
Detection of Incongruent Firewall Rules
and Flow Rules in SDN

Nandita Pallavi, A.S. Anisha and V. Leena

Abstract The networking is the backbone that supports the vast area of
Information Technology. SDN is the new road that takes the conventional net-
working to greater heights. SDN is going to aid all future innovations and devel-
opments in the field of networking. SDN stands for Software Defined Networking,
this separates the network into two planes namely data plane and control plane.
A data plane is the abstraction of all the hardware side of the network and the
control plane is the central unit that acts like a brain controlling the entire network.
This dual architecture thus helps to maintain a network that is centralized, highly
scalable, flexible etc. The programmability of the network opens the window of
scope for greater innovations and developments. SDN can gracefully accommodate
technology shifts. At the same time SDN posses certain security issues that need to
be addressed. As a widely flourishing and developing networking method, these
security issues need to be tackled. In this paper we are trying to address the security
issue of rewriting flow entries in switches. We propose an algorithm for the
detection of incongruence between firewall rules and flow rules and thus we
overcome the threat caused by modification of flow entries. The proposed system is
for Open Flow based Firewalls. The system is intended to boost the security
capabilities of SDN, thereby minimizing some of the security challenges in SDN.

Keywords SDN � Firewall � Open flow � HSA � Firewall rules � Flow rules � Duo
lock

N. Pallavi (&) � A.S. Anisha � V. Leena
Department of CS & IT, Amrita School of Arts and Sciences Kochi,
Amrita Vishwa Vidyapeetham, Kochi, India
e-mail: pallavinandita@gmail.com

A.S. Anisha
e-mail: anishaambili007@gmail.com

V. Leena
e-mail: vleena@gmail.com

© Springer Nature Singapore Pte Ltd. 2017
S.S. Dash et al. (eds.), Artificial Intelligence and Evolutionary Computations
in Engineering Systems, Advances in Intelligent Systems and Computing 517,
DOI 10.1007/978-981-10-3174-8_2

13

1 Introduction

Software Defined Networking is an emerging architecture that is cost-effective,
dynamic, manageable, and adaptable [1]. All these features make it ideal for the
high-bandwidth, dynamic nature of today’s applications [2]. Using this technology
a third party can introduce a new service or customize network behavior by writing
simple software. Coming to the security aspect in SDN [3, 4], though some level of
security [5] is provided by the SDN switches, it does not provide enough protection
from all the things that can go wrong. This is where the importance of a firewall in
SDN is reinstituted. The firewall filters all the incoming and outgoing traffic in the
network based on prioritized firewall rules [6]. A firewall constitutes of a collection
of rules that either allow or deny traffic. The flow tables are present in the switches
and the entries in flow tables mark the path the traffic can traverse. There may be
contradiction between the flow rules and flow table entries [7]. This contradiction is
the violation that we are handling in this paper. The packet entering the switch
passes through flow tables. A flow is a sequence of packets that matches a specific
entry in a flow table.

2 Related Work

Hu et al. [1] has presented a comprehensive framework, FLOWGUARD, has
proposed a firewall policy violation detection and resolution mechanism in dynamic
OpenFlow networks. Jarschel [8] establish SDN as a widely adopted technology
beyond laboratories and suggest that insular deployments requires a compass to
navigate the multitude of ideas and concepts that make up SDN today [8].
Contribution represents an important step towards such an instrument. It gives a
thorough definition of SDN and its interfaces as well as a list of its key attributes.
Mininet [9] an instant virtual platform http://mininet.org/ helps to understand the
implementation level details of SDN. Hu et al. [7] proposed that the source and
destination addresses of firewall rules and flow entries are first represented by
binary vector. Then, conflicts between firewall rules and flow rules are checked
through comparing the shifted flow space and deny firewall authorization space.
PeymanKazemian et al. [10] has developed a general and protocol-agnostic
framework, called Header Space Analysis (HSA). Their formalism allows us to
statically check network specifications and configurations to identify an important
class of failures such as Reachability Failures, Forwarding Loops and Traffic
Isolation and Leakage problems. Wang et al. [11] introduce a systematic solution
for conflict detection and resolution in OpenFlow-based firewalls through checking
flow space and firewall authorization space. This approach can check the conflicts
between the firewall rules and flow policies based on the entire flow paths within an
OpenFlow network. PeymanKazemian et al. [12] introduces a real time policy
checking tool called NetPlumber.

