
Chapter 2
Discrete-Continuous Model of Crystal
Plasticity

2.1 Introduction of Simulation Method

With the development of micro and nanotechnology, increasing interest has been
placed on investigating the mechanical behavior of submicron materials. As
described in Sect. 1.1, numbers of new phenomena in plastic deformation have
been observed at small scales, such as size effect [1], strain burst [2, 3] etc.
However, the experimental studies alone cannot give full understanding of the
underlying mechanism. In recent years, crystal plastic simulation method based on
discrete dislocation has gradually become a key tool to supplement experimental
testing, and is widely used to explore mechanism that are currently hard to be
observed experimentally [4–9].

2.1.1 Discrete Dislocation Dynamics (DDD)

In the three dimensional discrete dislocation dynamics (3D-DDD) simulation
method used in this paper, an arbitrary curve dislocation is discrete into several
straight dislocation segments [10–14]. As shown in Fig. 2.1, each dislocation
segment, which can be of a screw, edge or mixed character, is presented by two
connected nodes.

2.1.1.1 Dislocation Kinetic Equation

For an arbitrary dislocation segment i, its kinetic equation obeys the following
relationship,

Md _vi þBvi ¼ f i ð2:1Þ
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where Md and B are the corresponding effective mass matrix and the drag coeffi-
cient matrix, respectively. vi and f i are the nodal velocity vector and nodal force
vector, respectively. At room temperature, the dislocation motion is assumed to be
in the over-damped regime [15], namely, dislocation velocity can rapidly reach the
stable value. Therefore, during the simulation, the first inertia term on the left side
of Eq. (2.1) is ignored. Assuming that dislocation mobility is isotropic, B is
expressed as B ¼ R

l B0NTNdl. Here, N is shape function, B0 is static drag coeffi-
cient matrix. f i ¼

R
l N

Tfdl, where f is the external force vector acting per unit
length dislocation line, which is calculated as follows,

f ¼ ri � bið Þ � ni þ fself þ f image ð2:2Þ

The first term on the right side represents the Peach–Koehler force, where ri is
the stress field caused by other dislocations and external boundary conditions; bi is
the Burgers vector of segment i; and ni is the unit vector describing its direction.
The second term, fself , is the line tension, which is computed by the negative
derivative of the segment total energy with respect to its position. The third term,
f image, is the image force induced by free surface.

Regarding traditional DDD simulations, periodic boundary condition is usually
applied, without considering image force. For submicron crystal, the image force
induced by free surface plays a very important role in influencing the behavior and
evolution of dislocations. The solution by Hirth and Lothe [16] describes the image
force induced by dislocation segments with unit length, which is parallel to the free
surface,

dF ¼ 1
k

EðbÞ tan aþ @EðbÞ
@a

� �
dl; EðbÞ ¼ lb2ð1� m cos 2bÞ

4pð1� mÞ ð2:3Þ

where l is shear modulus, m is Poisson ratio, the energy term EðbÞ is obtained for
isotropic elastic body. Figure 2.2 schematically describes the definitions of angle a
and b, as well as the distance k. Here, the dashed line arrow describes the burgers
vector direction. When the dislocation line is very close to the free surface, the image
force described by Eq. (2.3) is singular. Liu and Schwarz found that the image force
reached an approximate value before becoming divergent [17]. Therefore, the image
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force at point P in Fig. 2.2 can be taken as the averaged value in this approximation
region, which is roughly taken as the value at the closed point P′, to eliminate the
singularity.

2.1.1.2 Dislocation Reaction and Topology Update

During each step of DDD, apart from calculating dislocation velocity, the topology
also requires to be updated to deal with the short range interactions between dis-
locations. Generally, some criterions [18] and operators [19] must be given. As
shown in Fig. 2.3, these dislocation reactions are achieved through the merge and
split operators of the dislocation segment and nodes. According to the relation of the
burgers vectors and slip planes of the reaction dislocation segments, the dislocation
reactions that can be captured by DDD are mainly classified as follows [20],

(1) Mutual annihilation: Two dislocations of opposite burgers vector direction in
the same slip plane;

(2) Collinear annihilation: The burgers vector directions of the two dislocations are
collinear. Each dislocation is in the cross-slip plane of the other dislocation;
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Fig. 2.3 Four main merge and split operators for dislocation segments and nodes
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(3) Hirth lock: Two dislocations of perpendicular burgers vector direction in the
intersection slip plane;

(4) Glissile junction: The sum of the burgers vectors of two dislocations is parallel
to one slip plane. Their slip planes are intersecting;

(5) Lomer lock: The sum of the burgers vectors of two dislocations is not parallel
to either slip plane. Their slip planes are intersecting.

In addition, when dislocations glide out of the crystal, the surface annihilation
should also be considered as shown in Fig. 2.4.

2.1.1.3 Dislocation Cross Slip

Cross slip has attracted much attention in face-centered cubic crystal (FCC) with
medium to high stacking fault energy [21–25]. In a complex dislocation network,
cross-slip events can be frequently induced by local heterogeneous stress state [22].
Cross slip significantly affects spatial-temporal developments in dislocation
microstructure under both quasi-static and shocking loads [24]. High cross slip
activity is inclined to make the substructure morphology appear cellular instead of
planar [24], and promote dislocation self-organization instead of rather uniform
dislocation distributions [21]. Therefore, it is important to introduce a reasonable
cross slip model in DDD simulations.

Numerous models have been built to describe the physical process of cross slip
[26]. Generally, screw dislocation will dissociate into a pair of partial dislocations
separated by a lattice stacking fault. For most densely packed planes, such as
(111) for FCC, dislocation core prefers to extend. The occurrence of cross slip
requires the stacking fault ribbon to be compressed to a critical length, either by
applied stress or by thermal fluctuations. Then, the dislocations may bow out in the
cross slip plane or re-dissociate if the cross-slip plane is a close-packed one [27].
From a simulation point of view, the process of cross slip usually can only be
modeled phenomenologically since dislocation core property is involved [28].

In this work, three conditions must be met for the occurrence of cross slip [27]:
(i) The resolved shear stress in cross-slip plane should be larger than that in initial
glide plane, because cross slip will take energy and hardly happen unless screw
dislocations have low mobility in the habit slip plane; (ii) The concerned screw
segments should be larger than a restricted length set as 0.1 lm. This corresponds

outside

After surface annihilation

inside

outside

inside

Before surface annihilationFig. 2.4 Four possible
geometries and the
corresponding topology
update schemes when
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to the condition for stacking fault ribbon constriction [28]; (iii) The probability of a
cross slip event in each discrete time step is determined by Monte-Carlo method
given below [29],

P ¼ b
L
L0

dt
dt0

exp V � s� sIII
kT

� �
ð2:4Þ

where V is the activation volume, sIII is the resolved shear stress at the onset of
stage III during a tension test, k is the Boltzmann constant, L0 and dt0 represent
length and time, respectively. For aluminum (Al) [30], V = 300b3, b is the burgers
vector magnitude, sIII = 5 MPa, L0 = 1 lm, dt0 = 1 s. The probability P is set to
one at room temperature by adjusting normalizing coefficient b, when screw dis-
location with length L = L0 is subjected to a resolved shear stress s = sIII. Cross slip
occurs only when the calculated P is larger than a randomly generated number
N between 0 and 1. Actually, if s is much larger than sIII, the probability function
will become inoperative, implying that cross slip is thermally activated.

