Chapter 2
Novel Correlation and Entropy Measures
of Hesitant Fuzzy Sets

Correlation is one of the most widely used indices in data analysis, pattern
recognition, machine learning, decision making, etc. It measures how well two
variables move together in a linear fashion. The correlation coefficient, which was
originally appeared in Karl Pearson’s proposal related to statistics, has been
extended into different fuzzy circumstances. Different forms of fuzzy correlation
coefficients have been proposed, such as the fuzzy correlation coefficients, the
intuitionistic fuzzy correlation coefficients, and the hesitant fuzzy correlation
coefficients. Xu and Xia (2011b) defined several correlation coefficients for HFEs.
Afterwards, Chen et al. (2013a) proposed a formula to calculate the correlation
coefficient between two HFSs. In this chapter, we first point out the weaknesses of
the existing correlation coefficients between HFSs, and then introduce some novel
correlation coefficient formulas for HFSs. Some new concepts, such as the mean of
a HFS, the variance of a HFS and the correlation between two HFSs are defined.
Based on these concepts, a novel correlation coefficient formula between two HFSs
is introduced. Afterwards, the upper and lower bounds of the correlation coefficient
are defined. A theorem is given to determine these two bounds. It is stated that the
correlation coefficient between two HFSs should also be hesitant, and thus, the
upper and lower bounds can further help to identify the correlation coefficient
between HFSs. The significant characteristic of the introduced correlation coeffi-
cient is that it lies in the interval [—1, 1], which is in accordance with the classical
correlation coefficient in statistics, whereas all the old correlation coefficients
between HFSs in the literature are within the unit interval [0, 1]. The weighted
correlation coefficient is also proposed to make it more applicable. In order to show
the efficiency of the proposed correlation coefficients, they are implemented in
medical diagnosis and cluster analysis. Some numerical examples are given in this
chapter to illustrate the applicability and efficiency of the proposed correlation
coefficient between HFSs.

Entropy is another important index for fuzzy information, which measures the
degree of uncertainty of a fuzzy set. Usually, there are two aspects of uncertainty
associated with a fuzzy set. One is related to fuzziness, which results from the lack
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of clear discrimination between the elements belonging or not belonging to a set.
For classical fuzzy set, Zadeh (1965) first defined the entropy to measure the
fuzziness of a fuzzy set and then many scholars developed different kinds of
entropy formulas for fuzzy set (De Luca and Termini 1972; Kaufmann and
Swanson 1975; Yager 1979; Parkash et al. 2008) and IFS (Burillo and Bustince
1996; Szmidt and Kacprzyk 2001; Wei et al. 2012). The other aspect of uncertainty
associated with a fuzzy set is related to the lack of specificity. Specificity measures
the amount of information contained in a fuzzy set. Yager (1992, 1998) put forward
several specificity measures to quantify the degree that a fuzzy set contains just one
element. Based on three t-norms and a negation, Garmendia et al. (2003) gave a
general expression for specificity measures of a fuzzy set. Later, Yager (2008c)
studied the formula of specificity measures in continuous domain. Pal et al. (2013)
pointed out that there are two types of uncertainty for an IFS, i.e., the fuzzy-type
uncertainty and the non-specificity type uncertainty. As to the entropy measure of
HFS, Xu and Xia (2012) gave the axiomatic definition of entropy for HFEs and
developed several entropy formulas to measure the degree of fuzziness of a HFE.
Later, Farhadinia (2013) also proposed some entropy measures to quantify the
degree of fuzziness of a HFS. In the second subsection of this chapter, we review
the existing entropy measures for HFEs and demonstrate that the existing entropy
measures for HFEs fail to effectively distinguish some apparently different HFEs in
some cases. Then, we give a new axiomatic framework of entropy measures for
HFEs by taking into account two facets of uncertainty associated with a HFE (i.e.,
fuzziness and non-specificity). We adopt a two-tuple entropy model to represent the
two types of uncertainty associated with a HFE. Additionally, we discuss how to
formulate each kind of uncertainty. Several examples are given to illustrate each
method, and the comparisons with the existing entropy measures are also offered.