14 N. Pallavi et al.

http://mininet.org/

3 Methodology

3.1 Algorithm 1: Matrix Mapper

Step 1: Convert the firewall rules into a matrix format.
Step 2: Convert the flow table rule into a matrix format.
Step 3: Create a transitive adjacency matrix based on the flow table matrix.
Step 4: By comparing firewall table and flow table matrices, derive a resultant

matrix and also create a port matrix.

Based on the topology given in Fig. 1, matrices are designed here. The firewall
matrix consists of values 0, 1 and 2 and it is denoted by the symbol FW. Row and
column denotes the source and destination respectively. Each value in the cell of the
matrix corresponds to the state of traffic between the source and destination. The
state of traffic implies whether there is traffic between the corresponding source host
and destination host [10, 12]. The value 0 means traffic denial, 1 means traffic is
allowed, and 2 denotes partial allow. The firewall rules are analyzed from least
priority to high priority to set values in the matrix. If allow or deny between two
hosts is not specified then it is assumed to be allow. Table 2 is an FW matrix
designed from the firewall table given in Table 1.

The Flow table matrix contains two values 0 and 1 where 0 corresponds to
absence of flow and 1 corresponds to the presence of flow. It is represented by the
symbol FT.

From matrix FT, transitive adjacency matrix TA is constructed. The significance
and procedure of creating matrix TA from a given matrix is explained in Sect. 3.3.
The corresponding TA matrix of FT shown in Table 3 is given in Table 4.

The matrix FW and TA are compared. From these two matrices resultant matrix
R is built. Whenever a new rule is inserted or an existing rule is dropped in FW or
an existing rule is modified, the R matrix is built. For values of matrices with values
1 or 0, an XNOR operation is performed and the result is recorded in matrix R. The
value 0 in R means violation. That is the case when an action is specified in firewall
and a contradicting action is specified in flow table (Table 5).

Fig. 1 SDN test topology

Detection of Incongruent Firewall Rules and Flow Rules in SDN 15

If the matrix FW has a value 2 and TA has value 1, value 2 is recorded in
R. When FW has a value 2 and TA has value 0, it is a violation and therefore value
0 is recorded in R (Table 6).

Table 1 Firewall table

Order Protocol SrcIP * DestIP Dest port Action

1 tcp 192.168.10.1 * 192.168.10.2 * Allow

2 tcp 192.168.10.2 * 192.168.10.4 22, 25 Deny

3 tcp 192.168.10.3 * 192.168.10.2 * Deny

4 tcp 192.168.10.4 * 192.168.10.2 * Deny

5 tcp 192.168.10.4 * 192.168.10.3 * Allow

6 tcp 192.168.10.3 * 192.168.10.4 * Allow

7 tcp 192.168.10.2 * 192.168.10.1 22, 23 Allow

8 tcp 192.168.10.3 * 192.168.10.1 * Deny

9 tcp 192.168.10.2 * 192.168.10.3 * Deny

10 tcp 192.168.10.1 * 192.168.10.4 * Deny

Table 2 Firewall matrix: FW A B C D

A 1 1 1 0

B 2 1 0 2

C 0 0 1 1

D 1 0 1 1

Table 3 Flow table matrix A B C D

A 1 1 1 0

B 0 1 0 1

C 0 1 1 0

D 0 1 0 1

Table 4 Transitive
adjacency matrix

A B C D

A 1 1 1 1

B 0 1 0 1

C 0 1 1 1

D 0 1 0 1

Table 5 Table of XNOR
operations

Inputs Output

A B Y ¼ A� B ¼ ABþAB

0
0
1
1

0
1
0
1

1
0
0
1

16 N. Pallavi et al.

The matrix R helps us to detect all the incongruencies in cases other than those
with partial allow (value 2), for the remaining entries (with value 2) there is a port
specification associated with it. Therefore a next level of matrix needs to be
constructed.

If Rij = 2 in R, get the corresponding hosts. For all these hosts, create a port set for
each host. With each cell with value 2, create a destination-port matrix for the
corresponding source. The row contains the destination host names and column
contains the partially allowed ports. An example for port matrix is shown in Table 7.

