the more intelligent15 a process, the better the quality
that can be achieved for a given number of bits. The compression performance limit
of each information source, as defined by its entropy, applies only to the case of
lossless compression. In the case of lossy compression this is not true: the problematic
in this case refers to how much the compression ratio should at least be to keep
the distortion within certain acceptable limits. The level of distortion is usually a
parameter defined by the user by controlling certain parameters, such as the level
of quantization. This concern arises and is being studied through a class of theories
known as rate-distortion theory. This theory puts theoretical performance limits
for lossy compression according to some fidelity criteria. For a very large class of
distortion measures and source models, the theory provides a rate-distortion function
R(D) (or respectivelyD(R)), as developed in previous sections onquantization,which
has the following properties:

• For any given distortion level D, it is possible to find a coding method with effi-
ciency close to R and average deformation close to D.

• It is impossible to find an encoder that achieves a compression ratio less than R,
with distortion D (or less).

15The term is used metaphorically to denote the ability of a method to adapt to the input data and
the exploitation of statistical, spectral or any other inherent redundancies.

150 2 Data Coding and Image Compression

Fig. 2.75 Example of
rate-distortion curves and
typical encoders efficiency

It turns out that the curve R(D) is convex, continuous and decreasing function
of D. Figure2.75 illustrates a typical rate-distortion function for a discrete source
with finite alphabet. The minimum degree of compression required for compression
without distortion is the value of R for D = 0, and is less than or equal to the entropy
of the source and depends on the distortion estimator D. In the image ideal curves
of encoders with high and low complexity are also shown. Generally, the better the
compression method the better the source statistics are being modeled and the better
the efficiency, which approaches the R(D) threshold (Rabbani and Jones 1991a).

2.4 JPEG Compression

JPEG (Rabbani and Jones 1991a; ISO-IEC-CCITT 1993b; Pennebaker and Mitchell
1993; Wallace 1991) is a standardized image compression mechanism. Its name
comes from the Joint Photographic Experts Group, the name of the group that intro-
duced this standardization. JPEG was designed for compressing of either color or
graylevel images of scenes that reflect the real world. It is a compression method
which guarantees good compression results, primarily when running on real-world
photos (or natural images). JPEG cannot provide good compression results on text
images, simple graphics and line art. Also, is is mainly used for compressing still
images (although there is aMotion-JPEG compression scheme for video sequences).
JPEG is a lossy compression method. It was designed to exploit known properties of
the HVS, with particular emphasis on its capacity to perceive changes in brightness
a lot better than changes in chromaticity. A useful feature of JPEG is that the degree
of distortion can be easily adjusted by changing the compression parameters. This
means that onemay choose (at least approximately) between image quality or the size
of the final compressed file. Another important feature is that the JPEG decoders can

2.4 JPEG Compression 151

Table 2.10 Advantages and disadvantages of JPEG

Advantages Disadvantages

Low memory requirements A single image resolution (size)

Low complexity A single image quality

Compression efficiency Inability to predefine the compression rate

HVS modeling No lossless compression

Robustness No partial compression

No region of interest

Blocking artifacts in block boundaries

Low noise resilience

use less accurate approaches in the calculations in order to achieve higher decoding
speed (which, of course, affects the quality of the final image). The JPEG standard
is applicable mainly in cases of compression of true color still images, achieving
an average compression around 15 : 1. The advantages and disadvantages of JPEG
compression standard are summarized in Table2.10. The JPEG standard defines four
modes of the basic algorithm:

• Sequential coding, in which each image block and each picture element is encoded
following a scan path from top-left.

• Progressive coding, inwhich each imageblock and eachpicture element is encoded
through multiple scans, to enable a progressive decoding of the image when there
is a limitation in transmission times.

• Lossless coding,16 in which the encoded image is coded so as to ensure accurate
reproduction of the original image.

• Hierarchical coding, in which the image is encoded at multiple resolutions.

2.4.1 The Sequential JPEG

The sequential JPEG or baseline JPEG is the most basic of the modes that JPEG
supports and it is the most usual mode of coding in JPEG. The block diagram of
a typical sequential JPEG encoder is shown in Fig. 2.76. A decoder for such an
encoder is follows the exact opposite path and the symmetric operations. Coupled, an
encoder and a decoder are usually referenced as a codec. In the following paragraphs
a description is given of the operation of each basic block of the baseline codec.

16There is a misunderstanding on this case, as JPEG does not support lossless compression. This
mode does not have anything in common with the classical JPEG algorithm and can only support
compression rates of about 2:1, using prediction in a causal neighborhood of pixels. It is essentially
an entirely different method.

152 2 Data Coding and Image Compression

Fig. 2.76 Detailed block diagram of a sequential JPEG encoder

2.4.1.1 The Encoder

The encoding process in the sequential JPEG is performed in rectangular non-
overlapping tiles of the image, usually called blocks, typically of 8 × 8 pixels in
size. Initially, a color image is tiled and appropriately padded to the right and bot-
tom, if needed. The following process is performed on each of the 8×8 image blocks
separately. First, the color image undergoes a color space transformation, from the
RGB color space, in which is usually represented, to the YCbCr color space, which,
as previously analyzed, decorrelates the pixel values by providing a luminance-
chrominance representation. According to the psychovisual modeling implied by
the HVS modeling, the two chrominance channels are being subsampled by 2 × 2
(half samples in both directions), as it is expected that discarding data in these chan-
nels will not have a significant impact in the final reconstructed image quality, while
it will greatly facilitate a better compression outcome. The luminance channel does
not undergo any subsampling, due to its significance for the HVS. Then, the samples
with values in the interval [0, 2b − 1] are shifted in the interval [−2b−1, 2b−1 − 1]
by subtracting 128 from all samples. For each image channel in the case that the
data rate is initially b = 8 bps which corresponds to all values being in the inter-
val [0, 255], these values are shifted to the interval [−128, 127], thereby creating a
two-sided geometric distribution with zero mean, apparently, increasing, in paral-
lel, the number of bits needed for the new representation by 1 (b′ = 9 bps). These
shifted values of the luminance and subsampled chrominance pixels pass through
DCT using (2.83) (which further increases the bit-budget of the data by outputing
large and small floating point coefficients),

2.4 JPEG Compression 153

J(u, v) = 2

N
c(u)c(v)

N−1∑
x=0

N−1∑
y=0

I(x, y)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N

c(ξ) : c(ξ = 0) =
√
1

2
, c(ξ
= 0) = 1

N = 8

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⇒

J(u, v) = 1

4
c(u)c(v)

7∑
x=0

7∑
y=0

I(x, y)cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

(2.170)

The original discrete signal of 64 integer samples is a function of two dimensions
x and y, whereas the real values of the DCT coefficients are a function of u and v. The
first transform coefficient J(0, 0) is called the DC coefficient and the remaining 63
coefficients are called the AC coefficients. In a classic case of a natural (continuous-
tone) image tile of 8 × 8 pixels, many AC coefficients are expected to have low
or zero magnitudes, thus, need not be encoded. This fact, complemented by the
psychovisual modeling that guides to rely only on low-frequency coefficients, forms
the foundation for achieving compression in JPEG.

In the next step, all coefficients are quantized using a quantization matrix, which
is determined according to the compression ratio required and is different for the
luminance and the chrominance channels. The quantization is nonlinear and has been
described in the previously presented section on Quantization; it uses the reference
quantization matrices in (2.145) and applies the rule described in (2.146) to convert
the reference matrices to the matrices that correspond to the quality factor used in
the JPEG compression.

The purpose of this quantization is to reduce the values of the transform coeffi-
cients and especially of those coefficients that are expected to haveminimal contribu-
tion to the reconstruction of the image; an ultimate goal at this step is to increase the
number of coefficients with zero value in a way that complies with the psychovisual
studies. Quantization in JPEG is typically defined as,

Jq(u, v) =
⌊

J(u, v)

Q(u, v)

⌉
(2.171)

for each of the luminance-chrominance channels, where �� denotes the rounding
operator, andQ(u, v) are the elements of the quantizationmatrices,which are rounded
and clipped within the interval [1, 255].

After the quantization, the quantizedDCT coefficients are being reordered accord-
ing to a zig-zag ordering as shown in Fig. 2.77. This ordering is required for the
next step, the entropy encoding, since the low-frequency coefficients that have high
probability of being non-zero are being ordered before the coefficients of high fre-
quencies, whose probability of being zero is high. A simple test on various natural
(continuous-tone) images reveals that the zig-zag reordering is very close to being the

154 2 Data Coding and Image Compression

Fig. 2.77 The zig-zag ordering of the DCT coefficients

Fig. 2.78 Probability of non-zero AC coefficients of DCT and coefficients ordering

optimum possible reordering—actually the one being absolutely adaptive, adapted
to the dataset.

Figure2.78 aggregates the results of such a test on theWang database of 1,000 nat-
ural color images,17 where three different orderings of theAC coefficients of theDCT
are being presented. The horizontal axis represents the index of the coefficients and
the vertical axis the probability of each coefficient over the total amount of 8×8 image
blocks in all 1,000 images; the dark grey bar-graph shows the probabilities without
any reordering; the black bar-graph shows the probabilities of the coefficients after
zig-zag ordering; the light grey bar-graph shows the ‘optimum’ reordering, where
all coefficient probabilities are in a monotonically decreasing order. Apparently the
zig-zag ordering is vary close to being ‘optimum’ and it does not need to be adap-
tive (it still applies for any other images). Purely for reference, Table2.11 shows the
indices for the coefficients required by the zig-zag ordering and those imposed by the
optimum ordering (for this test set). The ordering is shown in a column-wise setting

17The Wang database is accessible at http://wang.ist.psu.edu/docs/related/.

http://wang.ist.psu.edu/docs/related/

2.4 JPEG Compression 155

Table 2.11 Comparison of the indices in zig-zag and optimum (adaptive) ordering

Zig-zag ordering Optimum (adaptive) ordering

1 9 2 3 10 17 25 18 1 3 2 4 5 6 10 9

11 4 5 12 19 26 33 41 8 7 11 12 13 14 15 19

34 27 20 13 6 7 14 21 21 20 18 17 24 25 23 16

28 35 42 49 57 50 43 36 22 26 33 34 32 27 35 28

29 22 15 8 16 23 30 37 31 40 39 36 38 41 30 47

44 51 58 59 52 45 38 31 37 29 42 46 48 45 49 43

24 32 39 46 53 60 61 54 52 51 53 44 50 54 57 56

47 40 48 55 62 63 56 64 58 55 59 60 61 63 62 64

just like the presented indices are in a column-wise ordering in the 8 × 8 grid, both
beginning from the top-left corner and walking towards the right to the end of the
columns before advancing one row.

The DC coefficients, which constitute the average of the 64 image samples, are
being encoded using reversible encoding with prediction, DPCM, as shown in the
Fig. 2.79. The reason for the use of such a coding scheme is that in adjacent image
blocks the DC coefficients are expected to be highly correlated, and thus the value
of their difference is expected to be very close to zero. Entropy coding of such small
values are expected to produce small codewords, and, ultimately, the compression is
significantly improved, as only the first DC coefficient has to be encoded to represent
its full value and all others are encoded as very small differences.

Final stage in JPEG compression is the entropy coding, which achieves additional
compression to create the final codestring via the coding of quantized DCT coeffi-
cients into a more ‘compact’ binary form. The JPEG standard specifies two entropy
coding methods: Huffman coding and arithmetic coding. The basic sequential cod-
ing algorithm uses Huffman coding, mainly due to patents in the arithmetic coding
proposed in JPEG. The Huffman encoder converts the quantized coefficients into a
compact binary format by performing a two-step process, which creates a sequence
of intermediate symbols before assigning the final Huffman codes to produce the
codestream. The first step produces a set of intermediate symbols, which are a cate-
gory code for the DPCM encoded DC coefficients, and a more complex run-length
and category code for the AC coefficients.

Fig. 2.79 Predictive coding
(DPCM) for the DC
coefficients

156 2 Data Coding and Image Compression

Table 2.12 Coding categories for DCT coefficients in JPEG standard for up to 12-bpp images

Table 2.13 Reference table of Huffman codes for luminance DC coefficients

DC category Code length Huffman codeword

0 2 00

1 3 010

2 3 011

3 3 100

4 3 101

5 3 110

6 4 1110

7 5 11110

8 6 111110

9 7 1111110

A 8 11111110

B 9 111111110

Specifically, the DC coefficient differences are mapped to difference categories
in accordance with the definition in the JPEG standard shown in Table2.12. Then
this category is checked against another reference table from the JPEG standard,
which assigns Huffman codes to the category codes as shown in Table2.13 for the
luminance and in Table2.14 for the chrominance channels respectively.18 Thus, a
DC difference of −13, would be mapped to the category 4 in the DC coefficients
categories, according to Table2.12, which outputs the Huffman codeword “101”
for luminance (length of 3 bits). In addition, since a category 4 coefficient is being
encoded 4 more bits are assigned, either as the 4 least significant bits of a positive

18These are Tables K.3 and K.4 in the JPEG standard.

