Chapter 2
Methodology

Courage Kamusoko

Abstract Remote sensing, GIS, and land change models (LCMs) are critical for
mapping urban land use/cover and simulating “what if” urban growth scenarios,
particularly in developing countries experiencing rapid urbanization. The purpose
of this chapter is to describe briefly the methodology used to produce land
use/cover maps, and simulate land use/cover changes for selected metropolitan
areas in Asia and Africa. Land use/cover maps were classified from Landsat ima-
gery for 1990, 2000, 2010, and 2014 using the random forest (RF) classifier.
Quantitative accuracy assessment was not conducted for the 1990 land use/cover
maps due to lack of reference data. However, qualitative and quantitative accuracy
assessment was performed for the 2000, 2010, and 2014 land use/cover maps based
on Google Earth imagery. Overall land use/cover classification accuracy for all land
use/cover maps ranged from 70 to 90%. Land use/cover changes were simulated
based on the boosted regression trees-cellular automata (BRT-CA) and RF-CA
LCMs. We evaluated the goodness-of-fit of transition potential maps, and validated
the simulated land use/cover changes based on robust statistical measures.
Generally, the BRT-CA and RF-CA LCMs for all metropolitan areas in Asia and
Africa performed relatively well. In particular, the BRT-CA and RF-CA LCMs for
metropolitan areas in Africa had the best performance. The modeling and simula-
tion results presented in this chapter provide an initial exploration of BRT-CA and
RF-CA LCMs in Asia and Africa. This chapter demonstrates the significance of
robust calibration, validation, and simulation of spatial LCMs for all metropolitan
areas in Asia and Africa.
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2.1 Introduction

The past decades have witnessed tremendous development of land change models
(LCMs) due to availability of remote sensing data, advances in geographical
information and social sciences as well as theoretical developments of complexity
and self-organizing systems (Tobler 1979; Wolfram 1984; Couclelis 1985; Engelen
1988; Batty 1998, 2005; Wu and Webster 1998; Torrens 2008; The Sate of Land
Change Modeling 2014). To date, numerous LCMs have been developed to model
and simulate land use/cover changes (Wu and Webster 1998; Verburg et al. 1999;
Messina and Walsh 2001; Soares-Filho et al. 2002), deforestation (Lambin 1997,
Geoghegan et al. 2001; Mas et al. 2004), urban growth (Couclelis 1989; Clarke
et al. 1997; Cheng and Masser 2004; Yeh and Li 2009), climate change (Dale
1997), and hydrology (Matheussen et al. 2000).

While LCMs have highlighted significant insights into landscape change pro-
cesses, most of these models have been criticized for lacking robust calibration and
validation procedures (Pontius and Malanson 2005; Vliet et al. 2011). For example,
previous studies show that transition potential maps—which are key inputs of LCM
—have been validated using the relative operating characteristic (ROC) area under
the curve (AUC) statistic (Eastman et al. 2005). However, the AUC statistic has
limitations, especially for validating transition potential maps (Mas et al. 2013;
Pontius and Parmentier 2014; Pontius and Si 2014) since it includes persistence
areas (Eastman et al. 2005). For example, Kamusoko and Gamba (2015) demon-
strated that the AUC can be large due to correctly predicted persistence not cor-
rectly predicted change (The Sate of Land Change Modeling 2014). Furthermore,
percent correct and the standard Kappa statistics have been widely used to validate
LCM (Verbug et al. 2004, Pontius and Malanson 2005; Vliet et al. 2011). However,
the use of standard Kappa statistic for validating LCM has been criticized given its
tendency to overestimate the agreement between the simulated and observed (ref-
erence) maps (Hagen 2002; Pontius et al. 2002). It has also been noted that the
standard Kappa statistic neither reveals the components of agreement and dis-
agreement between the simulated and observed (reference) maps nor accounts for
persistence (that is, land use/cover classes that do not change during the simulation)
(Pontius et al. 2007, 2008).

More recently, numerous statistical measures for calibrating and validating
LCMs have been developed to overcome limitations of the ROC statistic and
standard Kappa. For example, Pontius and Si (2014) developed the total operating
characteristic (TOC) statistic to validate transition potential maps. The TOC statistic
provides information such as misses and correct rejections in addition to ROC
statistic such as hits (hits plus misses) and false alarms (false alarms plus correct
rejections) (Pontius and Si 2014).

More importantly, the TOC statistic shows the actual units in the contingency
table (e.g., square kilometers) instead of a unitless statistic such as AUC (Pontius
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and Si 2014). Furthermore, Visser and de Njis (2006) and Vliet et al. (2011)
developed additional accuracy assessment statistics, which take into account
information contained in the initial land use/cover map and the proportion of
persistent land use/cover classes during the simulation period. The KSimulation
expresses the agreement between the simulated land use/cover transitions and
reference land use/cover transitions, while KTranslocation measures the degree to
which the transitions agree in terms of allocations (Vliet et al. 2011). The
KTransition captures the agreement in terms of quantity of built-up and
non-built-up transitions (Vliet et al. 2011). The KSimulation, KTransition, and
KTranslocation statistics are available in the Map Comparison Kit software by
Visser and de Njis (2006). Pontius et al. (2007, 2008) also introduced the Figure of
Merit (FoM), which expresses agreement between the observed and simulated
changes for validating simulated land use/cover changes.

