Chapter 2

A Hardware Implementation of Evolvable
Embedded System for Combinational
Logic Circuits Using Virtex 6 FPGA

C. Ranjith and S.P. Joy Vasantha Rani

2.1 Introduction

The traditional method of designing digital systems was in the form of schematic or
programming by hardware description languages (HDL). The above two methods
require an in-depth analysis of the system under design. The manual design through
schematic or programming can be sometimes complex and may lead to monotonous
solutions. Another, novel method of circuit design is by evolvable hardware,
wherein the circuits is evolved automatically based on some optimisation algorithm.
The mode of digital design is now getting due importance from the research
community and the industry. Research in this field received a boom with major chip
industries innovating novel tools and chips for the application and testing of
“evolvable” circuits.

Evolvable hardware (EHW) was a term coined by Hugo De Garis in the year
1992 for circuits which could configure its own hardware structure dynamically
depending on the changes in the environment or on design parameters [1]. This
capability of configuring the hardware was achieved by employing efficient search
algorithms, like genetic algorithms (GA) [2, 3]. Evolvable systems for digital
domain are mainly designed using field programmable gate array (FPGA) chips.
FPGA-based EHW can be classified based on the evaluation of the solutions. The
first method is recognized as extrinsic evolution, where the development of circuits
uses a simulation approach of determining the best evaluation; such solutions are
then implemented in the device. The second approach is intrinsic evolution, where

C. Ranjith (<)) - S.P. Joy Vasantha Rani
Electronics Engineering Department, M.L.T. Campus,
Anna University, Chennai, Tamil Nadu, India
e-mail: ranjith.kmct@ gmail.com

S.P. Joy Vasantha Rani
e-mail: joy_mit@annauniv.edu

© Springer Nature Singapore Pte Ltd. 2017 15
V. Nath (ed.), Proceedings of the International Conference on Nano-electronics,

Circuits & Communication Systems, Lecture Notes in Electrical Engineering 403,

DOI 10.1007/978-981-10-2999-8_2

16 C. Ranjith and S.P. Joy Vasantha Rani

encoding -
Chromosomes =, | Chromosome string

0110110001 1010011110011....

I Reconfiguration

Evolutionary
Algorithm
(GA)

e Reconfigurable
T I Hardware
I

: Stimulus

Fitness p———-
Evaluation <

Circuit Response

Fig. 2.1 Basic structure of EHW

each candidate solution is physically tested on the hardware device. The latter offers
better accuracy and operation of self-evolved circuits [4]. The basic concept of the
combination of GAs with FPGA in EHW is with regard that the configuration bit
strings to the FPGA is chromosomes of the GA. The fitness function is designed,
such that the GA can autonomously find the best hardware for the design to be
implemented in the FPGA. Figure 2.1 depicts a simple example of the EHW
concept [5]. In conventional works on EHW, the GA operations were conducted in
computer or workstations, which would make the system robust and slow. In recent
works, the GA operation is performed on the same FPGA chip either by hardware
or by software in a dedicated core.

This paper describes the implementation of the evolvable embedded system
which uses the evolutionary algorithm to dynamically modify some of the system
components or parameters in order to adapt to the changing environment [2]. The
use of a soft processor (MicroBlaze) for computing the optimal search algorithm
(GA) and hardware architecture for evolution are integrated in a single FPGA,
therefore termed evolvable embedded system. An evolvable embedded system
architecture of combinational circuits using the intrinsic mode of evolution is dis-
cussed. The hardware was changed based on the fitness evaluation of the GA. The
evolvable embedded hardware architecture was implemented on Virtex 6
(XC6VLX240T-1FFG1156) ML605 Evaluation Kit. Combinational circuits with 8
inputs and outputs could be evolved in this architecture with GA results displayed
onto a PC. A 2-bit adder and multiplier circuits were evolved as an example using
this architecture.

The paper is organized as follows: Section 2.2 describes the structure of EHW
system, with Sect. 2.3 giving a complete view of the modeled system and its
design. Section 2.4 describes the specifications and implementation process.
Section 2.5 analyses the results, and final conclusion of the paper is discussed in
brief.