2.1.2 Coupling DDD with Finite Element Method

Even though DDD simulations can offer significant insights for the microstructure
evolution during deformation, DDD modeling alone cannot consider the finite
deformation of the computational cell. In addition, it is difficult to deal with
complex boundary conditions and surface effect, since it is based on the theoretical
solution of stress field for a dislocation in an infinite crystal [11]. To overcome
these problems, DDD is usually coupled with finite element methods (FEM) [12,
31–33] or boundary element methods [34, 35], respectively. These coupling pro-
cedures can be mainly divided into two categories: one is superposition method
(SPM), and the other is so called discrete-continuous model (DCM). In the fol-
lowing, only the streamlined presentations of the framework for these two methods
are described for completeness. Details of the methods are described elsewhere [11,
12, 31–33, 35–38].

2.1.2.1 Superposition Method (SPM)

SPM is first proposed by Van der Giessen and Needleman [32]. As schematically
shown in Fig. 2.5a, the total stress field r in a finite crystal medium is the sum of
analytical stress field of dislocations in an infinite media r∞ and a complementary
elastic solution r

_,

r ¼ r1 þ r_ ð2:5Þ
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r∞ is generally obtained by analytical solution, which will induce surface traction
on the sample,

~T ¼ r1 � ns ð2:6Þ

Here, ns is the normal direction of surface. Complementary stress field is used to
cancel this surface traction and consider the real boundary condition.

The short range interaction can be relatively well captured by SPM [37].
However, the analytical stress fields of all dislocations must be recalculated at each
time step, which requires extensive computing time. Besides, it is relative com-
plicated to deal with anisotropic media [39] and biomaterial [40]. More importantly,
the concept of ‘plastic strain’ is not explicitly introduced.

2.1.2.2 Discrete-Continuous Model (DCM)

DCM is based on the concept of ‘eigenstrain’ in micromechanics, which can
directly calculate the plastic strain and solve the boundary value problem under a
unified framework [36, 38]. In previous work [11, 12], it mainly contains the

(a)

(b)

Fig. 2.5 a Schematic diagram of SPM [32]; b schematic of variable-transferring procedures in
improved DCM. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier
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following three information-transfer procedures as shown in Fig. 2.5b:
(i) Calculating the plastic strain ep induced by the glide of dislocations using DDD
simulation. Then, the plastic strain is localized to the continuum material point,
which is crucial in the whole calculation procedure. This replaces the conventional
phenomenological constitutive law to calculate the total stress,

re
r

¼ Ce : _e� _epð Þ ð2:7Þ

where re
r
is the Jaumann rate of Cauchy stress r,Ce is the tensor of elastic modulus, _e

is the total strain rate tensor. (ii) The equilibrium stress field associated with the
homogenized plastic strain is calculated by FEM under a specific boundary condi-
tion in a unified continuummechanics framework. It is expressed as follows [11, 12],

M€uþ f int ¼ fext ð2:8Þ

M ¼
Z

X

qNTNdX

f int ¼
Z

X

BT
e rdX

fext ¼
Z

C

BT
eT

0dCþ
Z

X

BT
e r

0dX

ð2:9Þ

u ¼ u0 C 2 Cu

T ¼ T0 C 2 Cf ; T ¼ 0 C 62 Cu [Cfð Þ ð2:10Þ

where M is mass matrix, N is shape function, Be ¼ grad N½ �, f int is an internal force
and fext is an external force resulting from the applied traction T0 and initial stress
field r0, which is introduced to represent the preexisting stationary dislocations.
Then, the stress field r calculated by FEM is transferred to DDD and serves as the
applied stress to drive dislocation motion; (iii) The displacement field u of FEM cell
is transferred into DDD cell to update the geometry configuration. In DCM, the time
increment DtDDD in DDD model is set to be a very small value (10−10–10−12 s),
which can be equal to or smaller than that in the FEM model.

Even though both DCM and SPM have been largely investigated in recent years
[31, 36, 37, 40], there are still some important problems that are not well clarified
yet, especially for DCM. The present work will mainly focus on DCM with respect
to the following critical issues. The key to DCM is the ‘regularization method’ used
to localize the discrete plastic strains to continuum material points. Different
researchers have proposed various regularization methods [12, 36–38]. However, a
quantitative comparison among them and how to select the slip system dependent
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adjustment parameters are still not clear. The second key issue is the calculation of
the so called ‘image force’. At small scales, the image force caused by free surface
attracts the dislocations toward the surface and thus promotes dislocation starvation
[42], trigger cross slip of surface dislocation [4] etc. In order to investigate sub-
micron plasticity, special attention must be paid to the dislocation image force
calculation. Generally, SPM is supposed to effectively capture the short-range
interaction and image force effect. Thus, SPM and DCM are sometimes used
together in the multiscale model with the aim of taking full advantage of both
methods [11, 38]. However, whether will this kind of treatment double-count the
contribution of the image force? How accuracy can DCM alone capture the effect of
free surface? There are still no efforts in these aspects reported in the literatures till
now even though these studies can provide useful guidelines for effectively cor-
recting the image force calculation in DCM. The third key issue is the reproduction
of deformed configuration in DCM, especially for the analysis of failure process. In
the micropillar compression experiments, the deformation is usually observed to be
localized in a few slip bands [43, 44] (see Fig. 2.6). This leads to significant
variations in surface configuration, and further influences their stress distribution
and failure process. For example, small variation in a surface configuration can lead
to stress concentration sufficient to promote crack initiation. Deshpande et al. [45]
proposed the finite deformation discrete dislocation plasticity calculation frame-
work based on 2D-DDD. El-Awady et al. [35] coupled DDD and boundary element
method to investigate the deformed shape of micropillar induced by the operation of
Frank-Read sources. Zbib et al.’s simulation work also reproduced the character of
deformation bands and the formation of ledges on the surface [38, 46]. Gao et al.
[11] captured the buckling configuration when the micropillar is subjected to uni-
axial compression without friction between the pillar and the indenter. However,
the algorithmic details to capture deformed configuration have not been given, and
very few attempts have been made to quantitatively study how DCM performs on

Fig. 2.6 Scanning electron
microscope image showing
the surface morphology of
micropillar with diameter
1 lm after compression [44]
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reproducing the deformed configuration. Moreover, little efforts have been made to
directly consider the lattice rotation in 3D-DDD model, which limits DCM model to
tackle truly finite-strain problems. The next section is aimed at addressing these
issues through several typical numerical tests.

2.2 Improved Discrete-Continuous Model

2.2.1 Efficient Regularization Method

In this section, different regularization methods proposed by previous researchers
are briefly reviewed. A new regularization method is proposed to combine the
advantages of previous regularization methods. In order to validate all these
methods, the calculated stress field of one prismatic dislocation loop is compared
with analytical solution.