2.4 JPEG Compression 157

Table 2.14 Reference table of Huffman codes for chrominance DC coefficients

DC category Code length Huffman codeword

0 2 00

1 2 01

2 2 10

3 3 110

4 4 1110

5 5 11110

6 6 111110

7 7 1111110

8 8 11111110

9 9 111111110

A 10 1111111110

B 11 11111111110

coefficient, or the 4 least significant bits of a negative coefficient minus one (1).19

In this case the coefficient is negative, thus, the most appropriate complement of
the codeword would be “(0011)-1” or “0010”. So the final codeword for the DC
difference −13 would be “1010010”. During decoding, the codeword’s first three
bits “101” represent specifically and beyond any doubt (since the codes are prefix
there is a one-to-one mapping with) the category in which the coefficient should
be searched. Decoding “101” as category 4, guides to use the next four bits for the
final decoding of the coefficient. Specifically, the next four bits “(0010)+1” result in
“0011”, which is the twos-complement representation for the negative number −13.

Encoding of the AC coefficients is somehow more complex. As there is a large
probability that null AC coefficients are to be encoded, their encoding considers
run-lengths of zero coefficients in addition to the category coding applied to the
DC coefficients. The encoding start by identifying the category of the non-zero AC
coefficient using Table2.12. Then the encoding assigns a codeword for the pair of the
number of zero AC coefficients that precede the encoded non-zero coefficient and its
category according to Table2.15 (Tables K.5 and K.6 in the JPEG standard) for the
luminance or Table2.16 for the chrominance channels respectively. If a run-length
of more than 16 zero AC coefficients are encountered, then the run-length reports
a code for each 15 and continues normally for the next coefficients. Applying this
coding method to the AC coefficient sequence,

0, 0, 0, 0, 0, 0, 0, 0, 123

19It should be stressed that the negative values are represented in the twos-complement format.
Twos complement representation requires to flip all bits of the absolute value binary representation
and then add 1.

158 2 Data Coding and Image Compression

Table 2.15 Reference table of Huffman codes for luminance AC coefficients

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

0 0 1010 (=EOB)

0 1 00 8 1 111111000

0 2 01 8 2 111111111000000

0 3 100 8 3 1111111110110110

0 4 1011 8 4 1111111110110111

0 5 11010 8 5 1111111110111000

0 6 1111000 8 6 1111111110111001

0 7 11111000 8 7 1111111110111010

0 8 1111110110 8 8 1111111110111011

0 9 1111111110000010 8 9 1111111110111100

0 A 1111111110000011 8 A 1111111110111101

1 1 1100 9 1 111111001

1 2 11011 9 2 1111111110111110

1 3 11110001 9 3 1111111110111111

1 4 111110110 9 4 1111111111000000

1 5 11111110110 9 5 1111111111000001

1 6 1111111110000100 9 6 1111111111000010

1 7 1111111110000101 9 7 1111111111000011

1 8 1111111110000110 9 8 1111111111000100

1 9 1111111110000111 9 9 1111111111000101

1 A 1111111110001000 9 A 1111111111000110

2 1 11100 A 1 111111010

2 2 11111001 A 2 1111111111000111

2 3 1111110111 A 3 1111111111001000

2 4 111111110100 A 4 1111111111001001

2 5 1111111110001001 A 5 1111111111001010

2 6 1111111110001010 A 6 1111111111001011

2 7 1111111110001011 A 7 1111111111001100

2 8 1111111110001100 A 8 1111111111001101

2 9 1111111110001101 A 9 1111111111001110

2 A 1111111110001110 A A 1111111111001111

3 1 111010 B 1 1111111001

3 2 111110111 B 2 1111111111010000

3 3 111111110101 B 3 1111111111010001

3 4 1111111110001111 B 4 1111111111010010

3 5 1111111110010000 B 5 1111111111010011

3 6 1111111110010001 B 6 1111111111010100

(continued)

2.4 JPEG Compression 159

Table 2.15 (continued)

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

3 7 1111111110010010 B 7 1111111111010101

3 8 1111111110010011 B 8 1111111111010110

3 9 1111111110010100 B 9 1111111111010111

3 A 1111111110010101 B A 1111111111011000

4 1 111011 C 1 1111111010

4 2 1111111000 C 2 1111111111011001

4 3 1111111110010110 C 3 1111111111011010

4 4 1111111110010111 C 4 1111111111011011

4 5 1111111110011000 C 5 1111111111011100

4 6 1111111110011001 C 6 1111111111011101

4 7 1111111110011010 C 7 1111111111011110

4 8 1111111110011011 C 8 1111111111011111

4 9 1111111110011100 C 9 1111111111100000

4 A 1111111110011101 C A 1111111111100001

5 1 1111010 D 1 11111111000

5 2 11111110111 D 2 1111111111100010

5 3 1111111110011110 D 3 1111111111100011

5 4 1111111110011111 D 4 1111111111100100

5 5 1111111110100000 D 5 1111111111100101

5 6 1111111110100001 D 6 1111111111100110

5 7 1111111110100010 D 7 1111111111100111

5 8 1111111110100011 D 8 1111111111101000

5 9 1111111110100100 D 9 1111111111101001

5 A 1111111110100101 D A 1111111111101010

6 1 1111011 E 1 1111111111101011

6 2 111111110110 E 2 1111111111101100

6 3 1111111110100110 E 3 1111111111101101

6 4 1111111110100111 E 4 1111111111101110

6 5 1111111110101000 E 5 1111111111101111

6 6 1111111110101001 E 6 1111111111110000

6 7 1111111110101010 E 7 1111111111110001

6 8 1111111110101011 E 8 1111111111110010

6 9 1111111110101100 E 9 1111111111110011

6 A 1111111110101101 E A 1111111111110100

7 1 11111010 F 1 1111111111110101

7 2 111111110111 F 2 1111111111110110

7 3 1111111110101110 F 3 1111111111110111

(continued)

160 2 Data Coding and Image Compression

Table 2.15 (continued)

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

7 4 1111111110101111 F 4 1111111111111000

7 5 1111111110110000 F 5 1111111111111001

7 6 1111111110110001 F 6 1111111111111010

7 7 1111111110110010 F 7 1111111111111011

7 8 1111111110110011 F 8 1111111111111100

7 9 1111111110110100 F 9 1111111111111101

7 A 1111111110110101 F A 1111111111111110

F 0 11111111001
(=ZRL)

the encoding process packs together the zeros before the 123 into the intermediate
representation,

(8, 7) (123)

The zeros-runs/category code for (8, 7) in the Table of codes for luminance AC
coefficients (Table2.15) is

1111111110111010

whereas the binary code for 123 is 1111011, thus the codeword for thewhole sequence
would be

11111111101110101111011

which amounts to 23 bits for the encoding of 8 zeros and 1 integer.
If in the sequence of coefficients more than 16 consecutive zero coefficients are

found, then the symbol (F, 0) is reported, which represents the maximum amount
of consecutive zeros that can be grouped together into one codeword. Thus, the
sequence

0, 23

would be considered as a grouping and coding of

(15, 0) (15, 0) (3, 5) (23)

and would be encoded as

11111111001 11111111001 1111111110010000 10110

where the spaces are shown only to illustrate the four parts that are being encoded.

2.4 JPEG Compression 161

Table 2.16 Reference table of Huffman codes for chrominance AC coefficients

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

0 0 1010 (=EOB)

0 1 01 8 1 11111001

0 2 100 8 2 1111111110110111

0 3 1010 8 3 1111111110111000

0 4 11000 8 4 1111111110111001

0 5 11001 8 5 1111111110111010

0 6 111000 8 6 1111111110111011

0 7 1111000 8 7 1111111110111100

0 8 111110100 8 8 1111111110111101

0 9 1111110110 8 9 1111111110111110

0 A 111111110100 8 A 1111111110111111

1 1 1011 9 1 111110111

1 2 111001 9 2 1111111111000000

1 3 11110110 9 3 1111111111000001

1 4 111110101 9 4 1111111111000010

1 5 11111110110 9 5 1111111111000011

1 6 111111110101 9 6 1111111111000100

1 7 1111111110001000 9 7 1111111111000101

1 8 1111111110001001 9 8 1111111111000110

1 9 1111111110001010 9 9 1111111111000111

1 A 1111111110001011 9 A 1111111111001000

2 1 11010 A 1 111111000

2 2 11110111 A 2 1111111111001001

2 3 1111110111 A 3 1111111111001010

2 4 111111110110 A 4 1111111111001011

2 5 111111111000010 A 5 1111111111001100

2 6 1111111110001100 A 6 1111111111001101

2 7 1111111110001101 A 7 1111111111001110

2 8 1111111110001110 A 8 1111111111001111

2 9 1111111110001111 A 9 1111111111010000

2 A 1111111110010000 A A 1111111111010001

3 1 11011 B 1 111111001

3 2 11111000 B 2 1111111111010010

3 3 1111111000 B 3 1111111111010011

3 4 111111110111 B 4 1111111111010100

3 5 1111111110010001 B 5 1111111111010101

3 6 1111111110010010 B 6 1111111111010110

3 7 1111111110010011 B 7 1111111111010111

(continued)

162 2 Data Coding and Image Compression

Table 2.16 (continued)

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

3 8 1111111110010100 B 8 1111111111011000

3 9 1111111110010101 B 9 1111111111011001

3 A 1111111110010110 B A 1111111111011010

4 1 111010 C 1 111111010

4 2 111110110 C 2 1111111111011011

4 3 1111111110010111 C 3 1111111111011100

4 4 1111111110011000 C 4 1111111111011101

4 5 1111111110011001 C 5 1111111111011110

4 6 1111111110011010 C 6 1111111111011111

4 7 1111111110011011 C 7 1111111111100000

4 8 1111111110011100 C 8 1111111111100001

4 9 1111111110011101 C 9 1111111111100010

4 A 1111111110011110 C A 1111111111100011

5 1 111011 D 1 11111111001

5 2 1111111001 D 2 1111111111100100

5 3 1111111110011111 D 3 1111111111100101

5 4 1111111110100000 D 4 1111111111100110

5 5 1111111110100001 D 5 1111111111100111

5 6 1111111110100010 D 6 1111111111101000

5 7 1111111110100011 D 7 1111111111101001

5 8 1111111110100100 D 8 1111111111101010

5 9 1111111110100101 D 9 1111111111101011

5 A 1111111110100110 D A 1111111111101100

6 1 1111001 E 1 11111111100000

6 2 11111110111 E 2 1111111111101101

6 3 1111111110100111 E 3 1111111111101110

6 4 1111111110101000 E 4 1111111111101111

6 5 1111111110101001 E 5 1111111111110000

6 6 1111111110101010 E 6 1111111111110001

6 7 1111111110101011 E 7 1111111111110010

6 8 1111111110101100 E 8 1111111111110011

6 9 1111111110101101 E 9 1111111111110100

6 A 1111111110101110 E A 1111111111110101

7 1 1111010 F 1 1111111010

7 2 11111111000 F 2 111111111000011

7 3 1111111110101111 F 3 1111111111110110

7 4 1111111110110000 F 4 1111111111110111

7 5 1111111110110001 F 5 1111111111111000

7 6 1111111110110010 F 6 1111111111111001

(continued)

2.4 JPEG Compression 163

Table 2.16 (continued)

Zero runs Category Huffman codeword Zero runs Category Huffman codeword

7 7 1111111110110011 F 7 1111111111111010

7 8 1111111110110100 F 8 1111111111111011

7 9 1111111110110101 F 9 1111111111111100

7 A 1111111110110110 F A 1111111111111101

F 0 1111111111111110
(=ZRL)

Finally, the symbol (0, 0) (i.e. no zeros and null coefficient) denotes the end of the
sequence and is encoded as “1010” consuming 4 more bits in the final codestream
(constant for each block in the image).

Onemightwonderwhy this coding stage is complicated,while itwould bepossible
to simply apply Huffman coding of the quantized DCT coefficients. The answer is
simple, if one considers the amount of data required to encode the coefficients; DC
differentials are within the interval [−2047, 2047] and AC coefficients in the interval
[−1023, 1023] for 8 bpp images, which corresponds to a requirement of code tables
with 4,095 and 2,047 entries respectively. By adopting the encoding proposed in the
JPEG standard, these tables are reduced to 12 and 160 entries respectively (with two
more for the ZRL and EOB codes), which is a significant amount of complexity
reduction.