2 A Hardware Implementation of Evolvable ... 17

2.2 Structure of Evolvable Embedded System

The architecture of the EHW uses the concept of the virtual reconfigurable archi-
tecture (VRA) [6]. A hardware description of the architecture was layered over the
reconfigurable chip, to implement the evolutionary structure. The GA program was
fused in the MicroBlaze soft processor where the computed fitness measure was
displayed on the PC through a configured UART peripheral. The complete structure
is as shown in Fig. 2.2.

2.2.1 Study of VRA

VRA is modeled in HDL and is taken as a second reconfigurable layer on the
FPGA. The primary advantage of this concept is to provide a simple and efficient
mode of intrinsic evolution [6]. Figure 2.3 shows the VRA structure implemented
for the design of evolvable combinational circuits. An array of HDL-defined,
configurable cells are arranged in rows and columns, where each cell’s input is
connected to the outputs of the two previous columns with the exception of the
first-array column which is connected to the inputs and its invert as shown in
Fig. 2.3. The number of rows and columns selected depends on the complexity of
the problem. Configuration bits from the GA provide the connectivity and logic
based on the 16-bit input combinations to the cell. The outputs are checked for
problem logic (truth table conditions) to determine the fitness criteria. The VRA
approach is widely employed in the implementation of EHW systems as the con-
figuration bit formats of the FPGA are company proprietary. The VRA concept is
similar to the Cartesian genetic programming (CGP) and provides other benefits,
including (1) array of configuration cells directly connected to the hardware of the
GA in the same FPGA, making the communication faster; (2) the VRA is modeled
as an HDL source code which makes it easier to modify and synthesize in other

Virtex 6 FPGA
MicroBlaze
(GA)

L

S

i

VRA UART :
(IP core) 1
1

1

PC

Fig. 2.2 Structure of evolvable embedded system

18 C. Ranjith and S.P. Joy Vasantha Rani

Column Number

0 dine —< dOuts
1 dim — dOuts
L 2 dne — d0ut:
3
E 3 dinn —4 dOuts
3
z 4 dine —< dOuts
3
Q
K 5 dns —< dOuts
6 dins —< dOuts
7 din? —< dout?

Fig. 2.3 An 8 X 5 VRA structure

target platforms; and (3) The VRA architecture modeled can be utilized for similar
set of problem definitions.

2.2.2 Genetic Algorithm Flow

In this paper, we make use of a simple GA to search for the best solution [7]. The
algorithm runs on the principle of population size of individuals (candidate) solu-
tions to the optimization problem. These individuals consist of a string (chromo-
somes) of genes (genotype). The genotype is encoded to produce the configuration
set (phenotype). The operations of GA include selection, reproduction, crossover,
and mutation on the individuals to get a better solution [3]. The initial step is to
prepare a chromosome format for the given problem, the length of which corre-
sponds to the total number of decision variables in the search. Each of these
chromosomes is passed on their fitness probability and the best fit chromosomes are
selected. The best chromosome strings from the pool of populations undergoes
genetic operations like crossover, mutation, and selection. New populations are
generated at each iteration and checked for their fitness to produce new solutions.
The cycle repeats till an optimized and best solution is found. The complete flow
diagram of GA process is shown in Fig. 2.4.

2 A Hardware Implementation of Evolvable ... 19

Generate initial population
of solutions

A4

Check for their fitness

y

Select the best fit chromosome from |
the populations

v

Perform Crossover

A4

Perform Mutation

A4

New population generated
and checked for fitness

\4

No

Best fit solution
Found

l Yes
End

Fig. 2.4 Flow graph of simple GA structure

2.2.3 Reconfigurable FPGA Chip

The evolvable embedded architecture is implemented on a ML605 Evaluation
board with Virtex 6 FPGA. The Virtex-6 family is built on a 40-nm process for high
computational electronic systems. This series of FPGAs have integrated features
that include DSP blocks, PCI-Express controllers, Ethernet MAC blocks, and
high-speed transceivers [8]. The use of Virtex 6 FPGA was mandatory due to
simple and flexible implementation of a 32-bit soft core MicroBlaze processor [9].
This processor computes the GA, therefore faster evaluation time can be achieved.
The main advantage is that the complete EHW process can be implemented on a
single chip, thereby making area efficient and flexible.