While these novel statistics have provided a new paradigm for validation, to
date, few studies (Kamusoko and Gamba 2015) have applied these robust statistical
measures for validating LCMs. Therefore, more research is needed to better
understand uncertainty of LCMs based on the above-mentioned validation statistics.
This is critical since LCMs are being considered as useful procedures or tools to
establish business-as-usual baselines for urban growth and other land use/cover
change studies (The Sate of Land Change Modeling 2014; Kamusoko and Gamba
2015). The purpose of this chapter is to describe briefly the methodology used to
produce the land use/cover maps, calibrate and validate LCMs (in this case, both
transition potential and simulated land use/cover maps). The specific objectives of
this chapter are to evaluate the goodness-of-fit of transition potential maps, validate
the simulated land use/cover maps, and elucidate components of agreement and
disagreement. Validation statistics developed by Pontius and Si (2014), Pontius and
Malanson (2005), Visser and de Njis (2006), and Vliet et al. (2011) as well as
simple GIS overlay analysis are used in this chapter.

This chapter is organized as follows: Sect. 2.2 provides an overview of the
image processing and change analysis; Sect. 2.3 describes land change modeling
implementation procedures for all the metropolitan areas in Asia and Africa;
Sect. 2.4 presents the results and discussions; while Sect. 2.5 provides the summary
and conclusion of the chapter.

2.2 Image Processing and Change Analysis

2.2.1 Satellite Imagery and Reference Data

Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper
Plus (ETM+), and Landsat 8 datasets were used for land use/cover classification
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(Tables 2.1 and 2.2). All the Landsat datasets were acquired between 1988 and 2014
(Tables 2.1 and 2.2). The selection of the image data was based on the availability of
high-quality satellite imagery with minimal cloud cover. Landsat 8 (originally called
Landsat Data Continuity Mission) was launched on February 11, 2013, as the eighth

Table 2.1 Summary of Landsat imagery used for Metropolitan Areas in Asia

Metropolitan area Landsat sensor Path/row Acquisition date
Bangkok L4 ™ 129/50 30/03/1988
129/51 30/03/1988
L7 ETM+ 129/50 20/12/1999
129/51 20/12/1999
L5 T™™ 129/50 19/01/2009
129/51 19/01/2009
L8 129/50 17/01/2014
129/51 17/01/2014
Beijing L4 ™ 123/32 25/12/1988
123/33 25/12/1988
L7 ETM+ 123/32 30/04/2000
123/33 30/04/2000
L5 ™ 123/32 14/03/2009
123/33 14/03/2009
L8 123/32 29/04/2014
123/33 29/04/2014
Dhaka L4 ™™ 137/44 13/02/1989
L7 ETM+ 137/44 28/02/2000
L5 T™M 137/44 15/03/2010
L8 137/44 30/03/2014
Hanoi L5 T™™ 127/45 11/09/1988
L7 ETM+ 127/45 20/12/1999
L5 T™M 127/45 05/11/2009
L8 127/45 19/01/2014
Jakarta L5 ™™ 122/64 03/05/1989
L7 ETM+ 122/64 16/08/2001
L5 T™M 122/64 21/05/2010
L8 122/64 25/08/2013
Kathmandu L5 T™M 141/41 24/01/1989
L7 ETM+ 141/41 04/11/1999
L5 T™M 141/41 11/02/2010
L8 141/41 26/03/2014
Manila L5 T™M 116/50 02/04/1993
L7 ETM+ 116/50 26/11/2001
L5 T™ 116/50 05/03/2009
L8 116/50 07/02/2014

(continued)
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Table 2.1 (continued)
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Metropolitan area Landsat sensor Path/row Acquisition date
Tehran L5 T™™ 164/35 19/09/1988
L4 T™M 165/35 16/09/1987
L7 ETM+ 164/35 18/07/2000
165/35 25/07/2000
L5 T™M 164/35 22/07/2010
L8 164/35 08/12/2014
165/35 13/11/2014
Yangon L5 ™™ 132/48 26/02/1989
L7 ETM+ 132/48 21/11/1999
L5 T™M 132/48 24/01/2009
L8 132/48 23/02/2014

Table 2.2 Summary of Landsat imagery used for Metropolitan Areas in Africa

Metropolitan area Sensor Path/row Acquisition date
Bamako L4 T™M 199/51 22/03/1990
L7 ETM+ 199/51 30/12/2000
L5 T™M 199/51 16/01/2010
L8 199/51 16/03/2014
Dakar L4 T™M 205/50 15/10/1989
L7 ETM+ 205/50 04/11/1999
L5 T™M 205/50 25/10/2010
L8 205/50 17/03/2013
Harare L5 T™M 170/72 23/06/1990
L7 ETM+ 170/72 30/09/2000
L5 T™M 170/72 26/05/2009
L8 170/72 24/05/2014
Johannesburg L5 T™M 170/78 25/07/1990
L7 ETM+ 170/78 28/07/2000
L5 T™M 170/78 26/05/2009
L8 170/78 25/06/2014
Lilongwe L5 T™M 168/70 11/07/1990
L5 T™M 168/70 02/06/1999
L5 T™M 168/70 22/08/2011
L8 168/70 26/07/2013
Nairobi L5 T™M 168/61 17/10/1988
L7 ETM+ 168/61 21/02/2000
L5 T™M 168/61 19/08/2010
L8 168/61 03/02/2014




16 C. Kamusoko

satellite in the Landsat program (NASA 2013; USGS 2013). Landsat 8 consists of
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which
provide images at a spatial resolution of 15 m (panchromatic), 30 m (visible, NIR,
SWIR), and 100 m (thermal) (NASA 2013; USGS 2013).