2.1 Novel Correlation Measures of Hesitant Fuzzy Sets

2.1.1 The Existing Correlation Measures of Hesitant
Fuzzy Sets

As the correlation measure is one of the most important indices in measuring the
relationship between two sets, it has been investigated in-depth within in the
context of fuzzy sets and their extensions. As a representation, in the following, we
just review the advances in correlation coefficient related to fuzzy sets and IFSs.
After discussing various properties which are attributed to “correlation” in
statistics, Murthy et al. (1985) first introduced the correlation coefficient p(u, i),
similar to the correlation coefficient in statistics, between two fuzzy membership
functions. It was proven that the correlation coefficient they defined satisfies many
good properties, including p(u;, ity) € [—1, 1]. In the case that the elements of
fuzzy sets are ranked in terms of memberships, Chaudhuri and Bhattacharya (2001)
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proposed a rank correlation coefficient for fuzzy sets and then compared it with
Murthy et al. (1985)’s correlation coefficient formula. Also adopting the concepts
from conventional statistics, Chiang and Lin (1999) derived another formula of
correlation coefficient in the domain of fuzzy sets. All these three kinds of corre-
lation coefficients over fuzzy sets lie in the interval [—1, 1] and have similar
meaning as that in conventional statistics. On the other hand, Yu (1993) introduced
quite different concepts of correlation and correlation coefficient to measure the
interrelation between fuzzy numbers. The value of correlation coefficient he
introduced is within the interval [0, 1]. That is to say, the correlation coefficient he
proposed can only represent the strength of relationship between fuzzy sets, but
cannot manifest the positive or negative correlation.

It is stated that all the above achievements calculate the correlation coefficient
between fuzzy sets as a crisp number. By using the sup-min convolution, Liu and
Kao (2002) proposed a mathematical programming approach to calculate the cor-
relation coefficient as a fuzzy number. After that, by applying the T,-based
extension principle, Hong (2006) gave an exact solution of a fuzzy correlation
coefficient without relying on programming.

Regarding to IFSs, many different forms of correlation measures have also been
investigated. Hung (2001) proposed the correlation coefficient for IFSs from statistics
point of view by considering the membership degree and non-membership degree as
two separate fuzzy sets. After that, Szmidt and Kacprzyk (2010) extended his formula
by taking the hesitant degrees of IFSs into account. Mitchell (2004) also proposed an
improved version of correlation coefficient, in which he interpreted the IFSs as the
ensembles of ordinary membership functions. As these correlation coefficients are
motivated from traditional statistics, the correlation coefficients of IFSs they devel-
oped are within the interval [—1, 1]. On the other side, motivated by the information
energy of a fuzzy set, Gerstenkorn and Manko (1991) developed a quite different
form of correlation coefficient for IFSs. Further, Hong and Hwang (1995) extended
this type of correlation coefficient into possibility space in which the set {x;} is an
infinite universe of discourse. Moreover, Hung and Wu (2002) improved the corre-
lation coefficient and introduced the so-called centroid-method-based correlation
coefficient for IFSs. As these correlation coefficients cannot guarantee that the cor-
relation coefficient between any two IFSs equals to one if and only if these two IFSs
are the same, Xu (2006b) proposed a new form of correlation coefficient for IFSs and
circumvented this weakness. It should be stated that all the correlation coefficients
proposed in Gerstenkorn and Manko (1991), Hong and Hwang (1995), Huang and
Wu (2002), and Xu (2006b) lie in the unit interval [0, 1].