Let us consider a full process example using a block selected from image ‘lena’ as
shown in Fig. 2.80. This is a block from a color image so it is expected to have three
channels, that is, three 8×8matrices have to be encoded. First, the pixels of the image
block undergo a color space conversion from RGB to YCbCr . Then the values are
level shifted by subtracting 128. The level shifted values are transformed using DCT
andquantized using the default quantizationmatrix in JPEG.Thequantized transform
coefficients are ordered according to the zig-zag scanning scheme and then each of
them is entropy coded with the specific Huffman coding method in JPEG, using the

Fig. 2.80 Selected image block for JPEG compression experiments

164 2 Data Coding and Image Compression

defaultHuffman tables. The final produced codestreamsCODEY , CODECb , CODECr

are shown with the individual codewords separated for illustration and verification.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

210 216 218 217 220 222 217 217
211 214 215 215 223 219 214 211
213 214 217 220 219 218 206 196
216 217 2188 219 217 206 183 192
221 223 222 218 201 184 187 198
222 223 213 193 176 182 187 196
221 209 179 154 168 184 181 192
211 165 153 154 175 175 173 180

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

157 176 177 174 190 186 187 183
166 177 180 183 187 188 181 167
177 181 188 189 194 185 160 95
181 184 189 193 185 143 81 74
188 192 192 179 133 75 77 76
193 195 175 108 67 61 74 77
200 169 93 53 69 57 70 72
163 74 52 53 59 65 61 65

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

153 172 173 169 181 173 176 169
164 170 169 181 180 168 167 136
176 175 180 176 171 173 135 86
176 176 180 174 163 109 80 84
175 169 173 161 93 79 88 81
174 176 147 81 74 67 80 82
179 147 74 69 82 62 78 77
135 70 64 70 73 68 74 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RGB===⇒
YCbCr

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

164 177 178 176 186 184 183 181
170 177 178 181 185 183 179 168
177 179 184 185 187 182 163 123
180 182 185 187 181 152 112 111
185 187 187 178 144 109 111 113
187 189 173 128 102 100 109 113
191 169 116 89 102 98 105 109
166 103 88 89 98 100 98 102

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

164 177 178 176 186 184 183 181
170 177 178 181 185 183 179 168
177 179 184 185 187 182 163 123
180 182 185 187 181 152 112 111
185 187 187 178 144 109 111 113
187 189 173 128 102 100 109 113
191 169 116 89 102 98 105 109
166 103 88 89 98 100 98 102

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

152 146 146 147 142 145 142 144
148 145 144 142 144 143 143 150
144 143 141 143 141 143 150 173
144 143 141 141 144 158 173 179
143 143 143 146 161 176 176 181
142 142 147 167 175 181 177 180
139 147 167 171 171 183 176 180
151 168 172 171 178 176 176 178

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Level==⇒
shift

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36 49 50 48 58 56 55 53
42 49 50 53 57 55 51 40
49 51 56 57 59 54 35 −5
52 54 57 59 53 24 −16 −17
57 59 59 50 16 −19 −17 −15
59 61 45 0 −26 −28 −19 −15
63 41 −12 −39 −26 −30 −23 −19
38 −25 −40 −39 −30 −28 −30 −26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 −8 −8 −9 −8 −11 −9 −11
−8 −9 −10 −6 −8 −13 −11 −20
−6 −8 −8 −10 −14 −10 −18 −19
−7 −8 −8 −12 −14 −24 −16 −13

−11 −15 −13 −14 −28 −14 −11 −16
−13 −12 −18 −24 −13 −15 −14 −15
−12 −16 −21 −8 −9 −17 −13 −16
−19 −15 −10 −8 −11 −15 −11 −14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24 18 18 19 14 17 14 16
20 17 16 14 16 15 15 22
16 15 13 15 13 15 22 45
16 15 13 13 16 30 45 51
15 15 15 18 33 48 48 53
14 14 19 39 47 53 49 52
11 19 39 43 43 55 48 52
23 40 44 43 50 48 48 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

DCT=======⇒
Quantization

CY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 12 1 1 0 0 0 0
16 −6 −6 −1 −1 0 0 0
−3 −6 3 1 0 0 0 0
1 1 2 −1 0 0 0 0

−1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CCb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CCr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 −4 0 0 0 0 0 0
−4 2 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.4 JPEG Compression 165

Fig. 2.81 Comparison of the original and reconstructed image block

Zig−zag=====⇒
ordering

Czz
Y ={11, 12, 16, −3, −6, 1, 1, −6, −6, 1, −1, 1, 3, −1, 0, 0,−1, 1, 2, 0, 0, 0, 0,−1, −1,

0, 0}
Czz

Cb
={−6, 1, 1, 0,

0, 0}
Czz

Cr
={13, −4,−4, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0}

Huffman coding=========⇒
(JPEG Tables)

CODEY =1011011 10111100 1101010000 0100 100001 001 001 100001 100001

001 000 001 0111 000 111000 001 0110 1110110 000 1010

CODECb =100001 001 001 1010

CODECr =1011101 100011 100011 1101110 111001 001 1010

Apparently, the selected image block, which was a 3-channel 8 × 8 block of 8-bit
pixels amounting 1,536 bits is now compactly represented by only 151 bits; this
corresponds to a compression data rate of 0.786 bpp, or equivalently a compres-
sion ratio of about 10:1. Since the quantization was applied by using the reference
quantization matrices (2.145) the reconstruction of the image by the 151-bits code-
stream is expected to produce only minimal or non-noticeable artifacts. Figure2.81
shows side-by-side the original image block, the reconstructed block (after the JPEG
compression) and the difference of the two.

2.4.1.2 The Decoder

In sequential decoding, all the steps of the encoding are being applied in the reverse
order. Initially, the codestring representing the compressed data undergoes entropy
decoding. The binary sequence is converted into a symbol sequence, and then the
symbols are converted intoDCTcoefficients.Reversing the quantization is performed
by a coefficient-wise multiplication with the quantization matrix,

166 2 Data Coding and Image Compression

J(u, v) = Jq(u, v) × Q(u, v) (2.172)

Inverse-DCT is performed on the quantized DCT coefficients in order to recon-
struct the data from the frequency domain back to the two-dimensional spatial image
domain. Using the definition of the inverse DCT in (2.85),

I(x, y) = 2

N

N−1∑
u=0

N−1∑
v=0

c(u)c(v)J(u, v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N

c(ξ) : c(ξ = 0) =
√
1

2
, c(ξ
= 0) = 1

N = 8

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒

I(x, y) = 1

4

7∑
u=0

7∑
v=0

c(u)c(v)J(u, v)cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

(2.173)

Finally, the decompressed data are level-shifted back to the interval [0, 2b − 1] (i.e.
by adding 128 in the case of 8-bpp images) to reconstruct the original image data.

2.4.1.3 JPEG Compression Efficiency

The most basic estimator of the efficiency of a compression algorithm is the Com-
pression Ratio, Cr , which is typically defined as the ratio of the original data to the
compressed data and is expected to be greater that one,

Cr = Original Data Size

Compressed Data Size
(2.174)

Typically, the compression ratio is reported as a ratio Cr : 1, such as 2 : 1.
As already pointed out, in image compression applications there is an interac-

tive relationship presented as a trade-off between the compression ratio and the
reconstructed image quality. A high compression ratio usually implies a low quality
reconstructed image. Quality and compression may depend on the characteristics of
the original image or the visual content of the scene. An image quality estimator,
proposed byWallace (1991), is the number of bits for a pixel (bpp) in the compressed
image domain, the Compression Rate,

Nb = Number of encoded bits

Number of pixels
(2.175)

Table2.17 presents four different image quality estimates derived by applying the
estimator in (2.175). The results are accompanied by a subjective characterization

2.4 JPEG Compression 167

Table 2.17 Typical image quality related to various bit-rates

Nb [bits/pixel] Image quality

0.25–0.5 Moderate to good

0.5–0.75 Good to very good

0.75–1.0 Excellent

1.5–2.0 Subtle difference from original

to ‘moderate’, ‘good’ or ‘excellent’, to denote what is roughly expected to be the
judgment of an average observer.

Another estimator, which can be used for a variety of compression algorithms, is
the classic RMSE, defined as a typical normalized Euclidean distance between the
original and the compressed image,

RMSE = √
MSE =

√√√√1

n

n∑
i=1

(Ii − Îi)2 (2.176)

where Ii the original pixel values, Îi the compressed image pixel values and n the
total number of pixels in the image.20

Figures2.82 and 2.83 show examples of compression outcomes using the sequen-
tial JPEG encoding algorithm for a graylevel image (8 bpp) and a true color image
(24 bpp). The results show the compressed image size, the compression ratio Cr , the
compression rate Nb and the PSNR estimates, for five different compression qual-
ity factors. In the case of the color image, the quality estimate is based on the one
proposed in (Kang and Leou 2003), in which the quality is assessed in the YUV
color space, and the measurements of each channel (PSNRY , PSNRU , and PSNRV)
are combined by using appropriate weights to create a single measurement value as,

PSNR = 4 · PSNRY + PSNRU + PSNRV

6
dB (2.177)

The examples clearly demonstrate the strength of JPEG in compressing
continuous-tone images, either graylevel or true color. Even for compression ratios
of more than 16:1 the quality of the reconstructed image peaks high above 30 dBs
of PSNR (which is usually used as a ‘psychological’ limit for noticeable artifacts).
The graylevel image reconstructed from the compressed stream using the reference
quality factor (50) presents a ratio of 16:1 and a data rate of 0.49 bpp with a high
37.4 dBs quality. The corresponding color image reports an impressive 42:1 ratio at
0.58 bpp with a 38.1 dBs quality. In both cases the visual appearance of the images
is acceptable for most observers. In the extreme case of using the lowest quality

20It is worth noting that there are cases in which it is possible high RMSE values to correspond to
visually acceptable quality.

168 2 Data Coding and Image Compression

Fig. 2.82 Baseline JPEG coding example for a graylevel image and five compression ratios

2.4 JPEG Compression 169

Fig. 2.83 Baseline JPEG coding example for a true color image and five compression ratios

170 2 Data Coding and Image Compression

factor (imposing the highest quantization), the images appear severely influenced by
the compression but the basic image structure is still preserved and the quantization
practically damages the tones of the images. The compression ratios are impressive
at 70:1 and 163:1 for the graylevel and color image respectively. In addition, in
the extreme case of using the highest quality factor, the outcome is a 2:1 and 4:1
compression for the graylevel and the color image respectively.

2.5 JPEG2000 Compression

JPEG2000 is the new standard (as of 2000) in digital image compression (Taubman
and Marcellin 2002b; Rabbani and Joshi 2002; Rabbani and Cruz 2001; ISO-IEC
2000a; Christopoulos et al. 2002; Skodras et al. 2001; Christopoulos et al. 2000b;
Santa-Cruz and Ebrahimi 2000a, b; Santa-Cruz et al. 2000). It appeared as a solution
to issues in the existing standards, and as a response to the challenges posed by the
new forms of information systems and the modern user requirements. The main axes
on which the development of this new standard initiated were:

• Higher compression efficiency
• Multiple image resolutions within the same compressed file
• Presetting of the final data rate
• Quality scalability, and support for progressive decoding and scaling of the
decoded image quality

• Lossy and lossless compression
• Partial or ‘total’ image compression
• Enhanced noise resilience
• Flexible codestream to support processing in the transform domain
• Robustness against recursive compression
• New type of file format to meet the requirements of modern digital photogra-
phy, transmission among heterogeneous devices, better internal organization, code
embedding, etc.

Even though it might sound paradoxical, the axis that played the least significant role
in the development of JPEG2000was that of the improved compression performance.
Essentially, the motivation for this new compression standard was the addition of
multiple functionalities and flexibility. The model on which this standard developed,
was that of a typical compression system that is basedon transformcoding as typically
depicted in Fig. 2.84.

The data transformation adopted and used in this standard was the wavelet trans-
form (DWT).Quantization is thismethod is based on a conventional dead-zone scalar
quantizer. The entropy coder is based on an implementation of a binary arithmetic
encoder. In overall, the standard is quite open, and supports extensions and alter-
natives in almost all stages of the method, incorporating virtually all the solutions
that were proposed at the stage of development by the researchers of the Working
Groups, as well as other solutions that can meet specific future user needs. One of the

2.5 JPEG2000 Compression 171

Fig. 2.84 The basic structure of the JPEG2000 codec, a the encoder and b the decoder

Fig. 2.85 The basic structure of the JPEG2000 encoder

most celebrated features is the flexible progressive coding, which can be performed
either based on the position in the image, or on the size, or the quality, or the color
component.

2.5.1 The JPEG2000 Encoder

Abasic diagram of the encoder is shown in Fig. 2.85. A comprehensive graphical rep-
resentation of the JPEG2000 encoding operation is shown in Fig. 2.86. Even thought
the encoder usually constitutes an informative part of a compression standard, it is in
this case highly sophisticated; it introduced several new concepts and ideas towards
the optimization of the overall process, in addition to maintaining and supporting a
number of options for alternatives. It is therefore worth studying the encoder pro-
posed in JPEG2000 even for purely educational purposes, in order the grasp the
insight of the researchers that made it possible.

2.5.1.1 Coding Preparation

At the beginning of the encoding process the image data undergo pre-processing. The
pre-processing includes imperative (termed normative in JPEG2000) and optional
(termed informative in JPEG2000) steps, including,

172 2 Data Coding and Image Compression

Fig. 2.86 Graphical representation of the JPEG2000 encoder operation

• Tiling (optional) of the image into non-overlapping regularly organized rectangular
blocks for separate processing. This tiling is especially recommended for hardware
implementations, where memory limitations and parallel processing requirements
are of utmost importance. Figure2.87 shows a random image tiling before the
encoding process.