2.2.2 Random Forest Classification

A modified land cover classification scheme was used for image classification.
Three land use/cover classes were considered in this study: (1) built-up;
(2) non-built-up; and (3) water. Detailed descriptions of the land use/cover classes
are provided in Table 2.3. Land use/cover maps were produced from the classifi-
cation of Landsat imagery for 1990, 2000, 2010, and 2014 using the (RF) classifier,
an ensemble decision tree machine learning method (Breiman 2001). The RF
classifier combines bootstrap sampling to construct many individual decision trees,
from which a final class assignment is produced (Breiman 2001). This machine
learning classifier can be used to learn nonlinear relationships, particularly in
heterogeneous urban landscapes. The RF classifier has been demonstrated to be
effective for accurate land cover mapping across complex and heterogeneous
landscapes (Rodriguez et al. 2012). All the Landsat imagery for all metropolitan
areas were classified using the “randomForest” package (Liaw and Wiener 2002),
which is available in R (R Development Core Team 2005).

Quantitative accuracy assessment for the 1990 land use/cover maps was not
conducted because of the unavailability of reference data such as aerial photographs
and high-resolution satellite imagery. However, the Atlas of Urban Expansion
developed by the Lincoln Institute of Land Policy (Angel et al. 2010) was used to
visually check the quality of land use/cover maps for the 1990 epoch (that is,
Landsat imagery acquired between 1988 and 1993). Qualitative and quantitative
accuracy assessment was conducted for land use/cover maps from 2000, 2010, and
2014 epochs. The primary reference data for accuracy assessment was obtained
from very high-resolution images (e.g., QuickBird image) in Google Earth™

Table 2.3 Land use/cover classes

Class Description

Built-up Residential, commercial and services, industrial, transportation,
communication and utilities, construction sites, and landfills

Non-built-up | All wooded areas, riverine vegetation, shrubs and bushes, grass cover, golf
courses, parks, cultivated land, fallow land, land under irrigation, bare exposed
areas and transitional areas

Water Rivers, reservoirs, and other water bodies
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(Google Earth 2015). Overall land use/cover classification accuracy for all land
use/cover maps (from 2000 to 2014) ranged from 70 to 90% for all the metropolitan
areas.

2.3 Land Change Modeling
2.3.1 Data

We used land use/cover maps and driving factors to develop spatial LCMs for all
metropolitan areas (Table 2.4). Major roads were obtained from OpenStreetMap
data, while city center was digitized from Google Earth. Elevation was derived from
ASTERGDEM, while population density data were acquired from the LandScan
data (Bhaduri et al. 2007). We used built-up areas (extracted from the 1990 and
2010 land cover maps), major roads, and city center data to compute “distance to
built-up areas”, “distance to major roads”, and “distance to city center” using the
Euclidean distance procedures available in ArcGIS 10.2. We computed “distance to
built-up areas” for 1990 and 2010, and “distance to major roads” because built-up
areas and roads are dynamic driving factors that change over time. Furthermore, we
used “distance to built-up areas” as the driving factor because previous urban form
influences future urban patterns (Liu 2009). Finally, all driving factors were
resampled to 30 m x 30 m spatial resolution in order to match the spatial reso-
lution of the Landsat-derived land use/cover maps.

2.3.2 Model Calibration and Simulation

We used the following procedures to implement the LCMs for all metropolitan
areas: (I) computing transition rates, (II) transition potential modeling, and (IIT) CA
simulation. Machine learning and statistical algorithms available in R were used to
model transition potential, while functions available in Dinamica Environment for
Geoprocessing Objects (EGO) were used to compute transition rates and simulate
land use/cover changes. R is a free and open-source statistical and computer graphic

Table 2.4 Input data for calibrating and simulating land use/cover change

Variable Source

Land use/cover maps (1990, 2000, and 2010) Classified from landsat data
Distance to built-up areas (1990, 2000, 2010) Derived from land use/cover
Distance to major roads (1990-2000, 2000-2010) Open street map

Distance to city center Digitized from Google Earth
Elevation ASTER GDEM

Population density (2000, 2010) LandScan data
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software (R Core Development Team 2005), while Dinamica EGO is a freeware
that was developed by Soares-Filho et al. (2009). Dinamica EGO consists of a
sophisticated platform for developing dynamic spatial models, which involve
nested iterations, multiple-step transitions, dynamic feedbacks, and multiscale
approaches (Soares-Filho et al. 2009).

(I) Computation of transition rates

We used land use/cover maps for 1990, 2000, and 2010 to compute multiple-step
transition rates in Dinamica EGO. Multiple-step transition rates refer to transition
rates that are computed at annual time step. Therefore, the “1990-2000”, “2000-
20107, and “1990-2010” multiple-step transition rates for all the metropolitan areas
were used as input for the final CA simulation run following the methodology
described in Kamusoko and Gamba (2015).

(II) Computation of transition potential maps

In order to compute the “non-built-up to built-up” transition potential maps,
“non-built to built-up” change map from 1990 to 2010, biophysical and socioe-
conomic driving factors were combined based on two machine learning procedures.
First, the RF model (Breiman 2001) was used to compute transition potential maps
for all metropolitan areas. RF is a machine learning approach, which builds
regression trees to describe the relationship between the response and predictor
variables (Breiman 2001). In general, multiple trees are built, each based on a
bootstrap sample of the data and a random subset of the predictors. The final model
predictions are an average prediction across component trees. Previous studies have
shown that the RF model is effective for modeling transition potential maps
(Kamusoko and Gamba 2015). However, preliminary transition potential calibra-
tion results indicated overfitting problems for some metropolitan areas such as
Beijing, Bamako, Dhaka, Hanoi, Johannesburg, Kathmandu, and Nairobi.
Therefore, an alternative method based on boosted regression trees
(BRT) (Friedman 2002; Elith et al. 2008) was employed. BRT is also a machine
learning approach, which forms a relationship between a response variable and its
predictors without a priori specification of a data model (Friedman 2002; Elith et al.
2008). Generally, a large number of simple models are combined to form a final
model (Elith et al. 2008). The main advantage of the BRT model is that it uses a
sequential model-fitting algorithm, which reduces both bias and variance and
therefore improves model accuracy.

