
Chapter 2
Hopf Bifurcation in Impulsive Systems

2.1 Hopf Bifurcation of a Discontinuous Limit Cycle

This chapter is organized in the following manner. In the first section, we give the
description of the systems under consideration and prove the theorem of existence
of foci and centers of the nonperturbed system. The main subject of Sect. 2.1.2 is the
foci of the perturbed equation. The noncritical case is considered. In Sect. 2.1.3, the
problem of distinguishing between the center and the focus is solved. Bifurcation of
a periodic solution is investigated in Sect. 2.1.4. The last section consists of examples
illustrating the bifurcation theorem.

2.1.1 The Nonperturbed System

Denote by< x, y > the dot product of vectors x, y ∈ R
2, and ||x || =< x, x >

1
2 , the

norm of a vector x ∈ R
2.Moreover, letR be the set of all real-valued constant 2 × 2

matrices, and I ∈ R be the identity matrix.
D0-system. Consider the following differential equation with impulses

dx

dt
= Ax,

Δx |x∈Γ0 = B0x, (2.1.1)

where Γ0 is a subset of R
2, and it will be described below, A, B0 ∈ R.

The following assumptions will be needed throughout this chapter:

(C1) Γ0 = ∪p
i=1si , where p is a fixed natural number and half-lines si , i = 1,

2, . . . , p, are defined by equations < ai , x >= 0, where ai = (ai1, a
i
2) are

constant vectors. The origin does not belong to the lines (see Fig. 2.1).
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Fig. 2.1 The domain of the
nonperturbed system (2.1.1)
with a vertex which unites
the straight lines si ,
i = 1, 2, . . . , p
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(C2)

A =
(
α − β

β α

)
,

where α, β ∈ R, β �= 0;
(C3) there exists a regular matrix Q ∈ R and nonnegative real numbers k and θ

such that

B0 = kQ

(
cos θ − sin θ
sin θ cos θ

)
Q−1 −

(
1 0
0 1

)
;

We consider every angle for a point with respect to the positive half-line of the
first coordinate axis. Denote s

′
i = (I + B0)si , i = 1, 2, . . . , p. Let γi and ζi

be angles of si and s
′
i , i = 1, 2, . . . , p, respectively,

B0 =
(
b11 b12
b21 b22

)
.

(C4) 0 < γ1 < ζ1 < γ2 < · · · < γp < ζp < 2π, (b11 + 1) cos γi + b12 sin
γi �= 0, i = 1, 2, . . . , p.

If conditions (C1)–(C4) hold, then (2.1.1) is said to be a D0-system.

Exercise 2.1.1 Verify that the origin is a unique singular point of a D0-system and
(2.1.1) is not a linear system.

Exercise 2.1.2 Using the results of the last chapter, prove that D0-system (2.1.1)
provides a B-smooth discontinuous flow.

If we use transformation x1 = r cos(φ), x2 = r sin(φ) in (2.1.1) and exclude the
time variable t,we can find that the solution r(φ, r0)which starts at the point (0, r0),
satisfies the following system:

dr

dφ
= λr,

Δr |φ=γi (mod2π)= kir, (2.1.2)
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where λ = α
β
, the angle-variable φ is ranged over the set

Rφ = ∪∞
i=−∞[∪p−1

j=1 (2π i + ζ j , 2π i + γ j+1] ∪ (2π i + ζp, 2π(i + 1) + γ1]]

and ki = [((b11 + 1) cos(γi ) + b12 sin(γi ))2 + (b21 cos(γi ) + (b22 + 1) sin(γi ))2] 1
2

− 1.Equation (2.1.2) is 2π -periodic, sowe shall consider just the sectionφ ∈ [0, 2π ]
in what follows. That is, the system

dr

dφ
= λr,

Δr |φ=γi = kir, (2.1.3)

is considered with φ ∈ [0, 2π ]φ ≡ [0, 2π ]\ ∪p
i=1 (γi , ζi ]. System (2.1.3) is a sample

of the timescale differential equation with transition condition [38]. We shall reduce
(2.1.3) to an impulsive differential equation [6, 38] for the investigation’s needs.
Indeed, let us introduce a new variable ψ = φ −∑

0<γ j<φ θ j , θ j = ζ j − γ j , with

the range [0, 2π −∑p
i=1 θi ]. We shall call this new variable ψ-substitution. It is

easy to check that upon ψ-substitution, the solution r(φ, r0) satisfies the following
impulsive equation

dr

dψ
= λr,

Δr |ψ=δ j = k jr, (2.1.4)

where δ j = γ j −∑
0<γi<γ j

θi .Solving the last impulsive systemandusing the inverse
of ψ-substitution, one can obtain that the solution r(φ, r0) of (2.1.2) has the form

r(φ, r0) = exp

⎛
⎝λ

⎛
⎝φ −

∑
0<γi<φ

θi

⎞
⎠
⎞
⎠ ∏

0<γi<φ

(1 + ki )r0, (2.1.5)

if φ ∈ [0, 2π ]φ.
Denote

q = exp

(
λ

(
2π −

p∑
i=1

θi

))
p∏

i=1

(1 + ki ). (2.1.6)

Applying the Poincaré return map r(2π, r0) to (2.1.5), one can obtain that the fol-
lowing theorem follows.

Theorem 2.1.1 If

(1) q = 1, then the origin is a center and all solutions of (2.1.1) are periodic with
period T = (2π −∑p

i=1 θi )β
−1;
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(2) q < 1, then the origin is a stable focus;
(3) q > 1, then the origin is an unstable focus of D0-system.

2.1.2 The Perturbed System

Theorem2.1.1 of the last section implies that if conditions (C1)–(C4) are valid, then
each trajectory of (2.1.1) either spirals to the origin or is a discontinuous cycle.More-
over, if the trajectory spirals to the origin, then it spirals to infinity, too. That is, the
asymptotic behavior of the trajectory is very similar to the behavior of trajectories of
the planar linear system of ordinary differential equations with constant coefficients
[91, 126]. In what follows, we will consider how a perturbation may change the
phase portrait of the system.

D-system. Let us consider the following equation:

dx

dt
= Ax + f (x),

Δx |x∈Γ = B(x)x, (2.1.7)

in a neighborhood G of the origin.
The following is the list of conditions assumed for this system:

(C5) Γ = ∪p
i=1li is a set of curves which start at the origin and are determined by

the equations < ai , x > +τi (x) = 0, i = 1, 2, . . . , p. The origin does not
belong to the curves (see Fig. 2.2).

(C6)

B(x) = (k + κ(x))Q

(
cos(θ + υ(x)) − sin(θ + υ(x))
sin(θ + υ(x)) cos(θ + υ(x))

)
Q−1 −

(
1 0
0 1

)
,

(I + B(x))x ∈ G for all x ∈ G;
(C7) { f, κ, v} ⊂ C (1)(G),{τi , i = 1, 2, . . . , p} ⊂ C (2)(G);

Fig. 2.2 The domain of the
perturbed system (2.1.7) near
a vertex which unites the
curves li associated with the
straight lines si ,
i = 1, 2, . . . , p
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(C8) f (x) = o(||x ||), κ(x) = o(||x ||), υ(x) = o(||x ||), τi (x) = o(||x ||2), i = 1,
2, . . . , p ;
Moreover, we assume that the matrices A, Q, the vectors ai , i = 1, 2, . . . , p,
and constants k, θ are the same as in (2.1.1); i.e.,

(C9) The system (2.1.1) is D0-system associated with (2.1.7).

If conditions (C1)–(C9) hold, then the system (2.1.7) is said to be a D-system. If
G is sufficiently small, then conditions (C4) and (C8) imply that none of curves li
intersect itself, they do not intersect each other, and the origin is a unique singular
point of the D-system.

Exercise 2.1.3 Using the results of the last chapter, and Example2.1.2, prove that
D-system defines a B-smooth discontinuous flow.

Assume, without loss of generality, that γi �= π
2 j, j = 1, 3, and transform the

equations in (C5) to the polar coordinates so that li : a1i r cos(φ) + a2i r sin(φ) +
τi (r cos(φ), r sin(φ)) = 0 or

φ = tan−1

(
tan γi − τi

a2i r cos(φ)

)
.

Now, use Taylor’s expansion to get that

li : φ = γi + rψi (r, φ), (2.1.8)

i = 1, 2, . . . , p, where ψi are 2π -periodic in φ, continuously differentiable func-
tions, andψi = O(r). If the point x(t)meets the discontinuity curve li with an angle
θ , then the point x(θ+) belongs to the curve l ′i = {z ∈ R

2|z = (I + B(x))x, x ∈ li }.
The following assertion is very important for the rest of the chapter.

Lemma 2.1.1 Suppose (C7) and (C8) are satisfied. Then the curve l
′
i , 1 ≤ i ≤ p,

is placed between li and li+1, if G is sufficiently small.

Proof Fix i = 1, 2, . . . , p, and assume that si , si+1, li , li+1 are transformed by
the map y = Q−1x into lines s

′′
i , s

′′
i+1, l

′′
i , l

′′
i+1, respectively. Set Li = {z ∈ R

2| z =
Q−1(I + B(Qy))Qy, y ∈ l

′′
i }, ξi = Q−1(I + B0)Qs

′′
i , and let γ

′
i , γ

′
i+1, ζ

′
i be the

angles of straight lines s
′′
i , s

′′
i+1, ξi . We may assume, without loss of general-

ity, that γ
′
i < ζ

′
i < γ

′
i+1. To prove the lemma, it is sufficient to check whether

Li lies between curves l
′′
i , l

′′
i+1. Suppose that 0 < γ

′
i < ζ

′
i < γ

′
i+1 < π

2 . Otherwise,
one can use a linear transformation, which does not change the relation of the
curves. Let c1y1 + c2y2 + l∗(y1, y2) = 0 be the equation of the line l

′′
i .Use the polar

coordinates y1 = ρ cos(φ), y2 = ρ sin(φ) and obtain φ = γ
′
i + ρψ∗(ρ, φ), where

ψ∗(ρ, φ) = O(ρ) and ψ∗ is a 2π -periodic function. If y = (y1, y2) ∈ l
′′
i , then the

point

y+ = Q−1(B(Qy) + I )Qy, (2.1.9)



16 2 Hopf Bifurcation in Impulsive Systems

where y+ = (y+
1 , y+

2 ) belongs to Li .Assume without loss of generality that y+
1 �= 0.

Otherwise, use the condition y+
2 �= 0. Ifwe setρ = (y21 + y22 )

1
2 , φ = tan−1(

y2
y1
), ρ+ =

((y+
1 )2 + (y+

2 )2)
1
2 , φ+ = tan−1(

y+
2

y+
1
), then (2.1.9) implies that

ρ+ = kiρ + ρβ∗(ρ, φ), (2.1.10)

φ+ = φ + θ + γ ∗(ρ, φ), (2.1.11)

where β∗ and γ ∗ are 2π -periodic in φ functions and β∗ = O(ρ), γ ∗ = O(ρ). Let
σ(y1, y2) = c1y1 + c2y2 + l∗(y1, y2). Then,

σ(y+
1 , y+

2 ) = ρ+(c1 cos(φ+) + c2 sin(φ
+) + l∗(ρ+ cos(φ+), ρ+ sin(φ+)) =

ρ+
√
c21 + c22 sin(θ + υ(ρ, φ) − ρψ∗(ρ, ψ)) + l∗(ρ+ cos(φ+), ρ+ sin(φ+)),

where υ(ρ, φ) = υ(Qy). It is readily seen that the sign of σ(ρ+, φ+) is the same as
of sin(θ), if ρ is sufficiently small. Consequently, σ(ρ+, φ+) > 0. Thus, the curve
Li is placed above the curve l

′′
i in the first quarter of the plane Ox1x2. Similarly, one

can show that it is placed below l
′′
i+1. The lemma is proved.

The last lemma guarantees that if G is sufficiently small, then every nontrivial
trajectory of the system (2.1.7) meets each of the lines li , i = 1, 2, . . . , p, precisely
once within any time interval of length T .

2.1.3 Foci of the D-System

Utilize the polar coordinates x1 = r cos(φ), x2 = r sin(φ) to reduce the differential
part of (2.1.7) to the following form:

dr

dφ
= λr + P(r, φ).

It is known [60, 91, 173, 180] that P(r, φ) is 2π -periodic, continuously dif-
ferentiable function, and P = o(r). Set x+ = (x+

1 , x+
2 ) = (I + B(x))x, x+ =

r+(cosφ+, sin φ+), x̃+ = (x̃+
1 , x̃+

2 ) = (I + B(0))x , where x = (x1, x2) ∈ li , i =
1, 2, . . . , p. One can find that the inequality ||x+ − x̃+|| ≤ ||B(x) − B(0)||||x ||
implies r+ = r + kir + ω(r, φ). Use the relation between x+

2

x+
1
and x̃+

2

x̃+
1
and condi-

tion (C5) to obtain that φ+ = φ + θi + γ (r, φ). Functions ω, γ are 2π -periodic in
φ and ω = o(r), γ (r, φ) = o(r). Finally, (2.1.7) has the form
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dr

dφ
= λr + P(r, φ),

Δr |(ρ,φ)∈li = kir + ω(r, φ),

Δφ |(ρ,φ)∈li = θi + γ (r, φ). (2.1.12)

It is convenient to introduce the following version of B-equivalence.
Introduce the following system:

dρ

dφ
= λρ + P(ρ, φ),

Δρ |φ=γi = kiρ + wi (ρ),

Δφ |φ=γi = θi , (2.1.13)

where all elements, except wi , i = 1, 2, . . . , p, are the same as in (2.1.12) and the
domain of (2.1.13) is [0, 2π ]φ . Functions wi will be defined below.

Let r(φ, r0), r(0, r0) = r0, be a solution of (2.1.12) and φi be the angle where the
solution intersects li .Denote by χi = φi + θi + γ (r(φi , r0), φi ) the angle of r(φ, r0)
after the jump.

We shall say that systems (2.1.12) and (2.1.13) are B-equivalent in G if there
exists a neighborhood G1 ⊂ G of the origin such that for every solution r(φ, r0) of
(2.1.12) whose trajectory is in G1, there exists a solution ρ(φ, r0), ρ(0, r0) = r0, of
(2.1.13) which satisfies the relation

r(φ, r0) = ρ(φ, r0), φ ∈ [0, 2π ]φ\ ∪p
i=1 { ˆ[φi , γi , ] ∪ ˆ[ζi , χi ]}, (2.1.14)

and, conversely, for every solution ρ(φ, r0) of (2.1.13) whose trajectory is in G1,
there exists a solution r(φ, r0) of (2.1.12) which satisfies (2.1.14).

We will define functions wi such that systems (2.1.12) and (2.1.13) are B-
equivalent in G, if the domain is sufficiently small.