• Level shifting of the values of the samples (also termed DC level shifting) by sub-
tracting a fixed quantity, themean of the range of the values (2b−1, b = bit − depth)
fromeach sample, to generate a distribution symmetrically distributed around zero,
in order to support the following functions without affecting the coding itself.

• Color transformation (optional) of the image for initial spectral decorrelation,
provided that there are more than one color channels, and all the channels are of
the same color depth (bpp) and dimensions. Figure2.88 illustrates the color trans-
formation from an initial RGB color space to a typical luminance-chrominance
color space (either YUV or YCbCr). The transformations that are indicatively ref-
erenced in the JPEG2000 standard (informative) are the RGB to YUV (reversible
transformation) and the RGB to YCbCr (irreversible transformation), defined as,

⎛
⎝Y

U
V

⎞
⎠ =

⎛
⎝1/4 1/2 1/4

1 −1 0
0 −1 1

⎞
⎠
⎛
⎝R

G
B

⎞
⎠

⎛
⎝Y

Cb

Cr

⎞
⎠ =

⎛
⎝ 0.29900 0.58700 0.11400

−0.16875 −0.33126 0.50000
0.50000 −0.41869 −0.08131

⎞
⎠
⎛
⎝R

G
B

⎞
⎠

(2.178)

2.5 JPEG2000 Compression 173

Fig. 2.87 Tiling of an image
before encoding

2.5.1.2 Image Transform

The wavelet transform (DWT) has been selected to replace the cosine transform
(DCT) in JPEG2000, since it has been proven that it can be beneficial to coding for
a number of reasons including,

• The DWT can be applied to the entire image and not only to distinct image tiles,
and thus the appearance of discontinuities in the tile boundaries can be avoided

• The use of integer arithmetic DWT filters allows both lossy and lossless compres-
sion in the same codestream

• The DWT leads, by default, to multi-resolution representations, thus enabling a
new mode of progressive coding

• The DWT results in representations of the image in various spectral bands and
permits the application of different quantization in each band according to any
selected HVS model

The application of the two-dimensional DWT is implemented as a separable trans-
form (that is, two one-dimensional transforms), as shown in Fig. 2.50. The process
is recursively applied to the LL band of the transform up to a particular desired level
or up to the point in which it is not possible to further decompose the LL band (the

174 2 Data Coding and Image Compression

Fig. 2.88 Representation of
the color space
transformation

LL band consists only of one pixel). The result is a spectral representation of the
original image into various zones as shown in Fig. 2.89.

After extensive study on various wavelet filtering options for use in theJPEG2000,
researchers who participated in its development concluded in the adoption of two
basic analysis-synthesis sets of filters, namely the Le Gall or Integer (5, 3) and the
Daubechies (9, 7) filter banks.21 The numbering in the names of the filter banks
indicates the number of coefficients in the analysis and synthesis filters used in each
pair. A representation of the application of the one-dimensional transform in terms of
a filter bank pair is depicted in Fig. 2.90. By imposing the DWT to be biorthogonal,
h0 is orthogonal to to g1 and h1 is orthogonal to g0. The absolute summations

21In the context of signal processing, a filter bank is a set of band-pass filters, each ofwhich separates
an input signal into one single frequency sub-band of the overall spectrum of the original signal. A
graphic equalizer is usually referenced as one illustrative example of a filter bank, in which various
components of the input signal are being attenuated separately and all components are recombined to
form the modified signal at the output. Apparently this process includes two steps, a decomposition
or an analysis and a reconstruction or a synthesis step.

2.5 JPEG2000 Compression 175

Fig. 2.89 Three-level 2-D DWT

Fig. 2.90 DWT in terms of an analysis (left)—synthesis (right) filter bank

∣∣∣∑
n

h0[n]
∣∣∣, ∣∣∣∑

n

(−1)nh1[n]
∣∣∣

define theDC gain of the low-pass analysis filter and theNyquist gain of the high-pass
analysis filter respectively. The synthesis and analysis filters are related according to

g0[n] = a(−1)nh1[−n]
g1[n] = a(−1)nh0[−n] (2.179)

where

a = 2(∑
n h0[n]) (∑n(−1)nh1[n]) + (∑

n h1[n]) (∑n(−1)nh0[n])

176 2 Data Coding and Image Compression

a normalization factor.
According to this definition, the analysis Le Gall (5, 3) filter bank consists of a

low-pass filter of five (5) coefficients and a high-pass filter of three (3) coefficients,

low − pass filter : h1[n]
h0 =

{
−1

8
,
2

8
,
6

8
,
2

8
,−1

8

}

n = −2,−1, 0, 1, 2

high − pass filter : h1[n]
h1 =

{
−1

2
, 1,−1

2

}

n = −2,−1, 0

(2.180)

Using (2.179) it is possible to compute the synthesis filter bank, as

low − pass filter : g0[n]
g0 =

{
1

2
, 1,

1

2

}

n = −2,−1, 0

high − pass filter : g1[n]
g1 =

{
1

8
,
2

8
,−6

8
,
2

8
,
1

8

}

n = −2,−1, 0, 1, 2

(2.181)

This filter bank uses integer arithmetic, whereas the analysis Daubechies (9, 7)
filter, with a low-pass filter of nine (9) coefficients and a high-pass filter of seven (7)
coefficients,

low − pass filter : g0[n]
g0 = {0.026748757410,−0.016864118442,−0.078223266528,

0.266864118442, 0.602949018236, 0.266864118442,

− 0.078223266528,−0.016864118442, 0.026748757410}
n = −4,−3,−2,−1, 0, 1, 2, 3, 4

high − pass filter : g1[n]
g1 = {0.091271763114,−0.057543526228,−0.591271763114,

1.115087052456,−0.591271763114,−0.057543526228, 0.091271763114}
n = −4,−3,−2,−1, 0, 1, 2

(2.182)
Using (2.179) it is possible to compute the synthesis filter bank, as

2.5 JPEG2000 Compression 177

low − pass filter : g0[n]
g0 = {−0.091271763114,−0.057543526228, 0.591271763114,

1.115087052456, 0.591271763114,−0.057543526228,−0.091271763114}
n = −4,−3,−2,−1, 0, 1, 2

high − pass filter : g1[n]
g1 = {−0.026748757410,−0.016864118442, 0.078223266528,

0.266864118442,−0.602949018236, 0.266864118442,

0.078223266528,−0.016864118442,−0.026748757410}
n = −4,−3,−2,−1, 0, 1, 2, 3, 4

(2.183)
Figures2.91 and 2.92 are graphical representations of the filter coefficients for the

analysis and synthesis stage respectively, for both the filter banks in JPEG2000. It is
noted that the analysis-synthesis filter bank scheme presented so far correspond to
a one-dimensional one decomposition level wavelet transform. In case a multi-level
decomposition is required then the transform is applied recursively on the low-pass
filtered output at the analysis stage as shown in Fig. 2.93, where an N-level 1-D
wavelet transform is presented. The output of the transform is a series of transform
coefficients that includesLN , HN , HN−1, ..., H2, H1. Since the two-dimensionalDWT
can be applied as a separable transform, it is usually applied as a sequence of two one-
dimensional transforms, first applied on the columns of an image and then applied
on the rows of the ‘image’ after the first step.

Fig. 2.91 Analysis stage filter banks (5, 3) and (9, 7) for JPEG2000

178 2 Data Coding and Image Compression

Fig. 2.92 Synthesis stage filter banks (5, 3) and (9, 7) for JPEG2000

Fig. 2.93 Multi-level decomposition in 1-D DWT

Figure2.94 shows a representation of the transform coefficients after the applica-
tions of one, two and three levels of two-dimensional DWT for a MRC image. It can
de clearly seen in this representation that in each of the detail bands (all the bands
except the LL at the upper-left part) the details captured correspond to a particular
‘detail direction’, vertical in the upper-right bands, horizontal in the lower-left bands
and diagonal in the lower-right bands at each decomposition level. As depicted in
Fig. 2.93 the decomposition at each new level is applied on the LL band (the low pass
filtered part from the previous decomposition level). The double ‘L’ letters indicate
the two-dimensional application of the low-pass analysis filter of the filter banks,

2.5 JPEG2000 Compression 179

Fig. 2.94 Transform coefficients after a one/two/three-level 2-D DWT on a MRC image

180 2 Data Coding and Image Compression

column-wise and row-wise. In this example, the Le Gall (5, 3) filter bank has been
used, and the resulting coefficient values have been scaled for a better illustration in
Fig. 2.94.

2.5.1.3 Quantization

In sequential JPEG a uniform scalar quantizer is being used and a de-quantizer maps
the quantized coefficients to the center of the quantization interval. For each of the
DCT coefficients a different quantization step is being used in agreement with the
HVS modeling, through the use of a quantization matrix of the same size as the part
of the image gradually being encoded.

The same general principle applies in JPEG2000 with some variations introduced
to meet the new requirements. One difference lies in the adoption of the central dead-
zone quantizer. It has been shown (Sullivan 1996) that the optimal quantizer—from
a rate-distortion point of view—for a continuous signal with Laplacian probability
density (such as the the one of the transform coefficients) is a scalar quantizer with a
central dead zone. The size of the dead zone as a fraction of the step increases with
the reduction of the variance of the Laplacian distribution. Usually, its value does
not exceed the value of two (2), being preferable to tend to one (1). In JPEG2000 the
dead zone, typically, has two times the quantization step size, as shown in Fig. 2.95,
although the standard supports any modification of the quantizer for each of the
bands of the transform coefficients.

This specific quantizer is used in JPEG2000 because it exhibits efficient embed-
ding features. This means that if a quantization index of Mb bits resulting from a
quantizer with step size
b is transmitted progressively starting with the most sig-
nificant bit, the final index after decoding only Nb bits is identical to that which
would have been produced by a similar quantizer with a step size of
b2Mb−Nb . This
property ensures progressiveness in quality, which, from an optimization point of
view, signifies that the decoder can stop decoding at any time having managed to
reconstruct the same image that would have been produced by a quantization set to
the same endpoint. It also allows the definition, in advance, of the compression data
rate and the level of expected distortion.

Fig. 2.95 Uniform scalar quantizer with central dead zone and step size
b

2.5 JPEG2000 Compression 181

Another significant feature of the JPEG2000 quantizer is that, in the inverse
process, deviations from the middle point of the quantization interval are permit-
ted for non-zero indices, in order to achieve a better adaptation to the skewness
(asymmetry) in the probability distribution of the transform coefficients.

In the encoder, for each spectral band b of the DWT, a different quantization step
size
b is selected by the user, which is then used to quantize all the coefficients in
that band. The selection of the step size may follow the perceptual significance of
the content in that band (in terms of the HVS) (Albanesi and Bertoluzza 1995; Jones
et al. 1995; O’Rourke and Stevenson 1995; Watson et al. 1997), or it may be a basis
for achieving other goals, such as a better compression rate. The quantizer assigns
a quantized value qb(u, v) to a transform coefficient yb(u, v) of band b, as shown
in Fig. 2.95. Although, the quantization in an encoder is informative, it was initially
proposed that a specific relation could be follows for quantization, that is

qb(u, v) = sign[yb(u, v)]
⌊ |yb(u, v)|

b

⌋
(2.184)

b being the band and u, v, the spatial coordinates in the transform domain. The
quantizing step size
b is described by two bytes: a mantissa μb of 11-bits and an
exponent εb of 5-bits, somehow complying with the ISO/IEC/IEEE 60559: 2011 or
the IEEE Standard for Floating-Point Arithmetic (IEEE 754), as

b = 2Rb−εb

(
1 + μb

211

)
(2.185)

where Rb is the number of bits representing the dynamic range of band b. It is noted
that, when reversible encoding with a Le Gall (5, 3) filter-bank is being applied, then
the quantization step size becomes unity (1).

The decoder becomes aware of the value of the quantization step size in twoways:

1. Transmission of the pair (εb, μb) for each band. This is called an expounded
quantization and is similar to the approach being used in the older JPEG.

2. Transmission of the pair (εb, μb) only for the LL band as (ε0, μ0) and calculation
of values for any other band. This is called a derived quantization, and involves
the computation

(εb, μb) = (ε0 − NL + nb, μ0) (2.186)

where NL the total number of DWT decomposition levels, and nb the decompo-
sition level that corresponds to band b.

*The decoder needs not be signaled about the quantization step size in the case
of reversible encoding (or lossless compression) as there is no quantization in this
case (
 = 1).