In this study, approximately 2000 training points randomly sampled from
“non-built-up to built-up” and “no change” (that is, built-up and non-built-up
persistence) areas between 1990 and 2010 were used to fit the BRT and RF models.
Generally, 70% of the training areas were used for model development, while 30%
were used for cross-validation. The gbm and dismo packages (Ridgeway 2006;
Elith et al. 2008) available in R were used to fit the BRT model. The BRT model
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was optimized by changing the learning rate, tree complexity, and number of trees
parameters. The learning rate controls the weight that is given to each component
tree, while the complexity controls the number of nodes within each tree (Ridgeway
2006; Elith et al. 2008). We set the initial number of trees to five, learning rate to a
maximum of 0.001, and bagging fraction to 0.5 (that is, at each iteration 50% of the
data is drawn at random, without replacement from the full training set) for each
metropolitan area. After many iterations, the best model was selected to compute a
“non-built-up to built-up” transition potential map for each metropolitan area.

The RF model was used to compute “non-built-up to built-up” transition
potential maps for Bangkok, Jakarta, Manila, Tehran, Yangon, Dakar, Harare, and
Lilongwe. The “randomForest” (Liaw and Wiener 2002) package available in R
was used to fit the RF model. The RF model parameters were adjusted by changing
the number of input variables selected at each node split and the total number of
trees included in the model (25, 50, 100, and 500) in order to achieve optimum
model performance. After calibration, between 100 and 500 trees were used to
construct the final RF model and then compute the “non-built-up to built-up”
transition potential maps.

Figures 2.1 and 2.2 show “non-built-up to built-up” transition potential maps for
metropolitan areas in Asia and Africa, respectively. Visual analysis revealed that
the BRT and RF models produced relatively accurate transition potential maps. In
particular, the BRT and RF models were relatively good at modeling built-up areas
near previous built-up areas (from 1990 to 2010). In general, the transition potential
maps have identified the areas where a change is likely to occur. As a result, the
transition potential maps can be used as a useful input to the CA models.

(III) Cellular automata (CA) simulations

The initial land use/cover map (1990), the transition potential maps (1990-2010),
and the three multiple-state transition rates were used to simulate land use/cover up
to 2014 based on cellular automata (CA) functions available in Dinamica EGO. The
expander transition function expands or contracts previous land use/cover class
patches, while the patcher transition function forms new patches (Soares-Filho et al.
2009). The expander and patcher transition functions are composed of an allocation
mechanism responsible for identifying cells with the highest transition potential for
each transition (Soares-Filho et al. 2009). In order to simulate land use/cover
changes, both transition functions use a stochastic selecting mechanism
(Soares-Filho et al. 2009). The sizes of new land use/cover patches are set
according to a lognormal probability function, whose parameters are defined by the
mean patch size (MPS), patch size variance (VAR), and isometry (ISO). The CA
model for each metropolitan area was calibrated by changing the parameters of the
expander and patcher transition functions using trial and error. The initial simula-
tion year was set to 1990, while the final year was set to 2014.
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Fig. 2.1 Transition potential maps for Metropolitan Areas in Asia
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Fig. 2.1 (continued)
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Fig. 2.2 Transition potential maps for Metropolitan Areas in Africa
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Fig. 2.2 (continued)

2.4 Results and Discussion

2.4.1 Evaluating the Goodness-of-Fit of Transition
Potential Maps

2.4.1.1 Metropolitan Areas in Asia

Figure 2.3 shows the TOC graphs for all transition potential models in Asia.
The TOC statistic (Pontius and Si 2014) is an excellent method to assess the
validity of a model, which predicts the location of the occurrence of a class by
comparing a transition potential map depicting the likelihood of that class occurring
(that is, the input map) and a reference image showing where that class actually
exists (that is, the non-built-up to built-up change between 1990 and 2010). In
particular, TOC offers a statistical analysis that shows how the class of interest is
concentrated at the locations of relatively high transition potential for that class
(Pontius and Si 2014). Therefore, TOC was used to evaluate the goodness-of-fit of
calibration for transition potential maps derived from the BRT and RF models.
We focused our analysis on hits (that is, the correct “non-built-up to built-up”
change), which were derived from the TOC statistic (Pontius and Si 2014).
Generally, the Bangkok metropolitan area had 684.5 km? hits (representing 74% of
the correctly predicted “non-built-up to built-up” changes) compared to 930.9 km?
of the observed “non-built-up to built-up” changes between 1990 and 2010. For
Beijing metropolitan area, the TOC statistics revealed that out of the 887.3 km?
“non-built-up to built-up” changes that occurred between 1990 and 2010, only
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Fig. 2.3 Hits versus observed changes for Asia based on TOC statistics

531.7 km® representing 60%, were correctly predicted. However, Dhaka
metropolitan area had approximately 325.7 km? hits representing 91% compared to
359.4 km? of the observed “non-built-up to built-up” changes between 1990 and
2010. For Hanoi metropolitan area, the TOC statistics revealed that out of the
70.4 km? “non-built-up to built-up” changes that occurred between 1990 and 2010,
52.8 km? representing 75% were correctly predicted. The Jakarta metropolitan area
had approximately 114 km? hits representing 64% compared to 177.2 km? of the
observed ‘“non-built-up to built-up” changes between 1990 and 2010 (validation
period). For Kathmandu metropolitan area, the TOC statistics revealed that out of
the 38.3 km? “non-built-up to built-up” changes that occurred between 1990 and
2010, only 34.1 km® representing 89% were correctly predicted. The Manila
metropolitan area had approximately 169.2 km? (representing 65% of the correctly
predicted “non-built-up to built-up” changes) compared to 262.2 km® of the
observed “non-built-up to built-up” changes between 1990 and 2010. However,
Tehran had the lowest hits. The TOC statistics revealed that out of the 354.7 km?
observed “non-built-up to built-up” changes that occurred between 1990 and 2010,
only 117.6 km® representing 33% were correctly predicted. The Yangon
metropolitan area had approximately 91 km? hits representing 71% compared to
129 km* of the observed “non-built-up to built-up” changes between 1990 and
2010.