As shown in Fig. 2.7, supposing a dislocation segment AB slips to A′B′ without
rotating during a time increment, the swept area is SAB. According to Orowan’s law,
the total plastic shear increment Dc can be explicitly expressed as a function of the
area swept by dislocation motion,

Dc ¼ bSAB
V

ð2:11Þ

where b is a magnitude of Burgers vector, V is representative volume. This plastic
strain increment will be localized to the material points (or integration points) of
FEM element around the swept area by some regularization methods.

At the center of swept surface, a local coordinate system can be established as
shown in Fig. 2.7, where n is the normal direction of slip plane, g is the glide
direction, and n is the dislocation line direction. From a view along n direction, the
different regularization methods are schematically presented in Fig. 2.8. Actually,
the main differences between different regularization methods reside in the choice
of representative volume V in Eq. (2.11) and the way of distributing total plastic
shear increment Dc to the multiple integration points.
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Fig. 2.7 Dislocation segment
AB glides to A′B′, generating
swept surface SAB, a local
coordinate system is built at
the center of SAB
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2.2.1.1 Review of Different Regularization Methods

Most previous studies take V in Eq. (2.11) as the elementary volume Vint associated
with each integration point in the FEM element [12, 36]. In this case, the total
plastic shear increment Dc is expressed as Dcint ¼ bSAB=V int.

The first typical regularization method is proposed by Lemarchand et al. [36].
Based on the Volterra-like procedure, as discussed by Mura [47], the elementary
slip events in the glide plane is extended over a slab of finite thickness h (see
Fig. 2.8a). Physically speaking, in this method, dislocation AB and A′B′ are con-
sidered as plate-like inclusion with cross section area equal to the swept area SAB
and thickness equal to h. The total plastic shear increment Dcint is then localized to

each integration point according to the intersection volume DV ðiÞ
s between the

sheared slab and elementary volume Vint,

DcðiÞ ¼ DV ðiÞ
s =h
SAB

� Dcint ð2:12Þ

Hereafter, the superscript “(i)” means the variables associated with the ith

integration point. DV ðiÞ
s =h can be considered as an effective area corresponding to

the ith integration point.
Recently, Vattré et al. [37] presented the algorithmic details of the regularization

procedure, and make some improvement with respect to Lemarchand et al.’s work.
In their work, the elementary slip event is also considered as plate-like inclusion
surrounding its swept surface, but the inclusion is further thought of as the union of
overlapping elementary spheres with diameter h. They takes V in Eq. (2.11) as the
volume of the representative sphere V sphere, and the total plastic shear increment
Dc is expressed as Dcsphere ¼ bSAB=V sphere. Each sphere centers within the swept
surface and corresponds to a homogeneously distributed plastic shear increment.

Fig. 2.8 Plastic strain induced by dislocation glide is localized in the shaded elements with
different methods, a used by Lemarchand et al. [36], b used by Vattré et al. [37], and c used by Liu
et al. [12]. The red points in (b) and (c) represent the integration points, and linear element is used
for clarity of presentation. Reprinted from Ref. [41], Copyright 2015, with permission from
Elsevier
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Once an integration point is located within one or more elementary sphere, its
plastic shear increment is non-zero. This procedure can be equivalent to the fol-
lowing process. Considering a sphere with center at the ith integration point and
diameter equal to h as shown in Fig. 2.8b, the plastic shear increment at each
integration point is calculated according to the intersection area between this sphere

and the swept surface SðiÞsphere,

DcðiÞ ¼ SðiÞsphere
SAB

Dcsphere ð2:13Þ

The form of Eq. (2.13) seems similar to Eq. (2.12). However, in Eq. (2.12), the
parameter h is introduced during the localization process, while in Eq. (2.13), h is
used to calculate the representative volume. The use of spherical shape makes it
convenient to treat the problems with internal interfaces [37]. However, the sum of
the localized plastic strain increment

P
i Dc

ðiÞ for all the elements participating
regularization is not as straightforward as other methods, because some swept area
may be included in two or more elementary spheres.

Different from the regularization methods above, Liu et al. [12] localized the
total plastic shear increment Dcint according to a weight function wðiÞ,

DcðiÞ ¼ wðiÞ

Pn
i¼1

wðiÞ
Dcint ð2:14Þ

where n is the total number of integration points whose weight function is non-zero.
The weight function is expressed as a function of isotropic Burgers vector density
function xðrÞ, based on the non-singular continuum theory of dislocations devel-
oped by Cai et al. [48],

wðiÞ ¼
Z

Vi

xðxÞdV ; xðrÞ ¼ 1
p

a
r2 þ a2

ð2:15Þ

where Vi is the volume occupied by the ith integration point, a is a spreading radius,
r is the distance between an integration point and the center of swept surface as
shown in Fig. 2.8c. Three cutoff distances h1, h2, h3 are introduced along three axis
directions at the local coordinate system. Only if the ith integration point is within
these cutoff distances, its weight function is calculated by Eq. (2.15). Obviously, it
is efficient to numerically calculate the weight function. However, this method is
valid based on the assumption that dislocation AB and A′B′ can be regarded as a
‘dislocation pole’. Thus, at each time increment, the slip distance of each dislo-
cation segment dslip should be much smaller compared with its length.
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2.2.1.2 Novel Regularization Method

To combine the advantages of previous regularization methods, a novel regular-
ization method is proposed as schematically shown in Fig. 2.9. Inspired by
Lemarchand et al.’s method [36], the regularization region is also considered as a
slab with thickness equal to h, but the plastic strain is not localized according to the
intersection volume. Similar to Liu et al.’s method, if the centroid of ith elementary
volume is within the slab, or if the elementary volume is passed through by the
swept area, its localized plastic strain DcðiÞ is given by a weight function mðiÞ,

DcðiÞ ¼ mðiÞ

Pn
i¼1

mðiÞ
� Dcint; mðiÞ ¼ SðkÞswept

SðkÞall

Z

Vi

1
p

a
dðiÞ2 þ a2

dV ; if dðiÞ\
h
2

ð2:16Þ

where dðiÞ is the distance from the centroid of ith elementary volume to the slip

plane. Compared with Liu et al.’s method, a coefficient
SðkÞswept

SðkÞall

is introduced to

characterize the slip extent, so dislocation AB and A′B′ do not have to meet the
assumption of ‘dislocation pole’ and there is no constraint on the slip distance for
each time increment. Specifically, the slab region is further divided into several
subregions by element mesh as shown in Fig. 2.9. For the subregion corresponding

to the kth swept elementary volume, SðkÞswept represents the swept area, and SðkÞall is the
total possible swept area. For example, for blue subregion in Fig. 2.9b, the swept

elementary volume is labeled as ‘3’, SðkÞswept and SðkÞall are the area of CDOP and
MNOP, respectively. MNFE is the cross section of the slab. If one dislocation line
sweeps multiple elementary volumes in one time increment, this method still
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Fig. 2.9 a–b Schematic showing the new regularization method, from a view along dislocation
line direction and 3D view, respectively. The solid circle dot represents the centroid of the
concerned integration point volume. c Schematic definition of Xmesh, Ymesh and Zmesh, which are
normal directions of the 1#, 2# and 3# FEM element planes, respectively. h01, h

0
2, and h03 are their

angles with the normal direction of slip plane n, respectively. Reprinted from Ref. [41], Copyright
2015, with permission from Elsevier
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exhibits high efficiency, because
SðkÞswept

SðkÞall

¼ 1 for most subregions and it is only

required to calculate
SðkÞswept

SðkÞall

for subregions near the boundary of the swept area.