20 C. Ranjith and S.P. Joy Vasantha Rani

2.3 Evolvable Embedded System Design

This section gives an overall view of the complete evolvable embedded system
design. The VRA architecture of combinational circuits is modeled and coded by a
hardware description language. The architecture of the VRA is modeled as shown
in Fig. 2.5. The heart of the architecture unit is named as configuration cell, con-
sisting of three 16:1 multiplexers and an 8 X 1 bit RAM. This unit offers logical
function and interconnectivity for the system under design. Three multiplexers are
used to select the inputs to the lookup table (LUT), which are driven from one of
the set of sixteen inputs. The configuration cell is driven by 20 configuration bits
(3 * 4 select lines of MUX + 8 selectable lines to RAM). The configuration cells
are interconnected in ‘m’ rows and ‘n’ columns to form a Cell Array. A simple
interconnection principle is followed where each cell input is connected to the
output of the two columns, except for the first cell array column, which are con-
nected by the inputs and its invert. This interconnection principle simplifies the
cell-to-cell routing. For the design, an 8 X 5 cell array was selected, with a prospect
of evolving simple combinational circuits with a maximum of 8§ inputs and outputs.
Here, a 400 configuration bits (40 cells * 20 configuration bits) were required to
perform the complete logical functions and interconnection between cells. The
configuration bits are provided by the GA taking the fitness function criteria.
A reconfigurable hardware is tested using a hardware setup of simple logical gates
to check the functionality of the design.

The major advantage of performing fitness evaluations in hardware was that
multiple evaluations in parallel could be achieved easily. In this design, we have
combined 8 cell arrays into a single block. The block contains extra circuitry to help
determine the fitness of an individual. Figure 2.6 shows one such cell array with the
additional circuits to perform a fitness evaluation. The RAM is used to store the

Fig. 2.5 Architecture of the Circuit Logic
cell Connectivity Function

16 l\|
dIn S 16:1

|
16:1 | 8x1
& Elﬂ] — dOut
16:1
Mux
+4 +4 4 +.8

20 bit Configuration Register

2 A Hardware Implementation of Evolvable ... 21

Fig. 2.6 Single cell array

with fitness check connections
(showing the outputs for a Cell Array
2-bit adder circuit)

C € ¢ T 2 g9 =2 2
s 5% 38 3 B3 B 3 =
T 2 % 8 8 8 8 8
256 x 8 bit
L L4 L4 -1 L
Mask
Register
L[[[[[os]oz]o]

truth table of the target circuit (in this case, a 2-bit adder/multiplier). The output bits
of the cell array after configuration bit selection are compared with the correct
values of the 8-bit RAM outputs, using XNOR gate (last 3 bits are the truth table
entries of Cout, SO, S1 for a 2-bit adder), and final values are masked by keeping
one input of AND gate to high depending on the number of outputs of the evolved
circuit. Match outputs are obtained (O1, O2, O3) as shown for a 2-bit adder circuit.
Here, O1, 02, O3 symbolizes Cout, SO, S1 of a two-input adder. The same could be
employed for a 2-bit multiplier where 4 outputs are valid, so the last 4 AND gates
input are held high.

The evolutionary system was developed using Xilinx Platform Studio
(XPS) tool. An embedded system with both hardware and software elements was
created in the EDK (Embedded Development Kit) and SDK (Software
Development Kit), respectively; a 32-bit MicroBlaze soft core processor (for per-
forming the GA) with a clock frequency of 50 MHz and an 8-cell array VRA core
structure (for evaluating candidate solutions). The system also includes a configured
serial UART (universal asynchronous receiver/transmitter) to send GA computa-
tions to the PC. The cell array VRA block was imported as an IP core (intellectual
property) and integrated as a peripheral to the Microblaze processor. The IP core
was plugged into the processor bus using the generated macros in situ with an
interface program [9]. The system netlist (ngc files) and bitstream (bit files) are
generated from the EDK. The C program for the GA optimization was hand-coded,
encoding the inputs and outputs of the cell array. The input and output cell array
configuration for a 2-bit adder and 2-bit multiplier is as shown Fig. 2.7a, b. The GA
parameters such as crossover rate, mutation rate, and number of selections are
assigned by trial and error. The evaluation is based upon minimum iterations to
converge to a better fit for the optimization of the circuit. The program calls for

22 C. Ranjith and S.P. Joy Vasantha Rani

Fig. 2.7 Input and output (a) 7 6 3 4 3 2 1 0
cell array configuration a 2-bit inputs [[| | B1 [Bo| A1 | A0 | Cin |
adder, b 2-bit multiplier
ouputs| [| [| [s1]so[Cout
(b) 7 6 5 4 3 2 1 0
inputs | | | | [Bi[Bo A1 Aol
outputs | | | | [P3[p2]p1] pol

additional header files, to hold parameters required to communicate the application
program with the devices to the embedded system. This application program creates
an executable and linkable format file (elf file) for the program to be realized by the
FPGA. This file along with the bit file is integrated to be programmed into the
FPGA (ML605) through a JTAG cable.