Generally, all models expect Tehran produced relatively good transition
potential maps. However, all models were excellent at predicting the allocation of
built-up and non-built-up persistence since built-up and non-built-up persistence
accounts for approximately 70% of the metropolitan areas. This is reflected by the
relatively high TOC values, which are all above 86% for all metropolitan areas.
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2.4.1.2 Metropolitan Areas in Africa

Figure 2.4 shows the TOC graphs for all transition potential models in Africa. The
Bamako metropolitan area had 50.7 km? hits (representing 78% of the correctly
predicted “non-built-up to built-up” changes) compared to 65 km? of the observed
“non-built-up to built-up” changes between 1990 and 2010. For Dakar metropolitan
area, the TOC statistics revealed that out of the 66.8 km? “non-built-up to built-up”
changes that occurred between 1990 and 2010, only 48.3 km” representing 72%
were correctly predicted. The Harare metropolitan area had 170.8 km? hits repre-
senting 72% compared to 236.9 km? of the observed “non-built-up to built-up”
changes between 1990 and 2010. Johannesburg metropolitan area had the highest
number of hits. The TOC statistics revealed that out of the 648.2 km? “non-built-up
to built-up” changes that occurred between 1990 and 2010, 578.8 km? representing
89% were correctly predicted. However, Lilongwe metropolitan area had the lowest
number of hits. For example, 8.1 km? hits representing 36% compared to 22.7 km?
of the observed “non-built-up to built-up” changes between 1990 and 2010 were
observed. For Nairobi metropolitan area, the TOC statistics revealed that out of the
74.9 km? “non-built-up to built-up” changes that occurred between 1990 and 2010,
only 43.3 km?” representing 58% were correctly predicted.

Generally, five models (except Lilongwe) produced relatively good transition
potential maps. However, all models were excellent at predicting the allocation of
built-up and non-built-up persistence. This is reflected by the relatively high TOC
values since built-up and non-built-up persistence is dominant in the metropolitan
areas of Africa.

m Observed built-up changes (1990-2010)

Lilongwe

Nairobi o Hits (correctly predicted built-up changes)
.

Harare

e
|

Dakar
—

Bamako

100 200 300 400 500 600
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Fig. 2.4 Hits versus observed changes for Africa based on TOC statistics
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2.4.2 Validation of the Simulated Land Use/Cover Changes

2.4.2.1 Metropolitan Areas in Asia

The observed and simulated land use/cover maps for all metropolitan areas in Asia
are shown in Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, and 2.13. Visual analysis
shows that the BRT-CA and RF-CA models for Bangkok, Beijing, Dhaka, Hanoi,
Jakarta, Kathmandu, Manila, and Yangon had good correspondence between the
observed and simulated land use/cover maps for 2014 (Figs. 2.5, 2.6, 2.7, 2.8, 2.9,
2.10, 2.11, 2.12, and 2.13). The spatial patterns of built-up areas simulated by the
BRT-CA and RF-CA models resemble the observed built-up patterns to a large

(a) Observed 2014 (b) Simulated 2014
- Built-up - Non-Built-up _:I km

Fig. 2.5 Comparison of observed versus simulated land use/cover for Bangkok

(a) Observed 2014 (b) Simulated 2014

I Buitt-up [ Non-Built-up

Fig. 2.6 Comparison of observed versus simulated land use/cover for Beijing
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(a) Observed 2014 (b) Simulated 2014
- Built-up - Non-Built-up _:lkm

Fig. 2.7 Comparison of observed versus simulated land use/cover for Dhaka

(a) Observed 2014 (b) Simulated 2014

- Built-up - Non-Built-up

—:km

Fig. 2.8 Comparison of observed versus simulated land use/cover for Hanoi

extent. This suggests that the BRT-CA and RF-CA models were relatively accurate
at allocating “non-built-up to built-up” changes.

However, Fig. 2.12 shows relatively medium correspondence between the
simulated built-up patterns and the observed built-up patterns for Tehran.
Generally, there was an underprediction of the built-up class for Tehran
metropolitan area. This is partly attributed to lower spatial allocation of
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(a) Observed 2013 (b) Simulated 2013

J

- Built-up - Non-Built-up

Fig. 2.9 Comparison of observed versus simulated land use/cover for Jakarta

(a) Observed 2014 (b) Simulated 2014

- Built-up - Non-Built-up

Fig. 2.10 Comparison of observed versus simulated land use/cover for Kathmandu

“non-built-up to built-up” changes that was observed during the calibration of the
RF model for Tehran metropolitan area (Fig. 2.1g). In addition, it should be noted
that Tehran metropolitan area has quite a unique setting with very high landscape
fragmentation and scattered urban development, which makes it challenging to
develop a robust simulation model. Nonetheless, it is also important to note that
some of the allocated built-up areas had strong agreement between the simulated
and observed land use/cover maps, which means that the CA model can be used to
simulate future land use/cover changes.