Some scholars also proposed distinct correlation measures within the context of
HFSs. Xu and Xia (2011b) proposed several correlation coefficients from the point
of HFEs. For two HFEs /4 = {yAl, VA2s - - o yAlA} and hp = {VBI, VB2s - - o yBZB}, itis
possible that the values in /4 and hg are out of order. In addition, the number of
values, I4 and [p, in different HFEs may be different. Thus, to introduce the defi-
nition of correlation coefficient between two HFEs, Xu and Xia (2011b) firstly
supposed that the values in different HFEs were arranged in ascending order;
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meanwhile, they also assumed that the HFEs have the same length /. Based on these
two assumptions, they proposed five different kinds of correlation coefficients for
HFEs. Here we just set out one as a representation (for more others, readers can
refer to Xu and Xia (2011b)):

1
Ek:l YAc (k)Y Ba (k)
L L 1/2
(Zk:l VAo (k) D k-1 VBa(k)>

p(ha, hp) = (2.1)

where ¢:(1,2,...,1) = (1,2,...,1) is a permutation satisfying 7,4 < Vg4 1),
k=1,2,...,1— 1. Although Xu and Xia (2011b) stated that |c(h4, hg)| <1, it is
obvious that c(hs, hg) >0 as y € [0, 1], which means c(hya, hp) € [0, 1].

Chen et al. (2013a) proposed a formula to calculate the correlation coefficient
between two HFSs. Let X be a reference set, A= {ha(x;)} and B=
{hg(x;))} (i =1,2,...,n) be two HFSs. As the values in HFEs are out of order, and
the number of values in different HFEs may be different, in order to introduce the
correlation coefficient between two HFSs, the following assumptions are given in
advance:

e The values in a HFE are arranged in ascending order.
e The lengths of different HFEs are assumed to have equal length.

The first assumption is easy to be satisfied. For the second one, sometimes the
cardinality of two HFEs are different. In such case, as to Chen et al. (2013a)’s
method, we need to make the lengths of the two HFEs be the same. There are many
different regulations to extend the shorter HFE to the same length as the longer one.
The most representative regulations are the pessimistic principle and the optimistic
principle. For two HFEs k4 and hg, let [ = max{ly,,[,,} where I, and [, are the
number of values in iy and hp, respectively. When [, # [;,,, one can extend the
short HFE by adding some values in it until it has the same length with the other. In
terms of the pessimistic principle, the short HFE is extended by adding the mini-
mum value in it until it has the same length with the other HFE; while as to the
optimistic principle, the maximum value of the short HFE should be added till the
HFE has the same length as the longer one. In Chen et al. (2013a)’s definition, they
used the former case and thus the correlation coefficient between two HFSs was
defined as:

S (F Xt o) 09) - Vo) ()
(A, B) = (22)
' {Z?:l (zl i Vfao(k) (xi))} . [Z?:1 (ll i ”/zzaa(k> (xi))} ”

where 74, (xi) and 7,4 (x:) are the kth value in ha(x;) and hp(x;).
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In summary, the correlation coefficients defined as Eqs. (2.1) and (2.2) have a
few weaknesses:

(1) In Eq. (2.1), the HFEs were assumed to have equal length. This is not in accor-
dance with real cases because it is impossible to make sure that all HFEs have
equal length. As to Eq. (2.2), the pessimistic (or optimistic) principle was applied
to fill the short HFE with some artificial values. It should be pointed out that filling
some artificial values into a HFE would change its original information.

The following two examples show that the extensional regulations used in Xu
and Xia (2011b) and Chen et al. (2013a) in the process of defining correlation
coefficients between two HFEs or HFSs are not reasonable:

Example 2.1 (Liao et al. 2015b) For two HFEs h; ={0.1,0.3} and
hy ={0.1,0.3,0.8}. In order to calculate the correlation coefficient between /; and
hy by Eq. (2.1), according to Xu and Xia (2011b)’s assumptions, we should firstly
extend h; to make it have equal length with h;. Suppose that the pessimistic
principle is applied to £y, i.e., the minimum element in /; should be added to A;.
Then, h; is modified as 4} = {0.1,0.1,0.3}. By Eqgs. (1.7) and (1.8), we have
hy =02, ¢, = 0.1, and A} = 0.1667, @y, = 0.0943. It is obvious that the revised

HFE h| is quite different from the original HFE A;.