In the decoder, when lossy encoding with a Daubechies (9, 7) filter-bank is
applied, then a reconstructed coefficient Rqb(u, v) for a quantization step size
b

is estimated as

182 2 Data Coding and Image Compression

Fig. 2.96 Midpoint and
mass center reconstruction in
the quantization intervals,
assuming a two-sided
Laplacian distribution

Rqb(u, v) =

⎧⎪⎨
⎪⎩

[
qb(u, v) + γ

]

b qb(u, v) > 0[

qb(u, v) − γ
]

b qb(u, v) < 0

0 elsewhere

(2.187)

where γ ∈ [0, 1) is a reconstruction parameter selected by the decoder that controls
the position in the quantization interval to report. Typically, when γ = 0.5 then
a midpoint de-quantization occurs. Values for γ < 0.5 introduce a bias towards
zero, which is expected to contribute to an improvement in the final decoded image
quality, in cases in which the probability distribution of the coefficients is Laplacian.
An empirical popular value is γ = 0.375, as this value corresponds roughly to
the position of the centroid (mass center) of the quantization interval as shown in
Fig. 2.96.

When a reversible LeGall (5, 3) filter-bank is being used in the transform, the same
principle in (2.187) applies with
b = 1; when lossless compression is required then
the de-quantization involves virtually no operation, and the reconstructed coefficient
is assigned the same value as the quantized coefficient,

Rqb(u, v) = qb(u, v) (2.188)

Rqb(u, v) being the reconstructed (de-quantized) coefficient.

2.5.1.4 Entropy Coding

The final stage in the coding process is the entropy coding, which includes a novel
bitsteam organization. In this stage the quantized transform coefficients pass through
an entropy encoder to produce the final compression bitstream. In order to meet the
requirements set for this standard, and especially to support codestream embedding
so that progressive transmission and decoding is possible, a specific type of entropy
encoder had to be selected. This is a bitplane encoder, which had already been tested
in several transform coding schemes based on DWT, like in the Embedded image

2.5 JPEG2000 Compression 183

coding using Zerotrees of Wavelet coefficients (EZW) (Shapiro 1993) and Set Parti-
tioning In Hierarchical Trees (SPIHT) (Said and Pearlman 1996). In these codecs the
correlation among the bands is being exploited to improve the compression efficiency,
which, unfortunately hampers the error resilience during data transmission and the
embedding functionality for a flexible progressiveness. To tackle with this issue,
in JPEG2000 each wavelet band is encoded independently. In addition, JPEG2000
employs block coding in the transform domain as in Embedded Block Coding with
Optimized Truncation (EBCOT) (Taubman 2000b). In this coding scheme each band
is divided into small non-overlapping blocks, named codeblocks, which are indepen-
dently encoded. Their dimensions are determined by the encoder and are restricted
to be powers of 2, to have a height greater or equal to 4 and the number of coeffi-
cients in a codeblock not to exceed 4096. This coding scheme introduces a number
of advantages since it enables

• easy random access to an image region
• parallel implementations
• improved segmentation and rotation capabilities
• improved error resilience
• efficient control of compression rate
• flexibility in shaping progressive forms

As will be explained in the following paragraphs, by adopting an efficient data rate
strategy that enables the optimization of the percentage of participation of each
codeblock in the final bitstream, JPEG2000 achieves a better compression efficiency
than other existing standards (Taubman et al. 2002c).

According to the entropy coding stage in JPEG2000, the quantized transform
coefficients are being encoded bitplane-by-bitplane (bit-by-bit) as shown in Fig. 2.97
(Rabbani and Joshi 2002), starting from the Most Significant Bit (MSB). During the
process, each coefficient is considered insignificant as long as its already processed

Fig. 2.97 Transform coefficients are encoded bit by bit starting from the MSB

184 2 Data Coding and Image Compression

bits are zero (for example, in Fig. 2.97 the coefficient is insignificant after the encod-
ing of its first two significant bits). Once the process encounters a non-zero bit, then
the coefficient becomes significant and its sign is encoded. Henceforth, the bits of
this coefficient are called precision bits. Since the coefficients are expected to be
of small values (due to the nature of the DWT to collect most of the energy of the
image in low frequency coefficients), the quantized coefficients to be encoded are
mostly insignificant in the early stages of coding, thereby producing very limited
information about the specific bitplanes.

In JPEG2000 a very effective method is being used to exploit these redundan-
cies, known as adaptive binary arithmetic coding.22 One of the first implementa-
tions of an adaptive binary arithmetic coder was the Q-coder (Pennebaker et al.
1988) developed by IBM. A modified version of the Q-coder, the QM-coder, was
selected for arithmetic coding in both JBIG and JPEG (Pennebaker and Mitchell
1993). Copyright issues, however, prevented its widespread in JPEG-based imple-
mentations. JPEG2000 adopted another modification of the Q-coder, the MQ-coder.
This encoder is used in JBIG2 (ISO-IEC-ITU 2000) and its use was extended to
JPEG2000.

Generally, the probability distribution of each bit symbol of a quantized coefficient
is influenced by its previous coded bits, and the bits of the neighboring coefficients.
The estimation of this probability is being done using contextual information gener-
ated by the current significance status of the coefficient, and the significance of the
eight neighboring coefficients (in a typical 3 × 3 neighborhood), as defined by the
current and previous bitplanes and based on the available, up to that point, encoded
information. In arithmetic coding with contextual information, separate probabili-
ties are being estimated and maintained for each context model, which are being
updated based on a finite state machine, each time a symbol is encoded in the given
context model. The MQ-coder selects among 46 modes for each context model: of
these, modes 0 to 13 correspond to initialization and are used for fast convergence
(fast attack) in robust probability estimation. Modes 14 to 45 correspond to probabil-
ity estimates of the steady state. There is also a complementary non-adaptive mode
(46), which is used for encoding symbols with equal probability distribution, and can
neither enter or leave one of the other states. In practice, each band of coefficients
is divided into codeblocks (typically, of size 64 × 64) and each bitplane of each
codeblock is encoded in three passes (referenced also as coding triplets),

• significance propagation pass, in which the coefficients that are begin encoded
are the ones that have not yet been marked as significant, and there are significant
coefficients in their neighborhood; this is due to their high probability to become
significant

• magnitude refinement pass, in which only significant coefficients are being
encoded, so that their magnitude estimate is refined

22It is reminded that an adaptive binary arithmetic coder accepts the binary symbols of an input
sequence, along with a corresponding probabilistic model, and outputs a codestream with a length
of at most two bits greater than the combined ideal lengths of the code of the input symbols. By
updating the probability estimate of symbols adaptivity is enabled (Pennebaker et al. 1988).

2.5 JPEG2000 Compression 185

Fig. 2.98 Scanning flow in a
codeblock

• cleanup pass, in which all non-processed coefficients of the bitplane are being
encoded, keeping in mind that the first coding pass of the most significant bitplane
is a cleanup phase; in addition, run-length encoding is also being applied at this
phase

The order by which the coefficients are being encoded is shown in Fig. 2.98.
The height of each vertical scan corresponds to four coefficients. At the end of
this process that is called Tier-1 coding, a series of bitstreams for each encoded
image codeblock are being produced, which should be properly arranged to form an
embedded bitstream. This is the work of Tier-2 coding that follows.

The second phase of the final step of entropy coding, the Tier-2 coding consists
virtually of a ‘multiplexing’ of the various bitstreams produced by Tier-1 coding,
implemented through an efficient ordering. The aimof this step is to create a bitstream
that allows easy access and flexible syntax control, guarantee progressiveness and
enable region-of-interest coding. An important construct introduced in this phase is
the layer, which is a collection of consecutive coding scans of all the codeblocks
and coefficient bands. In this scheme, each codeblock contributes with a different
number of coding passes. The organization of layers to achieve progressiveness in
quality can be best shown through a graphic representations, as shown in Fig. 2.99
(Rabbani and Cruz 2001), which includes,

(a) a distribution and ordering of coding triplets by coefficient band and bitplane,
where black squares correspond to the clean-up pass, the gray squares corre-
spond to the significance propagation pass and white squares correspond to the
refinement pass

(b) a selection of coding phases to fully reconstruct quality and resolution, indicated
by a light gray cover over the total amount of data

(c) a selection of coding phases for lower resolution (small image) and maximum
quality, indicated by a light gray cover over the the LL band and all coding passes
and bitplanes

(d) a selection of coding phases for medium resolution and maximum quality, indi-
cated by a light gray cover over the bands of the second decomposition level and
all coding passes and bitplanes

186 2 Data Coding and Image Compression

Fig. 2.99 Representation of various formations of layers by selecting results from Tier-1 coding

(e) a selection of coding phases for maximum resolution (full size) and a preset
objective quality (SNR), indicated by a light gray cover over a selected part of
the coding passes and bitplanes for all bands

(f) a selection of coding phases for maximum resolution and a preset subjective
quality (data related to the HVS), indicated by a light gray cover over a selec-
tion of the coding passes, bitplanes and bands, using more data from higher
decomposition levels

According to this organization, layers are being created using a collection of
consecutive coding passes throughout the coefficient bands. Multiple layers may be

2.5 JPEG2000 Compression 187

Fig. 2.100 An example of
bitstream organization by the
formation of four layers

created, one after another improving the image quality. The total number of layers
may range from 20 = 1 to 216 − 1 = 65535, with a popular selection being 20.
Figure2.100 shows an example of an organization that uses four layers (Rabbani and
Cruz 2001). In practice, the codeblocks belonging to a precinct are encoded together.
Precincts are regions in all the coefficient bands that correspond to the same image-
domain pixel locations, and can be of arbitrarily large size, as long as their dimensions
are powers of 2. By default, precincts are of size 15 × 15, which corresponds to a
division of a resolution level of a component into rectangles of 215 × 215 samples.
Further, as the encoding finalizes the bitstream, packets are being formed, which
represent a specific tile, layer, component, resolution level and precinct. Packets
include a packet head which encodes informative data regarding the localization of
the encoded coefficients, the number of all-zero bitplanes to be skipped, the number of
included coding passes and the corresponding length of the data for each codeblock.

Progressiveness in the final encoded bitstream can be defined in terms of four
parameters, namely

• Image quality (SNR) corresponding to parameter Layer—L
• Image size corresponding to parameter Resolution—R
• Color component corresponding to parameter Component—C
• Position in the image corresponding to parameter Position—P

Definition of the progressiveness during the encoding, which eventually results in
reorganization of the packets, is accomplished by selecting the value of a specific
byte, so as to indicate the priority of these four parameters. The standard supports
five types of progression, namely

• Layer - Resolution - Component - Position (LRCP)
• Resolution - Layer - Component - Position (RLCP)
• Resolution - Position - Component - Layer (RPCL)
• Position - Component - Resolution - Layer (PCRL)
• Component - Position - Resolution - Layer (CPRL)

188 2 Data Coding and Image Compression

These progression priorities are switchable among the different tiles that the image
has potentially been split. This series of parameters is expressed in their execution
from the end to the beginning. For example, in LRCP, first the algorithm runs for
Position, then for Component, Resolution, and finally the Layer. Therefore a priority
in quality (Layer) denotes that all packets with a certain level of quality (or com-
pression rate) will be arranged before the packets corresponding to the next level of
quality.

2.5.2 Enhanced Features in JPEG2000

The JPEG2000 standard, apart from the basic coding structure, supports a series of
optimizations and extensions, like those of the region-of-interest (ROI) coding and
the advanced error resilience, which might be of utmost importance, especially in
image transmission applications, in cases with requirements for fast communication
using a limited bandwidth, or in cases in which corruption by noise occurs in addi-
tion to a transmission typically suffering from congestion and outage. These two
functionalities are being reviewed in the following sections.

2.5.2.1 Region-Of-Interest Coding

Region-Of-Interest (ROI) Coding allows an uneven distribution of image quality and
an arbitrary reorganization of the bitstream according to regions of higher interest.
A ROI is encoded in better quality than the rest of the image, which is consequently
considered to be the background (sometimes denotesBG for simplicity). Two classes
of ROI are defined in JPEG2000, namely static ROI and dynamic ROI.

• Static ROI, which is determined during the phases of encoding; this ROI is prefer-
able in cases of storage, static transmission, remote sensing applications, etc.

• Dynamic ROI, which is defined interactively by a user on a client-server applica-
tion scenario within a progressive transmission process. This ROI is preferable in
telemedicine applications, mobile communications, mobile devices, etc., and can
be implemented through the creation of dynamic coding layers to better approach
the requirements of the user.

In practice, ROI coding is implemented by using a ROI mask, which is a binary
map that determineswhich of theDWTcoefficients contribute to reconstruct theROI.
This mask undergoes a transformation that resembles the dyadic decomposition in
DWT, in order to be transformed to a representation that actually maps the ROI
in the transform domain, in all bands. In the simple case of a rectangular mask,
it is not even required that the mask be an image, since there is an easy way for
its definition. Figure2.101 represents the mask generation process (following the
dyadic decomposition in DWT) in an appropriate form to become a map for the
coefficients in the ROI. Coding of a ROI is accomplished by shifting (Fig. 2.102)

2.5 JPEG2000 Compression 189

Fig. 2.101 ROI mask generation in JPEG2000

Fig. 2.102 Bit shifting for ROI coding: a definition of a ROI, b general scaling, c maxshift mode

only the transform coefficients that correspond to the ROI a number of bitplanes
upwards (left shifting or multiplication by powers of two). As a consequence of this
shifting, ROI coefficients are encoded first. The shifting of the bitplanes can vary for
different ROIs, and the number of bitplanes that were shifted is stored in the header
of the final bitstream to allow a proper decoding of the image. If the ROI coefficients
rise above the MSB bitplane of the background, the method is called the maxshift
mode (Rabbani and Cruz 2001; Christopoulos et al. 2000a), in which neither header
data are required, nor the ROI mask itself, as the ROI is being decoded in its entirety
before the decoding of the background, as the Least Significant Bit (LSB) of the ROI
is higher than the MSB of the background.