In addition, all these regularization methods involves parameters (such as h),
which are found to depend on the type of FEM element and the slip system
information [36]. For example, for dislocation with slip plane parallel to one of the
FEM mesh planes, it is found that good results can be obtained when the plastic
strain is localized only to the swept elementary volumes. Thus, the regularization
parameter hparallel is set to L/2 for quadratic hexahedron element with 20 nodes and
8 Gauss points, where L is the element size. However, for tilted dislocation, the
regularization region must be enlarged to assure the continuity of the eigenstrain
from element to element. Till now, there is no quantitative suggestion about the
chosen of regularization parameter. Our study shows that for arbitrary tilted dis-
location, good results can be obtained if a slip plane dependent parameter h is
determined as follows,

h ¼ ktilth
parallel; ktilt ¼ 1þ sin 2h1 þ sin 2h2 þ sin 2h3;

h01 ¼ arccosð n � Xmesh

nk k � Xmeshk kÞ; h02 ¼ arccosð n � Ymesh

nk k � Ymeshk kÞ; h03 ¼ arccosð n � Zmesh

nk k � Zmeshk kÞ

h1 ¼ minðh01; p� h01Þ; h2 ¼ minðh02; p� h02Þ; h3 ¼ minðh03; p� h03Þ
ð2:17Þ

where n is the normal vectors of slip plane, Xmesh, Ymesh and Zmesh represent the
normal directions of the FEM element planes as shown in Fig. 2.9c, and the angles
with n are h01, h

0
2, and h

0
3, respectively. ktilt is correction coefficient for regularization

parameter h.
A simple numerical test is carried out to validate the effectiveness of the new

regularization method for tilted dislocation lines. Considering a cubic crystal with
side length 40 lm, an edge dislocation along [100] direction sweeps to the middle
of the crystal along (010) slip plane, its burgers vector is along [001] direction. We
restrict our study to isotropic elastic solid with shear modulus l = 51 GPa and
Poisson’s ratio m = 0.37 in most of the following simulations, unless specified
otherwise. As suggested by Lemarchand et al. [36], a quadratic hexahedron element
with 20 nodes and 8 Gauss points (C3D20R) is used in all of the present calcu-
lations. The element size is set to 850 nm. The results with h ¼ hparallel and h ¼
ktilthparallel are presented in Fig. 2.10a–c, d–f, respectively. It can be seen that when
the regularization region is small, there will be numerical noise for the tilted dis-
location. However, the stress filed can be reasonably captured by enlarging the
regularization region controlled by slip plane dependent parameter.
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Fig. 2.10 For tilted dislocation, the distribution of equivalent plastic strain and stress field in the
shadow region in (a). They are calculated using new regularization method with a–c h ¼ hparallel;
d–f h ¼ ktilthparallel. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier

34 2 Discrete-Continuous Model of Crystal Plasticity



2.2.1.3 Stress Field Calculation of Prismatic Loop

The accuracy of new regularization method is further compared with the other
methods using a numerical test. Since the dislocations in DCM are represented by
the plastic strains caused by their slips, a reasonable regularization method should
be able to well introduce the self-stress field of dislocation lines according to the
localized strains.

Considering a cubic crystal with dimension 2250 � 2000 � 2250 nm3, there is
a square prismatic dislocation loop, which lies in (010) slip plane and has four
〈100〉 edge segments of length 250 nm, as illustrated in Fig. 2.11a. The Burgers
vector is along [010] direction and has magnitude of 0.25 nm. Supposing that this
dislocation loop is obtained by the growth of a very small loop, the plastic strain
inside and around the dislocation loop is non-zero and can be localized to the
material point by four kinds of regularization methods described in Sects. 2.2.1.1

2250nm
2250nm

250nm

[100][010]

[001]

pp’ y=0

(b)

(GPa) 

(d)(c)

)aPG()aPG(

(a)

Fig. 2.11 a Geometrical description of the validation test, square prismatic dislocation loop in the
dashed slip plane; b–d For element size L = 16 nm, distribution of shear stress r23 caused by the
prismatic loop using Lemarchand et al.’s method, Liu et al.’s method and new regularization
method, respectively. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier
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and 2.2.1.2. The regularization parameter h in Lemarchand et al.’s method and
Vattré et al.’s method is taken as 3L/2 [36]. The cutoff parameters in Liu et al.’s
method is h1 = h2 = h3 = 2L/3.

Different element sizes L are used in the calculation. The shear stress fields r23

for L = 16 nm obtained by different regularization methods are given in
Fig. 2.11b–d. The results for the Vattré et al.’s method can be obtained from
reference [37] and are not shown here. The upper and lower bound of the stress
value in Fig. 2.11b–d in this paper are set to the same as Fig. 10b in reference [37].
It can be noticed that a very similar stress distribution is obtained for different
methods.

The stress variation along the dot dash line in Fig. 2.11a is further compared
with the analytical solution when the element size L is set to 16 and 32 nm,
respectively, as given in Fig. 2.12. It can be seen from Fig. 2.12a, b that different
regularization methods display comparable accuracy. The singularity of stress near
the dislocation core region is smeared out by all these regularization methods. This
is very similar to the results derived by the non-singular continuum theory of
dislocations proposed by Cai et al. [48]. To facilitate discussion, this region is
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Fig. 2.12 a–b Stress component r32 due to the prismatic loop by different regularization methods
when element size L is 16 and 32 nm, respectively. The results for the method proposed by Vattré
et al. are from Ref. [37] and the element sizes in (a) and (b) are 15 nm � 15.625 nm � 16.25 nm,
30 nm � 31.25 nm � 32.5 nm, respectively. c–d Relative errors of r32 when element sizes are 16
and 32 nm, respectively. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier
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denoted as ‘smearing-out region’ as labeled in Fig. 2.12c, d and the other region is
denoted as ‘long-range region’. The short-range interaction in the smearing-out
region is required to be modified, such as using analytical solutions for dislocation
interactions. By comparing Fig. 2.12c, d it can be found that increasing the element
size does not strongly influence the precision in the long-range region, but enlarges
the smearing-out region. Besides, the results suggest that the smearing-out region
corresponds to the region where the distance to dislocation core is smaller than a
critical value rsmearing-out. Quantitatively speaking, for the methods of Lemarchand
et al. and Vattré et al., rsmearing-out is 1.5 times the FEM element size L, which is
exactly equal to the regularization parameter h [37]. For the method of Liu et al.,
rsmearing-out is about twice the cutoff distance. For new regularization method,
rsmearing-out is equal to FEM element size L. In the long-range region, all the cal-
culation results are in good agreement with analytical result, the relative error is less
than 10 % (see Fig. 2.12 and Ref. [37]). Moreover, Fig. 2.12c, d illustrate that the
precision for the new regularization method is even better than Lemarchand et al.’s
method and Liu et al.’s method. Therefore, the new regularization method not only
displays advantages as stated in Sect. 2.2.1.2, but also has good accuracy. With this
in mind, DCM with new regularization method is mostly used in the following
studies.