2.4 Implementation

The VRA architecture was coded in VHDL and synthesized in Xilinx ISE Design
Suite 14.6. An inbuilt MicroBlaze soft processor having 32 bit, Reduced Instruction
Set Computer (RISC) architecture is utilized for modeling the system [9]. The
MicroBlaze processor with its peripherals for the design include UART (for
communication with PC), 4 seven-segment LEDs, push buttons for inputs and reset
options, realized from XPS 14.6 EDK platform tool. The peripherals are linked to
the processor via the processor local bus (PLB). The synthesized VRA module files
are exported to realize as a user IP core. This IP core is connected to the processor
via the PLB. The generated macros are modified to interconnect the user IP core to
the PLB bus. The complete embedded processor structure with its peripherals
realized as block schematic is presented in Fig. 2.8. The microprocessor hardware
specification file (mhs file) and peripheral analysis order file (pao file) has to be
updated to include the changes accommodated by the addition of new IP core,
along with the creation of black box definition file (bbd file). Once the following
peripherals are connected, new netlist files (system.ngc) and bit files (system.bit) are
generated.

The hardware system created in EDK is exported to SDK tool to develop the GA
program to operate in association with the hardware. A simple GA program with

2 A Hardware Implementation of Evolvable ... 23

Fig. 2.8 MicroBlaze processor with peripheral interconnections (viewed through XPS tool)

optimization for the evolution of circuits is coded in C language. The GA program
is developed with the following subroutines:

(1)

(i)

(iif)

The truth table of the target circuit to be stored in the 256 X 8 bit RAM.
Here, 2-bit adder/multiplier truth tables are initially stored occupying the first
16 locations of the RAM, whereas the rest is default taken to be nil.
Configure the input and output registers of the cell array with the bit placing
as shown in Fig. 2.7a, b. For a 2-bit adder, the first 5 bits of the input register
represent the 2-bit input, and a carry (Cin, AO, A1, BO, B1), whereas the first
3 bits of output register represent the outputs (CO, SO, S1) of the 2-bit adder
circuit. Similar logic holds for a 2-bit multiplier, having of 4 inputs (A0, Al,
BO, and B1) and generating 4 outputs (PO, P1, P2, and P3).

A simple GA program to find a best fit configuration is to be applied to the
cell. The fitness function is the truth table of the 2-bit adder/multiplier circuit.
The fitness function can be calculated as:

fitness = 2/, where i = inputs of the system (2.1)

From the criteria, the fitness of the 2-bit adder circuit is summed to 96 (sum of
the fitness of CO, SO, S1), and that of 2-bit multiplier to be 64. The GA program is
developed and tested for the following parameters:

24 C. Ranjith and S.P. Joy Vasantha Rani

No. of iterations: 500

Population size: 128 with 16 sets of population for each cell array (8 cell arrays in
parallel)

Crossover rate: 55%

Mutation rate: 0.1%

Selection method: Tournament selection.

The GA program communicates with the devices of the embedded system
through the header files provided by the vendor. Two header files, namely xpa-
rameters.h and xgpio.h, holding parameters for the communication are added to the
application program. The .elf file (software) from the SDK and the system.bit file
(hardware) from the EDK are combined to the Virtex 6 FPGA
(XC6VLX240T-1FFG1156). The combinations of these two files integrate to form
download.bit. This bit files are used to program the FPGA through the JTAG cable.