2.5.2.2 Resilience to Transmission Noise

In general, typical image applications require the transmission of compressed image
data through communication channels with various characteristics. For instance,
wireless telecommunication networks are prone to random and sudden errors,
whereaswired communications are vulnerable to data loss due to congestion; in addi-
tion, both are prone to outages. To address issues during image transmission, various

190 2 Data Coding and Image Compression

mechanisms for error resilience and data correction have been defined in JPEG2000.
Error resilience may be achieved through various approaches, such as data parti-
tioning and re-synchronization, error detection and concealment, and priority-based
Quality of Service (QoS) transmission. Both the syntax and the native tools for error
resilience are implemented at the entropy coding and packet transmission levels
(Liang and Talluri 1999; Moccagata et al. 2000). Summarizing, the errors that may
occur are

• corruption in the body of a packet, in the form of numerically affected (corrupted)
encoded data for a codeblock, in which incorrect symbols are decoded and thus
the context regions are updated with erroneous data in the subsequent bitplanes,
and as a result significant distortions occur

• corruption in the packet head, in the form of corruption of sensitive data, such as
the packet size, which may lead to a decoding of data that, possibly, do not corre-
spond to the packet, increasing, at the same time, the uncertainty about subsequent
packets, and as a result loss of synchronization occurs

• loss of data, such as packet loss at the network level, which may lead to combined
error effects affecting both the packet body and the packet head

JPEG2000 supports a number of protection mechanisms against those issues,
protecting both the data of the codeblocks and their headers,

• Segmentation symbols: in this mechanism, a special symbol sequence is encoded
at the end of each bitplane. If a wrong symbol sequence is decoded an error has
been detected and at least the latest bitplane is corrupt.

• Regular predictable termination: the arithmetic encoder is terminated at the end of
each coding pass using a special predictable termination. The decoder reproduces
the termination and if it does not detect the same unused bits at the end, an error
is detected in at least the latest coding pass.

• Simultaneous use of both segmentation symbols and regular predictable termina-
tion: guarantees a better response but has an impact in compression performance,
as the number of excess bits needed becomes significant.

• Re-synchronization marker: a special synchronization marker, the Start Of Packet
(SOP), precedes each packet head, with a sequence index. If a SOP marker with
a correct index is not found in the decoder, an error is detected and the decoder
waits for the next unaffected packet in order for the decoding to resume.

• Relocation of packet head symbols: usage of Packed Packet Headers, Main Header
(PPM) or Packed Packet Headers, Tile-Part Header (PPT) markers for the reloca-
tion of all packet head symbols to the main image or the corresponding tile header
and transmission through a channel with lower error rate.

• Use of precincts: the use of precincts in the encoding leads to a reduction of the
spatial coverage of the packets and thereby limits the effect of errors in a particular
location in the image.

Any of these mechanisms or their combinations may be employed in an error
protection strategy designed by a user for the purposes of specific applications. Each
of the mechanisms provides an additional level of protection introducing, though, a

2.5 JPEG2000 Compression 191

cost in compression efficiency of JPEG2000, as additional bits are required to enable
each mechanisms. A user has to carefully study the scope of the application and the
anticipated corruption, and balance the cost of introducing an appropriatemechanism
with the data rate limits.

2.5.3 Brief Evaluation of JPEG2000

A typical example of a progressive decoding of a JPEG2000 compressed image
up to full reconstruction (lossless) at 0.01, 0.025, 0.05, 0.1, 0.25, 2 bpp, is shown
in Fig. 2.103. During this progression, the reconstructed image quality (measured
as PSNR using (2.177)) increases from 27.55 dB up to 49.4 dB. It is apparent that

Fig. 2.103 Quality and data rate during decoding of a progressive-by-quality encoded image (0.01–
2 bpp)

192 2 Data Coding and Image Compression

Fig. 2.104 Progressive image decoding of a maxshift mode ROI encoded image

the reconstruction that corresponds to 0.25 bpp marks the beginning of reconstruc-
tions with non-noticeable distortions, whereas at 2 bpp there is virtually no visible
difference from the original.

In a typical example of ROI coding, Fig. 2.104 depicts the progressive decoding
of an image, which has been encoded with layer (quality) priority and a ROI. The
imagewas encoded using 20 quality layers and a circular ROImask, while the coding
strategy for the ROI was the maxshift mode. As shown in Fig. 2.104c, in which pixels
of the background begin to be reconstructed, the reconstruction of theROI has already
completed. The uniform gray regions in the first two figures correspond to regions
for which there were no available data (yet) for a reconstruction.

In a different example, priority was given to the progressiveness in Position and
color Component, using a tiling into twelve image tiles, as shown in Fig. 2.105. In
this example, the image with the same tiling was used to produce two compressed
bitstreams, one with PCRL and the other with CPRL progressiveness. As shown

2.5 JPEG2000 Compression 193

Fig. 2.105 Random image
tiling into 12 tiles

in Fig. 2.106, the result of a gradual decoding is significantly different for the two
progressive schemes, even when the samples that are considered correspond to the
same compression rate (bpp). Again, the uniform gray regions in the images in
Fig. 2.106 correspond to regions with no available data for reconstruction.

Numerous studies have been conducted to estimate the gain in compression effi-
ciency attained by using the JPEG2000 standard (Skodras et al. 2001; Christopoulos
et al. 2000b; Santa-Cruz and Ebrahimi 2000a, b; Santa-Cruz et al. 2000). Estimates
tend towards a compression rate improvement of about 30% compared to the con-
ventional JPEG for the same objective image quality (Signal to Noise Ration (SNR)),
while it is worth noting that the subjective quality is clearly better than that obtained
by the conventional JPEG, since the distortion caused by the use of the DWT are less
noticeable by human observers since they are of an entirely different nature com-
pared to those caused by the DCT, which acts on small image blocks and introduces
sharp and easily noticeable discontinuities at the block boundaries.

Figure2.107 shows an example comparison between the two standards where the
objective quality is compared for the same compression ratio. The supremacy in the
image quality of JPEG2000 is apparent, although the PSNR estimate reports only a 4

194 2 Data Coding and Image Compression

Fig. 2.106 Progressive decoding of two compressed bitstreams with different progressiveness
priorities

Fig. 2.107 Quality comparison between JPEG and JPEG2000 for the same compression rate

2.5 JPEG2000 Compression 195

Table 2.18 Lossless compression ratios for various compression standards

Image J2K JPEG-LS L-JPEG PNG

Aerial2 1.47 1.51 1.43 1.48

Bike 1.77 1.84 1.61 1.66

Café 1.49 1.57 1.36 1.44

Chart 2.60 2.82 2.00 2.41

Cmpnd1 3.77 6.44 3.23 6.02

Target 3.76 3.66 2.59 8.70

Us 2.63 3.04 2.41 2.94

Average 2.50 2.98 2.09 3.52

dBs difference. The quantization is clearly visible in JPEG, whereas the JPEG2000
image is nearly indistinguishable from the original.

Table2.18 summarizes the lossless compression performance results in an exper-
iment using seven standard graylevel test images with distinct characteristics (shown
in Fig. 2.108). In (Skodras et al. 2001), one of the many works on the presentation
of the JPEG2000 standard, there is an extensive reference to the comparative results
of the compression method in comparison with other known standards.

2.5.4 Progressive Transmission on the Web

This section presents, as an educative example on the functionalities offered by
JPEG2000, the development of a Web application aiming at the progressive trans-
mission of large images stored in multimedia databases.23 The technology employed
is based on the classic client-server architecture and TCP/IP communication through
sockets, in which at the request of a client, the image database server can easily
respond with partial image data deriving from single image files. In this method,
a significant reduction in the size of the data transmitted through the network is
accomplished, since the server transmits only the portion of the encoded image that
corresponds to the image data that are of the client’s interest. In addition, since the
client employs caching mechanisms, there is a possibility of using existing data in
the client (previously transmitted), so that additional network traffic reductions are
possible. This was among the first works towards the development of systems sup-
porting progressive transmission of images using the JPEG2000 standard and Web
browser plug-ins technology (Politou et al. 2004). Although since that work other

23It is noted that this section is provided here purely to illustrate the potential in adopting the
JPEG2000 coding strategy and to highlight an example of successful engineering. The system
that is described was implemented in a pre-HTML5 era, so the need for all those complementing
technologies for client-server communication was imperative. The value of this section is purely
illustrative and educative.

196 2 Data Coding and Image Compression

Fig. 2.108 Graylevel image set used for a comparative lossless compression study

methods and approaches have already been proposed, they either did not rely on a
common interface such as aWeb browsers (Deshpande and Zeng 2001), or they were
not based on a generally accepted communication protocol (Taubman 2002a).

One of the serious technical challenges on the Internet—that is constantly under
study and development—is the limited bandwidth, the limitations on data transmis-
sion speed. The challenge of having a limited bandwidth, in conjunction with large
storage requirementswere, after all, themain reasons for the development of different
compression methods. A typical example of a compression method with wide accep-
tance and dissemination on the Internet is JPEG (Pennebaker andMitchell 1993). As
known, using JPEG (for example, by running the classic cjpeg codec Independent
JPEG Group 2000) with a quality factor of 15 on a typical digital photograph of
say 24 MPixels (6,000× 4,000 pixels), the transmission time may be significantly
reduced fromminutes to some seconds,maintaining a satisfactory digital image qual-
ity (around 30 dB PSNR). The emergence of JPEG2000 with a better compression
efficiency and a set of enhanced functionalities widens the possibilities for higher
quality applications.

2.5 JPEG2000 Compression 197

One typical application of multimedia databases, are the databases in the cultural
heritage domain, in which the content includes all kinds of digital media. Among
those media, one with a significant importance and large volumes is the image. An
image provides information about the shape, texture, color and other details, proper-
ties that often can not be described (at least easily) by simple text. Common problem
in cultural databases is the difficulty in managing and publishing of information that
is stored in large images. Significant work on this subject has been reported by many
research groups, and has been a subject of research and development activities of the
author of this treatise for many years.

Among the various works one particular will be the subject of this section, the
“Ark of Refugee Heirloom” (Politou et al. 2002), which recorded the cultural identity
of a specific part of a community. Content from that database has been used for a pilot
implementation of a large volume image data transmission. The goal was to explore
and propose a new, interactive and economic (in terms of data transmission), way
of accessing multimedia data. The basic idea was to implement a progressive image
transmission method for theWeb, and to ensure an efficient way for data exploration.
After extensive experimentation on various compression methods and the way an
average user navigates in cultural content online, this investigation resulted in the
following scenario for an efficient interactive environment,

• A visitor that enters the home page receives a list of small versions of all (or a part
of) the images in the database, the ‘thumbnails’

• The visitor selects one of the thumbnail images for further study and receives a
medium sized image

• If the visitorwishes to examine the image in full resolution, the image is transmitted
in two steps using quality refinement

• The transmission in all steps is differential, so as to transmit only the additional
information that is required to achieve the requested quality and resolution at a
specific step.

• The connection between the user (client) and the server is controlled by sockets,
while the JPEG2000 decoding and presentation of the images is controlled by a
web browser plug-in

In this scenario, each time the user requests additional information either to increase
the resolution or the quality of an image, the required information is extracted and
transmitted from the same single image file. This implies that the image encoding
should have been done in such a way as to ensure the possibility of extracting various
resolutions from the same file.

In order to proceed further with the description of the implementation, a descrip-
tion of the main pieces that complete the overall puzzle will be defined and put
together. These pieces are the syntax of the JPEG2000 file format, the client-server
technology and the browser plug-ins. The puzzle is a system to provide efficient
progressive transmission under a Web-based image database navigation scenario.

First, the syntax in the JPEG2000 encoded file should be examined. This syntax
defines all the basic properties of the encoded image, such as dimensions, the size
of image tiles, the number and the rates of sampling of the spectral components, as

198 2 Data Coding and Image Compression

Fig. 2.109 Basic file structure of a JPEG2000 encoded image

well as the parameters of quantization and coding, the size of codeblocks and the
transform that is applied. In addition, it includes information about the number of
quality layers, resolutions and progressiveness priority, ROI encoding, as well as
error correction settings. Most parameters can be selected at a tile level (ISO-IEC
2000a; Moccagata et al. 2000). In the simplest case, a file that represents an encoded
JPEG2000 image has a structure that starts with a main header that is followed by a
series of encoded information blocks as graphically shown in Fig. 2.109. The exten-
sion of this file, according to the standard (ISO-IEC 2000a) is jpc (jpeg codestream).
Themain header contains global information necessary for the decoding of thewhole
file. Each image tile in the codestream consists of a header, which contains infor-
mations relating individually to the tile to which they belong. Each group of pack-
ets includes a sequence of encoded data (ISO-IEC 2000a; Moccagata et al. 2000).
A progressive encoding would allow to be able to improve the quality, resolution,
size and colors as more and more data are gradually being decoded from an encoded
file that arrives at the receiver. The type or priority in progression is determined by
the way in which information packets are arranged in the codestream. It is possi-
ble to determine progressiveness both at a global and at a tile-based level, which
is expressed by the way tile-parts are being arranged. Each part has its own header
(ISO-IEC 2000a; Moccagata et al. 2000). As mentioned in the previous paragraphs,
the standard defined five different priorities for progressiveness.