Example 2.2 (Liao et al. 2015b) Suppose that we are going to measure the correlation
coefficient between two HFEs h; ={0.1,0.8} and h; ={0.1,0.2,0.3,0.4,
0.5,0.6,0.7,0.8}. Then, according to the pessimistic principle, #; should be modified
as k) ={0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.8}. Via Egs. (1.7) and (1.8), we have
hy = 0.45, @, = 0.35, and k| = 0.1875, ¢, = 0.2315. It should be noted that the

mean of the revised HFE /) is more than two times smaller than that of the original
HFE h;; meanwhile, the hesitant degree also changes apparently.

Examples 2.1 and 2.2 reveal that adding some artificial values in a HFE, no
matter by pessimistic principle or by optimistic principle, would change the
information of the original one. Thus, it is not very reasonable to measure the
correlation coefficient between HFEs or HFSs by Eq. (2.1) or Eq. (2.2), and some
new correlation coefficients need to be proposed for HFSs.

(2) The correlation coefficient defined in Xu and Xia (2011b) and Chen et al.
(2013a) is always positive but this ignores the negative situation. In traditional
random variable case, the correlation coefficient lies in [—1, 1]. For those cor-
relation coefficients defined over fuzzy sets or IFSs, the correlation coefficients
also lie in the interval [—1, 1]. Hence, it is not adequate to use the always
positive variable to denote the correlation degree between two HFSs. The
positive correlation coefficient can only demonstrate the strength of the rela-
tionship between HFSs, but cannot manifest the positive or negative correlation.

(3) It is not a best choice to use just one crisp number to represent the correlation
degree between two HFEs or HFSs as the HFEs or HFSs per se are hesitant but
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not precise. In other words, the correlation coefficient for HFSs should have
certain degree of hesitance rather than just a fixed value.

2.1.2 Novel Correlation Measures of Hesitant Fuzzy Sets

This subsection introduces some novel correlation coefficients for HFSs. As to
HFS, the following definitions are given:

Definition 2.1 (Liao et al. 2015b). For a reference set X, let A=
{<x,ha(x;) > |x; €X} be a HFS on X with ha(xi) = {Vai1, Vai--
Vair, t» i = 1,2,...,n. The mean of the HFS A is defined as:

n 1 La;
= ZhA x;) = Z (l /Aik) (2.3)
i=1 \"Al k=1
Definition 2.2 (Liao et al. 2015b). For a reference set X, let A=
{<x, ha(x;) > |x; € X} be a HFS on X with ha(x;) = {yai1, Va2 Vairy, }»
i=1,2,...,n. The variance of the HFS A is defined as:

n

Var(4) =13 (ha(x) — 4 (2.4)

i=1

Definition 2.3 (Liao et al. 2015b). For a reference set X, let A = {hu(x;)} and
B= {hB(x,)} be two HFSs on X, where ha(x;) = {Pair,Vaizs-- -+ Vair, |+
hp(x;) = {Vsi1: Vaizs - - Vmity, §» i = 1,2, .. .,n. Then the correlation between HFSs
A and B is defined as:

where
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Note 2.1 In Definition 2.3, we do not need the HFSs A and B to have the same
length, that is to say, la; # Ip; is acceptable.

Note 2.2 The correlation above can be positive or negative. So the negative cor-
relation can be modeled too.

Based on Definitions 2.2 and 2.3, it is easy to verify that the correlation coef-
ficient between HFSs satisfies the following theorem:

Theorem 2.1 (Liao et al. 2015b). For a HFS A = { <x,h(x;) > |x; € X} on X with
h(x;) = {yil, Vidy« - o yili}, i=1,2,...,n, the following equation holds:

C(A,A) = Var(A) (2.7)

Now we can define the correlation coefficient for HFSs:

Definition 2.4 (Liao et al. 2015b). For a reference set X, let A = {ha(x;)} and
B = {hp(x;))} be two HFSs on X, where hy(x;) = {yai1,7a02s- - -»Vais,»; and
hp(x;) = {Bi1» VBizs - - Vit §» i = 1,2,...,n. Then the correlation coefficient
between the HFSs A and B is defined as:

C(4,B)
p(A,B) = o (2.8)
[C(AvA) ’ C(Ba B)]
Theorem 2.2 reveals the fundamental properties of correlation coefficient
between HFSs:

Theorem 2.2 (Liao et al. 2015b) The correlation coefficient p(A, B) between HFSs
A and B satisfies the following properties:

(1) p(A,B) = p(B,A).