2.5 Results

The results are monitored on a PC connected through the UART peripheral. The
results display the GA program evaluating the fitness calculations for a 2-bit
adder/multiplier circuits. The program is terminated once the fitness is evaluated
and displays the number of generations and configurations for each cell array as
shown in Fig. 2.9a, b for 2-bit adder and multiplier, respectively. From the results,
it can be analyzed that a 2-bit adder was evolved over 88 generations, and 135
generations were required to evolve a 2-bit multiplier. The number of generations
differs with the number of inputs and outputs of the system. The experiments were
repeated for different values of crossover rate, mutation rate, and selection criteria.

Optimized results were obtained for crossover rate = 55%, mutation rate =
0.1%, and tournament selection of 5 individuals at a time. The hardware inter-
connections could be analyzed from the configurations of the individual cells. The
complete floor plan of the evolvable embedded system for the combinational circuit
using the VRA concept is shown in Fig. 2.10 using the PlanAhead tool. From the
figure, it can be seen that around 40% of the implemented chip area were occupied
by the MicroBlaze processor and its peripherals and the rest, by the VRA IP core.
From the total chip area, around 6% of LUTs, 4% IOBs and 3% of registers were
used from the available resources as tabulated in Table 2.1. The timing criteria were
met with an implementation time of 17.063 ns (maximum frequency of
58.606 MHz).

2 A Hardware Implementation of Evolvable ...

(a)

25

File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

g

v -

g8~ cv@~

v~

QA w0 8@EF

& Problems) Tasks | & Console | T Properties © Console & Problem Details | Terminal 1 £

|Gen:
Gen:

Gen:
Gen:
Gen:
Gen:
iGen:
IGen:
Gen:
Gen:
Gen:
Gen:
Gen:
Gen:

73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,

fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:

Found, Gen: 88, fittest:

0 (92),

32 (92), Config:

0 (92),
4 (92),
(92),
(92),
(92),
(92),
(92),
(92),

Config:

Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:

5A180153,

{Serial: (COM3, 9600, 8, 1, Even, None - CONNECTED) - Encoding: (UTF-8)
22 (92), Config: 5A180151, leastFit:
24 (92), Config: 5A180151, leastFit:
16 (92), Config: S5A180151, leastFit:

5A180151, leastFit:

5A180151, leastFit:

leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:

5A180151,
5A180151,
SA180151,
5A180151,
5A180151,
5A180153,
SA180173,
5A182111,
5A180111,

80 (96)

fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:
fittest:

Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
Config:
ig: 1FAD@355,
ig: 1FAS@351,

ig: 1FAD@351, leastFit: 91 (36), average 57

1FA90351,
1FADB351,
1FAF@351,
1FAD@351,
1FAD@351,
1FAD@351,
1FADB351,
1FADB351,
1FADB751,
1FADO351,
1FADB351,
1FAD@351,

leastFit:

leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:
leastFit:

43 (25), average 76
114 (35), average 77
59 (35), average
110 (27), average
78 (35), average
103 (31), average
122 (28), average
122 (40), average
110 (28), average 78
51 (34), average 76
31 (31), average 77
101 (34), average 76
3 (24), average 75
37 (38), average 75
1 (41), average 77
51 (35), average 75

1 (34), average 56

62 (36), average 56
126 (30), average 56
85 (30), average 57
79 (37), average 57
109 (36), average 57
21 (38), average 57
114 (38), average 57
105 (38), average 57
54 (35), average 56
35 (40), average 57
26 (34), average 56
107 (40), average 57
83 (41), average 58

Fig. 2.9 GA fitness evaluation results a 2-bit adder b 2-bit multiplier

26 C. Ranjith and S.P. Joy Vasantha Rani

i nr"

ey |i||||| nn"

Ly e

seluhll ot o

S) l[[" "

lﬂt“ “h...rml :III lll‘

il e U

I o I St RE T & R i, ’I

Fig. 2.10 Complete floor plan of the evolvable embedded system

2.6 Conclusions

The concept of the evolvable embedded systems is introduced through this paper
which could provide automation of complex circuits like filters, fault tolerance
circuits, and adaptive circuits. The complete evolvable hardware process can be
conceptualized in a single FPGA, in which evaluation and evolution are performed
in parallel in the same FPGA. The MicroBlaze soft processor is used for the

2 A Hardware Implementation of Evolvable ... 27

Table 2.1 Total resource utilization of Virtex 6 (XC6VLX240T-1FFG1156) for evolvable
embedded system structure