For quantitative model validation, we used the observed (initial) land use/cover
map for 1990, the observed (reference) land use/cover map for 2014, and the
simulated land use/cover map for 2014. Table 2.5 shows the validation statistics
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(a) Observed 2014 (b) Simulated 2014

- Built-up - Non-Built-up

Fig. 2.11 Comparison of observed versus simulated land use/cover for Manila

(a) Observed 2014 (IJ) Simulated 2014

- Built-up - Non-Built-up

Fig. 2.12 Comparison of observed versus simulated land use/cover for Tehran

based on KSimulation, KTranslocation, KTransition, and the FoM for all
metropolitan areas in Asia. KSimulation values range from 42 to 69%, while the
KTranslocation values range from 44 to 71% (Table 2.5). Tehran had the lowest
KSimulation and KTranslocation scores, while Dhaka had the highest KSimulation
and KTranslocation scores. The FoM statistics also follow the similar pattern as the
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Fig. 2.13 Comparison of observed versus simulated land use/cover for Yangon

Table 2.5 Validation statistics for all simulation models in Asia

Metropolitan area | KSimulation | KTranslocation | KTransition | Figure of merit (%)
Bangkok 0.62 0.61 0.95 51
Beijing 0.51 0.55 0.93 45
Dhaka 0.69 0.71 0.97 58
Hanoi 0.56 0.67 0.83 42
Jakarta 0.47 0.49 0.96 43
Kathmandu 0.68 0.68 0.98 55
Manila 0.60 0.64 0.94 48
Tehran 0.42 0.44 0.96 29
Yangon 0.62 0.63 0.98 48

KSimulation and KTranslocation statistics. These results are in agreement with the
goodness-of-fit transition potential results (Fig. 2.2), which suggest that transition
potential maps have more influence in the overall accuracy of the CA simulation
models. A study by Pontius et al. (2007, 2008) revealed that the FoM observed in
other LCMs ranged from 1 to 59%. Therefore, the accuracy of the BRT-CA and
RF-CA models are relatively high since the FoM is within the upper range of
previously observed LCMs (Kamusoko and Gamba 2015).
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Generally, all the simulation models had high KTransition score, which are above
83%. This is supported by the quantitative analysis between the simulated and observed
land use/cover changes for all metropolitan areas in Asia. For example, a quantitative
comparison for Bangkok revealed that the observed and projected quantities of built-up
were 2292.4 and 2428.5 km?, respectively. For Beijing, the observed built-up class was
2173.7 km?, whereas the corresponding simulated class was 2364.1 km”. However, the
observed built-up class was 118.5 km?, while the corresponding simulated class was
171.8 km? for Dhaka. For Hanoi, the observed built-up class was 133.3 kmz, whereas
the corresponding simulated class was 171.8 km?. In the case of Jakarta, the observed
built-up class was 623.5 km?, while the corresponding simulated class was 606.8 km?.
For Kathmandu, the observed built-up class was 75.9 km?, whereas the corresponding
simulated class was 76 km?. Nevertheless, the observed built-up class was 848.6 km2,
while the corresponding simulated class was 984.6 km? for Manila. For Tehran, the
observed built-up class was 923.3 km?, whereas the corresponding simulated class was
969.1 km?>. Last but not least, the observed built-up class was 228.9 kmz, while the
corresponding simulated class was 223.1 km? for Yangon. These results show that all
simulation models were relatively accurate for simulating land use/cover quantity.

2.4.2.2 Metropolitan Areas in Africa
The observed and simulated land use/cover maps for all metropolitan areas in

Africa are shown in Figs. 2.14, 2.15, 2.16, 2.17, 2.18, and 2.19. Visual analysis

(a) Observed 2014 (b) Simulated 2014
N

4

- Built-up [ Non-Built-up [ ] water

Fig. 2.14 Comparison of observed versus simulated land use/cover for Bamako
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(a) Observed 2014 (b) Simulated 2014
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Fig. 2.15 Comparison of observed versus simulated land use/cover for Dakar

(a) Observed 2014 (b) Simulated 2014

I Built-up - Non-Built-up

_=km

Fig. 2.16 Comparison of observed versus simulated land use/cover for Harare

shows that the BRT-CA and RF-CA models for all metropolitan areas had a rel-
atively high correspondence between the observed and simulated land use/cover
maps for 2014 (Figs. 2.14, 2.15, 2.16, 2.17, 2.18, and 2.19). Generally, the spatial
patterns of the simulated built-up areas closely match the observed built-up pat-
terns. While a slight degree of clumpiness is noted in some metropolitan areas such
as Harare, in general the BRT-CA and RF-CA models were relatively good at
allocating “non-built-up to built-up” changes and simulating land use/cover
(Figs. 2.14, 2.15, 2.16, 2.17, 2.18, and 2.19). This attributed to the rigorous cali-
bration of the transition potential maps, which were computed using BRT and RF
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(a) Observed 2014 (b) Simulated 2014

I Buit-up [ Non-Built-up

Fig. 2.17 Comparison of observed versus simulated land use/cover for Johannesburg

(a) Observed 2013 (b) Simulated 2013

I Built-up [0 Non-Built-up

Fig. 2.18 Comparison of observed versus simulated land use/cover for Lilongwe

models (Fig. 2.3). These simulation results are significant given that all the BRT
and RF models only incorporated a limited number of driving factors. Therefore,
BRT-CA and RF-CA models can be used to simulate future land use/cover changes.
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(a) Observed 2014 (b) Simulated 2014
I Built-up [ Non-Built-up — i