2.2.2 Image Force Calculation

The image force acting on dislocations near free surface is especially important at
submicron scales because of the large specific surface area. Generally, it is always
believed that DCM cannot accurately capture the image force, or at least, it is not
comparable with SPM in this aspect. However, there is still no detailed analysis
about how DCM can be improved to accurately capture the image force. In this
section two corrections are proposed to improve the accuracy of image force cal-
culation by DCM.

2.2.2.1 Stress Interpolation

In DCM, the image force is lumped into the total stress field calculated by FEM,
and is passed to DDD according to stress-transfer procedure (see Fig. 2.5b).
Specifically, the image force is calculated according to the difference of stress fields
for two DCM models. One directly considers free surface, and the other calculates
the total stress field in infinite body by applying the surface traction ~T ¼ r1 � ns,
where r1 is analytical stress field of dislocations in an infinite media and ns is the
normal direction of surface. In the previous studies, the stress acting on each
dislocation segment is usually taken to be equal to the stress at the integration point
of FEM element where the midpoint of dislocation segment locates [11]. Since the
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image force is strongly sensitive to the distance between the dislocation line and
free surface, this kind of stress-transfer hardly gives good results when the dislo-
cation segment does not exactly pass through the integration point. This can be
demonstrated by a simple example below.

Considering a cubic crystal with side length 40 lm as shown in Fig. 2.13a, an
edge dislocation along [100] locates at a distance Z below the [001] free surface, its
burgers vector is along [001] direction. The image force induced by the top surface
is calculated for different values of Z using DCM with new regularization method.
The FEM element size L is set to 0.85 lm. The lines with triangle points in
Fig. 2.13b are the results when image force on the dislocation segment is calculated
using the stress at the nearest integration point. The results show rather large
deviation from the analytical solution when the dislocation lines do not exactly pass
through the integration points.

It is clear that a reasonable interpolation treatment of the stress field must be
introduced to well capture the image force. Here, we propose that the stress r at the
considered dislocation segment is interpolated from the stress at the neighboring
integration points,

r ¼
rðiÞ; if dðiÞseg�int ¼ minðdð1Þseg�int; d

ð2Þ
seg�int; . . .Þ\rinfsmallP

i

rðiÞ=dðiÞseg�intP
i

1=dðiÞseg�int

; if rinfsmall\dðiÞseg�int\rcut

8>><
>>:

ð2:18Þ

where rðiÞ is the stress at the ith integration point, dðiÞseg�int is the distance between the
midpoint of dislocation segment and the ith integration point as shown in Fig. 2.14.
If the minimum distance between the midpoint of dislocation segment and the
neighboring integration points is smaller than a critical value rinfsmall, it means that
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Fig. 2.13 a Description of the validation test; b comparison between the results calculated by
DCM using new regularization method with and without stress interpolation. Reprinted from Ref.
[41], Copyright 2015, with permission from Elsevier
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the dislocation segment almost passes through an integration point, and no stress
interpolation is required. Otherwise, the stress interpolation is carried out. It is
found that good results can be obtained when the cutoff radius for interpolation
region rcut is set to 0.45L, where L is the element size.

The image force calculation with stress interpolation is further carried out for the
above validation test. The results in Fig. 2.13b highlight the great improvement
after using stress interpolation modification. Next, the simulations using the other
regularization methods but with stress interpolation are also carried out for the
validation test in Fig. 2.13a. The calculated image forces are given in Fig. 2.15a. It
can be found that the results using regularization methods proposed by Liu et al.
and Lemarchand et al. are acceptable when the distance Z is larger than L and 5L/4,
respectively. While the new regularization method and Vattré et al.’s method can
exhibit good accuracy until Z is smaller than 3L/4. This further illustrates the
advantage of new regularization method.

The other interesting issue is to compare the image force captured by DCM and
SPM. Three typical cases are considered here: the first one is the same as the
subsurface dislocation shown in Fig. 2.13a; the second one is calculating the image
force along the dislocation line which perpendicularly intersects the free surface as
shown in the inset of Fig. 2.15b; the third one is calculating the image force along a
dislocation loop as shown in Fig. 2.15c. Under these cases, the element size is taken
to be 0.85 lm both in DCM and SPM.

The simulation results of image force on the subsurface dislocation and inter-
section dislocation are presented in Fig. 2.15a, b respectively. For these two cases,
the comparison with analytical results illustrates that under both cases, DCM using
new regularization method can well calculate the image force for the distance to
free surface larger than 3L/4, which is similar to that of SPM. For the third case,
since there are no analytical results for comparison, the calculated image force by
DCM and SPM along the dislocation loop is compared with the results obtained by
SPM with finer element sizes (L = 600 nm, which is limited by the large number of
elements a single processor can handle). The results are in a good agreement as

cutr
( )
seg-int
id

Integration point for C3D20R element

Midpoint of dislocation segment

Fig. 2.14 Schematic
definition of the variables
used for stress interpolation.
Reprinted from Ref. [41],
Copyright 2015, with
permission from Elsevier
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shown in Fig. 2.15d. Obviously, the widely used method of introducing SPM to
DCM with the aim of correcting image force is inappropriate and will double-count
the image force effect.

Moreover, it can be found from Fig. 2.15a, b that the image force very close to
the free surface cannot be captured by either DCM or SPM because it is difficult for
the linear or quadratic shape functions of standard FEM to describe the strong
nonlinear variation of the field variables close to the surface. Therefore, when the
dislocation line enters the near-surface region, a reasonable correction of image
force must be introduced.

2.2.2.2 Hybrid DCM Method

The most straightforward method to correct image force in DCM is identifying the
outermost two layer elements as a sub-domain, and then refining the elements in
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this sub-domain. However, this undoubtedly increases the computation time,
especially for three-dimension problem. Tang et al. [49] proposed a hybrid SPM
method, in which the singular part of the image stress is obtained by analytical
solution and the non-singular part is calculated by SPM. Here we extend this hybrid
scheme to improve the ability of DCM in capturing image force. However, special
attention must be paid since the image force is lumped into the total stress field in
DCM. Under complex loading condition, it is difficult to isolate the image force
calculated by DCM. Therefore, the stress field in infinite body must be taken into
account in the decomposition and superposition framework, as schematically shown
in Fig. 2.16. The singular image stress on AA′ rana_imag in the elastic half-space is
calculated according to Yoffe solution [50]. The difference in dislocation config-
uration between Fig. 2.16a, b is shown in Fig. 2.16c, whose total stress field
rcorr img þ r1A0B þ r1BD can be calculated by DCM. Then, the stress field caused by
semi-infinite dislocation AA′ r1AA0 should be added as shown in Fig. 2.16d
according to Li solution [51]. This part on the one hand removes the stress field
caused by dislocation A′B, and on the other hand adds the stress field caused by
dislocation AB, r1AA0 ¼ r1AB � r1A0B. Accordingly, the total stress field in half space
can be expressed as rtot ¼ rana img þðrcorr img þ r1A0B þ r1BDÞþ ðr1AB � r1A0BÞ.
According to the work of Tang et al. [49], this hybrid method can also be used to
solve the problem with multiple free surfaces.