This helps to record the violation between the firewall rules and flow rules in
SDN. The prioritizing errors can be detected using this strategy.

(1) A value 2 in FW matrix cannot be overwritten by 1 or 0, that is a priority
violation.

(2) If specific ports of host are allowed or denied, the rest of the ports are filled
with the negated value of either allow or deny.

3.2 Description of Duo Lock Algorithm

As the name suggests the algorithm is governed by two locks. The outer lock:
lock_1 and the inner lock: lock_2. Whenever there is a modification in a flow entry
or a firewall rule is added, deleted or modified, the control is passed through this
lock. The entry is updated only when the lock is opened. If the lock is closed a
violation is detected. The flow entry is updated when a mandatory overwriting is
tried or changes need to be brought in the flow table based on firewall rule addition,
modification or deletion. Lock_1 helps to detect and handle complete violations. In
case of partial allow or deny rules in firewall, the second lock: lock_2 is used. If
port wise violation does not happen then the lock is opened and flow entry is
updated, otherwise if the port is closed, flow entry does not get updated and
violation is reported.

In order to enable the proper execution of the concept, we introduce a transitive
adjacency matrix in the locks. If the hosts A and C are denied to interact, the
intruder must not be allowed to bypass this rule by an indirect interaction.
Example is an indirect interaction from A to C by A to B to C. Lock_1 operates
using transitive adjacency matrix and Lock_2 operates using port matrix.

Table 6 Resultant matrix R A B C D

A 1 1 1 0

B 0 1 1 2

C 1 0 1 1

D 0 0 0 1

Table 7 Port matrix of
source B

20 21 22 23 50 53

A 0 0 1 1 0 0

Detection of Incongruent Firewall Rules and Flow Rules in SDN 17

3.3 Transitive Adjacency Matrix (TA)

A transitive adjacency matrix is the matrix that points whether there is a direct edge
or indirect edge in a matrix. If edge (a, b) and (b, c) exists then another edge (a, c) is
assumed to be existing. The transitive adjacency matrix is based on transitive law
and adjacency matrix. The transitive law in mathematics and logic states that “If
aRb and bRc, then aRc,” where “R” is a particular relation (e.g., “… is equal to
…”), a, b, c are variables (terms that may be replaced with objects) and the result of
replacing a, b, and c with objects is always a true sentence (Fig. 2).

A transitive adjacency matrix is a matrix with all indirect connections also
marked as an edge. This matrix is XNORed with FW matrix, if 1 then there is
violation and the lock_1 is locked (Table 8).

For converting an adjacency matrix to transitive adjacency matrix a set of
operations are proposed here.

For each row, r in matrix with value 1{
Find value of column with value 1 and assign column value to k

For each row of value k, retrieve column with value 1 and assign to l.
Assign TA[r][l] to 1.

Table 8 Transitive
adjacency matrix of the
adjacency matrix given in
Fig. 2

0 1 2 3

0 0 1 1 1

1 0 1 0 1

2 0 1 0 1

3 0 1 0 1

Fig. 2 Adjacency matrix representation of a directed graph

18 N. Pallavi et al.

3.4 Algorithm 2: Duo Lock

Lock1
//a prevention is better than cure approach
Matrix R (Resultant matrix of the comparison between FW and TA) checked,
If(value is 1)

//no violation at all
Exit

If(value is 0)
//lock closed//violation detection
Set lock _1 to 0

return closed
Else

//Lock opened
 Set lock_1 to 1

return open

Lock 2
//cure approach
Matrix model Port matrix checked, on value 1 lock opened
Based on source destination variables corresponding port matrix is analyzed
If port deny

//close lock_2
 Set lock_2 to 0

return closed
Else

//lock opened
 Set lock_2 to 1

return open

Duo Lock:

Lock1{
 If (closed){
 Violation detection
 }
 Else {
 Flow entry updation

lock2{
 If (closed){
 Violation detection
 Exit
 }
 Else{
 //no violation
 Flow entry updated if needed
 Exit

}
}

}
}

Detection of Incongruent Firewall Rules and Flow Rules in SDN 19

The proposed methodology was experimented in mininet [9] using pox con-
troller [13, 14] based on the topology given in Fig. 1. From the experiment it was
clear that rules can be efficiently represented, stored and manipulated effectively
using matrices. In terms of memory access also matrices are highly efficient here.
As 2 check points are introduced no conflict can be bypassed. So the proposed
procedure effectively detects the conflicts in a faster way. Therefore flow tables can
be updated reflecting the variation proficiently.