Fix i. Let r1(φ, γi , ρ), r1(γi , γi , ρ) = ρ, be a solution of the equation

dr

dφ
= λr + P(r, φ) (2.1.15)

and φ = ηi be the meeting angle of r1(φ, γi , ρ) with li . Then,

r1(ηi , γi , ρ) = exp(λ(ηi − γi ))ρ +
∫ ηi

γi

exp(λ(ηi − s))P(r1(s, γi , ρ), s)ds.

Let η1i = ηi + θi + γ (r1(ηi , γi , ρ), ηi ), ρ1 = (1 + ki )r1(ηi , γi , ρ) + ω(r(ηi , γi , ρ),
ηi ), and r2(φ, η1i , ρ

1) be the solution of system (2.1.15),

r2(ζi , η
1
i , ρ

1) = exp(λ(ζi − η1i ))ρ
1 +

∫ ζi

η1i

exp(λ(ζi − s))P(r2(s, η
1
i , ρ

1), s)ds.
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Introduce

wi (ρ) = r2(ζi , η
1
i , ρ

1) − (1 + ki )ρ = exp(λ(ζi − η1i ))[(1 + ki )(exp(λ(ηi − γi ))ρ+
∫ ηi

γi

exp(λ(ηi − s))P(r1(s, γi , ρ), s)ds) + ω(r1(ηi , γi , ρ), ηi )]+

∫ ζi

η1i

exp(λ(ζi − s))P(r2(s, η
1
i , ρ

1), s)ds − (1 + k)ρ

or, if simplified,

wi (ρ) = (1 + k)[exp(−λγ (r1(ηi , γi , ρ), ηi )) − 1]ρ +
(1 + k)

∫ ηi

γi

exp(λ(ζi − θi − s − ργ (r1(ηi , γi , ρ), ηi )))P(r1(s, γi , ρ), s)ds +
∫ ζi

η1i

exp(λ(ζi − s))P(r2(s, η
1
i , ρ

1), s)ds +

exp(λ(ζi − η1i ))ω(r1(ηi , γi , ρ), ηi ). (2.1.16)

Differentiating (2.1.8) and (2.1.16), one can find that

dηi
dρ

=
∂r1
∂ρ

[ψi + r1
∂ψi
∂r ]

1 − (λr1 + P)[ψi + r1
∂ψi
∂r ] − r1

∂ψi
∂φ

,
dη1i
dρ

= dηi
dρ

(
1 + ∂γ

∂φ

)
+ ∂γ

∂r

∂r1
∂ρ

,

dwi

dρ
= (1 + ki )[e−λγ − 1] − λ(1 + ki )e

−λγ

(
∂γ

∂r

∂r1
∂ρ

+ ∂γ

∂φ

dηi
dρ

)
ρ +

(1 + ki )e
λ(ζi−θi−ηi−γ )P

dηi
dρ

+

(1 + ki )
∫ ηi

γi

eλ(ζi−θ−s−γ )

{
−λ

(
∂γ

∂r

∂r1
∂ρ

+ ∂γ

∂φ

dηi
dρ

)
P − ∂P

∂r

∂r1
∂ρ

− ∂P

∂φ

dηi
dρ

}
ds +

∫ ζi

η1i

eλ(ζi−s) ∂P(r2(s, η1i , ρ
1), s)

∂r

∂r2
∂ρ

ds − eλ(ζi−η1i )P(ρ1, η1i )
∂η1i

∂ρ
+

eλ(ζi−η1i )

[
−∂η1i

∂ρ
ω + ∂ω

∂r

∂r1
∂ρ

+ ∂ω

∂φ

dηi
dρ

]
. (2.1.17)

Analyzing (2.1.16) and (2.1.17), one can prove that the following two lemmas are
valid.

Lemma 2.1.2 If conditions (C1)–(C5) are valid then wi is a continuously differen-
tiable function, and wi (ρ) = o(ρ), i = 1, 2, . . . , p.

Lemma 2.1.3 The systems (2.1.12) and (2.1.13) are B-equivalent if G is sufficiently
small.
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Theorem 2.1.2 Suppose that (C1)–(C6) are satisfied and q < 1 (q > 1). Then the
origin is a stable (unstable) focus of system (2.1.7).

Proof Let r(φ, r0), r(0, r0) = r0,be the solutionof (2.1.12), andρ(φ, r0), ρ(0, r0) =
r0, be the solution of (2.1.13). Using ψ-substitution, one can obtain that

ρ(φ, r0) = exp(λφ)

{
Πm

i=1(1 + ki ) exp

(
−λ

m∑
s=1

θs

)
r0+

Πm
i=1(1 + ki ) exp

(
−λ

m∑
s=1

θs

)∫ γ1

0
exp(−λu)Pdu +

Πm
i=2(1 + ki ) exp

(
−λ

m∑
s=2

θs

)∫ γ2

ζ1

exp(−λu)Pdu + · · ·
∫ φ

ζm

exp(−λu)Pdu + Πm
i=2(1 + ki ) exp

(
−λ

m∑
s=2

θs

)
w1 +

Πm
i=3(1 + ki ) exp

(
−λ

m∑
s=3

θs

)
w2 . . . + exp(−λζm)wm

}
, (2.1.18)

where φ ∈ [0, 2π ]φ, P = P(ρ(φ, r0), φ),wi = wi (ρ(γi , r0). Now, applying Theo-
rem 6.1.1 in [1], conditions (C4), (C5) and Lemma2.1.2, one can find that the
solution ρ(ψ, r0) is differentiable in r0 and the derivative

∂ρ(φ,r0)
∂r0

at the point (2π, 0)
is equal to q. Since (2.1.12) and (2.1.13) are B-equivalent, it follows that

∂r(2π, 0)

∂r0
= q

and the proof is completed.

2.1.4 The Center and Focus Problem

Throughout this section,we assume that q = 1.That is, the critical case is considered.
Functions f, κ, v, τi , i = 1, 2, . . . , p, are assumed to be analytic in G. By condition
(C8), Taylor’s expansions of functions f, κ , and v start with members of order not
less than 2, and the expansions of τi , i = 1, 2, . . . , p, start with members of order
not less than 3. First, we investigate the problem for (2.1.13) all of whose elements
are analytic functions, if ρ is sufficiently small. Theorem 6.4.2 in [1] implies that
wi , i = 1, 2, . . . , p, are analytic functions in ρ and the solution ρ(φ, r0) of equation
(2.1.13) has the following expansion:
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ρ(φ, r0) =
∞∑
i=0

ρi (φ)r
i
0, (2.1.19)

where φ /∈ (γi , ζi ], i = 1, 2, . . . , p, ρ0(φ) = 0, q = ρ1(φ) = 1. One can define the
Poincaré return map

ρ(2π, r0) =
∞∑
i=1

air
i
0, (2.1.20)

where ai = ρi (2π), i ≥ 1, a1 = q = 1. The expansions exist, see Sect. 6.4 of the
book [1], such that

P(ρ, φ) =
∞∑
i=2

Pi (φ)ρ
i ,

wj (ρ) =
∞∑
i=2

wjiρ
i , (2.1.21)

where Pi (φ),wji (φ), j ≥ 2, are 2π -periodic functionswhich can be definedbyusing
(2.1.12). The coefficient ρ j (φ), j ≥ 2, is the solution of the system

dρ

dφ
= Pj (φ),

Δρ |φ �=γi = wji ,

Δφ |φ �=γi = θi , (2.1.22)

with the initial condition ρ j (0) = 0. Hence, coefficients of (2.1.20) are equal to

a j =
∫ γ1

0
Pj (φ)dφ +

p−1∑
i=1

∫ γi+1

ζi

Pj (φ)dφ +
∫ 2π

ζp

Pj (φ)dφ +
p∑

i=1

wji .

(2.1.23)

From (2.1.20) and (2.1.23), it follows that the following lemma is true.

Lemma 2.1.4 Let q = 1 and the first nonzero element of the sequence a j , j ≥ 2,
be negative (positive), then the origin is a stable (unstable) focus of (2.1.13). If
a j = 0, j ≥ 2, then the origin is a center of (2.1.13).

B-equivalence of systems (2.1.12) and (2.1.13) implies immediately that the follow-
ing theorem is valid.

Theorem 2.1.3 Let q = 1 and the first nonzero element of the sequence a j , j ≥ 2,
be negative (positive), then the origin is a stable (unstable) focus of the equation
(2.1.7). If a j = 0 for all j ≥ 2, then the origin is a center of (2.1.7).
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2.1.5 Bifurcation of a Discontinuous Limit Cycle

We consider the following system:

dx

dt
= Ax + f (x) + μF(x, μ),

Δx |x∈Γ (μ) = B(x, μ)x . (2.1.24)

To establish the Hopf bifurcation theorem, we need the following assumptions:

(A1) The set Γ (μ) = ∪p
i=1li (μ) is a union of curves in G, which start at the origin

and do not include it, li : (ai , x) + τi (x) + μν(x, μ) = 0, 1 ≤ i ≤ p;
(A2) There exist a matrix Q(μ) ∈ R, Q(0) = Q, analytic in (−μ0, μ0), and real

numbers γ, χ such that Q−1(μ)B(x, μ)Q(μ) =

(k + μγ + κ(x))

(
cos(θ + μχ + υ(x)) − sin(θ + μχ + υ(x))
sin(θ + μχ + υ(x)) cos(θ + μχ + υ(x))

)
−
(
1 0
0 1

)
;

(A3) Associated with (2.1.24) systems

dx

dt
= Ax,

Δx |x∈Γ (0) = B0x, (2.1.25)

and

dx

dt
= Ax + f (x),

Δx |x∈Γ (0) = B(x, 0)x, (2.1.26)

are D0-system and D-system, respectively;
(A4) Functions κ, υ : G → R

2 and F, ν : G × (−μ0, μ0) → R
2 are analytic in

G × (−μ0, μ0);
(A5) F(0, μ) = 0, ν(0, μ) = 0, for all μ ∈ (−μ0, μ0).

Additionally, we shall need the following system:

dx

dt
= A(μ)x,

Δx |x∈Γ0(μ) = B(0, μ)x, (2.1.27)

where A(μ) = A + μ
∂F(0,μ)

∂x , and Γ0(μ) = ∪p
i=1mi with

mi :
(
ai + μ

∂ν(0, μ)

∂x
, x

)
= 0, i = 1, 2, . . . , p.
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The polar transformation takes (2.1.24) to the following form:

dr

dφ
= λr + P(r, φ, μ),

Δr |(r,φ)∈li (μ)= kir + ω(r, φ, μ),

Δφ |(r,φ)∈li (μ)= θi + rγ (r, φ, μ). (2.1.28)

The functions wi (ρ, μ) can be defined in the same manner as in (2.1.16) such that
the system

dρ

dφ
= λρ + P(ρ, φ, μ), φ �= γi (μ),

Δρ |φ=γi (μ)= kiρ + wi (ρ, μ),

Δφ |φ=γi (μ)= θi (μ), (2.1.29)

where γi (μ), i = 1, 2, . . . , p, are angles of mi , is B-equivalent to (2.1.28).
Similar to (2.1.6), one can define the function

q(μ) = exp(λ(μ)(2π −
p∑

j=1

(ζ j (μ) − γ j (μ))Π1
j=p(1 + k j (μ)) (2.1.30)

for system (2.1.27). Theorem6.4.2 of Chap.6 in [1] implies that q(μ) is an analytic
function.

Theorem 2.1.4 Assume that q(0) = 1, q
′
(0) �= 0 and the origin is a focus of

(2.1.26). Then, for sufficiently small r0, there exists a continuous function μ =
δ(r0), δ(0) = 0, such that the solution r(φ, r0, δ(r0)) of (2.1.28) is periodic func-
tion with period 2π. The period of the corresponding solution of (2.1.24) is T =
(2π −∑p

i=1 θi )β
−1 + o(|μ|). Moreover, if the origin is a stable focus of (2.1.26)

then the closed trajectory is a limit cycle.

Proof If ρ(φ, r0, μ) is a solution of (2.1.29), then by Theorem 6.4.2 in [1] we have
that

ρ(2π, r0, μ) =
∞∑
i=1

ai (μ)r i0,

where ai (μ) = ∑∞
j=0 ai jμ

j , a10 = q(0) = 1, a11 = q ′(0) �= 0. Define the displace-
ment function

V (r0, μ) = ρ(2π, r0, μ) − r0 = q ′(0)μr0 +
∞∑
i=2

ai0r
i
0 + r0μ

2G1(r0, μ) + r20μG2(r0, μ),
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where G1,G2 are functions analytic in a neighborhood of (0, 0). The bifurcation
equation is V (r0, μ) = 0. Canceling by r0, one can rewrite the equation as

H (r0, μ) = 0, (2.1.31)

where

H (r0, μ) = q ′(0)μ +
∞∑
i=2

ai0r
i−1
0 + μ2G1(r0, μ) + r0μG2(r0, μ)

Since

H (0, 0) = 0,
∂H (0, 0)

∂μ
= q ′(0) �= 0,

for sufficiently small r0, there exists a function μ = δ(r0) such that r(φ, r0, δ(r0))
is a periodic solution. If conditions ai0 = 0, i = 2, . . . , l − 1, and al0 �= 0 are valid,
then one can obtain from (2.1.31) that

δ(r0) = − al0
q ′(0)

rl−1
0 +

∞∑
i=l

δi r
i
0. (2.1.32)

By analysis of the latter expression, one can conclude that the bifurcation of periodic
solutions emerges if the focus is stable with μ = 0 and unstable with μ �= 0 and
conversely. If ρ(φ) = ρ(φ, r̄0, μ̄) is a periodic solution of (2.1.29), then it is known
that the trajectory is a limit cycle if

∂V (r̄0, μ̄)

∂r0
< 0. (2.1.33)

We have that

∂V (r0, μ)

∂r0
= q ′(0)μ +

∞∑
i=2

iai0r
i−1
0 + μ2G1(r0, μ) + 2r0μG2(r0, μ).

Let al0 be the first nonzero element among ai0 and al0 < 0. Using (2.1.32), one can
obtain that

∂V (r̄0, μ̄)

∂r0
= (l − 1)al0r̄

l−1
0 + Q(r̄0),

where Q starts with a member whose order is not less than l.Hence, (2.1.33) is valid.
Now, B-equivalence of (2.1.28) and (2.1.29) proves the theorem.
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Fig. 2.3 A Hopf bifurcation
diagram of an ordinary
differential equation

Fig. 2.4 A Hopf bifurcation
diagram of a discontinuous
dynamical system

Remark 2.1.1 (a). It is important to notice that the bifurcation theorem can be
obtained by applying the results in [132] and theorems of Chap.6 of [1]. We fol-
low the approach which is focused on the expansions of solutions [173].