Fig. 2.19 Comparison of observed versus simulated land use/cover for Nairobi

Table 2.6 Validation statistics for all simulation models in Africa

Metropolitan area KSimulation KTranslocation KTransition Figure of merit (%)
Bamako 0.72 0.75 0.96 63
Dakar 0.75 0.79 0.94 62
Harare 0.49 0.50 0.99 47
Johannesburg 0.66 0.70 0.96 55
Lilongwe 0.68 0.70 0.97 53
Nairobi 0.56 0.60 0.93 43

Table 2.6 shows the validation statistics based on KSimulation, KTranslocation,
KTransition, and the FoM. Bamako, Dakar, Johannesburg, Lilongwe, and Nairobi
had KSimulation and KTranslocation scores above 50% (Table 2.6). All the sim-
ulation models had high KTransition score (above 93%), which is higher than the
simulation models in metropolitan areas of Asia. This is supported by the quanti-
tative analysis between the simulated and observed land use/cover changes for all
metropolitan areas in Africa. For example, a quantitative comparison for Bamako
revealed that the observed and simulated built-up class was 104.7 and 111.9 km?,
respectively. While the observed built-up class was 118.6 km?, the corresponding
simulated class was 109.7 km? for Dakar. However, the observed built-up class was
358.6 km?, while the corresponding simulated class was 360.4 km? for Harare. For
Johannesburg, the observed built-up class was 1418.6 kmz, whereas the corre-
sponding simulated class was 1494.6 km?. Although Lilongwe had a relatively
lower accuracy for the transition potential (Table 2.6), the observed built-up class
was 34.7 km?, while the corresponding simulated class was 32.9 km?. For Nairobi,
the observed built-up class was 182.8 km?, whereas the corresponding simulated
class was 198.9 km®. These results indicate that all simulation models were rela-
tively accurate for simulating land use/cover quantity. This is supported by the high
FoM, which was above 43% for all simulation models in Africa.
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Fig. 2.20 Components of agreement and disagreement for Asia
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Fig. 2.20 (continued)

2.4.3 Analysis of Components of Agreement
and Disagreement

2.4.3.1 Metropolitan Areas in Asia

Figures 2.20 and 2.21 show the components of agreement and disagreement based
on the overlay of the initial (1990), the observed (2014), and simulated land
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Fig. 2.21 Components of agreement and disagreement expressed as a percentage (Asia)

use/cover maps (2014) for all models. The components of agreement and dis-
agreement reveal information such as: (1) observed change simulated correctly as
change (hits); (2) observed persistence (built-up and non-built-up) simulated cor-
rectly as persistence (null successes); (3) observed change simulated wrongly as
persistence (misses); and (4) observed persistence simulated wrongly as change
(false alarms).

Results show that non-built-up persistence had the largest components of
agreement for all the models in Asia (Figs. 2.20 and 2.21). This is because
non-built-up persistence occupied about 60% of the metropolitan areas between
1990 and 2010. However, there are variation in terms of the hits, false alarms, and
misses. For example, Bangkok, Dhaka, Kathmandu, Manila, and Yangon had the
same or slightly more hits than the combined misses and false alarms (Figs. 2.20
and 2.21). This is encouraging since it shows that BRT-CA and RF-CA models
performed relatively well. While Beijing, Hanoi, Jakarta, and Tehran had slightly
more combined misses and false alarms than hits, the BRT-CA and RF-CA models
also performed relatively well.

While the results show improvement in the LCMs, it must be noted that the
simulated land use/cover maps include uncertainty of the original land use/cover
maps, especially the 1990 land use/cover map (which was not quantitatively vali-
dated). In addition, it was observed that the BRT-CA and RF-CA models failed to
simulate unconnected newly built-up areas, which is clearly apparent in the com-
ponents of agreement and disagreement (Fig. 2.21). This is attributed to spatial and
temporal nonstationarity in the built-up change process. Figure 2.22 shows the
normalized observed built-up change rate between different epochs in Asia, which
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Fig. 2.22 Normalized observed built-up change rate between different epochs in Asia

indicates clearly that built-up changes for all metropolitan areas were nonstationary.
The combination of rapid and slow urban growth developments between different
time periods (e.g., “1990-2000” and “2000-2010" periods) is challenging for
simulating unconnected newly built-up areas based on BRT-CA and RF-CA
models. This is because statistical or machine learning algorithms have difficulty in
handling nonstationarity (The Sate of Land Change Modeling 2014).

2.4.3.2 Metropolitan Areas in Africa

For Africa, non-built-up persistence had the largest components of agreement for all
the models as was observed in Asia (Figs. 2.23 and 2.24). This is because
non-built-up persistence occupied more than 50% of the metropolitan areas between
1990 and 2010. Furthermore, Bamako, Dakar, Johannesburg, Lilongwe, and
Nairobi metropolitan areas had slightly more hits than the combined misses and
false alarms (Figs. 2.23 and 2.24), indicating that the RF-CA model performed
relatively well. However, Harare metropolitan area had more combined misses and
false alarms than hits. This is because the RF model failed to predict unconnected
newly built-up areas, particularly in unplanned and illegal settlement areas. In
addition, uncertainty is increased due to the high-temporal nonstationarity
(Fig. 2.25). Consequently, the RF model had difficulty modeling the unbalanced
land outcomes, namely the combination of rapid and slow urban growth
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Fig. 2.23 Components of agreement and disagreement for Africa

developments, which occurred during the “1990-2000 and “2000-2010 periods
(Fig. 2.25). For example, the rate of “non-built-up to built-up” change between
1990 and 2000 was approximately 114.4 km?, while the “non-built-up to built-up”
change slowed to 69.8 km? between 2000 and 2010 (Kamusoko and Gamba 2015).
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Fig. 2.25 Normalized observed built-up change rate between different epochs in Africa

2.5 Capturing Spatial Pattern of Urbanization

In order to capture, examine, and compare the spatial pattern of urbanization in all
the cities, we used five spatial metrics. These include PLAND, PD, ENN, CIRCLE,
and SHAPE (Table 2.7). This set of spatial metrics was also used recently by the
Asian Development Bank (ADB) in a study entitled “Urban Metabolism of Six
Asian Cities” (ADB 2014).