To show its effectiveness, the image force on a curve dislocation line in the cubic
crystal is calculated (see the inset of Fig. 2.17). It locates at (010) slip plane, and its
burgers vector is along [001] direction. The image force induced by the left free
surface is calculated for different values of X using DCM and hybrid DCM. The
results in Fig. 2.17 show that hybrid DCM method can well capture the singular
image force near the free surface.
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Fig. 2.16 Schematically illustration of the hybrid DCM method when calculating image force on
an arbitrary curved dislocation line in a half-space with only one free surface. Reprinted from Ref.
[41], Copyright 2015, with permission from Elsevier

2.2 Improved Discrete-Continuous Model 41



2.2.3 Finite Deformation

Capturing the deformed configuration by DCM is another important issue to
understand the material deformation and failure process at submicron scales [45]. In
this section, a new algorithm is developed to calculate deformed configuration in
DCM, and two validation tests are carried out to quantitatively show how DCM can
be used to capture the strong localized deformation.

2.2.3.1 Deformation Field Transfer and Surface Dislocation
Treatment

In order to reproduce the deformed configuration accurately, the DDD computation
cells must deform in accordance with the FEM cells [11]. Thus, the position of
dislocation segments is updated according to its own slip uIslip and the deformation

induced displacement uðIÞDDD,

uðIÞ ¼ uðIÞslip þ uðIÞDDD ð2:19Þ

where the subscript “(I)” denotes the node number of dislocation segment in DDD.

uðIÞslip is directly calculated by DDD model,

uðIÞslip ¼ vðIÞslipDt ð2:20Þ

where vðIÞslip is the velocity of dislocation node and can be calculated according to its
kinetic equation,

Fig. 2.17 Image force r012
induced by the left free
surface. The Inset shows the
dislocation configuration.
Reprinted from Ref. [41],
Copyright 2015, with
permission from Elsevier
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Md _v
ðIÞ
slip þBvðIÞslip ¼ fðIÞ ð2:21Þ

where Md and B are the corresponding effective mass matrix and the drag coeffi-
cient matrix, respectively. The first inertia term on the left side can be ignored when
the dislocation motion is in the over-damped regime. The force vector fðIÞ of
segment I includes the Peach-Koehler force by applied stress and other defects, line
tension, as well as image force.

Deformation induced displacement uIDDD is obtained by FEM calculation and
passed to DDD model. Considering the simplest case, if the dislocation does not
move, the displacement at dislocation segment node I is just equal to uIDDD.
Specifically, uIDDD is obtained by interpolating the displacement of FEM nodes
around the dislocation segment node “I”. Here, an interpolation scheme similar to
Eq. (2.18) is used,

uðIÞDDD ¼
uðkÞDDD; if dðkÞseg�node ¼ minðdð1Þseg�node; d

ð2Þ
seg�node; . . .Þ\rinfsmallP

i

uðkÞDDD=d
ðkÞ
seg�nodeP

i

1=dðkÞseg�node

; if rinfsmall\dðkÞseg�node\rcut

8>><
>>:

ð2:22Þ

where the superscript “(k)” denotes the variables associated with the kth FEM node.

dðkÞseg�node is the distance between the midpoint of the dislocation segment and the kth
FEM node. If the minimum distance between the midpoint of dislocation segment
and FEM nodes is smaller than an infinitely small value rinfsmall, no displacement
interpolation is required. As shown in Fig. 2.14, rcut is also the cutoff radius for
interpolation region.

At the same time, a special treatment must be used to treat the surface annihi-
lation and guarantee that the surface-piercing dislocation segments remain
surface-piercing instead of terminating in the interior of the sample. To achieve this,
in the FEM model we define the surface element as a separate part which is used to
conveniently transfer information with the boundary of DDD cell. This makes it
very easy to update the external geometry of the DDD cell and deal with the surface
annihilation.

Specifically, during each step, if dislocations slip out of the crystal, the outside
part is deleted to deal with the surface annihilation. In addition, the intersection
nodes between the surface segments and free surface are labeled as surface nodes. If
the dislocation line intersects a convex surface, the velocity of the surface node
vsurfnode is projected to match the local curvature of free surface and fulfill the
constriction of the slip plane, as described below [52],

nsurfnode ¼ n� ns
n� nsk k

vsurfnode ¼ vslip � nsurfnode
� �

nsurfnode
ð2:23Þ
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where nsurfnode is a unit vector indicating the intersection between the surface and
slip plane, n and ns are the normal vectors of slip plane and local free surface,
respectively. The introduction of surface element part in FEM model makes the
calculation of ns very easy.

On the other hand, if the dislocation line slips across a concave surface, such as
induced by an evident slip step, the velocity projection and the displacement cor-
rection by FEM model are not enough. It is required to check whether the surface
node remains on the surface after deformation. If the surface dislocations are found
to terminate in the bulk, the surface dislocation lines should be extended to intersect
with free surface.

2.2.3.2 Slip System Rotation

The FEM model can conveniently consider the lattice rotation effect. To incorporate
the lattice rotation effect in 3D DDD code, the dislocation slip systems are directly
updated according to large-strain kinematics in crystal plasticity theory [53],

bðtÞ ¼ Fe � bðt0Þ
nðtÞ ¼ nðt0Þ � Fe�1

ð2:24Þ

where b is burgers vector, n is the normal vector of slip plane, the subscripts (t) and
(t0) refer to the values of the variables at time t and t0 = 0, respectively. Fe rep-
resents the elastic stretching and rotation of the crystal lattice, which can be
determined by the multiplicative decomposition of deformation gradient F,

F ¼ Fe � Fp

Lp ¼ _F
p � Fp�1 ¼ _c

b
bk k �

n
nk k

� � ð2:25Þ

where Fp is the plastic part of F induced by the plastic slip, Lp is the plastic part of
velocity gradient, and _c is the plastic shear strain rate calculated by the regular-
ization methods. By taking the derivative of Eq. (2.24), the following relation can
be obtained,

_bðtÞ ¼ _F
e � Fe�1 � bðtÞ

_nðtÞ ¼ �nðtÞ � _Fe � Fe�1
ð2:26Þ

where a superposed dot means time derivative. Then, combining Eq. (2.25) and
Eq. (2.26), the slip system can be updated by the following implicit time-integration,
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bðtþDtÞ ¼ ðIþ _F
e � Fe�1DtÞ � bðtÞ

nðtþDtÞ ¼ nðtÞ � ðI� _F
e � Fe�1DtÞ

_F
e � Fe�1 ¼ _F � F�1 � F � Fp�1 � _Fp � F�1; _F

p ¼ Lp � Fp;

Fp
ðtþDtÞ ¼ Fp

ðtÞ þ _F
p
ðtÞDt ¼ ðIþLpDtÞ � Fp

ðtÞ

ð2:27Þ

where Dt is time increment, I is unit tensor. The result of _F
e � Fe�1 is transferred from

FEM model to DDD model, as shown in Fig. 2.5b. The corresponding interpolation
scheme is similar to Eq. (2.18). At the same time, the deformation field transfer from
FEM to DDD described in Sect. 2.2.3.1 can naturally consider the update of position
and orientation for dislocation lines induced by lattice rotation.