In addition, the client-server technology is based on creating sockets to achieve
communication between two remote computers. A socket operates as a phone. It is
the terminal of a bidirectional communication channel. By connecting two sockets it
is possible to transmit data to processes, even when operating on different computers,
in a manner similar to the speech transmission in phones. In general, a software that
is written to use the Transport Control Protocol (TCP) is developed using the client-
server model, in which when two connected devices use TCP for data exchange,
one of them assumes the role of the client and the other the role of the server. The
application on the client is the onewhich starts what is called an active open. It creates

2.5 JPEG2000 Compression 199

Fig. 2.110 Processes in a socket connection

a socket and tries to connect to a server. At the other end, the server application creates
a socket that ‘listens’, waits, for incoming connections from clients, by performing
what is called a passive open, as shown in Fig. 2.110. When the client initiates
a connection, the server is informed that a process is trying to connect with it. By
accepting the connection, the server completes the creation of a virtual circuit, which
is nothing more than a logical communication path between two programs. It is
important to note that the attempt to create a connection always creates a new socket;
the original socket remains unchanged so that the server remains open to listen for
new connections. When the server does not wish or is not required to await new
connections then it may terminate the original passive socket (Comer and Stevens
2000).

Finally, a plug-in (a complementary software library) is a separate semi-
autonomous part of software that behaves as part of a software, which it complements
with new features and functionalities. In particular, a plug-in for a Web browser is a
library that is activated and only works within a Web browser on the Web. The way
the browser interacts with the plug-in is described by a set of programming tools,
called the plug-in Application Programming Interface (API) (Netscape 1997). With
the plug-in API it is possible to create dynamic plug-ins, which

200 2 Data Coding and Image Compression

• register one or more MIME types
• draw on a particular position on the canvas of the Web browser window
• receive and manage user input (eg. keyboard and mouse)
• receive and send data from/to the Web via URLs
• add hyperlinks or links, in general, to point to URLs

When a user opens a Web page that contains data types which activate a plug-in,
then the Web browser responds by performing a number of predefined actions

• it searches for a registered plug-in that matches the specific requested MIME type
• it loads the dynamic plug-in into memory
• it activates the plug-in
• it creates an instance (copy) of the plug-in in memory
• it removes an instance of the plug-in from memory if not required
• it disables and removes the plug-in from memory when the removal of the last
instance is requested

With the pieces of the puzzle defined, the presentation of the implementation
begins with a server application and any additional tools needed for image prepara-
tion and concludes with a client application. The server application is essentially a
service that runs on a Web server and has access to the images to be transmitted. The
images were previously encoded using lossless JPEG2000, in an appropriate manner
so as to ensure the progressive transmission in accordance with the predefined inter-
active navigation scenario. A special application was developed to properly prepare
the images. On the other side of the connection, the client application is a browser
plug-in, installed on the user’s computer in order to enable processing of the user
interactions and to decode and display the images requested by the user.

To be able to select multiple meaningful segments from a single encoded image
file, a specific way of coding must be adopted. The data of the encoded bitstream
must be arranged in code segments, so that the sequential ‘addition’ of arriving
code parts to produce an increasing resolution (image size) as shown in Fig. 2.111.
The shading in the various parts of this representation denotes the grouping of data
that should be imposed for a progressive by resolution coding. Under the specific
implementation scenario, and after a study on the requirements and practices in online
multimedia databases, specific resolutions of the images were selected in this project
to, somehow, optimize the experience of the users (based mainly on a better use
of the network bandwidth). The final selection of the intermediate resolutions was
based on empirical and experimental data from previous related activities (Cultural
& Educational Technology Institute 2000a; Democritus University of Thrace 2000),

• 64 × 64 pixels for the lowest resolution (thumbnail size)
• 256 × 256 pixels for the ‘medium’ resolution (preview size)
• the full-sized original image

To achieve encoding of images so that they contain these specific resolutions, the
number of levels of wavelet decompositions should be defined in advance. Specif-
ically, to achieve the lowest resolution of 64 × 64 pixels, the number of wavelet
decompositions n is estimated as

2.5 JPEG2000 Compression 201

Fig. 2.111 Representation
of code segments in a
JPEG2000 compression
bitstream: a the final
bitstream and b the
corresponding parts in the
transform domain

nw ≤ log2
w
w′

nh ≤ log2
h
h′

}
⇒ n = �max{nw, nh}� (2.189)

where w and h are the width and height of the original image, w′ and h′ is the required
width and height respectively, nw and nh the number of divisions by two in width and
height for the production of the desired size and � � is the ceiling operator. In this
particular case the value for both w′ and h′ was 64. This way the images are encoded
with n+1 levels of resolutions (there will be n+1 Start Of Tile (SOT) markers in the
code-stream), ensuring that the lower resolution is of 64 × 64 pixels at maximum.
A representation of the structure is shown in Fig. 2.112. Encoding was performed
via the kakadu software (Taubman 2000a), the code of which was incorporated into

Fig. 2.112 Representation of the JPEG2000 bitstream for images with a predefined resolutions

202 2 Data Coding and Image Compression

Fig. 2.113 Flowchart of a server response for progressive differential information transmission

the application created. The corresponding command line to compress the images
according to the scenario adopted is

kdu_compress -rate - Corder=RLCP ORGparts=R ORGgen_plt=yes Clayers=3
Creversible=yes Clevels=n -i input_image -i output_code-stream

After imposing this encoding on the images of the database, the images are ready to
be used by the server to achieve progressive transmission on the Web according to
the application scenario.

As the server should be able to handle multiple and concurrent client connections
and requests, the server application was designed to operate in multithreaded mode.
It was equipped with the ability to send images of any resolution by analyzing the
syntax in the file of each encoded image. At the final stage of each processing cycle,
the application creates the required HTML pages to be delivered to the client. The
way inwhich the server application responds to a client request is shown in Fig. 2.113.
Each time a client requests the lowest resolution of an image, the application sends
the corresponding code-stream parts including the main header. In any other case
(the client has already received one of the resolutions an the image) in which the

2.5 JPEG2000 Compression 203

client requests further image information, then the application sends the differential
information by extracting the appropriate parts of the code-stream without resending
previously sent information. It is in the client’s application responsibility to manage
the differential information for proper reconstruction of the requested image. To
automate the process, the HTML pages in which the images are being presented,
are created at the server side, always one step ahead of the corresponding request
of the connected client. The process of creating low-resolution images on the server
is based on marker operators and syntax control on the code-stream of an image.
Whenever reading data from the main header of the file, the data are copied to a
temporary storage in memory while replacing the values for the markers XRsiz,
YRsiz SIZ (0xFF51) and the wavelet transform marker COD (0xFF52), with new
values for proper decoding of the image corresponding to the requested resolution.
Whenever reading data that correspond to the content of a tile, then they are copied
in a new temporary file. At the end of the process, all temporary data are synthesized
into a single stream and are sent to the client.

The client application is essentially a Web browser plug-in. The plug-in receives
the encoded data from the server and decodes and presents the data to the user within
the Web browser. The syntax of the HTML EMBED tag, with which objects are
embedded to integrate a particular plug-in to an HTML page, is being employed

<EMBED
src="name.jpc"
onclick="(javascript routines)"
type="MIME type"
width="width"
height="height"
host="Server IP"
size="Requested resolution">

where src, onclick, type, width and height are parameters and events that determine
typical properties of EMBED tags, while host and size are parameters of the plug-in,

• the parameter src contains the image file name being requested
• the onclick event is a general HTML event that determines how the Web browser
responds to the use of the mouse buttons within a Web page

• the parameter type specifies the MIME type of the data, determined during
the development of a plug-in and in the specific application it was defined as
application/x-Netscape-jpc24

• the parameters width and height define the dimensions of the display area (within
the Web browser), which the plug-in will span, and must be greater than or equal
to the image to be displayed

24Remember this was an implementation in an early pre-HTML5 era.

204 2 Data Coding and Image Compression

• the host parameter specifies the IP address of the server with which a connection
is being made for receiving data

• the size parameter specifies the desired resolution of the image for display

Once theWeb browser detects the MIME type in the EMBED tag, the corresponding
plug-in is called and control passes to the plug-in. Specifically, when a user opens a
Web browser, all available plug-ins are loaded into memory. The appropriate plug-in
is called whenever theWeb browser faces content that requests its activation. If there
is no otherWeb browser windowswith the selected plug-in activated, then the plug-in
is activated and binds global memory for the management of shared data. Then a
new instance (copy) of the plug-in is created in the part of the memory controlled
by the Web browser, to which the input parameters are eventually transferred. These
parameters are no other than the ones specified in the EMBED tag that triggered the
plug-in. By using these parameters, the Web browser binds an area on the canvas
of the current window with the output of the plug-in. The dimensions of this area
are defined by the parameters width and height. Parameters src, host and size are
used subsequently according to the requests to the server. After the process of the
received data, the client decodes and presents the data in the reserved area of the plug-
in. When the user chooses to close the page (the window), the Web browser removes
the active instance of the plug-in from memory, but does not completely releases the
memory of the global data. This is only done when all Web browser windows with
the active specific plug-in are closed. The entire process is represented graphically
in Fig. 2.114.

According to the adopted case study scenario, the client-server connection starts
with a user verification and continues with the client triggering the server to create
the thumbnail images Web page. The page is sent to the client and control passes to
the client, waiting user input. When the user requests information for an image then
a series of processes is activated, which is shown in Fig. 2.115.

• if the image requested by the user already exists on the client (cache memory of
the client Web browser) then no request is sent to the server and the client simply
decodes and presents the stored data

• if the image requested by the user has lower resolutions in the cachememory of the
client’s Web browser, then the client sends a request to the server for differential
transmission of information and the data obtained are added to those already
existing for the creation of the next higher resolution; at the same time, the main
header, which already exists on the client is updated to reflect the change in the
resolution

• if the image is not on the client at any resolution (it is the first time the user requests
data about this image), the lowest resolution is being received and presented

2.5 JPEG2000 Compression 205

Fig. 2.114 Flowgram of the operation of a plug-in on a Web browser client

The described system has been put to the test by using a real multimedia data-
base of cultural heritage, the one created for The Ark of Refugee Heirloom project
(Cultural & Educational Technology Institute 2000a). A presentation of the results
of this case study are in (Cultural & Educational Technology Institute 2000b) and are
briefly presented here. A first step when a user is visiting the Ark for the first time, is
the user authentication as shown in Fig. 2.116a. At the same time the server prepares
the introductory page to present the list of images in low resolution (thumbnails).
After the user authentication, the prepared page of thumbnails is sent from the server
and displayed to the client as shown in Fig. 2.116b. If the user chooses to request
further information regarding one of the images, the browser plug-in receives the
additional information from the server and decodes and displays the medium reso-
lution, accompanied by a link to the higher resolution as shown in Fig. 2.116c. If the

206 2 Data Coding and Image Compression

Fig. 2.115 Flowgram of the processes at the Web browser plug-in

user requests for even higher resolution, additional information that corresponds to
the maximum resolution and a reduced quality is received and presented, as shown
in Fig. 2.116d, providing, at the same time, a link to the full-resolution. At the final
step, the user may request the full resolution and quality image (original image), as
shown in Fig. 2.116e.

Table2.19 provides comparative compression and transmission results for the
image ‘watch’ (Fig. 2.116), which is a characteristic image from the database of the
Ark in all resolutions.25 Of interest in these results is the one that corresponds to
the transmission of the maximum-resolution-low-quality (at 1 bpp), in which there
is substantial differential data compression and transmission gain, while with the
received image quality the user can have a satisfactory representation of the data. It
is also worth noting that the JPEG2000 compression experiments at 1 bpp throughout
the whole image set of the database resulted in an average quality of decoded image
of about 35 dB PSNR, that backs the claim that it was a good selection for that
progression step.

25Transmission times are reported for a noiseless transmission channel in a guaranteed constant 1
Mbps bandwidth.

2.5 JPEG2000 Compression 207

Fig. 2.116 Screenshots of the step-by-step interaction within the plug-in on the client

It is apparent that the JPEG2000 compression leads to image databases in which
images can be compressed intomultiple resolutions and quality layers within a single
file each. These files consist of embedded data that can be used for the recovery and
reconstruction of images in multiple ways. Some of the relevant features include
progressive presentation in resolution and quality, zooming in a specific area, use of
a dynamic Region Of Interest (ROI) and copyright control and management.