(b).To illustrate that discontinuous dynamical systemsmay providemore interest-
ing opportunities than continuous dynamics, let us compare the bifurcation diagrams
of an ordinary differential equation, Fig. 2.3, and a discontinuous dynamical system
of type (2.1.24), Fig. 2.4. One can see that the first diagram resembles a bud, and the
second one a rose. They demonstrate that a theory of differential equations flourishes
if a discontinuity is involved in analysis.
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2.1.6 Examples

Example 2.1.1 Consider the following system

x
′
1 = (2 + μ)x1 − x2 + x21 x2,

x
′
2 = x1 + (2 + μ)x2 + 3x31 x2,

Δx1|x∈l =
(
(κ + μ2) cos

(π
6

)
− 1

)
x1 − (κ + μ2) sin

(π
6

)
x2,

Δx2|x∈l = (κ + μ2) sin
(π
6

)
x1 +

(
(κ + μ2) cos

(π
6

)
− 1

)
x2, (2.1.34)

where κ = e− 11π
6 , and the curve l is given by the equation x2 = x31 , where x1 >

0. One can define, using (2.1.30), that q(μ) = (κ + μ2) exp((2 + μ) 11π6 ), q(0) =
κ exp( 11π3 ) = 1, q ′(0) = − 11π

6 �= 0. Thus, by Theorem2.1.4, system (2.1.34) has a
periodic solution with period ≈ 11π

12 if |μ| is sufficiently small.

Example 2.1.2 Let the following system be given

x
′
1 = (μ − 1)x1 − x2, x

′
2 = x1 + (μ − 1)x2,

Δx1|x∈l =
(
(κ − x21 − x22 ) cos

(π
4

)
− 1

)
x1 − (κ − x21 − x22 ) sin

(π
4

)
x2,

Δx2|x∈l = (κ − x21 − x22 ) sin
(π
4

)
x1 +

(
(κ − x21 − x22 ) cos

(π
4

)
− 1

)
x2,

(2.1.35)

where l is a curve given by the equation x2 = x1 + μx21 , x1 > 0, κ = exp( 7π4 ).

Using (2.1.30) one can find that q(μ) = κ exp((μ − 1) 7π4 ), q(0) = κ exp(− 7π
4 ) =

1, q ′(0) = 7π
4 �= 0. Moreover, one can see that for the associated D-system

x
′
1 = −x1 − x2, x

′
2 = x1 − x2,

Δx1|x∈s =
(
(κ − x21 − x22 ) cos

(π
4

)
− 1

)
x1 − (κ − x21 − x22 ) sin

(π
4

)
x2,

Δx2|x∈s = (κ − x21 − x22 ) sin
(π
4

)
x1 +

(
(κ − x21 − x22 ) cos

(π
4

)
− 1

)
x2,

(2.1.36)

where s is given by the equation x2 = x1, x1 > 0, the origin is a stable focus.
Indeed, using polar coordinates, denote by r(φ, r0) the solution of (2.1.36) start-
ing at the angle φ = π

4 . We can define that r( π4 + 2πn, r0) = (κ − r2( π4 + 2π(n −
1), r0)) exp(− 7π

4 ). From the last expression, it is easily seen that the sequence
rn = r( π4 + 2πn, r0) is monotonically decreasing and there exists a limit of rn .
Assume that rn → σ �= 0. Then, it implies that there exists a periodic solution of
(2.1.36) and σ = (κ − σ 2) exp(− 7π

4 )σ which is a contradiction. Thus, σ = 0. Con-
sequently, the origin is a stable focus of (2.1.36), and by Theorem2.1.4 the system
(2.1.35) has a limit cycle with period ≈ 7π

4 if μ > 0 is sufficiently small.
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2.2 3D Discontinuous Cycles

We consider three-dimensional discontinuous dynamical systems with nonfixed
moments of impacts. Existence of the center manifold is proved for the system.
The result is applied for the extension of the planar Hopf bifurcation theorem in
Sect. 2.1. Illustrative examples are constructed for the theory.

2.2.1 Introduction

Dynamical systems are used to describe the real-world motions using differential
(continuous time) or difference (discrete time) equations. In the last several decades,
the need for discontinuous dynamical systems has been increased because they,
often, describe the model better when the discontinuous and continuous motions are
mingled. This need has made scientists to improve and develop the theory of these
systems. Many new results have raised. One must mention that namely systems with
not prescribed time of discontinuities were, apparently, introduced for investigation
of the real world firstly [73, 185], and this fact emphasizes very much the practical
sense of the theory. The problem is one of the most difficult and interesting subjects
of investigations [107, 117, 157, 158, 165, 177, 208]. It was emphasized in early
stage of theory’s development [176].

In the previous section, the Hopf bifurcation for the planar discontinuous dynam-
ical system has been studied. Here, we extend this result to three-dimensional
space based on the center manifold. The advantage is that we use the method of
B-equivalence [1, 5] as well as the results of timescales which are developed in [38].

This section is organized as follows. In the next section, we start to analyze
the nonperturbed system. Section2.2.3 describes the perturbed system. The center
manifold is given in Sect. 2.2.4. In Sect. 2.2.5, the bifurcation of periodic solutions
is studied. Section2.2.6 is devoted to examples in order to illustrate the theory.

2.2.2 The Nonperturbed System

Let N,R be the sets of all natural and real numbers, respectively, and R
2 be a real

euclidean space. Denote by 〈x, y〉 the dot product of vectors x, y ∈ R
2. Let ‖x‖ =

〈x, x〉1/2 be the norm of a vector x ∈ R
2, R

2×2 be the set of real-valued constant
2 × 2 matrices, and I ∈ R

2×2 be the identity matrix. We shall consider in R
3 the

following dynamical system:
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dx

dt
= Ax,

dz

dt
= b̂z, (x, z) /∈ Γ0,

Δx |(x,z)∈Γ0= B0x,
Δz |(x,z)∈Γ0= c0z,

(2.2.37)

where A, B0 ∈ R
2×2, b̂, c0 ∈ R, Γ0 is a subset of R

3 and will be described below.
The phase point of (2.2.37) moves between two consecutive intersections with the set
Γ0 along one of the trajectories of the system x ′ = Ax, z′ = b̂z. When the solution
meets the set Γ0 at the moment τ, the point x(t) has a jump Δx |τ := x(τ+) − x(τ )
and the point z(t) has a jump Δz |τ := z(τ+) − z(τ ). Thus, we suppose that the
solutions are left continuous functions.

From now on, G denotes a neighborhood of the origin.
The following assumptions will be needed:

(C1) Γ0 = ⋃p
i=1 Pi , p ∈ N, where Pi = �i × R, �i are half-lines starting at the

origin defined by 〈ai , x〉 = 0 for i = 1, . . . , p and ai = (ai1, a
i
2) ∈ R

2 are con-
stant vectors;

(C2) A =
[
α −β

β α

]
, where β �= 0;

(C3) There exists a regular matrix Q ∈ R
2×2 and nonnegative real numbers k and θ

such that

B0 = kQ

[
cos θ − sin θ
sin θ cos θ

]
Q−1 −

[
1 0
0 1

]
.

For the sake of brevity, in what follows, every angle for a point or a line is
considered with respect to the half-line of the first coordinate axis in x-plane.
Denote �′

i = (I + B0)�i , i = 1, . . . , p. Let γi and ζi be the angles of �i and �′
i

for i = 1, . . . , p, respectively, and B0 =
[
b11 b12
b21 b22

]
;

(C4) 0 < γ1 < ζ1 < γ2 < · · · < γp < ζp < 2π, and (b11 + 1) cos γi + b12 sin γi �=
0 for i = 1, . . . , p.

In Fig. 2.5, the discontinuity set and a trajectory of the system (2.2.37) are shown.
The planes Pi form the set Γ0, and each P ′

i is the image of Pi under the transfor-
mation (I + B)x .

The system (2.2.37) is said to be a D0-system if conditions (C1)–(C4) hold. It is
easy to see that the origin is a unique singular point of D0-system and (2.2.37) is
not linear.

Let us subject (2.2.37) to the transformation x1 = r cosφ, x2 = r sin φ, z = z and
exclude the time variable t. The solution (r(φ, r0, z0), z(φ, r0, z0)) which starts at
the point (0, r0, z0) satisfies the following system in cylindrical coordinates:
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Fig. 2.5 The discontinuity
set and a trajectory of
(2.2.37)

x

x

1

2

z

P P

P

P

ii

i+1

i+1
'

'

dr

dφ
= λr,

dz

dφ
= bz, φ �= γi (mod 2π),

Δr |φ=γi (mod 2π)= kir,
Δz |φ=γi (mod 2π)= c0z,

(2.2.38)

where λ = α/β, b = b̂/β, and the variable φ is ranged over the timescale

Rφ = R \
∞⋃

i=−∞

p⋃
j=1

(2π i + γ j , 2π i + ζ j ]

and

ki = [
((b11 + 1) cos γi + b12 sin γi )

2 + (b21 cos γi + (b22 + 1) sin γi )
2]1/2 − 1.

Equation (2.2.38) is 2π -periodic, so, in what follows, we shall consider just the
section [0, 2π ]. That is, the system
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dr

dφ
= λr,

dz

dφ
= bz, φ �= γi ,

Δr |φ=γi = kir,
Δz |φ=γi = c0z,

(2.2.39)

is provided for discussion, where φ ∈ [0, 2π ]φ = [0, 2π ] \ ∪p
i=1(γi , ζi ]. System

(2.2.39) is a sample of timescale differential equation. Let us use theψ-substi tution,
ϕ = ψ(φ) = φ −∑

0<γ j<φ θ j , θ j = ζ j − γ j , which was introduced and developed

in [6, 38]. The range of this new variable is [0, 2π −∑p
i=1 θi ].

It is easy to check that upon ψ-substitution (2.2.39) reduces to the following
impulsive equations:

dr

dϕ
= λr,

dz

dϕ
= bz, ϕ �= ϕi ,

Δr |ϕ=ϕi = kir,
Δz |ϕ=ϕi = c0z,

(2.2.40)

where ϕi = ψ(γi ). Solving (2.2.40) as an impulsive system [156, 215] and using
ψ-substitution, one can obtain that a solution of (2.2.39) is of the form

r(φ) = exp

⎛
⎝λ

⎛
⎝φ −

∑
0<γi<φ

θi

⎞
⎠
⎞
⎠
⎡
⎣ ∏

0<γi<φ

(1 + ki )

⎤
⎦ r0, (2.2.41)

z(φ) = exp

⎛
⎝b

⎛
⎝φ −

∑
0<γi<φ

θi

⎞
⎠
⎞
⎠
⎡
⎣ ∏

0<γi<φ

(1 + c0)

⎤
⎦ z0, (2.2.42)

for φ ∈ [0, 2π ]φ. Denote

q1 = exp

(
λ

(
2π −

p∑
i=1

θi

))
p∏

i=1

(1 + ki ), (2.2.43)

q2 = exp

(
b

(
2π −

p∑
i=1

θi

))
p∏

i=1

(1 + c0). (2.2.44)

Depending on q1 and q2, we may see that the following lemmas are valid.

Lemma 2.2.1 Assume that q1 = 1. Then, if

(i) q2 = 1 then all solutions are periodic with period T = (
2π −∑p

i=1 θi
)
β−1;

(ii) q2 = −1 then a solution that starts to its motion on x1x2-plane is T -periodic
and all other solutions are 2T -periodic;
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(iii) | q2 |> 1 then a solution that starts to its motion on x1x2-plane is T -periodic
and all other solutions lie on the surface of a cylinder and they move away the
origin (i.e., zero solution is unstable);

(iv) | q2 |< 1 then a solution that starts to its motion on x1x2-plane is T -periodic
and all other solutions lie on the surface of a cylinder and they move toward
the x1x2-plane (i.e., zero solution is stable).

Lemma 2.2.2 Assume that q1 < 1. Then, if

(i) | q2 |< 1 all solutions will spiral toward the origin, i.e., origin is an asymptot-
ically stable fixed point;

(ii) | q2 |> 1 a solution that starts to its motion on x-plane spirals toward the origin
and a solution that starts to its motion on z-axis will move away from the origin.
In this case the origin is half stable (or conditionally stable);

(iii) q2 = 1(q2 = −1) then a solution that starts to its motion on z-axis is periodic
with period T (2T ) and all other solutions will approach to z-axis.

Lemma 2.2.3 Assume that q1 > 1. Then, if

(i) | q2 |< 1 then origin is a stable focus;
(ii) | q2 |> 1 then origin is an unstable focus;
(iii) q2 = 1(q2 = −1) then a solution that starts to its motion on z-axis is periodic

with period T (2T ) and all other solutions will approach to z-axis.

We note that when q2 = −1 (this means z may be negative, too), the solutions
starting their motion out of x1x2-plane will move above and below the x1x2-plane.
More explicitly, if a solution starts to its motion above the x-plane, then after the time
corresponding to an angle of T, it will be below the x-plane; in the next duration
corresponding to an angle T, it will try to move above x-plane; and at the end of that
duration, it will be above the x-plane, and so on.

From now on, we assume that q1 = 1 and | q2 |< 1.

2.2.3 The Perturbed System

Consider the system

dx

dt
= Ax + f (x, z),

dz

dt
= b̂z + g(x, z), (x, z) /∈ Γ,

Δx |(x,z)∈Γ = B(x)x,
Δz |(x,z)∈Γ = c(z)z,

(2.2.45)

where the followings are assumed to be true.
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(C5) Γ = ⋃p
i=1 Si , where Si = si × R and the equation of si is given by si :

〈ai , x〉 + τi (x) = 0, for i = 1, . . . , p;
(C6)

B(x) = (k + κ(x))Q

[
cos(θ + Θ(x)) − sin(θ + Θ(x))
sin(θ + Θ(x)) cos(θ + Θ(x))

]
Q−1 −

[
1 0
0 1

]

and c(z) = c0 + c̃(z);
(C7) Functions f, g, κ, c̃, and Θ are in C1 and τi is in C2;
(C8) f (x, z) = O(‖(x, z)‖), g(x, z) = O(‖(x, z)‖), κ(x) = O(‖x‖), Θ(x) =

O(‖x‖), c̃(z) = O(z), τi (x) = O(‖x‖2), i = 1, . . . , p.

Moreover, it is supposed that the matrices A, Q, the vectors ai , i = 1, . . . , p, con-
stants k, θ are the same as for (2.2.37), i.e.,

(C9) The associated with (2.2.45) is D0 system.

Remark 2.2.1 Conditions (C5) and (C6) imply that surfacesSi do not intersect each
other except on z-axis and neither of them intersects itself.

The system (2.2.45) is said to be a D-system if the conditions (C1)–(C8) hold.
In what follows, we assume without loss of generality that γi �= π

2 j, j = 1, 2, 3.
Then, one can transform the equation in (C5) to the polar coordinates so that si :
a1i r cosφ + a2i r sin φ + τi (r cosφ, r sin φ) = 0 and, hence

φ = tan−1

(
tan γi − τi (r cosφ, r sin φ)

a2i r cosφ

)
.