Two validation tests are given below to show its effectiveness. The first one is
schematically shown in Fig. 2.18a, b. An edge dislocation nucleates from the
surface (labeled as A) and glides to the middle of the crystal (labeled as A′). At the
same time, the crystal rotates 45° about the [100] axis. The FEM mesh size is
0.85 lm. If the rotation is not considered, the stress field cannot be accurately
captured as shown in Fig. 2.18c. However, if it is considered according to
Eq. (2.27), the calculated stress filed is reasonable as shown in Fig. 2.18d.

The second validation test is to investigate the evolution of a Frank-Read source
in a bended beam with length 50 lm and cross section area 10 lm � 10 lm. This
Frank-Read source is originally situated along [100] direction in (010) slip plane
with burger vector [001]. The FEM element size is 2 lm. To clearly show the
evolution of dislocation configuration and save computational time, the strain rate
for bending is set to be so large that the dislocation configuration does not have
enough time to reach a fully relaxed configuration during deformation. During each
time increment of FEM model DtFEM = 1.6 � 10−8 s−1, the displacement increment
DU2 is 0.1 lm, and the DDD model runs 400 times with time increment
DtDDD = 4�10−11 s−1. The simulation results are given in Fig. 2.19 when U2 is

(d)(c)

A

A’

A

A’

(a)

Dislocation

40µm

40µm
Y

Z

A

A’

Y

Z

A
(b)

(GPa) (GPa) 

Fig. 2.18 a–b Sample geometry and dislocation position before and after deformation,
respectively. c–d Stress field r33 without and with slip system rotation treatment, respectively.
Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier
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3.5 lm. Figure 2.19a shows that if the lattice rotation effect is ignored, the position
of the dislocation can be updated, but the slip plane is kept as (010). However, if the
lattice rotation effect is considered, the slip plane rotates precisely with the rotation
of the neutral axis.

2.2.3.3 Reproduction of Slip Step

In the following, two validation tests are carried out to investigate the ability of
improved DCM in capturing deformed configuration.

One validation case is an edge dislocation line sweeping a finite cubic sample, as
described in Fig. 2.13a. The element size is 850 nm. The simulation results are
given in Fig. 2.20. Here, the displacements are magnified by a factor of 5000 for
better visualization. When this dislocation line sweeps half of the slip plane, only
the left slip step can be observed (Fig. 2.20a); when this dislocation line sweeps the
whole slip plane, one slip step with the magnitude of burger vector (0.25 nm) is
generated as expected (Fig. 2.20b). This implies that the displacement field can be
well reproduced by introducing the localized plastic strain from DDD to FEM.

In submicron crystals, it is widely accepted that the operation of single arm
source is the dominated dislocation mechanism [6, 54]. Thus, the other validation
case is chosen to be a single arm source sweeping a micropillar with diameter
1000 nm and height 2000 nm. This single arm source is placed on (111) slip plane
with Burgers vector along ½10�1�. It has one non-destructible pinning point at the
central point of the micro-pillar. The element size of FEM model is 80 nm, which is
found to permit fine resolutions with accurate result and convergence. The uniaxial
compression loading is applied on the top of pillar with constant pressure 200 MPa.
Since the resolved shear stress to active this single arm source is much less than that

(b)

(a)
U2

[010]

[001]

(010)

Fig. 2.19 An overlay of snapshots of dislocation configurations for bended beam without and
with lattice rotation when U2 = 3.5 lm, the blue and red dislocation lines correspond to the results
without and with rotation, respectively. a and b are results from different views. Reprinted from
Ref. [41], Copyright 2015, with permission from Elsevier
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generated by the external pressure, the single arm source can continuously operate,
which leads to significant localized deformation (see Fig. 2.21a). Compared with
the first validation case, this numerical test can be used to check whether the
deformed shape can be well reproduced by DCM, when the FEM elements swept
by the dislocation segments are irregular, the dislocation line is curved, and
localized deformation happens.

According to Eq. (2.11), the plastic strain is determined by the sweep area of
dislocation segments. Thus, the distribution of plastic strain is very sensitive to the
dislocation configuration. Once the surface segments shrinks, the plastic strain
value in near-surface region is small compared with the other regions. The simu-
lation results in Fig. 2.21b show that the equivalent plastic strain is uniform even
under the case of large deformation and irregular mesh.

( m)
( m)

(a) (b)

Fig. 2.20 Deformed configuration with displacement magnified by a factor of 5000 a when an
edge dislocation line sweeps half of the sample; b when an edge dislocation line sweeps the whole
sample. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier

Fig. 2.21 When the single arm source sweeps a slip plane for 1000 times, a an overlay of
snapshots showing the dislocation configuration and deformed shape; b distribution of equivalent
plastic strain, which is observed on a cross-section along the (111) plane and c the displacement
field U1. Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier; d SEM image
showing the deformed configuration of 1 lm diameter micropillar [44]
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Furthermore, the simulation results are quantitatively evaluated. When the slip
plane is swept by a single arm source for n times, the slip distance along a slip step
direction (see arrow in Fig. 2.21a) is n |b|. For the considered case, the displacement
along x direction U1 should be equal to n bj j= ffiffiffi

2
p

. Taking n = 1000 as an example,
the value of U1 should be 0.18 lm. It can be seen from Fig. 2.21c that the simulated
displacement U1 for the upper part of the sample is exactly close to this value. In
addition, the deformed configuration is very similar to the experimental observa-
tions as shown in Fig. 2.21d [44]. Note that if there are dislocations existing in the
upper part of the pillar shown in Fig. 2.21a, they will shift a displacement equal to
U1 along x direction according to Eq. (2.19).

2.2.4 Application in Heteroepitaxial Film

As an example, the modified DCM is applied to study the dislocation behavior in
heteroepitaxial films, which has recently received a great deal of attention due to
their wide applications in semiconductor and electron device industry. The ther-
moelastic analogical calculation is conducted to calculate the internal stress field
induced by the lattice misfit between film and substrate. The dislocation behaviors
and corresponding stress fields are analyzed for thin/thick substrates.

2.2.4.1 Thermoelastic Calculation to Determine Internal Stress Field

Considering the Si1-xGex/Si film-substrate structure, the lattice misfit strain is set to
em = (aSiGe − asi)/asi = 0.0418x = 0.0055 for x = 0.13 [55], where aSiGe and asi is
the lattice constant of film and substrate, respectively. In previous studies, the initial
stress field caused by misfit strain is usually imposed by analytical solutions
through assuming that the film and substrate have the same material parameters
[55]. In the present work, it is calculated by analogizing the lattice misfit as a
thermal expansion process for two materials with different thermal expansion
coefficients a. The thermal expansion coefficients of film af and substrate as,
respectively, are set to,

af ¼ em
dsESi

df ESiGe þ dsESi

as ¼ �em
df ESiGe

df ESiGe þ dsESi

ð2:28Þ

Here, both Si1-xGex film and Si substrate are assumed isotropic. Esi = 130 GPa is
the elastic modulus of Si [56]. EGe is the elastic modulus of Ge and set to
102.5 GPa [57]. The elastic modulus of Si1-xGex ESiGe = Esi (1 − x) + EGex, is
approximated by a linear rule of mixtures. df is the thickness of film and set to
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0.3 lm. ds is the thickness of substrate and set to 0.6 and 3 lm to simulate very thin
and very thick substrates, respectively. Besides, the side length of film and substrate
is set to 20 lm. The out-of-plane displacement at the bottom surface of substrate is
fixed to constraint the laterally bending. All the other surfaces are traction free. The
stress field corresponds to the result when the temperature increases one unit value.