2) p(A,A) = 1.

(3) p(A,A°) = —1, where A° is defined as A° = {<x, h°(x;) > |x; € X} with
hc('xi) = {1 — Yit> 1 - Yizs - 1 - ’yil,-}7i = 1a2a s

4) —1<p(A,B)<1.

Proof The proofs of (1), (2) and (3) are obvious according to Definition 2.4.
(4) According to Eq. (2.5), we have

1 n n

|C(A,B)| = ;Z [ha(xi) — A] - [hp(x;) — B]| < %Z |ha(x;) — A - [hg(x;) — B
i=1 i=1

Using the Cauchy-Schwarz inequality:
(a1by +axby + - - -I-Clnbn)2 < (a%—i-a%-i- +Cli) : (b%-Fb%-l— +bﬁ)

where a;,b; € R,i =1,2,...,N, it follows that
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ca.B)|< %Z»hmi)—f\lz'\/%Zlhzs(x,-)—
= [C(A,A)]'*[C(B,B)]'?
Thus, we have

C(4,8)]
[c(a, )%, B

lp(A,B)| =

Hence, —1 < p(A, B) < 1, which ends the proof.

In the following, we discuss how to measure the hesitant degree of the corre-
lation coefficient p(A, B) between two HFSs A and B.

We first rewrite the definition of correlation coefficient p(A, B) between two
HFSs A and B as:

Zz 1 (hA(xl) A) i (BB(xi) — B) (29)
\/Zl l hA xl \/Zl l hB )

Then we define the upper and lower bounds of the correlation coefficient p(A, B)
between A and B as follows:

p(A,B)

pY(A,B) = max L (i —A) (v~ B) (2.10)

u; € ha(x \/Zl L ( u,—A)z-\/ZL (Vi_B)2

V,EhB
i=1,2,.

): min Z:l l(ul__ZA)(VI_B) - (211>
u; € ha(x Jz,lm—A>-¢2me—m

V,Ehg
i=1,2,..

p"(A,B

Theorem 2.3 (Liao et al. 2015b). For two HFSs A = {hA (x;:)} and B = {hp(x;)}
on X with  hy(x;) {VAzlaVAzza . ,VAilA,»}7 hp(x;) {Vlea VBi2s - - aVBilBi}7
i=1,2,...,n let hA (x) = max{yAll,yAiz, .. .,VAZ-,A,_}, hA Xi) = min{Pui, Vans - - o
Vaily }o hé/(xi) = maX{VBilvyBiZa s ’/Bilgi} and hé(x,-) = min{“/BnaVBizv s VB[IB,»}'
Then,
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(1) p"(A,B) < p(A, B) < p"(A,B).

) pv > (h”(x,) )-(hY ()~ B)
Y S TRET

(3) p"(A,B) ZTI(W )—A)- (I () - 3)

L G5

Note 2.3 Once we know pY(A, B) and p*(A, B), the difference

Ap(A,B) = p" (A, B) — p"(A, B) (2.12)

can be used as an indicator how hesitant the correlation relationship is. The lager
Ap(A, B) is, the more hesitant the decision maker should be.
To prove the above theorem, a lemma is given first:

Lemma 2.1 (Liao er al. 2015b). Let x be any real number, f(x) =
a > 0. Then, the function f(x) is monotonically increasing.

g it

Proof To prove the above, we only need to prove that f'(x) > 0. Since

2 oy
f(x) = YraTX o Xta-x2 a >0
X +a (¥>+a)-vVx*+a (XP+a)-Vx*+a

then f(x) is monotonically increasing, which competes the proof.
Based on the above lemma, we know for any real numbers x and y, if x >y, then

X
> )

Valt+a /Y +a
In the following, we give the proof of Theorem 2.3.

a>0 (2.13)

Proof We only prove the case of pY(A, B). The case for p*(A, B) can be proven
similarly.