Using Taylor expansion gives that the previous equation can be written, for suffi-
ciently small r, as

si : φ = γi + rΨi (r, φ), i = 1, . . . , p

where functionsΨi are 2π -periodic inφ, continuously differentiable andΨi = O(r).
If the phase point (x1(t), x2(t), z(t)) meets the discontinuity surface Si at the

angle θ , then after the jump the point (x1(θ+), x2(θ+), z(θ+)) will belong to the
surface S ′

i = {(u, v) ∈ R
3 : u = (I + B(x))x, v = (1 + c0)z + c(z), (x, z) ∈ Si }.

For the remaining part of this section, the following assertion is very important and
the proof can be found in [6].

Lemma 2.2.4 If the conditions (C7) and (C8) are valid then the surfaceS ′
i is placed

between the surfaces Si and Si+1 for every i if G is sufficiently small.

Using the cylindrical coordinates x1 = r cosφ, x2 = r sin φ, z = z, one can find
that the differential part of (2.2.45) has the following form:

dr

dφ
= λr + P(r, φ, z),

dz

dφ
= bz + Q(r, φ, z),

(2.2.46)
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where, as is known [218], the functions P(r, φ, z) and Q(r, φ, z) are
2π -periodic in φ, continuously differentiable, and P = O(r, z), Q = O(r, z).
Denote x+ = (x+

1 , x+
2 ) = (I + B(x))x, x+ = r+(cosφ+, sin φ+), x̃+ = (x̃+

1 ,

x̃+
2 ) = (I + B(0))x, where x = (x1, x2) ∈ si , i = 1, . . . , p. The inequality ‖x+ −
x̃+‖ ≤ ‖B(x) − B(0)‖ · ‖x‖ implies that r+ = (1 + ki )r + ω(r, φ).Moreover, using

the relation x+
2

x+
1
and x̃+

2

x̃+
1
and condition (C5), one can conclude that φ+ = φ + θi +

γ (r, φ). Functions ω and γ are 2π -periodic in φ and ω = O(r), γ = O(r). Finally,
transformed system (2.2.45) is of the following form:

dr

dφ
= λr + P(r, φ, z),

dz

dφ
= bz + Q(r, φ, z), (r, φ, z) /∈ Γ,

Δr |(r,φ)∈si = kir + ω(r, φ),
Δφ |(r,φ)∈si = θi + γ (r, φ),
Δz |(r,φ)∈si = c0z + c̃(z).

(2.2.47)

Let us introduce the following system besides (2.2.47):

dρ

dφ
= λρ + P(ρ, φ, z),

dz

dφ
= bz + Q(ρ, φ, z), φ �= γi ,

Δρ |φ=γi = kiρ + W 1
i (ρ, z),

Δφ |φ=γi = θi ,

Δz |φ=γi = c0z + W 2
i (ρ, z),

(2.2.48)

where all elements, except for Wi = (W 1
i ,W

2
i ), i = 1, . . . , p, are the same as in

(2.2.47) and the domain of (2.2.48) is [0, 2π ]φ. We shall define the functions Wi

below.
Let (r(φ, r0, z0), z(φ, r0, z0)) be a solution of (2.2.47) φi be the angle where

the phase point intersectsSi .Denote also by χi = φi + θi + γ (r(φi , r0, z0), φi ) the
angle where the phase point has to be after the jump.

Further ˆ(α, β], {α, β} ⊂ R denotes the oriented interval, that is

ˆ(α, β] =
{
(α, β] if α ≤ β,

(β, α] otherwise.

Definition 2.2.1 We shall say that systems (2.2.47) and (2.2.48) are B-equivalent in
G if for every solution (r(φ, r0, z0), z(φ, r0, z0)) of (2.2.47) whose trajectory is in
G for all φ ∈ [0, 2π ]φ there exists a solution (ρ(φ, r0, z0), z(φ, r0, z0)) of (2.2.48)
which satisfies the relation

r(φ, r0, z0) = ρ(φ, r0, z0), φ ∈ [0, 2π ]φ \
p⋃

i=1

{ ˆ
(φi , γi ] ∪ ˆ(ζi , χi ]}, (2.2.49)
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and, conversely, for every solution (ρ(φ, r0, z0), z(φ, r0, z0)) of (2.2.48) whose tra-
jectory is in G, there exists a solution (r(φ, r0, z0), z(φ, r0, z0)) of (2.2.47) which
satisfies (2.2.49).

Fix i = 1, . . . , p. Let (r1(φ), z1(φ)), (r1(γi ), z1(γi )) = (ρ, z), be a solution of

dr

dφ
= λr + P(r, φ, z),

dz

dφ
= bz + Q(r, φ, z),

(2.2.50)

and let φ = ηi be the meeting angle of the solution withPi . Then

r1(ηi ) = eλ(ηi−γi )ρ +
∫ ηi

γi

eλ(ηi−s)P(r1(s), s, z1(s))ds,

z1(ηi ) = eb(ηi−γi )z +
∫ ηi

γi

eb(ηi−s)Q(r1(s), s, z1(s))ds.

Letη′
i = ηi + θi + γ (r1(ηi ), ηi ) and (ρ ′, z′) = ((1 + ki )r1(ηi ) + ω(r1(ηi ), ηi ), (1 +

c0)z1(ηi ) + c(z1(ηi ))). Let (r2(φ), z2(φ)), (r2(η′
i ), z2(η

′
i )) = (ρ ′, z′), be a solution

of (2.2.50). Then,

r2(ζi ) = eλ(ζi−η′
i )ρ ′ +

∫ ζi

η′
i

eλ(ζi−s)P(r2(s), s, z2(s))ds,

z2(ζi ) = eb(ζi−η′
i )z′ +

∫ ζi

η′
i

eb(ζi−s)Q(r2(s), s, z2(s))ds.

We define that

W 1
i (ρ, z) = r2(ζi ) − (1 + ki )ρ

= eλ(ζi−η′
i )

[
(1 + ki )

(
eλ(ηi−γi )ρ +

∫ ηi

γi

eλ(ηi−s)P(r1(s), s, z1(s))ds

)

+ω(r1(ηi ), ηi )

]
+
∫ ζi

η′
i

eλ(ζi−s)P(r1(s), s, z1(s))ds − (1 + ki )ρ,

or, if simplified

W 1
i (ρ, z) = (1 + ki )(e

−λγ (r1(ηi ),ηi ) − 1)ρ

+ (1 + ki )
∫ ηi

γi

eλ(ζi−θi−s−γ (r1(ηi ),ηi ))P(r1(s), s, z1(s))ds

+
∫ ζi

η′
i

eλ(ζi−s)P(r2(s), s, z2(s))ds + eλ(ζi−η′
i )ω(r1(ηi ), ηi ). (2.2.51)
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We, similarly, define

W 2
i (ρ, z) = z2(ζi ) − (1 + c0)z

= eb(ζi−η′
i )

[
(1 + c0)

(
eb(ηi−γi )z +

∫ ηi

γi

eb(ηi−s)Q(r1(s), s, z1(s))ds

)

+c̃(z1(ηi ))

]
+
∫ ζi

η′
i

eb(ζi−s)Q(r1(s), s, z1(s))ds − (1 + c0)z,

or,

W 2
i (ρ, z) = (1 + ki )(e

−bγ (r1(ηi ),ηi ) − 1)z

+ (1 + c0)
∫ ηi

γi

e(ζi−θi−s−γ (r1(ηi ),ηi ))Q(r1(s), s, z1(s))ds

+
∫ ζi

η′
i

eb(ζi−s)Q(r2(s), s, z2(s))ds + eb(ζi−η′
i )c̃(z1(ηi )).(2.2.52)

We note that there exists a Lipschitz constant � and a bounded function m(�) such
that

‖W j
i (ρ1, z1) − W j

i (ρ2, z2)‖ ≤ m(�)�(‖ρ1 − ρ2‖ + ‖z1 − z2‖), (2.2.53)

for all ρ1, ρ2, z1, z2 ∈ R, j = 1, 2. For detailed proof and explanation about (2.2.53),
we refer to [1, 6, 38].

2.2.4 Center Manifold

Now, using ψ-substitution (2.2.48) reduces to the following system:

dρ

dϕ
= λρ + F(ρ, ϕ, z),

dz

dϕ
= bz + G(ρ, ϕ, z), ϕ �= ϕi ,

Δρ |ϕ=ϕi = kiρ + W 1
i (ρ, z),

Δz |ϕ=ϕi = c0z + W 2
i (ρ, z),

(2.2.54)

where ϕ = ψ(φ), ϕi = ψ(γi ), F(ρ, ϕ, z) = P(ρ, ψ−1(ϕ), z), and G(ρ, ϕ, z) =
Q(ρ, ψ−1(ϕ), z). Functions F and G are T -periodic in ϕ, with T = ψ(2π), and
satisfy

‖F(ρ, ϕ, z) − F(ρ ′, ϕ, z′)‖ ≤ k(ε)(‖ρ − ρ ′‖ + ‖z − z′‖), (2.2.55)

‖G(ρ, ϕ, z) − G(ρ ′, ϕ, z′)‖ ≤ k(ε)(‖ρ − ρ ′‖ + ‖z − z′‖). (2.2.56)
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Following the methods given in [8], one can see that system (2.2.54) has two
integral manifolds whose equations are given by:

Φ+(ϕ, ρ) =
∫ ϕ

−∞
π+(ϕ, s)G(ρ(s, ϕ, ρ), s, z(s, ϕ, ρ))ds

+
∑
ϕi<ϕ

π+(ϕ, ϕ+
i )W

2
i (ρ(ϕ

+
i , ϕ, ρ), z(ϕ

+
i , ϕ, ρ)), (2.2.57)

and

Φ−(ϕ, z) = −
∫ ∞

ϕ

π−(ϕ, s)F(ρ(s, ϕ, z), s, z(s, ϕ, z))ds

+
∑
ϕi<ϕ

π−(ϕ, ϕ+
i )W

1
i (ρ(ϕ

+
i , ϕ, z), z(ϕ

+
i , ϕ, z)), (2.2.58)

where
π+(ϕ, s) = eb(ϕ−s)

∏
s≤ϕ j<ϕ

(1 + c0)

and
π−(ϕ, s) = eλ(ϕ−s)

∏
s≤ϕ j<ϕ

(1 + k j ).

In (2.2.57), the pair (ρ(s, ϕ, ρ), z(s, ϕ, ρ)) denotes a solution of (2.2.54) satisfy-
ing ρ(ϕ, ϕ, ρ) = ρ. Similarly, (ρ(s, ϕ, z), z(s, ϕ, z)), in (2.2.58), is the solution of
(2.2.54) with z(ϕ, ϕ, z) = z.

In [8], it was shown that there exist constants K+,M+, σ+ such thatΦ+ satisfies:

Φ+(ϕ, 0) = 0, (2.2.59)

‖Φ+(ϕ, ρ1) − Φ+(ϕ, ρ2)‖ ≤ K+�‖ρ1 − ρ2‖, (2.2.60)

for all ρ1, ρ2 such that a solution w(ϕ) = (ρ(ϕ), z(ϕ)) of (2.2.54) with w(ϕ0) =
(ρ0, Φ+(ϕ0, ρ0)), ρ0 ≥ 0, is defined on R and satisfies

‖w(ϕ)‖ ≤ M+ρ0e−σ+(ϕ−ϕ0), ϕ ≥ ϕ0. (2.2.61)

Similarly, it was shown that there exist constants K−,M−, σ− such thatΦ− satisfies:

Φ−(ϕ, 0) = 0, (2.2.62)

‖Φ−(ϕ, z1) − Φ−(ϕ, z2)‖ ≤ K−�‖z1 − z2‖, (2.2.63)

for all z1, z2 such that a solution w(ϕ) = (ρ(ϕ), z(ϕ)) of (2.2.54) with w(ϕ0) =
(Φ−(ϕ0, z0), z0), z0 ∈ R, is defined on R and satisfies
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‖w(ϕ)‖ ≤ M−‖z0‖e−σ−(ϕ−ϕ0), ϕ ≤ ϕ0. (2.2.64)

Set S+ = {(ρ, ϕ, z) : z = Φ+(ϕ, ρ)} and S− = {(ρ, ϕ, z) : ρ = Φ−(ϕ, z)}.Here,
S+ is called the center manifold and S− is called the stable manifold. A sketch of an
arbitrary center manifold is shown in Fig. 2.6.

The analogues of the following two Lemma’s together with their proofs can be
found in [8].

Lemma 2.2.5 If the Lipschitz constant � is sufficiently small, then for every solution
w(ϕ) = (ρ(ϕ), z(ϕ)) of (2.2.54) there exists a solution μ(ϕ) = (u(ϕ), v(ϕ)) on the
center manifold, S+, such that

‖ρ(ϕ) − u(ϕ)‖ ≤ 2M+‖ρ(ϕ0) − u(ϕ0)‖e−σ+(ϕ−ϕ0),

‖z(ϕ) − v(ϕ)‖ ≤ M+‖z(ϕ0) − v(ϕ0)‖e−σ+(ϕ−ϕ0), ϕ ≥ ϕ0,
(2.2.65)

where M+ and σ+ are the constants used in (2.2.61).

Lemma 2.2.6 For sufficiently small Lipschitz constant � the surface S+ is stable in
large.

On the local center manifold S+, the first coordinate of the solutions of (2.2.54)
satisfies the following system:

dρ

dϕ
= λρ + F(ρ, ϕ,Φ+(ϕ, ρ)), ϕ �= ϕi ,

Δρ |ϕ=ϕi = kiρ + W 1
i (ρ,Φ+(ϕ, ρ)).

(2.2.66)

Fig. 2.6 The center
manifold
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Now, it is time to consider the reduction principle for which we need, together with
the ones imposed before, the condition:

(C10) Functions f (x, z) and g(x, z) are continuously differentiable in x, z for all
x, z, and

∂ f (0, 0)

∂x j
= 0,

∂ f (0, 0)

∂z
= 0,

∂g(0, 0)

∂x j
= 0,

∂g(0, 0)

∂z
= 0,

for j = 1, 2 where x = (x1, x2).

Theorem 2.2.1 Assume that conditions (C1)–(C10) are fulfilled. Then the trivial
solution of (2.2.54) is stable, asymptotically stable or unstable if the trivial solution
of (2.2.66) is stable, asymptotically stable or unstable, respectively.

Using inverse of ψ-substitution and B-equivalence, one can see that the following
theorem holds:

Theorem 2.2.2 Assume that conditions (C1)–(C10) are fulfilled. Then the trivial
solution of (2.2.45) is stable, asymptotically stable or unstable if the trivial solution
of (2.2.66) is stable, asymptotically stable or unstable, respectively.