Firstly, the accuracy of this thermoelastic analogical method is verified. When
the film is assumed to have the same elastic modulus as the substrate Esi, the
analytical stress field is obtained,

rf ¼ � Esi

1� vsi

ds
df þ ds

em

rs ¼ Esi

1� vsi

df
df þ ds

em

ð2:29Þ

where msi is the Poisson’s ratio of Si and set to 0.28 [56]. When ds is taken to be
0.6 lm, rf = −0.662 GPa, and rs = 0.331 GPa. The FEM mesh size is 0.06 lm in
the thickness direction and 0.4 lm in the other two directions. The simulation
results are presented in Fig. 2.22. It can be seen from Fig. 2.22a that except the
region near the boundary, the stress field is consistent with the analytical result.
Figure 2.22b further compares the stress value along the thickness (dotted line in
Fig. 2.22a) obtained by simulation and Eq. (2.29). A good quantitative agreement
is observed.

2.2.4.2 Influence of Substrate Thickness on Dislocation Behavior

By the thermoelastic analogical calculation, the internal stress field can be obtained
when the film and substrate have different mechanical properties. Next the evolu-
tion of a Frank-Read source in this internal stress field is simulated by the improved
DCM to clearly depict the dislocation behavior in heteroepitaxial film with different
thicknesses of substrate.
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Fig. 2.22 a [100] Cross-sectional view showing the stress field r11 for heteroepitaxial film and
substrate, when the film and substrate are assumed to have the same elastic modulus.
b Comparison of r11 along the thickness [dotted line in (a)] for simulation and analytical results.
Reprinted from Ref. [41], Copyright 2015, with permission from Elsevier
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Supposing initially there is a Frank-Read source in (111) slip plane with burgers
vector along ½�101� in the middle of film, it naturally multiplies under the action of
free surface and internal stress field, without any prior constraint on dislocation
motion. The pinning points are indestructible and 200 nm apart. The image force
caused by the free surface is modified by the hybrid method described in
Sect. 2.2.2.

The calculated dislocation microstructure evolution for the cases of thin and
thick substrate is shown by the black solid lines in Fig. 2.23a–e and e–j respec-
tively. Under both cases, threading dislocations form when the bowing-out dislo-
cation segments encounters free surface, while misfit dislocations form when they
intersect with film-substrate interface. With the image force correction, the
near-surface threading dislocation segments are almost perpendicular to free sur-
face, which is consistent with previous phase field method studies [55]. Comparing
Fig. 2.23d with Fig. 2.23i, the misfit dislocations behave differently for different
substrate thicknesses. For very thick substrate, the misfit dislocations can penetrate
into the substrate when two misfit dislocations form (see Fig. 2.23i–j), whereas for
thin substrate, the penetration of misfit dislocation is not observed in Fig. 2.23e due
to the higher compression stress in the substrate. Therefore, for the case of thin

Fig. 2.23 a–e Dislocation evolution in film with thin substrate; f–j Dislocation evolution in film
with thick substrate. The black solid lines represent the dislocation lines. Reprinted from Ref. [41],
Copyright 2015, with permission from Elsevier
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substrate, the back stress induced by the misfit dislocations is higher and will inhibit
the operation of Frank-Read source. Even though the length of the longest misfit
dislocation lines in Fig. 2.23e, j are almost equal, the cycles of Frank-Read source
operation are different.

The stress fields without and with dislocations are compared in Fig. 2.24b, c for
thin substrate, Fig. 2.25b, c for thick substrate, respectively, to illustrate the role of
dislocation evolution on the strain relaxation. It can be noticed that for both thin and
thick substrates, the Mises stress in the film decreases because the misfit strain is
relaxed as the glide of dislocations. Comparing Fig. 2.24b with Fig. 2.24c, it can be
found that the piling-up misfit dislocations at the interface lead to the increase of
stress in the thin substrate. In contrast, as shown in Fig. 2.25b, c, there is no evident
change of the stress in the substrate after multiple misfit dislocations form since
they can penetrate towards thick substrate. The simulation implies that the crack
nucleation and interface delamination are more likely to happen for thin substrate.

film

substrate

Without dislocation

With dislocation

(a) (b)
(GPa)

(c)

Fig. 2.25 a (111) plane cross-sectional view showing the concerned region enclosed by dotted
lines for film with thick substrate; b–c Mises stress field in the concerned region labeled in
(c) before and after dislocation source operation, respectively. The white solid lines in (c) represent
the dislocation lines, which corresponds to Fig. 2.23j. Reprinted from Ref. [41], Copyright 2015,
with permission from Elsevier

Fig. 2.24 (111) plane cross-sectional view showing the concerned region enclosed by dotted lines
for film with thin substrate; b–c Mises stress field in the concerned region labeled in (a) before and
after dislocation source operation, respectively. The while solid lines in (c) represent the
dislocation lines, which corresponds to Fig. 2.23e. Reprinted from Ref. [41], Copyright 2015, with
permission from Elsevier
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2.3 Summary

This chapter describes the discrete dislocation dynamics (DDD) and discrete-
continuous model (DCM) simulation method. Several key issues in the coupling
between DDD and FEM are systematically investigated. The prerequisite for the
application of DCM in complex situations is reasonably localizing the discrete
plastic strains induced by dislocation slip to the continuum material points. Thus, a
detailed evaluation of current regularization methods in DCM is first presented.
A novel regularization method is proposed based on the Burgers vector distribution
function and swept area, which considers the dependence of regularization
parameter on the angle between slip plane and FEM mesh, and shows excellent
accuracy.

To apply DCM to gain insight of plasticity at submicron scale, the image force
effect and finite strain effect must be properly introduced. First, by introducing
stress interpolation, it is found that DCM is able to obtain comparable precise image
force with SPM, and introducing SPM to DCM with the aim of correcting the image
force will double-count the image force effect. A new hybrid method is also pre-
liminarily proposed to correct the singular image force in DCM.

The algorithmic details to well capture the finite deformation effect by DCM are
presented, which include the deformation field transfer method, and the special
treatments on the surface-piercing dislocations and slip system rotation. The vali-
dation tests are performed to reproduce the rotation of slip plane, the slip step
generated by an edge dislocation, and the localized deformation induced by the
continuous operation of single arm source in micropillar. The results show that
DCM is capable of capturing the localized deformation.

As an application, the improved DCM is applied to investigate the dislocation
evolutions in heteroepitaxial thin films. The misfit stress field is calculated by
analogizing thermal expansion process. The dependence of dislocation behavior on
the thickness of substrate is revealed and their influence on the internal stress field is
captured. It shows the advantages of new DCM in the study of internal
microstructure evolution and stress field in the complex crystal devices at submi-
cron scale.
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