Let p; = hU( ;) — A and g; = u; — A. Since hY(x;) = rnax{yAil,yAiz, .. '>VAilAi}
and u; € ha(x:) = {ai1> Yaizs - - -» Vi, - then we get hY(x;)) >u;. Thus, p;>g;.
Furthermore, we let a; = ai(uy,ua, .. timg, i1, uy) = D001 (1) —;\)2.
Obviously, a; > 0. "

Analogously, for the HFS B, let s; = h§ (x;) — B, t; = v; — B, b; = b;j(vi,va, . . .,
Vi Vit 1oy V) 2 Z??_ (v — B)z. We can also obtain s; > t; as well as b; > 0.

i
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Based on the above transformation, the following equation holds:
ZZ’ L (M () = A) - (hg(xi) — B)
" =2 2
\/z () = 2)" [y (= B) + ()~ B)
J#I
, 1P: N

\/ai+pi b+ s

According to Eq. (2.13), it follows

n n
21 PiSi _ Pi Si

\/“i"'P,z'\/bﬁ"S?i;\/ai‘f‘P?'\/bi'*‘sfz
> Zn qi . ti _ Z:Izl qi-ti
= ai+q@ b+ \/a,Jrq, Vbi+17
Z <"z vi—B) S w-A) (B
N @71 =B 0B /S = A S (- B

Therefore, we can obtain

Z; ! (1, —4)" + (hU(xz) —A)" Z’}?. (vj = B)" + (h§ (x)) — B)®
> 2?1( 7A) (vi — B)

m (=AY /S0 (v - BY

,foralluy; € &(x;), vi € E(yi),i=1,2,--+,n

(2.14)
In the left side of Eq. (2.14), we set v; = hY(x;). Then, it comes
iy (h () —A) - (hg (%) — B)
it (= A)" 4 () —A)°- [ (= B+ () — B
S (i >—A> (hf (x)) — B) i 1<u —A) (v~ B)
VS ) - A) /S o) @, = AT (- BY?

forallu; € ha(x;), vi € hg(x;), i=1,2,...,n (2.15)
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Combining Egs. (2.9) and (2.15), we can obtain
>ty (hF (i) — A) - (hg (x) — B)
H\2
¢z W (x) — 4)° /S, (Y () — B)

which is to say, (2) in Theorem 2.3 holds.
Additionally, in the right side of the inequality (2.15), let v; = hg(x;), then it
follows

S (kY () - ’) (hY(x) - B) > z:u@A(x,)—A) () — B)
VI () —A) S ) =B /S () — A /S0 () — BY?

ie.,
pY(A,B)>p(A,B)

This completes the proof.

Definition 2.5 (Liao et al. 2015b). For a reference set X, let A = {ha(x;)} and
B = {hB(x,)} be two HFSs on X, where ha(x;) = {Jai1: Vais - - -+ Yair,, }» and
hp(xi) = {7i1s VBizs - - -» Vgity t» i = 1,2,...,n. Given the correlation coefficient
p(A, B) between A and B being defined as Eq. (2.9), then the hesitant degree of
p(A, B) is measured in terms of

P =P’ (A,B) — p"(A,B) (2.16)

where pY(A,B) and p%“(A, B) are the upper and lower bounds of the correlation
coefficient p(A, B).

It is noted that the value of correlation coefficient p(A, B) between the HFSs A
and B defined as Eq. (2.8) is also a crisp value. However, as both A and B are HFSs,
it is not adequate to use just a crisp value to represent their relationship. The
correlation coefficient defined as Eq. (2.8) can only be taken as the expected (or
averaging) correlation coefficient between the HFSs A and B. In order to describe
the correlation coefficient between HFSs more objectively, we can also use the
upper bound pY(A, B), the lower bound p"(A, B), or the hesitant degree ¢ ap) (O
better identify the correlation coefficient between two HFSs A and B.