2.2.5 Bifurcation of Periodic Solutions

This section is devoted to the bifurcation theorem of a periodic solution for the
discontinuous dynamical system. Let us consider the system,

dx

dt
= Ax + f (x, z) + μ f̃ (x, z, μ),

dz

dt
= b̂z + g(x, z) + μg̃(x, z, μ), (x, z) /∈ Γ (μ),

Δx |(x,z)∈Γ (μ)= B(x, μ)x,
Δz |(x,z)∈Γ (μ)= c(z, μ)z.

(2.2.67)

Assume that the following conditions are satisfied:

(A1) The set Γ (μ) = ⋃p
i=1 Si (μ), whereSi (μ) = si (μ) × R and the equation of

si (μ) is given by si (μ) : 〈ai , x〉 + τi (x) + μν(x, μ) = 0, for i = 1, . . . , p;
(A2) There exists a matrix Q(μ) ∈ R

2×2, Q(0) = Q, analytic in (−μ0, μ0), and
real numbers γ, χ such that Q−1(μ)B(x, μ)Q(μ) =

(k + μγ + κ(x))

[
cos(θ + μχ + Θ(x)) − sin(θ + μχ + Θ(x))
sin(θ + μχ + Θ(x)) cos(θ + μχ + Θ(x))

]
−
[
1 0
0 1

]

and c(z, μ) = c0 + c̃(z) + μd(z, μ);
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(A3) Associated with (2.2.67) systems

dx

dt
= Ax,

dz

dt
= b̂z, (x, z) /∈ Γ0,

Δx |(x,z)∈Γ0= B0x,
Δz |(x,z)∈Γ0= c0z.

(2.2.68)

and

dx

dt
= Ax + f (x, z),

dz

dt
= b̂z + g(x, z), (x, z) /∈ Γ (0),

Δx |(x,z)∈Γ (0)= B(x, 0)x,
Δz |(x,z)∈Γ (0)= c(z, 0)z.

(2.2.69)

are D0-system and D-system, respectively;
(A4) Functions f̃ , ν : G × (−μ0, μ0) → R

2 are analytic in x, z, and μ;
(A5) f̃ (0, 0, μ) = 0, ν(0, μ) = 0, uniformly for μ ∈ (−μ0, μ0).

Using polar coordinates, one can write system (2.2.67) in the following form:

dr

dφ
= λ(μ)r + P(r, φ, z, μ),

dz

dφ
= b(μ)z + Q(r, φ, z, μ), (r, φ, z) /∈ Γ (μ),

Δr |(r,φ)∈�i (μ)= ki (μ)r + ω(r, φ, μ),

Δφ |(r,φ)∈�i (μ)= θi (μ) + γ (r, φ, μ),

Δz |(r,φ)∈�i (μ)= c0(μ)z + c̃(z, μ).

(2.2.70)

Let the system

dρ

dφ
= λ(μ)ρ + P(ρ, φ, z, μ),

dz

dφ
= b(μ)z + Q(ρ, φ, z, μ), φ �= γi (μ),

Δρ |φ=γi (μ)= ki (μ)ρ + W 1
i (ρ, z, μ),

Δφ |φ=γi (μ)= θi (μ),

Δz |φ=γi (μ)= c0(μ)z + W 2
i (ρ, z, μ),

(2.2.71)

where γi (μ), i = 1, . . . , p, are angles of mi , be B-equivalent to (2.2.70). The func-
tions W 1

i (ρ, z, μ) and W 2
i (ρ, z, μ) can be defined in the same manner as in (2.2.51)

and (2.2.52), respectively. Applying ψ-substitution to (2.2.71), we get
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dρ

dϕ
= λ(μ)ρ + F(ρ, ϕ, z, μ),

dz

dϕ
= b(μ)z + G(ρ, ϕ, z, μ), ϕ �= ϕi (μ),

Δρ |ϕ=ϕi (μ)= ki (μ)ρ + W 1
i (ρ, z, μ),

Δz |ϕ=ϕi (μ)= c0(μ)z + W 2
i (ρ, z, μ).

(2.2.72)

Following the methods, as we did to obtain (2.2.57) and (2.2.58), one can see that
system (2.2.72) has two integral manifolds whose equations are given by:

Φ+(ϕ, ρ, μ) =
∫ ϕ

−∞
π+(ϕ, s, μ)G(ρ(s, ϕ, ρ, μ), s, z(s, ϕ, ρ, μ), μ)ds

+
∑

ϕi (μ)<ϕ

π+(ϕ, ϕ+
i , μ)W 2

i (ρ(ϕ
+
i , ϕ, ρ, μ), z(ϕ+

i , ϕ, ρ, μ)), (2.2.73)

and

Φ−(ϕ, z, μ) = −
∫ ∞

ϕ

π−(ϕ, s, μ)F(ρ(s, ϕ, z, μ), s, z(s, ϕ, z, μ), μ)ds

+
∑

ϕi (μ)<ϕ

π−(ϕ, ϕ+
i , μ)W 1

i (ρ(ϕ
+
i , ϕ, z, μ), z(ϕ+

i , ϕ, z, μ)), (2.2.74)

where
π+(ϕ, s, μ) = eb(ϕ−s)

∏
s≤ϕ j (μ)<ϕ

(1 + c0(μ)),

and
π−(ϕ, s, μ) = eλ(ϕ−s)

∏
s≤ϕ j (μ)<ϕ

(1 + k j (μ)).

In (2.2.73), the pair (ρ(s, ϕ, ρ, μ), z(s, ϕ, ρ, μ)) denotes a solution of (2.2.72) sat-
isfying ρ(ϕ, ϕ, ρ, μ) = ρ. Similarly, (ρ(s, ϕ, z, μ), z(s, ϕ, z, μ)), in (2.2.74), is
a solution of (2.2.72) with z(ϕ, ϕ, z, μ) = z. Set S+(μ) = {(ρ, ϕ, z) : z = Φ+(ϕ,
ρ, μ)} and S−(μ) = {(ρ, ϕ, z) : ρ = Φ−(ϕ, z, μ)}.

On the local centermanifold, S+(μ), thefirst coordinate of the solutions of (2.2.72)
satisfies the following system:

dρ

dϕ
= λ(μ)ρ + F(ρ, ϕ,Φ+(ϕ, ρ, μ)), ϕ �= ϕi (μ),

Δρ |ϕ=ϕi (μ)= ki (μ)ρ + W 1
i (ρ,Φ+(ϕ, ρ, μ)).

(2.2.75)

Similar to (2.2.43) and (2.2.44), one can define the functions
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q1(μ) = exp

(
λ(μ)

(
2π −

p∑
i=1

θi (μ)

))
p∏

i=1

(1 + ki (μ)), (2.2.76)

and

q2(μ) = exp

(
b(μ)

(
2π −

p∑
i=1

θi (μ)

))
p∏

i=1

(1 + c0(μ)). (2.2.77)

System (2.2.75) is the system studied in [6], and there it was shown that this
system, for sufficiently small μ, has a periodic solution with period T .Here, we will
show that if the first coordinate of a solution of (2.2.72) is T -periodic, then so is the
second coordinate.

Now, since
π+(ϕ + T, s + T, μ) = π+(ϕ, s, μ),

ρ(s + T, ϕ + T, ρ, μ) = ρ(s, ϕ, ρ, μ),

z(s + T, ϕ + T, ρ, μ) = z(s, ϕ, ρ, μ),

and G is T -periodic in ϕ, we have,

Φ+(ϕ + T, ρ, μ)

=
∫ ϕ+T

−∞
π+(ϕ + T, s, μ)G(ρ(s, ϕ + T, ρ, μ), s, z(s, ϕ + T, ρ, μ), μ)ds

+
∑

ϕi (μ)<ϕ+T

π+(ϕ + T, ϕ+
i , μ)W 2

i (ρ(ϕ
+
i , ϕ + T, ρ, μ), z(ϕ+

i , ϕ + T, ρ, μ))

=
∫ ϕ

−∞
π+(ϕ, t, μ)G(ρ(t, ϕ, ρ, μ), t, z(t, ϕ, ρ, μ), μ)dt

+
∑

ϕ̄i (μ)<ϕ

π+(ϕ, ϕ̄i
+, μ)W 2

i (ρ(ϕ̄i
+, ϕ, ρ, μ), z(ϕ̄i

+, ϕ, ρ, μ))

= Φ+(ϕ, ρ, μ)

Then, we have the following theoremwhich, in case of two dimension, was shown
in Sect. 2.1.

Theorem 2.2.3 Assume that q1(0) = 1, q ′
1(0) �= 0, | q2(0) |< 1, and the origin is a

focus for (2.2.69). Then, for sufficiently small r0 and z0, there exists a function μ =
δ(r0, z0) such that the solution (r(φ, δ(r0, z0)), z(φ, δ(r0, z0))) of (2.2.70), with the
initial condition r(0, δ(r0, z0)) = r0, z(0, δ(r0, z0)) = z0, is periodic with a period,
T ′ = (

2π −∑p
i=1 θi

)
β−1 + o(|μ|).
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2.2.6 Examples

Example 2.2.1 Consider the following dynamical system:

x ′
1 = (0.1 − μ)x1 − 20x2 + 2x1x2,
x ′
2 = 20x1 + (0.1 − μ)x2 + 3x21 z,
z′ = (−0.3 + μ)z + μ2x1z, (x1, x2, z) /∈ S ,

Δx1 |(x1,x2,z)∈S = (
(κ1 + μ3) cos( π3 ) − 1

)
x1 − (κ1 + μ3) sin( π3 )x2,

Δx2 |(x1,x2,z)∈S = (κ1 + μ3) sin( π3 )x1 + (
(κ1 + μ3) cos( π3 ) − 1

)
x2,

Δz |(x1,x2,z)∈S = (κ2 + μ − 1)z,

(2.2.78)

where κ1 = exp(− π
120 ), κ2 = exp(− π

400 ),S = s × R, and the curve s is given by

the equation x2 = x21 + μx31 , x1 > 0. Using (2.2.76) and (2.2.77), one can define

q1(μ) = (κ1 + μ3) exp

(
(0.1 − μ)

5π

60

)
,

and

q2(μ) = (κ2 + μ) exp

(
(−0.3 + μ)

5π

60

)
.

It is easily seen that q1(0) = κ1 exp( π
120 ) = 1, q ′

1(0) = − π
12 �= 0 and q2(0) = exp

(− 11π
200 ) < 1. Therefore, by Theorem2.2.3, system (2.2.78) has a periodic solution

with period ≈ 5π
60 if | μ | is sufficiently small.

Figure2.7 shows the trajectory of (2.2.78) with the parameter μ = 0.05 and the
initial value (x10, x20, z0) = (0.02, 0, 0.05). Since there is an asymptotically stable
center manifold, no matter which initial condition is taken, the trajectory will get
closer and closer to the center manifold as time increases.
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0.01
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Fig. 2.7 A trajectory of (2.2.78)
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Fig. 2.8 There must exist a discontinuous limit cycle of (2.2.78)

In Fig. 2.8, the existence of a discontinuous limit cycle is illustrated. There an
outer and an inner solution are shown which spiral to a trajectory lying between
these two. Since the exact value of the initial point for the periodic solution is not
known, we have shown two trajectories of (2.2.78).

Example 2.2.2 Consider the following dynamical system:

x ′
1 = (−2 + μ)x1 − x2 + μz2,

x ′
2 = x1 + (−2 + μ)x2,

z′ = (−1 + μ)z + μ2x1z, (x1, x2, z) /∈ S ,

Δx1 |(x1,x2,z)∈S = (
(κ1 − x21 − x22 ) cos(

π
3 ) − 1

)
x1 − (κ1 − x21 − x22 ) sin(

π
3 )x2,

Δx2 |(x1,x2,z)∈S = (κ1 − x21 − x22 ) sin(
π
3 )x1 + (

(κ1 − x21 − x22 ) cos(
π
3 ) − 1

)
x2,

Δz |(x1,x2,z)∈S = (κ2 − 1 − z2)z,

(2.2.79)

whereκ1 = exp( 10π3 ), κ2 = exp( 5π6 ),S = s × R, ands is a curve given by the equa-
tion x2 = x1 + μ2x31 , x1 > 0. Using (2.2.76) and (2.2.77), one can define

q1(μ) = κ1 exp

(
(−2 + μ)

5π

3

)
,

and

q2(μ) = κ2 exp

(
(−1 + μ)

5π

3

)
.

Now, q1(0) = κ1 exp(− 10π
3 ) = 1, q ′

1(0) = 5π
3 �= 0, q2(0) = κ2 exp( 5π3 ) = exp

(− 5π
6 ). Moreover, associated D-system is:
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x ′
1 = −2x1 − x2,

x ′
2 = x1 − 2x2,

z′ = −z, (x1, x2, z) /∈ P,

Δx1 |(x1,x2,z)∈P= (
(κ1 − x21 − x22 ) cos(

π
3 ) − 1

)
x1 − (κ1 − x21 − x22 ) sin(

π
3 )x2,

Δx2 |(x1,x2,z)∈P= (κ1 − x21 − x22 ) sin(
π
3 )x1 + (

(κ1 − x21 − x22 ) cos(
π
3 ) − 1

)
x2,

Δz |(x1,x2,z)∈P= (κ2 − 1 − z2)z,

(2.2.80)

where P = � × R, � is given by the equation x2 = x1, x1 > 0, and the origin is
stable focus. Indeed, using cylindrical coordinates, denote the solution of (2.2.80)
starting at the angle φ = π

4 by (r(φ, r0, z0), z(φ, r0, z0)).
We obtain

rn = (κ1 − r2n−1)rn−1 exp

(
−10π

3

)
,

and

zn = (κ2 − z2n−1)zn−1 exp

(
−5π

3

)
,

where rn = r( π4 + 2πn, r0, z0) and zn = z( π4 + 2πn, r0, z0). It is easily seen that
the sequences rn and zn are monotonically decreasing for sufficiently small (r0, z0),
and there exists a limit of (rn, zn). Assume that this limit is (ξ, η) �= (0, 0). Then, it
implies that there exists a periodic solutionof (2.2.80) and ξ = (κ1 − ξ 2)ξ exp(− 10π

3 )

and η = (κ2 − η2)η exp(− 5π
3 ) which give us a contradiction. Thus, (ξ, η) = (0, 0).

Consequently, the origin is a stable focus of (2.2.80), and by Theorem2.2.3, the
system (2.2.79) has a limit cycle with period ≈ 5π

3 if | μ | is sufficiently small.

2.3 Periodic Solutions of the Van der Pol Equation

In this section, we apply the methods of B-equivalence and ψ-substitution to prove
the existence of discontinuous limit cycle for the Van der Pol equation with impacts
on surfaces. The result is extended through the center manifold theory for coupled
oscillators. The main novelty of the result is that the surfaces, where the jumps occur,
are not flat. Examples and simulations are provided to demonstrate the theoretical
results as well as application opportunities.