4 Conclusion

In this paper we present a method of detection of incongruent firewall rules and
flow rules in SDN. Our methods are based on the matrix model. Firewall matrix,
flow table matrix, port matrix and transitive adjacency matrix is the matrix models
used in this paper. Using these matrix models we have created two algorithms to
detect the violations between flow table entries and flow rules. These algorithms
provide an efficient way to detect violations and prevent or cure their occurrence.
A method to effectively prioritize the firewall rules depending on modification,
insertion or deletion of firewall rules have also been proposed in this paper. The
matrix model of transitive adjacency matrix is a matrix that has been formulated
according to the needs of our method, and for this we have clubbed the transitive
law and adjacency matrix.

References

1. Hongxin Hu, Wonkyu Han, Gail-JoonAhn and Ziming Zhao “FLOWGUARD: Building
Robust Firewalls for Software-Defined Networks” Clemson University Arizona State
University.

2. Wolfgang Braun and Michael Menth “Software-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices” Department of Computer Science,
University of Tuebingen, Sand 13, Tuebingen 72076, Germany.

3. Phillip Porras, Steven Cheung, MartinFong, Keith Skinner, and VinodYegneswaran
“Securing the Software-Defined Network Control Layer”.

4. Seunghyeon Lee, Chanhee Lee, Hyeonseong Jo, Jinwoo Kim, Seungsoo Lee, Jaehyun Nam,
Taejune Park, Changhoon Yoon, Yeonkeun Kim, Heedo Kang, and Seungwon Shin “A
Playground for Software-Defined Networking Security” GSIS, School of Computing, KAIST.

5. Jérôme François, LautaroDolberg, Olivier Festor, Thomas EngelSnT “Network Security
through Software Defined Networking: a Survey” - University of Luxembourg.

6. Michelle Suh, SaeHyong Park, Byungjoon Lee, Sunhee Yang “Building Firewall over the
Software-Defined Network Controller” SDN Research Section, ETRI (Electronics and
Telecommunications Research Institute), Korea.

7. Hongxin Hu, Wonkyu Han, Gail-JoonAhn, and ZimingZhao “Towards a reliable SDN
firewall” Clemson University Arizona State University.

8. Michael Jarschel, Thomas Zinner, Tobias Hobfeld, Phuoc Tran-Gia. “Interfaces, attributes
and use cases—a compass for SDN”.

20 N. Pallavi et al.

9. Mininet, an instant virtual platform http://mininet.org/.
10. PeymanKazemian, Nick McKeown, George Varghese “Header Space Analysis: Static

Checking For Networks” Stanford University, UCSD and Yahoo! Research.
11. Juan Wang, Yang Wang, Hongxin Hu, Qingxin Sun, He Shi, and LangjieZeng. “Towards a

Security-Enhanced Firewall Application for Openflow Network”.
12. PeymanKazemian, Michael Chang, HongyiZeng, George Varghese, Nick McKeown, Scott

Whyte “Real Time Network Policy Checking using Header Space Analysis”.
13. Pooja, Manu Sood “SDN and Mininet: Some Basic Concepts” Department of Computer

Science, Himachal Pradesh University, Shimla.
14. Sukhveer Kaur1, Japinder Singh2 and Navtej Singh Ghumman “Network Programmability

Using POX Controller” 3 1,2,3 Department of Computer Science and Engineering, SBS State
Technical Campus, Ferozepur, India.

Detection of Incongruent Firewall Rules and Flow Rules in SDN 21

http://mininet.org/

http://www.springer.com/978-981-10-3173-1

	2 Detection of Incongruent Firewall Rules and Flow Rules in SDN
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Algorithm 1: Matrix Mapper
	3.2 Description of Duo Lock Algorithm
	3.3 Transitive Adjacency Matrix (TA)
	3.4 Algorithm 2: Duo Lock

	4 Conclusion
	References