Description Available Used Utilization (%)
No. of slice registers 301,440 8413 3
No. of slice LUTs 150,720 8496 6
No. of bounded I0Bs 600 22 4
No. of RAMB36El 416 16 4
No. of RAMBI18EL1 832 1
No. of DSP48E1 768 3 1

computation of genetic algorithm and communication link between the PC and
FPGA system. Optimized utilization of FPGA resources was created by selecting
optional peripherals for the CPU. The computation of the GA program in the
processor has speeded up the evaluation process compared to the conventional use
of evaluating through the PC. The evaluation time could still be accelerated up by
programming the FPGA through a Compact Flash card rather than a JTAG cable.
Here, the bitstreams are stored on a Compact Flash and interconnected to the
processor using the SysACE peripheral.

Here, an evolvable embedded system was implemented on Virtex 6
(XC6VLX240T-1FFG1156) ML605 evaluation kit. The GA performed 88 and 135
generations, to evaluate the fitness of the 2-bit adder and multiplier circuits,
respectively. The optimized generations were obtained after a manually varying the
GA parameters. The system evolved through this process give novel or optimized
systems. The advantage of this architecture is that any combinational circuit whose
inputs and outputs not exceeding 8 bits could be evolved from the same architec-
tural model. The GA program can also be programmed to adaptively change the
parameters so as to optimize the number of generations effectively. This could solve
the problem of manually varying the GA parameters for optimization. Memetic
algorithm (MA) is another optimization algorithm which could be employed in the
evolutionary process to obtain faster and better convergence [10]. This optimization
process is still under research, but able optimize circuits with large number of inputs
or circuits which require large search space.

References

1. Lambert C, Kalganova T, Stomeo E (2007) FPGA-based systems for evolvable hardware.
World Acad Sci Eng Technol 1:743-749

2. Sekanina L, Drabek V (2004) Theory and applications of evolvable embedded systems. In:
Proceedings of the 11th IEEE computer-based systems (ECBS’04). IEEE Computer Society
Press, Aug 2004

3. Stomeo E, Kalganova T, Lambert C (2006) A novel genetic algorithm for evolvable hardware.
In: IEEE congress on evolutionary computation, Vancouver, Canada, July 2006, pp 134-141

28

10.

C. Ranjith and S.P. Joy Vasantha Rani

Bartolini DB, Cancare F, Carminati M, Sciuto D (2011) HERA: hardware evolution over
reconfigurable architectures. In: 1st international workshop on computing in heterogeneous,
autonomous ‘N’ goal environments (CHANGE 2011), March 2011, pp 1-6

. Vasicek Z, Sekanina L (2007) An evolvable hardware system in Xilinx Virtex II Pro FPGA.

Int J Innov Comput Appl 1(1):63-73
Wang J, Chen QS, Lee CH (2008) Design and implementation of a virtual reconfigurable

architecture for different applications of intrinsic evolvable hardware. IET Comput Digital
Tech 2(5):386-400

. Torreson J (2004) An evolvable hardware tutorial. In: Field programmable logic and

applications. Lecture notes in computer science, vol 3203, pp 821-830

Xilinx (2012) ML605 hardware User Guide, Application UG534, Oct 2012

Jesman R, Vallina FM, Saniie J (2006) MicroBlaze tutorial creating a simple embedded
system and adding custom peripherals using Xilinx EDK software tools. Embedded
Computing and Signal Processing Laboratory, Illinois Institute of Technology

Mo H, Meng L (2013) Research on evolution hardware design based on memetic algorithm.
In: IEEE workshop on memetic computing, April 2013, pp 32-36

2 Springer
http://www.springer.com/978-981-10-2998-1

Proceedings of the International Conference on
Mano-electronics, Circuits & Communication Systems
Math, V. (Ed.)

2017, XV, 415 p. 251 illus., 166 illus. in color.,
Hardcowver

ISEM: 978-981-10-2998-1

	2 A Hardware Implementation of Evolvable Embedded System for Combinational Logic Circuits Using Virtex 6 FPGA
	2.1 Introduction
	2.2 Structure of Evolvable Embedded System
	2.2.1 Study of VRA
	2.2.2 Genetic Algorithm Flow
	2.2.3 Reconfigurable FPGA Chip

	2.3 Evolvable Embedded System Design
	2.4 Implementation
	2.5 Results
	2.6 Conclusions
	References