2.3.1 Introduction and Preliminaries

Getting bifurcation in dynamics with impacts relies mainly on collisions near
the impact point(s). That is why they are called corner-collision, border-collision,
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crossing-sliding, grazing-sliding, switching-sliding, etc., bifurcations [64, 66, 86,
112, 116, 133, 145, 181]. That is, the bifurcations are located geometrically. In our
present result, we do not have the geometrical source of bifurcation. It is rather rea-
soned by specifically arranged interaction of continuous and discontinuous stages
of the process. To be precise, we use a generalized eigenvalue to evaluate which we
apply a characteristic of the impact as well as of the continuous process between
moments of discontinuity. This approach when continuous and discontinuous stages
are equally participated in creating a certain phenomena is common for the theory of
differential equations with impulses [1, 216]. Our results are, rather, close to those,
which obtained for systems where continuous flows and surfaces of discontinuity
are transversal [1, 6, 39, 109, 150].

The main instruments in this section, except for the Hopf bifurcation technique,
are the methods of B-equivalence and ψ-substitution developed in papers [1, 2, 6,
38, 40] for discontinuous limit cycles, and one has to emphasize that the set of all
periodic solutions of the nonperturbed system is a proper subset of all solutions near
the origin. By a discontinuous cycle, wemean a trajectory of a discontinuous periodic
solution.

The Van der Pol equation arises in the study of circuits containing vacuum tubes
and is given by

y′′ + ε(1 − y2)y′ + y = 0 (2.3.81)

where ε is a real parameter. If ε = 0, the equation reduces to the equation of simple
harmonic motion y′′ + y = 0. The term ε(1 − y2)y′ in (2.3.81) is usually regarded
as the friction or resistance. If the coefficient ε(1 − y2) is positive, then we have
the case of “positive resistance,” and when the coefficient ε(1 − y2) is negative,
then we have the case of “negative resistance.” This equation, introduced by Lord
Rayleigh (1896), was studied by Van der Pol (1927) [229] both theoretically and
experimentally using electric circuits.

Hopf bifurcation is an attractive subject of analysis for mathematicians as well
as for mechanics and engineers [6, 39, 63, 66, 84, 110, 112, 133, 148, 160, 171,
190, 228, 229]. Many papers and books have been published about mechanical and
electrical systems with impacts [59, 64, 86, 116, 119, 161, 181, 232].

We consider the model with impulses on surfaces which are places in the phase
space and are essentially nonlinear while it is known that the Hopf bifurcation is
considered either with linear surfaces of discontinuity or with fixed moments of
impulses [59, 63, 64, 66, 77, 109, 112, 116, 133, 209]. We have developed a
special effective approach to analyze the problem in depth which consists of the
method of reduction in equations with variable moments of impacts to systems with
fixed moments of impacts [1], a class of equations on variable timescales [6, 40],
and a transformation of equations on time scales to systems with impulses [38]. This
is all the theoretical basis of the present results.
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Specifically, we consider the following system:

y′′ + 2αy′ + (α2 + β2)y = F(y, y′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = cy + dy′ + J (y, y′, μ),
(2.3.82)

where α, β �= 0, c, d are real constants with c = αd, and F and J are ana-
lytic functions in all variables. Γ (μ) is the set of discontinuity whose equation
is given by m1y + m2y′ + τ(y, y′, μ) = 0, y > 0, for some real numbers m1,

m2; the function τ(y, y′, μ) stands for a small perturbation; and Δy′|(y,y′)∈Γ (μ) =
y′(θ+) − y′(θ) denotes the jump operator in which θ is the time when the solution
(y, y′)meets the discontinuity set Γ (μ), that is, θ is such that m1y(θ) + m2y′(θ) +
τ(y(θ), y′(θ), μ) = 0, and y′(θ+) is the right limit of y′(t) at t = θ.After the impact,
the phase point (y(θ+), y′(θ+)) will belong to the set Γ ′(μ) = {(u, v) ∈ R

2 : u =
y, v = cy + (1 + d)y′ + J (y, y′, μ), (y, y′) ∈ Γ (μ)}.Here, y(θ+) is the right limit
of y(t) at t = θ. One can easily see that nonlinearity is inserted into all parts of the
model including the surface of discontinuity.

If we choose α = ε/2, β = √
1 − α2 and F(y, y′, μ) = εy2y′ in the differential

equation of the system (2.3.82), then the Van der Pol equation will be obtained.
Therefore, (2.3.81) is a special case of (2.3.82), if the impulsive condition is not
considered. Note that if F(y, y′, μ) = ε2y2y′ for some nonzero constant ε2, we still
have (2.3.81) after using the linear transformation y = √

ε/ε2z of the dependent
variable.

To explain our application motivations, we consider the oscillator which is sub-
dued to the impactsmodeled by theNewton’s law of restitution as a concretemechan-
ical problem. Consider the system

y′′ + ε1y′ + y = ε2y2y′, (y, y′) /∈ Γ,

Δy′|(y,y′)∈Γ = dy′, (2.3.83)

where ε1, ε2 are constants, d = e2πε1(4−ε21)
−1/2 − 1, Γ is the half-line y = 0, y′ > 0.

As it said above, the last system is a generalization of the Van der Pol equation with
impacts of Newton’s type. If one takes (2.3.83) with ε2 = 0, then the system is

y′′ + ε1y′ + y = 0, (y, y′) /∈ Γ,

Δy′|(y,y′)∈Γ = dy′. (2.3.84)

Note that the general solution of the differential equation without impulse condition
in (2.3.84) is given by

y(t) = e−ε1t/2
(
C1 cos

(
(4 − ε21)

1/2t/2
)+ C2 sin

(
(4 − ε21)

1/2t/2
))

, (2.3.85)

where C1 and C2 are arbitrary real constants. Let (0, y′
0) be any point on the line

Γ ′ = Γ. That is, assume that y′
0 > 0. Then, y(0) = 0, y′(0) = y′

0 in (2.3.85) gives
us C1 = 0, C2 = 2y′

0(4 − ε21)
−1/2. Thus, we obtain
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y(t) = 2y′
0

(
4 − ε21

)−1/2
e−ε1t/2 sin

(
(4 − ε21)

1/2t/2
)
.

Now, the first impact action takes place at time t = T where T > 0 and y(T ) = 0,
which means T = 4π(4 − ε21)

−1/2.At that time, we have y′(T ) = e−2πε1(4−ε1)
−1/2

y′
0,

and after the impact, we have y′(T+) = (1 + d)y(T ) = y′
0. Therefore, all solutions

starting on Γ ′ are T = 4π(4 − ε21)
−1/2 periodic. One such solution with y′

0 = 0.06
is depicted in Fig. 2.11.

The obtained result for (2.3.84) shows that the origin is the center for the system,
and it is analogous of the planar degenerated linear homogeneous system with con-
stant coefficients in the original Hopf bifurcation theorem. This gives us a hint to
apply the bifurcation technique to more general systems of type (2.3.82).

Systems of type (2.3.83) has been analyzed in many papers and books [59, 63, 66,
110, 148, 160, 216, 229] and references cited there. Here, we have mentioned just
some of them. We will apply the results of current chapter to prove the existence of
a stable periodic motion of the model, in the perturbed system corresponding to this
model. Moreover, in Example2.3.2, we will handle a more complicated case of two
coupled oscillators where one of the oscillators is subdued to the impacts modeled
by the Newton’s law of restitution.

We strictly believe that results of the present section can be applied to other
mechanical, electrical, aswell as biological problems if one adopts themodels by spe-
cial transformations to the considered case. Moreover, in the upcoming researches,
we plan to weaken some restrictions on the model. For example, the approach can be
extended to equations where surfaces of discontinuity do not intersect at the origin.

Finally, in the present study, we extend the results to the two-oscillator model
through the application of center manifold.

The analysis developed in this chapter can be applied to various problems of
mechanics, electronics, and biology.

2.3.2 Theoretical Results

2.3.2.1 Reduction to Polar Coordinates

Assume that functions F, J and τ are analytic in all variables,

F(0, 0, μ) = J (0, 0, μ) = τ(0, 0, μ) = 0

for all μ, and first derivatives of F, J and τ at (y, y′, μ) = (0, 0, 0) vanish. We start
the theoretical investigation by writing (2.3.82) in the following form:

y′′ + 2α(μ)y′ + (α2(μ) + β2(μ))y = G(y, y′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = cy + dy′ + J (y, y′, μ),
(2.3.86)
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where α(μ) = α − 1
2
∂F
∂y′ (0, 0, μ), β(μ) =

(
α2 + β2 − α2(μ) − ∂F

∂y (0, 0, μ)
)1/2

,

G(y, y′, μ) = F(y, y′, μ) − y ∂F
∂y (0, 0, μ) − y′ ∂F

∂y′ (0, 0, μ). Note that the functions

G, ∂G
∂y and ∂G

∂y′ vanish at (0, 0, μ) for all μ. Γ (μ) can also be written as

Γ (μ) : m1(μ)y + m2(μ)y′ + τ2(y, y
′, μ) = 0,

where m1(μ) = m1 + ∂τ/∂y(0, 0, μ), m2(μ) = m1 + ∂τ/∂y′(0, 0, μ), and τ2(y,
y′, μ) = τ(y, y′, μ) − y∂τ/∂y(0, 0, μ) − y′∂τ/∂y′(0, 0, μ).

We write (2.3.86) as a system of first-order equations in x1x2-plane so that the
linear part has the coefficient matrix in Jordan form. For this purpose, we let x1 =
(α(μ)y + y′)/β(μ) and x2 = y. Then, (2.3.86) is written as

x ′
1 = −α(μ)x1 − β(μ)x2 + H(x1, x2, μ),

x ′
2 = β(μ)x1 − α(μ)x2, (x1, x2) /∈ Γ (μ),

Δx1|(x1,x2)∈Γ (μ) = I x1 + K (x1, x2, μ),

(2.3.87)

where I = d, functions H and K are analytic in all their variables and they carry all
the properties of G and J, respectively. The discontinuity surface Γ (μ) is given by

Γ (μ) : m2(μ)β(μ)x1 + (m1(μ) − α(μ)m2(μ))x2 + τ3(x1, x2, μ) = 0.

Note that system (2.3.87) is more convenient to use the polar coordinates.
We shall now introduce the polar coordinates, but first, consider the set of discon-

tinuity points Γ (μ) in polar coordinates. Using the change of variables x1 = r cosφ,
x2 = r sin φ, the curve Γ (μ) is represented as

Γ (μ) : φ = φ0(μ) + ν(r, φ, μ),

whereφ0(μ) = arctan(m2(μ)β(μ)/(α(μ)m2(μ) − m1(μ))), ν is analytic in all vari-
ables, 2π -periodic in φ, and ν = O(r). Thus, using the polar coordinates, (2.3.87)
is transformed into the system

r ′ = −α(μ)r + R1(r, φ, μ),

φ′ = β(μ) + R2(r, φ, μ), (r, φ) /∈ Γ (μ),

Δr |(r,φ)∈Γ (μ) = k(μ)r + R(r, φ, μ),

Δφ|(r,φ)∈Γ (μ) = −θ(μ) + Θ(r, φ, μ),

(2.3.88)

where R1, R2, R, Θ are all 2π -periodic in φ, R1 = O(r2), R2 = O(r), R = O(r2),
Θ = O(r) and

k(μ) =
√
(I 2 + 2I ) cos2(φ0(μ)) + 1 − 1.

Eliminating the time variable, and considering φ as the independent variable, we
can write (2.3.88) as
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dr
dφ = λ(μ)r + R(r, φ, μ), φ �= φ0(μ) + ξ2 j (r, φ, μ),

Δr |φ=φ0(μ)+ξ2 j (r,φ,μ) = k(μ)r + R(r, φ, μ),

Δφ|φ=φ0(μ)+ξ2 j (r,φ,μ) = −θ(μ) + Θ(r, φ, μ),

(2.3.89)

where λ(μ) = −α(μ)/β(μ), ξ2 j (r, φ, μ) = ν(r, φ, μ). In a neighborhood of the
origin, it is easily seen that all solutions of (2.3.89), except for the trivial solution,
rotate around the origin. Note that the impacts occur once in every two meetings of
the trajectory with the discontinuity set Γ (μ). To indicate this notion, we use 2 j in
the subscript in (2.3.89).

During one rotation around the origin, if a solution r(φ) of (2.3.89) performs the
first impact at the moment when φ = η2 j , that is, η2 j = φ0 + ξ2 j (r(η2 j ), η2 j , μ),
and if it jumps to the point (r(γ2 j ), γ2 j ) after the impact, where γ2 j = η2 j −
θ(μ) + Θ(r(η2 j ), η2 j , μ), then this solution is defined on the variable timescale
∪ j∈Z(γ2 j + 2 jπ, η2 j + 2( j + 1)π ]. The variable timescale depends on the initial
data, and the timescale is different for different solutions. Thus, (2.3.89) is consid-
ered as an impulsive differential equation on variable timescale [40].

2.3.2.2 The B-Equivalent System

In this part, we shall reduce the system in polar coordinates on variable timescale
(2.3.89) to the system on the nonvariable timescale with transition condition [38],
using the method of B-equivalence [1, 6, 40].

Let r(φ) be a solution of (2.3.89) with initial condition r(φ0(μ)) = r, and assume
that φ = η2 j is the first from left solution of φ = φ0(μ) + ξ2 j (r, φ, μ). That is,
assume that r(φ) performs the first impact at the moment when φ = η2 j . Let the
solution r(φ) jump to the point (r(γ2 j ), γ2 j ) after the impact. Then, we have

γ2 j = η2 j − θ(μ) + Θ(r(η2 j ), η2 j , μ),

r(γ2 j ) = (1 + k(μ))r(η2 j ) + R(r(η2 j ), η2 j , μ).

Throughout this section, [̂a, b] denotes the oriented interval for any a, b ∈ R. That
is, it denotes [a, b] when a < b, and it denotes [b, a] otherwise.

Denote by r1(φ) the solution of

dr

dφ
= λ(μ)r + R(r, φ, μ) (2.3.90)

with the initial condition r1(γ2 j ) = r(γ2 j ).

For φ ∈ ̂[φ0(μ), η2 j ], we have

r(φ) = r +
∫ φ

φ0(μ)

[λ(μ)r(s) + R(r(s), s, μ)]ds,
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and on the interval ̂[γ2 j , φ0(μ) − θ(μ)], we have

r1(φ) = r(γ2 j ) +
∫ φ

γ2 j

[λ(μ)r1(s) + R(r1(s), s, μ)]ds.

Thus,

r1(φ0(μ) − θ(μ)) = r(γ2 j ) +
∫ φ0(μ)−θ(μ)

γ2 j

[λ(μ)r1(s) + R(r1(s), s, μ)]ds
= (1 + k(μ))r(η2 j ) + R(r(η2 j ), η2 j , μ)

+
∫ φ0(μ)−θ(μ)

γ2 j

[λ(μ)r1(s) + R(r1(s), s, μ)]ds

= (1 + k(μ))

[
r +

∫ η2 j

φ0(μ)

[λ(μ)r(s) + R(r(s), s, μ)]ds
]

+R(r(η2 j ), η2 j , μ)

+
∫ φ0(μ)−θ(μ)

γ2 j

[λ(μ)r1(s) + R(r1(s), s, μ)]ds.