208 2 Data Coding and Image Compression

Table 2.19 Comparative compression and transmission results for four resolutions of the image
‘Watch’
Image size
(pixels)

Uncompressed
data (Kbytes)

Compressed
data
(Kbytes)

Data rate
(bpp)

Transmission
data
(Kbytes)

Data
transmission

Compression
ratio

Transmission
times (s)

Thumbnail
43× 28

3.5 2.27 16.21 2.27 15.57 1.54:1 0.02

Medium
169× 110

54.5 26.59 12.20 24.32 10.71 2.05:1 0.19

Lossy-full
2696× 1756

13,870 578 1.04 553.68 0.96 24.00:1 4.33

Lossless
2696× 1756

13,870 4,152.29 7.48 3,598.61 6.23 3.34:1 28.11

References

Abramson, N. (1963). Information theory and coding. New York: McGraw-Hill.
Albanesi, M., & Bertoluzza, S. (1995). Human vision model and wavelets for high-quality image
compression. In Proceedings of the 5th International Conference in Image Processing and its
Applications (Vol. 410, pp. 311–315).

Bracewell, R. M. (1983). Discrete Hartley transform. Journal of the Optical Society of America,
73(12), 1832–1835.

Christopoulos, C., Ebrahimi, T., & Lee, S. U. (2002). JPEG2000 Special Issue. Elsevier Signal
Processing: Image Communication17.

Christopoulos, C., Askelof, J., & Larsson, M. (2000a). Efficient methods for encoding regions of
interest in the upcoming JPEG2000 still image compression standard. IEEE Signal Processing
Letters, 7(9), 247–249.

Christopoulos, C., Skodras, A., & Ebrahimi, T. (2000b). The JPEG 2000 still image coding system:
An overview. IEEE Transactions on Consumer Electronics, 46(4), 1103–1127.

Comer, D. E., & Stevens, D. L. (2000). Internetworking with TCP/IP: Client-Server programming
and applications. Prentice Hall. ASIN: B00LKKVXQ4.

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd edn). John Wiley &
Sons, ISBN: 978-0-471-24195-9.

Cultural&Educational Technology Institute, Greece. (2000a).Ark of Refugee Heirloom—A cultural
heritage database—Online.

Cultural & Educational Technology Institute, Greece. (2000b).Ark of Refugee Heirloom JPEG2000
prototype.

Democritus University of Thrace, Greece. (2000). Thracian Electronic Thesaurus.
Deshpande, S.,&Zeng,W. (2001). Scalable streaming of JPEG2000 images using hypertext transfer
protocol. In Proceedings of ACM (pp. 72–281).

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2), 194–203.

Fano, R. M. (1949). The transmission of information. Technical report. 65. Research Laboratory of
Electronics at MIT.

Fano, R. M. (1952). Class notes for Transmission of Information, course 6.574. Technical report.
Cambridge, MA: MIT

Fisher, R. A. (1922). On themathematical foundations of theoretical statistics.Philosophical Trans-
actions of the Royal Society, London A, 222, 309–368.

Golomb, S. (1966). Run-length encodings. IEEE Transactions on Information Theory, 12, 399–401.

References 209

Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing (3rd edn). Prentice Hall, ISBN:
978-0201508031.

Gray, R., & Neuhoff, D. (1998). Quantization. IEEE Transactions on Information Theory, 44(6).
Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme.Mathematische Annalen, 69(3),
331–371.

Hartley, R.V. L. (1928). Transmission of information.Bell System Technical Journal, 7(3), 535–563.
Hartley, R. V. L. (1942). A more symmetrical Fourier analysis applied to transmission problems.

Proceeding IRE, 30, 144–150.
Huffman, D. (1952). A method for the construction of minimum redundancy codes. Proceedings

IRE, 40, 1098–1101.
Independent JPEG Group, IJG. (2000). JPEG reference software.
ISO-IEC. (2000a). Information technology— JPEG 2000 image coding system—Part 1: Core coding

system, ISO/IEC International Standard 15444–1. ISO/IEC: Technical report.
ISO-IEC-CCITT. (1993b). JPEG: Information Technology—Digital compression and coding of

continuous-tone still images—requirements and guidelines, ISO/IEC International Standard,
CCITT Recommendation T.81. Technical report. ISO/IEC/CCITT.

ISO-IEC-ITU. (2000). JBIG2, ISO/CEI International Standard 14492 and ITU-T Recommendation
T.88. Technical report. ISO/IEC/ITU.

Jain, K. A. (1988). Fundamentals of digital image processing. New Jersey: Prentice-Hall.
Jones, P., Daly, S., Gaborski, R., & Rabbani, M. (1995). Comparative study of wavelet and DCT
decompositions with equivalent quantization and encoding strategies for medical images. In
Proceedings of SPIE (Vol. 2431, pp. 571–582).

Kang, L.W., & Leou, J. J. (2003). A new error resilient coding scheme for JPEG image transmission
based on data embedding and vector quantization. Proceedings of IEEE International Symposium
on Circuits and Systems—ISCAS2003 (Vol. 2, pp. 532–535).

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical
Statistics, 22, 79–86.

Lehmann, E. L., & Scheffe, H. (1950). Completeness, similar regions and unbiased estimation.
Sankhya, 10, 305–340.

Liang, J., & Talluri, R. (1999). Tools for robust image and video coding in JPEG2000 and MPEG-4
standards. In Proceedings of the SPIE Visual Communications and Image Processing Conference
(Vol. 3653, pp. 40–51).

Linde, Y., Buzo, A., & Gray, R. M. (1980). An algorithm for vector quantizer design. IEEE Trans-
actions on Communications, 28(1), 84–95.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2), 129–137.

McMillan, B. (1956). Two inequalities implied by unique decipherability. IEEE Transaction of
Information Theory, IT-2, 115–116.

Moccagata, I., Sodagar, S., Liang, J., & Chen, H. (2000). Error resilient coding in JPEG2000 and
MPEG-4. IEEE Journal of Selected Areas in Communications (JSAC), 18(6), 899–914.

Netscape. (1997). Plug-in guide.
Ono, F., Kino, S., Yoshida, M., & Kimura, T. (1989). Bi-level image coding with MELCODE—
comparison of block type code and arithmetic type code. InProceedings of IEEE Global Telecom-
munications Conference (GLOBECOM) (pp. 255–260).

O’Rourke, T., & Stevenson, R. (1995). Human visual system based wavelet decomposition for
image compression. Journal of Visual Communication and Image Representation, 6, 109–131.

Pasco, R. C. (1976). Source coding algorithms for fast data compression. Ph.D. thesis, Stanford
University.

Pennebaker, W. B., & Mitchell, J. L. (1993). JPEG still image compression standard. New York:
Springer.

Pennebaker, W. B., Mitchell, J. L., Langdon, G., & Arps, R. B. (1988). An overview of the basic
principles of the Q-coder adaptive binary arithmetic coder. IBM Journal of Research and Devel-
opment, 32(6), 717–726.

210 2 Data Coding and Image Compression

Politou, E., Tsevremes, I., Tsompanopoulos, A., Pavlidis, G., Kazakis, A., & Chamzas, C. (2002).
Ark of refugee heirloom—A cultural heritage database. In EVA 2002: Conference of Electronic
Imaging and the Visual Arts (pp. 25–29).

Politou, E. A., Pavlidis, G. P., & Chamzas, C. (2004). JPEG2000 and the dissemination of cultural
heritage databases over the Internet. IEEE Transactions on Image Processing, 13(3), 293–301.

Pratt,W. (1991).Digital image processing (2nd edn).Wiley-Interscience Publication. ISBN: 0-471-
85766-1.

Rabbani, M., & Cruz, D. Santa. (2001). The JPEG2000 still-image compression standard, tutorial
session. In IEEE International Conference on Image Processing—ICIP 2001.

Rabbani, M., & Jones, P. W. (1991a). Digital image compression techniques (Vol. TT7). SPIE-
Tutorial Texts in Optical Engineering. ISBN: 978-0819406484.

Rabbani, M., & Joshi, R. (2002). An overview of the JPEG2000 still image compression standard.
Signal Processing: Image Communication, 17(1).

Rao,R.M.,&Bopardikar,A. S. (1998).Wavelet transforms: Introduction to theory and applications.
Prentice Hall. ASIN: B01A65JU7W.

Rissanen, J. (1976). Generalized kraft inequality and arithmetic coding of strings. IBM Journal of
Research and Development.

Rissanen, J. J., & Langdon, G. G. (1979). Arithmetic coding. IBM Journal of Resources and Devel-
opment, 23(2), 146–162.

Rubin, F. (1979). Arithmetic stream coding using fixed precision registers. IEEE Transactions on
Information Theory, 25(6), 672–675.

Said, A. (2004). Introduction to arithmetic coding theory and practice. Technical report. Hewlett-
Packard Laboratories Report, HPL-2004-76.

Said, A., & Pearlman, W. A. (1996). A new fast and efficient image codec based on set partitioning
in hierarchical trees. IEEE Transaction on Circuits Systems and Video Technology, 6(3), 243–250.

Santa-Cruz, D., & Ebrahimi, T. (2000a). An analytical study of JPEG 2000 functionalities. In
Proceedings of IEEE International Conference on Image Processing—ICIP 2000.

Santa-Cruz, D., & Ebrahimi, T. (2000b). A study of JPEG 2000 still image coding versus other
standards. In Proceedings of X European Signal Processing Conference (Vol. 2, pp. 673–676).

Santa-Cruz, D., Ebrahimi, T., Askelof, J., Karsson, M., & Christopoulos, C. A. (2000). JPEG2000
still image coding versus other standards. In Proceedings of SPIE, 45th annual meeting, Appli-
cations of Digital Image Processing XXIII (Vol. 4115, pp. 446–454).

Sayood, K. (1996). Introduction to data compression. Morgan Kaufmann. ISBN: 978-1558603462.
Shannon, C. E. (1948). Amathematical theory of communication.Bell Systems Technology Journal,

27(379–423), 623–656.
Shapiro, J. M. (1993). Embedded image coding using zero trees of wavelet coefficients. IEEE

Transactions on Signal Processing, 41(12), 3445–3462.
Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression
standard. IEEE Signal Processing Magazine, 36–58.

Sullivan, G. (1996). Efficient scalar quantization of exponential and Laplacian variables. IEEE
Transactions of Information Theory, 42(5), 1365–1374.

Tanaka, H., & Leon-Garcia, A. (1982). Efficient run-length encodings. IEEE Transactions on Infor-
mation Theory, 28(November), 880–890.

Taubman, D. S. (2000a). Kakadu Software—A comprehensive framework for JPEG2000.
Taubman, D. S. (2000b). High performance scalable image compression with EBCOT. IEEE Trans-

action on Image Processing, 9(7), 1158–1170.
Taubman, D. S. (2002a). Remote browsing of JPEG2000 images. In IEEE International conference

on Image Processing—ICIP2002 (pp. 22–25).
Taubman, D. S., & Marcellin, M. W. (2002b). JPEG2000 image compression fundamentals, stan-

dards and practice. Kluwer Academic Publishers. ASIN: B011DB6NGY.
Taubman, D. S., Ordentlich, E., Weinberger, M. J., & Seroussi, G. (2002c). Embedded block coding
in JPEG2000. Elsevier Signal Processing: Image Communication, 17(1), 49–72.

References 211

Wallace, G. (1991). The JPEG still picture compression standard. Communications of the ACM,
34(4), 30–44.

Watson,A.B.,&Poirson,A. (1986). Separable two-dimensional discreteHartley transform. Journal
of the Optical Society of America A, 3(12), 2001–2004.

Watson,A.B.,Yang,G.Y., Solomon, J.A.,&Villasenor, J. (1997).Visibility ofwavelet quantization
noise. IEEE Transactions on Image Processing, 6(8), 1164–1175.

Witten, I. H., Neal, R. M., & Cleary, K. G. (1987). Arithmetic coding for data compression. Com-
munications of the ACM, 30(6), 520–540.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24, 530–536.

http://www.springer.com/978-981-10-2829-8

	2 Data Coding and Image Compression
	2.1 Introduction
	2.2 Quantification of Information
	2.2.1 Discrete Memoryless Sources
	2.2.2 Extensions of Discrete Memoryless Sources
	2.2.3 Markov Sources
	2.2.4 The Theorem of Lossless Coding

	2.3 Digital Image Compression
	2.3.1 Exploiting Redundancy for Compression
	2.3.2 Structure of a Basic Compression System
	2.3.3 Lossy Coding and Rate-Distortion Theory

	2.4 JPEG Compression
	2.4.1 The Sequential JPEG

	2.5 JPEG2000 Compression
	2.5.1 The JPEG2000 Encoder
	2.5.2 Enhanced Features in JPEG2000
	2.5.3 Brief Evaluation of JPEG2000
	2.5.4 Progressive Transmission on the Web

	References