In this analysis, all these five spatial metrics were used at the class level
(built-up). The 8-cell neighbor rule was used to determine the membership of each
pixel to a patch. In this rule, all the four orthogonal and four diagonal neighbors of
the focal cell are used. In the 8-cell neighbor rule, two cells of the same LULC class
that are diagonally touching are considered as part of the same patch, but in the case
of the 4-cell neighbor rule, these are considered separate patches (McGarigal et al.
2012). We selected the 8-cell neighbor as it has been used in various studies (e.g.,
Townsend et al. 2009; Estoque and Murayama 2013, 2016; Estoque et al. 2014).
The five spatial metrics were computed using FRAGSTATS 4.2 (McGarigal et al.
2012).
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Table 2.7 List and details of the class-level (built-up) spatial metrics used

Spatial
metrics

Range

Unit

Description

Measure

PLAND

0 < PLAND
< 100

Percent

Percentage of
landscape;
percentage of
built-up relative to
the whole
landscape
(excluding water)

Area

PD

PD >0

Number
per

100 ha
or per

Patch density;
number of patches
of built-up per
unit area

Aggregation
(subdivision/fragmentation)

ENN
(mean)

ENN > 0

Meter

Euclidean nearest
neighbor distance;
distance to the
nearest
neighboring patch
of the same type,
based on shortest
edge-to-edge
distance

Aggregation
(isolation/dispersion)

CIRCLE
(mean)

0<
CIRCLE < 1

None

Related
circumscribing
circle; provides a
measure of overall
patch elongation;
measures the
circularity of
built-up patches.
Low values
represent circular
patches

Shape (geometry)

SHAPE
(mean)

1

IN

SHAPE

None

Shape index;
measures the
complexity of
patch shape
compared to a
standard shape
(square) of the
same size;
measures the
irregularity of
built-up patches.
Low values
represent low
complexity

Shape (complexity)

Source McGarigal et al. (2012). Note The water class was not included in the derivation of the

metrics
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2.6 Summary and Conclusions

Taking the selected metropolitan areas in Asia and Africa, the purpose of this
chapter was to describe the methodology used to produce the land use/cover maps,
calibrate and validate LCMs. The specific objectives of this chapter were to eval-
uate the goodness-of-fit of transition potential maps, validate the simulated land
use/cover maps as well as elucidate components of agreement and disagreement.
Land use/cover maps were classified from Landsat imagery for 1990, 2000, 2010,
and 2014 using the (RF) classifier. Finally, land use/cover changes were simulated
based on the BRT-CA and RF-CA models.

Quantitative accuracy assessment for the 1990 land use/cover maps was not
conducted because of the unavailability of reference data such as aerial photographs
and high-resolution satellite imagery. However, the Atlas of Urban Expansion
developed by the Lincoln Institute of Land Policy (Angel et al. 2010) was used to
visually check the quality of land use/cover maps for the 1990 epoch (that is,
Landsat imagery acquired between 1988 and 1993). Qualitative and quantitative
accuracy assessments were conducted for land use/cover maps from 2000, 2010,
and 2014 epochs based on very high-resolution images (e.g., QuickBird image)
from Google Earth™. Overall land use/cover classification accuracy for all land
use/cover maps ranged from 70 to 90% for all the metropolitan areas.

Generally, the BRT-CA and RF-CA models for all metropolitan areas in Asia
and Africa performed relatively well. However, the BRT-CA and RF-CA models
for metropolitan areas in Africa performed better than the BRT-CA and RF-CA
models for metropolitan areas in Asia. The modeling and simulation results pre-
sented in this chapter—however limited to selected case studies in Asia and Africa
—provide an initial exploration of the machine learning-cellular (ML-CA) models
for land change modeling. While urban expansion in Asia and Africa has been
acknowledged, to-date spatial LCMs have not been rigorously explored and vali-
dated. Of particular importance here is the possibility of improving transition
potential modeling using machine learning models. Consequently, this chapter
highlights the value and significance of robust calibration, validation and simulation
of spatial LCMs—in particular ML-CA models—for the 15 metropolitan areas in
Asia and Africa. Therefore, this chapter provides a foundation for calibrating and
validating spatial LCMs.

While the simulation results are encouraging, it is also important to acknowledge
that all the BRT-CA and RF-CA models fail to simulate newly developed or
built-up areas, which are not connected to existing urban built-up areas. Previous
studies revealed that statistical or machine learning models underpredict the loca-
tion of new patches, which are not connected to existing built-up areas (Pontius and
Malanson 2005) due to spatial or temporal nonstationarity (Estoque and Murayama
2014; The State of Land Change Modeling 2014). Therefore, issues related to
nonstationarity need to be addressed using more temporal land use/cover data (e.g.,
at 5 year intervals) or combining BRT-CA and RF-CA models with other LCMs.
Although some model uncertainties remain, the BRT-CA and RF-CA models
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developed in this study have potential to improve land change modeling in general,
and urban growth modeling and simulation in particular. Given the broader
implications of the results from this chapter, further studies should be carried out to
test the BRT-CA and RF-CA models using multiple temporal land use/cover maps
at a shorter time interval in order to minimize the effects on spatial and temporal
nonstationarity.
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