We now let

W (r, μ) = r1(φ0(μ) − θ(μ)) − (1 + k(μ))r

= (1 + k(μ))

∫ η2 j

φ0(μ)

[λ(μ)r(s) + R(r(s), s, μ)]ds
+R(r(η2 j ), η2 j , μ)

+
∫ φ0(μ)−θ(μ)

γ2 j

[λ(μ)r1(s) + R(r1(s), s, μ)]ds.

Defining W (u, μ) and W (v, μ), using the smallness of the right side function R
and continuous dependence on initial data, we can show that there exists a Lipschitz
constant � and a bounded function m(�) such that

|W (u, μ) − W (v, μ)| ≤ �m(�)|u − v| (2.3.91)

for all u, v ∈ R. In Fig. 2.9, the construction of W is demonstrated. There, the point
A is (r, φ0(μ)), B is the point where the first impact occurs. That is, B is the point
(r(η2 j ), η2 j ). The phase point jumps to C after the impact. That is, C is the point
(r(γ2 j ), γ2 j ). Finally, D is the point (r1(φ0(μ) − θ(μ)), φ0(μ) − θ(μ)).



50 2 Hopf Bifurcation in Impulsive Systems

Fig. 2.9 B-equivalence and
the map W
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Now, we define the following system

dρ
dφ = λ(μ)ρ + R(ρ, φ, μ), φ �= φ0(μ),

Δρ|φ=φ0(μ) = k(μ)ρ + W (ρ, μ),

Δφ|φ=φ0(μ) = −θ(μ).

(2.3.92)

It can be seen that in a neighborhood of the origin, all solutions of (2.3.92), except
for the trivial solution, rotate around the origin, as in the case of (2.3.89). The variable
φ ranges over the timescale ∪n∈Z(φ0(μ) − θ(μ) + 2nπ, φ0(μ) + 2(n + 1)π ]. It can
be seen that the timescale is a union of overlapping intervals. Indeed, (2.3.92) is an
example of differential equation on a timescale with transition condition (DETCV)
[38]. Nevertheless, the timescale is of a new type, since the intervals are overlapping.

Definition 2.3.1 ([6]) We say that (2.3.89) and (2.3.92) are B-equivalent in a neigh-
borhood of the origin if corresponding to each solution r(φ) of (2.3.89), and there
is a solution ρ(φ) of (2.3.92) such that ρ(φ) = r(φ) for all φ except possibly on
the intervals ̂[φ0(μ), η2 j ] and ̂[γ2 j , φ0(μ) − θ(μ)], where η2 j = η2 j (μ) is the angle
when r(φ)meets Γ (μ) and γ2 j = γ2 j (μ) is the angle where r(φ) is after the impact.

From the constructionmade above forW, one can easily see that the following lemma
is valid.

Lemma 2.3.1 Systems (2.3.89) and (2.3.92) are B-equivalent in a neighborhood of
the origin.

2.3.2.3 ψ-Substitution

The independent variable φ in (2.3.92) ranges over the domain ∪n∈Z In where

In = (φ0(μ) − θ(μ) + 2nπ, φ0(μ) + 2(n + 1)π ].
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Note that ∪n∈Z In is the union of overlapping closed intervals. That is,

In,n+1 := In ∩ In+1 = (φ0(μ) − θ(μ) + 2(n + 1)π, φ0(μ) + 2(n + 1)π ].

Therefore, we use a generalization of the so-called ψ-substitution [6, 38]. In our
case, the ψ-substitution is defined to be the shifting of the intervals. More precisely,
we redefine the intervals In as I ′

n := In + nθ(μ). The piece of graph of a solution is
shifted accordingly. After the ψ-substitution, we obtain I ′

n ∩ I ′
n+1 = {}, and hence,

the graph of any trajectory is a single-valued function.
Thus, using the ψ-substitution, we write (2.3.92) as

dρ
dϕ = λ(μ)ρ + R̃(ρ, ϕ, μ), ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ + W̃ (ρ, μ),
(2.3.93)

where ϕ = ψ(φ). To investigate the Hopf bifurcation in (2.3.93), we follow the clas-
sical method, and assume that the nonperturbed system has a family of periodic
solutions and the origin in the perturbed system corresponding to μ = 0 is asymp-
totically stable. Consider the case μ = 0 :

dρ
dϕ = λρ + R̃(ρ, ϕ), ϕ �= φ0,

Δρ|ϕ=φ0 = kρ + W̃ (ρ),
(2.3.94)

where λ, k, φ0, R̃(ρ, ϕ) and W̃ (ρ) are the values of λ(μ), k(μ), φ0(μ), R̃(ρ, ϕ, μ)

and W̃ (ρ, μ) at μ = 0, respectively. The nonperturbed system corresponding to
(2.3.94) is

dρ
dϕ = λρ, ϕ �= φ0,

Δρ|ϕ=φ0 = kρ.
(2.3.95)

The impacts in (2.3.95) occur on the line Γ : φ = φ0, and after the impact, the
trajectory is on the line Γ ′ : φ = φ0 − θ. The solution r(φ) = r(φ, φ0 − θ, r0), r0 >

0, of (2.3.95) with the initial condition r(φ0 − θ) = r0, where the point (r0, φ0 − θ)

is on the line Γ ′ (see Fig. 2.10), is given by r(φ) = r0eλ(φ−φ0+θ) for φ0 − θ ≤ φ ≤
φ0 + 2π. Therefore, before the first impact, we have r(φ0 + 2π) = r0e−αT , where
T = (2π + θ)/β, and after the impact, the state position is r(φ0 + 2π+) = (1 +
k)r(φ0 + 2π) = (1 + k)e−αT r0.

We construct the Poincaré map on the line Γ ′ and denote

q := r(φ0 + 2π+)
r(φ0 − θ)

= (1 + k)e−αT , (2.3.96)

from which we easily see that the following theorem holds.
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Theorem 2.3.1 If

(a) q = 1, then all solutions of (2.3.95) with the initial conditions on Γ ′ are T -
periodic;

(b) q < 1, then all solutions of (2.3.95) with the initial conditions on Γ ′ spiral in
toward the origin;

(c) q > 1, then all solutions of (2.3.95) with the initial conditions on Γ ′ move away
from the origin.

Remark 2.3.1 In this study, for given α, β, and θ,we fix the number I as I = (eαT −
cos θ)/(cos θ − e−αT ) − 1 so that q = 1 and hence part (a) of the Theorem2.3.1
holds (see Fig. 2.10). Since q �= 1 is the noncritical case, when the phase portrait is
persistent under perturbations, our present interest is only with the case (a) of the
Theorem2.3.1.

Remark 2.3.2 If q, which is defined in (2.3.96), is less than 1, then any solution of
(2.3.94) with the initial condition on Γ ′ spirals in toward the origin, and if q > 1,
then the solutions move away from the origin. On the other hand, when q = 1 we
have the critical case. That is, a solution of (2.3.94) with the initial condition on Γ ′
may be periodic, and it may spiral in toward the origin or it may move away from
the origin. In this study, as mentioned before, the case q �= 1 is not of our interest
and the critical case is investigated below.

2.3.2.4 Hopf Bifurcation

In this section, we consider (2.3.93) again:

dρ
dϕ = λ(μ)ρ + R̃(ρ, ϕ, μ), ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ + W̃ (ρ, μ).
(2.3.97)

Fig. 2.10 All solutions of
(2.3.95) with the initial
condition on Γ ′ are periodic
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We consider the corresponding linearized system around the trivial solution:

dρ
dϕ = λ(μ)ρ, ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ.
(2.3.98)

We construct the Poincaré map on the line Γ ′
0(μ) and denote

q(μ) = (1 + k(μ))e−α(μ)T (μ), (2.3.99)

in the same way as we defined (2.3.96).

Theorem 2.3.2 Assume that q(0) = 1, q ′(0) �= 0. Then for sufficiently small r0,
there exists a function μ = δ(r0) with δ(0) = 0 such that the solution r(φ, r0, δ(r0))
of (2.3.89) is periodic with a period T = (2π + θ)/β + o(|μ|). Furthermore, if
solutions of (2.3.94) spiral in toward the origin, then this periodic solution is a
discontinuous limit cycle.

Proof Letρ(ϕ, r0, μ) be a solution of (2.3.97). Because of the analyticity of solutions
[1], we have

ρ(2π, r0, μ) =
∞∑
i=1

ai (μ)r i0

where ai (μ) = ∑∞
j=0 ai jμ

j , a10 = q(0) = 1, a11 = q ′(0) �= 0. Define

V (r0, μ) = ρ(2π, r0, μ) − r0

= q ′(0)μr0 +
∞∑
i=2

ai0r
i
0 + r0μ

2M1(r0, μ) + r20μM2(r0, μ)

where M1 and M2 are analytic functions of r0, μ in a small neighborhood of the
(0, 0). When the bifurcation equation, V (r0, μ) = 0, is simplified by r0, one can
write

H (r0, μ) = 0 (2.3.100)

where

H (r0, μ) = q ′(0)μ +
∞∑
i=2

ai0r
i−1
0 + μ2M1(r0, μ) + r0μM2(r0, μ).

By the implicit function theorem, since

H (0, 0) = 0,
∂H (r0, μ)

∂μ
= q ′(0) �= 0,
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for sufficiently small r0, there exists a function μ = δ(r0) with δ(0) = 0 such that
r(φ, r0, δ(r0)) is a periodic solution. If we assume that ai0 = 0 for i = 2, . . . , � − 1
and a�0 �= 0, then from (2.3.100) one can obtain that

δ(r0) = − a�0
q ′(0)

r �−1
0 +

∞∑
i=�

δi r
i
0. (2.3.101)

Analyzing the last expression, one can conclude that the bifurcation of periodic
solution exists if a stable focus for μ = 0 is unstable for μ �= 0 and vice versa. Let
ρ(ϕ) = ρ(ϕ, r̄0, μ̄) be a periodic solution of (2.3.97). It is known that the trajectory
is limit cycle if

∂V (r̄0, μ̄)

∂r0
< 0. (2.3.102)

Now,

∂V (r0, μ)

∂r0
= q ′(0)μ +

∞∑
i=2

iai0r
i−1
0 + μ2N1(r0, μ) + r0μN2(r0, μ).

If a�0 is the first nonzero element among ai0 and a�0 < 0, then using (2.3.101) one
can obtain

∂V (r̄0, μ̄)

∂r0
= (� − 1)a�0r̄

�−1
0 + Q(r̄0),

where Q starts with a member whose order is not less than �. Hence, (2.3.102) is
valid. From the ψ-substitution and B-equivalence of (2.3.89) and (2.3.92), one can
conclude that the theorem is proved.

Since the change of variables x1 = r cosφ, x2 = r sin φ, and y = x2, y′ = βx1 −
αx2 are one-to-one for β �= 0, we see that the following theorem is valid.

Theorem 2.3.3 Assume that q(0) = 1, q ′(0) �= 0. Then for sufficiently small ini-
tial condition y0 := (y(0), y′(0)) there exists a function μ = δ(y0) with δ(0) = 0
such that the solution y(t, 0, y0, μ) of (2.3.86) is periodic with a period T =
(2π + θ)/β + o(|μ|). Furthermore, if solutions of (2.3.86) with the initial point
on Γ ′

0(0) spiral in toward the origin, then this periodic solution is a discontinuous
limit cycle.

Example 2.3.1 In the following example, we shall consider the model which is stud-
ied in many papers and books [59, 63, 66, 110, 148, 160, 216, 229]. Here, we insert
the impulse condition and consider

y′′ + ε1y′ + y = ε2y2y′, (y, y′) /∈ Γ,

Δy′|(y,y′)∈Γ = dy′, (2.3.103)
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where ε1 and ε2 are some nonzero real numbers and Γ is the discontinuity set which
is defined, in yy′-plane, by y = 0, y′ > 0. The nonperturbed system is written as

y′′ + 2αy′ + (α2 + β2)y = 0, (y, y′) /∈ Γ,

Δy′|(y,y′)∈Γ = dy′. (2.3.104)

where α = ε1/2, β = √
1 − α2, d = e2πα/β − 1. Note that the general solution of

the differential equation without impulse condition in (2.3.104) is given by

y(t) = e−αt (C1 cos(βt) + C2 sin(βt)), (2.3.105)

where C1 and C2 are arbitrary real constants. Let (0, y′
0) be any point on the line

Γ ′ = Γ. That is, assume that y′
0 > 0. Then, y(0) = 0, y′(0) = y′

0 in (2.3.105) gives
us C1 = 0, C2 = y′

0/β. Thus, we obtain

y(t) = y′
0e

−αt sin(βt)/β.

Now, the first impact action takes place at time t = T where T > 0 and y(T ) = 0,
which means T = 2π/β. At that time, we have y′(T ) = e−2πα/β y′

0, and after the
impact, we have y′(T+) = (1 + d)y(T ) = y′

0.Therefore, all solutions starting onΓ
′

are T = 2π/β periodic. One such solution with y′
0 = 0.06 is depicted in Fig. 2.11.

The fact that for (2.3.104), the origin is a center makes it suitable for application
of our theoretical results. For this reason, let us perturb (2.3.103) and bring it to the
notation of system (2.3.82). That is, let us consider the model

y′′ + 2αy′ + (α2 + β2)y = F(y, y′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = cy + dy′ + J (y, y′, μ),
(2.3.106)

Fig. 2.11 A solution of the
nonperturbed system
(2.3.104) with the initial
condition y(0) = 0,
y′(0) = 0.06
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where α = 0.15, β = √
1 − α2, F(y, y′, μ) = 0.02αy2y′ − μy(2 + y + y′), Γ (μ)

is the curve Γ (μ) = {(y, y′) ∈ R
2 : y + 30μ(y′)2 = 0, y′ > 0}, c = αd,

d = e2πα/β − 1, and J (y, y′, μ) = −(2 + μ)(y′)2. Note that (2.3.106) is a spe-
cial case of (2.3.82) with m1 = 1, m2 = 0, τ (y, y′, μ) = 30μ(y′)2. The term cy
in (2.3.106) has to be considered now as a small perturbation because of smallness
of y as the first coordinate of points Γ (μ).

To prove the existence of a periodic solution for (2.3.106), we find that the gen-
eralized eigenvalue is

q(μ) = exp

(
2πα

(
1

β
− 1√

β2 + 2μ

))
.

Then, one can easily find that q(0) = 1 and q ′(0) �= 0. Therefore, by Theorem2.3.3,
for sufficiently small μ, there exists a periodic solution with period ≈40π/

√
391.

When μ = 0 in (2.3.106), the origin is a stable focus. This can be seen in simula-
tions and the solution of (2.3.106) corresponding to μ = 0 with the initial condition
y(0) = 0, y′(0) = 0.06 is drawn in Fig. 2.12.

To see an application of Theorem2.3.3, we take μ = 0.08. By Theorem2.3.3,
we know that there exists a periodic solution corresponding to an initial value
(y(0), y′(0)) in a sufficiently small neighborhood of the origin. Two solutions of
(2.3.106) are drawn in Fig. 2.13. An “inner” solution with the initial condition
y(0) = 0, y′(0) = 0.06 is drawn in red curve and an “outer” solution with the ini-
tial condition y(0) = 0, y′(0) = 0.12 is drawn in blue curve. These two solutions
approach to the limit cycle from inside and outside, respectively. Moreover, by The-
orem2.3.3, the period of the discontinuous limit cycle is approximately 40π/

√
391.

Note that the differential equation of (2.3.106) for μ = 0 becomes (2.3.81) with
ε = 0.3. This example shows the application importance of our results.

Fig. 2.12 A solution of the
perturbed system with the
initial condition y(0) = 0,
y′(0) = 0.06
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Fig. 2.13 An “inner” and an
“outer” solution of (2.3.106).
The inner solution is shown
in red and it corresponds to
the initial condition
y(0) = 0, y′(0) = 0.06. The
outer solution is shown in
blue and it corresponds to the
initial condition y(0) = 0,
y′(0) = 0.12

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

y

y′

System (2.3.106) for μ = 0 is one of the widely investigated models of the mech-
anisms with impacts determined by the Newton’s law of restitution. These models
have been studied in many books [66, 216] and papers cited there. One should men-
tion that surfaces of discontinuity in these results are flat. However, it is the first time,
we consider the surface of discontinuity as perturbed nonlinearly.

2.3.3 Center Manifold

In this section, we begin our development of the techniques and extend our results
to coupled oscillators. We show the existence of a center manifold. Consider

y′′ + 2αy′ + (α2 + β2)y = F1(y, y′, z, z′, μ),

z′′ + 2γ z′ + (γ 2 + σ 2)z = F2(y, y′, z, z′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = cy + dy′ + J (y, y′, μ),

(2.3.107)

where y, y′ are the components of one oscillator, say (A), and z, z′ are the components
of another oscillator, say (B).

By using the means of the center manifold theorem [194] and its role for the
Hopf bifurcation in multidimensional systems, one can predict that the system of
oscillators (A) and (B) admits a limit cycle. Indeed, looking at the results of our
simulations given in Figs. 2.14, 2.15, and 2.16, one can see that for the oscillator
(A) we have a discontinuous limit cycle, as in Example2.3.1, and for the oscillator
(B) we have a continuous limit cycle. That is, for the whole system, the periodic
trajectory (y, z) is a discontinuous limit cycle.
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Fig. 2.14 An “inner” solution of (2.3.117) for μ = 0.08 corresponding to the initial condition
y(0) = 0, y′(0) = 0.06, z(0) = 0.004, z′(0) = 0.002

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.05

0

0.05

0.1

0.15

y

y
′

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.05

0

0.05

0.1

0.15

y

y
′

yy ′ − coordinates zz ′ − coordinates

Fig. 2.15 An “outer” solution of (2.3.117) for μ = 0.08 corresponding to the initial condition
y(0) = 0, y′(0) = 0.12, z(0) = 0.04, z′(0) = 0.02
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Fig. 2.16 The “inner” and “outer” solutions of (2.3.117) given in Figs. 2.14 and 2.15 are shown in
the same picture.
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As we did to obtain (2.3.86), we write (2.3.107) in the form

y′′ + 2α(μ)y′ + (α2(μ) + β2(μ))y = G1(y, y′, z, z′, μ),

z′′ + 2γ (μ)z′ + (γ 2(μ) + σ 2(μ))z = G2(y, y′, z, z′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = cy + dy′ + J (y, y′, μ).

(2.3.108)

Let y1 = (α(μ)y + y′)/β(μ), y2 = y, z1 = (γ (μ)z + z′)/σ (μ), z2 = z. Then,
(2.3.108) becomes

y′
1 = −α(μ)y1 − β(μ)y2 + H1(y1, y2, z1, z2, μ),

y′
2 = β(μ)y1 − α(μ)y2,
z′
1 = −γ (μ)z1 − σ(μ)z2 + H2(y1, y2, z1, z2, μ),

z′
2 = σ(μ)z1 − γ (μ)z2, (y1, y2) /∈ Γ (μ),

Δy1|(y1,y2)∈Γ (μ) = I y1 + K (y1, y2, μ).

(2.3.109)

We now use the cylindrical coordinates. That is, we use the polar coordinates for
the oscillator (A). Then, we eliminate the variable t, and obtain

dr

dφ
= λ(μ)r + R(r, φ, z1, z2, μ),

dz1
dφ

= −γ̃ (μ)z1 − σ̃ (μ)z2 + R2(r, φ, z1, z2, μ),

dz2
dφ

= σ̃ (μ)z1 − γ̃ (μ)z2, φ �= φ0(μ) + ξ2 j (r, φ, μ),

Δr |φ=φ0(μ)+ξ2 j (r,φ,μ) = k(μ)r + R(r, φ, μ),

Δφ|φ=φ0(μ)+ξ2 j (r,φ,μ) = −θ(μ)r + Θ(r, φ, μ),

(2.3.110)

where γ̃ (μ) = γ (μ)/β(μ), σ̃ (μ) = σ(μ)/β(μ), and all other elements except for
R2 are the same as in (2.3.89). Using B-equivalence and ψ-substitution, we get the
following system:

dρ

dϕ
= λ(μ)ρ + R̃(ρ, ϕ, z1, z2, μ),

dz1
dϕ

= −γ̃ (μ)z1 − σ̃ (μ)z2 + R̃2(ρ, φ, z1, z2, μ),

dz2
dϕ

= σ̃ (μ)z1 − γ̃ (μ)z2, ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ + W̃ (ρ, μ).

(2.3.111)



60 2 Hopf Bifurcation in Impulsive Systems

The corresponding linearized system around the origin is

dρ

dϕ
= λ(μ)ρ,

dz1
dϕ

= −γ̃ (μ)z1 − σ̃ (μ)z2,

dz2
dϕ

= σ̃ (μ)z1 − γ̃ (μ)z2, ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ.

(2.3.112)

Like we obtained (2.3.99), we define

q1(μ) = (1 + k(μ))e−α(μ)T (μ),

q2(μ) = e−γ̃ (μ)T (μ).
(2.3.113)

Note that q1(0) = 1, and hence, we have the critical case for the first oscillator
and q2(0) < 1 if and only if γ̃ (0) > 0. For our system, we assume that q1(0) = 1
and q2(0) < 1.

By using the formulas for the integral manifolds developed in [194], one can see
that system (2.3.111) has a center manifold S0(μ) := {(ρ, ϕ, u) : u = Φ0(ϕ, ρ, μ)}
and a stable manifold S−(μ) := {(ρ, ϕ, u) : ρ = Φ−(ϕ, u, μ)} where

Φ0(ϕ, ρ, μ) =
∫ ϕ

−∞
π0(ϕ, s, μ)R̃2(ρ(s, ϕ, ρ, μ), s, u(s, ϕ, ρ, μ), μ)ds (2.3.114)

and

Φ−(ϕ, u, μ) = −
∫ ∞

ϕ

π−(ϕ, s, μ)R̃1(ρ(s, ϕ, u, μ), s, u(s, ϕ, u, μ), μ)ds

+
∑
ϕi<ϕ

π−(ϕ, ϕ+
i , μ)W̃ (ρ(s, ϕ, u, μ), μ) (2.3.115)

in which ϕi = ϕ + 2π i, u = (z1, z2),

π0(ϕ, s, μ) = e−γ̃ (μ)(ϕ−s)

[
cos(σ̃ (μ) − s) − sin(σ̃ (μ) − s)
sin(σ̃ (μ) − s) cos(σ̃ (μ) − s)

]

and

π−(ϕ, s, μ) = eλ(μ)(ϕ−s)
∏

s≤ϕ j (μ)<ϕ

(1 + k(μ)).

In (2.3.114), the pair (ρ(s, φ, ρ, μ), u(s, φ, ρ, μ)) denotes a solution of (2.3.111)
satisfying ρ(s, φ, ρ, μ) = ρ. Similarly, in (2.3.115), the pair (ρ(s, φ, u, μ), u(s, φ,
u, μ)) denotes a solution of (2.3.111) satisfying u(s, φ, u, μ) = u.
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On the local center manifold, S0(μ), the first coordinate of the solutions of
(2.3.111) satisfies the following system

dρ

dϕ
= λ(μ)ρ + R̃(ρ, ϕ,Φ0(ϕ, ρ, μ), μ), ϕ �= φ0(μ),

Δρ|ϕ=φ0(μ) = k(μ)ρ + W̃ (ρ, μ).

(2.3.116)

By Theorem2.3.3, we know that, for sufficiently small μ, system (2.3.116) has a
periodic solution with period T = (2π + θ)/β + o(μ). That is, on the local center
manifold S0(μ), the ρ-coordinate of a solution of (2.3.111) is T -periodic. Because
of the T -periodic properties of the right side functions, one can show that z1 and z2
components of a solution of (2.3.111) are also T -periodic when the ρ-coordinate is.
Thus, we have the following theorem.

Theorem 2.3.4 Assume that q1(0) = 1, q ′
1(0) �= 0, q2(0) < 1. Then for sufficiently

small initial condition (y0, z0) := (y(0), y′(0), z(0), z′(0)) there exists a function
μ = δ(y0, z0) such that the solution (y(t, 0, y0, μ), z(t, 0, z0, μ) of (2.3.107) is peri-
odic with a period T = (2π + θ)/β + o(|μ|). Furthermore, if solutions of (2.3.107)
with the y0-component of the initial point on Γ ′(0) spiral in toward the origin, then
this periodic solution is a discontinuous limit cycle.

Example 2.3.2 Let us develop the model studied in Example2.3.1 further to two
coupled oscillators where one of the oscillators is subdued to the impacts. For this
reason, consider

y′′ + 2αy′ + (α2 + β2)y = F1(y, y′, z, z′, μ),

z′′ + 2γ z′ + (γ 2 + σ 2)z = F2(y, y′, z, z′, μ), (y, y′) /∈ Γ (μ),

Δy′|(y,y′)∈Γ (μ) = dy′ + J (y, y′, μ),

(2.3.117)

where γ = 0.2, σ = 1,

F1(y, y
′, z, z′, μ) = 0.02αy2y′ − μy(2 + y + z + (z′)2),

F2(y, y
′, z, z′, μ) = γ yz′ − μy(1 + z2 + (z′)2),

and all other elements are the same as in Example2.3.1.
As evaluated before, we have q1(0) = 1, q ′

1(0) �= 0, and γ > 0 implies that
q2(0) < 1. Thus, by Theorem2.3.4, for sufficiently small μ, there exists a peri-
odic solution with period ≈40π/

√
391. Let μ = 0.08. An “inner” solution with the

initial condition y(0) = 0, y′(0) = 0.06, z(0) = 0.004, z′(0) = 0.002 is drawn in
Fig. 2.14 and an “outer” solution with the initial condition y(0) = 0, y′(0) = 0.12,
z(0) = 0.04, z′(0) = 0.02 is drawn in Fig. 2.15. These two solutions approach to the
limit cycle from inside and outside, respectively.
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2.4 Notes

The present chapter contains mainly results of papers [6, 39, 42] and is based on the
perturbation theory, which was founded by H. Poincaré and A.M. Lyapunov [169,
197], and the bifurcation methods [60, 65, 121, 129, 132, 171, 173, 207, 233].
The main result is the bifurcation of a periodic solution from the equilibrium of the
discontinuous dynamical system. After the initial impetus of H. Poincaré [195], A.
Andronov [60], and E. Hopf [129], this method of research of periodic motions has
been used very successfully for various differential equations by many authors (see
[109, 121, 132, 173] and references cited there). There have been twoprincipal obsta-
cles of expansion of this method for discontinuous dynamical systems. While the
absence of developed differentiability of solutions has been the first one, the choice
of a nonperturbed system convenient to study has been the second. The present
investigation utilizes extensively the differentiability and analyticity of discontinu-
ous solutions discussed in Chap.6 of [1]. The nonperturbed equation is specifically
defined. The results of the present chapter can be extended by the dimension enlarg-
ing [39] and application to differential equations with discontinuous right side [17].
They are applied to control the population dynamics [19], and can be effectively
employed in mechanics, electronics, biology, and medicine [60, 70, 121, 173, 178,
185].

In the second section, we have studied the existence of a center manifold and the
Hopf bifurcation for a certain three-dimensional discontinuous dynamical system.
The bifurcation of discontinuous cycle is observed by means of the B-equivalence
method and its consequences. These results will be extended to arbitrary dimension
for a more general type of equations.

Many evolutionary processes are subject to the short-term perturbation whose
duration is negligible when compared to that of the whole process. This perturbation
results in a change in the state of the process. This change can be at fixed moments
or when the state process meets a certain set of discontinuity. These systems model
a variety of problems of mechanics, electronics, physics, chemistry, medicine, etc.,
[59, 63, 64, 66, 77, 84, 109, 112, 116, 130, 145, 150, 179, 209, 228, 232].

In most of the references cited here, the impulse action or the change in the phase
space takes place on a flat surface. The theory in which nonlinear surfaces of discon-
tinuity are present has not been investigated fully because of the lack of theoretical
results. The problem of discontinuous models where the surfaces of discontinuities
are not flat is very actual because of natural possibilities of perturbations. It is natural
that one should involve perturbation not only into the differential equation or in the
impulse function, but also into the equations for the surfaces of discontinuity.

The discontinuities of the equation which determines the moments of jumps are
investigated in many papers and books [216]. In most general form, the results are
formulated and expressed in [1], and the present results widely use this information.

In last section, the method of B-equivalence and ψ-substitution [1, 2, 6, 38, 40]
is used effectively to observe the Hopf bifurcation of periodic solution. We proved
the existence of discontinuous limit cycle for the Van der Pol equation performing
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impacts on surfaces. We extended the results to two coupled oscillators through
the application of the center manifold theory [194]. These theoretical results could
be extended to arbitrary dimension and apply them to well-known discontinuous
mechanical models.

One should mention that we consider the Hopf bifurcation without reduction in
the problem of Hopf bifurcation of the maps as it is usually done in the literature. So,
the system which admits the origin as a center in our case is nonlinear one (2.3.95),
but its elements are linear. This approach to the investigation is respectively new and
promisive.

Based on the present results, one can investigate multioscillatory system where
not only one of the oscillators is discontinuous but several of them are discontinuous
[63, 114, 118, 190].
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