Consider that in some cases, the objects x; € X (i = 1,2, ...,n) may be assigned
different weights. Liao et al. (2015b) proposed the weighted form of the correlation
coefficient for HFSs.

Definition 2.6 (Liao et al. 2015b). Let w = (wy, wy, ..., w,) be the weight vector
of x; (i=1,2,...,n) with w; € [0, 1], (i=1,2,.. ,)andZ?lw,:LFortwo
HFSs A = {hA(x,)} and B = {hp(x;)} with ha(x;)) = {Dai1: Vais - - -+ Vair,, |» and
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hp(x;) {VBmVBlza .. .,yBilBi}, i=1,2,...,n, the following definition can be
developed:

(1) The weighted mean of the HFS A is defined as:

szhA Xi) = Z (WlZyAlk> (2.17)

(2) The weighted variance of the HFS A is defined as:

Var,(A) = %Z (wiha(x;) — A,) (2.18)

(3) The weighted correlation between the HFSs A and B is defined as:

CalA B) = 13" hwiha () — Au] - [wibi () — B.]

i=1

= %Z Wi]le(xi) - %ZWihA(xi)] . [W,'hg(X,’) — %ZWiBB(xi)
(2.19)

where

Lai Igi

hA(xl = ZVAzk’ hB(xl)_ nyBik’i: 1,2,...711
k=1
(4) The Welghted correlation coefficient between the HFSs A and B is defined as:
Cw(A,B)

[C.(4,A) - Cu(B,B)]'* i i
> l(w,hA(x,) —Ay) - (wihp(x;) — B,,)

\/Zl | (Wiha(x;) \/Zl | (wihg(x;) — W)2

pw(A,B) =

(2.20)

The weighted correlation coefficient p,,(A, B) between the HFSs A and B also
satisfies the following properties:

(a) pw(AﬂB) = pw(BaA);

®) py(A,A) =1;

(©) PW(A A°) = —1, where A° is defined as A° = { <x, h(x;) > |x; € X} with
R = {1l =90, L=y l—p b i= 1,2, m

d —1<p,(A,B) <L
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(5) The upper and lower bounds of the weighted correlation coefficient p,,(A, B)
are defined as:

Z? 1 (W u —Ay) - (wiv; — BW)

pY(A,B) = max | (2.21)
u; € hy(x; n - 2 = 2
o) VS v = A, L v = B)
f it — Aw ) ivVi — BW
pL(A,B) = min 2iz (it = Av) - (wivi = B) (2.22)

u; € ha(x;) n T 3\2 n 2
v Ezy( ) \/Zi:l (witt; — Ay,)” - \/Zi:l (wivi = By)
The following properties hold as well:

(a) pe(A,B) < p,(A,B)<pl(A,B).

> it (wihfl () — Aw) - (wih§ (x;)) — By) |
VI (i) = A,)° /X0, (wih () — B,

n: (whA(x,) ) th(x,) B,,)

(b)  pL(AB) =

(©) pw (A,B) Z , wWhere
L [ B
hfx](xi) = maX{VAilv YAizs -+ 5 Vaily }7 h/L;(xi) = min{“/Aila Vaizy -+ o “/AiiA,-}
hg(x,-) = maX{VBmVBiza S VBilB,}v hé(xi) = min{VBm VBi2y -+ VBizB,-}

(6) The hesitant degree of p,,(A, B) is measured in terms of

P.B), = pfj(AaB) - pﬁ(AaB) (2.23)

2.1.3 Applications of the Correlation Measures of Hesitant
Fuzzy Sets

(1) The application of the correlation coefficients in medical diagnosis
The correlation coefficient can be implemented into many practical applications.
The first case given below is related to medical diagnosis.

Example 2.3 (Liao et al. 2015b). Suppose that a doctor wants to make a proper
diagnosis D = {Viral fever, Malaria, Typhoid, Stomach problem, Chest problem}
for a set of patients P = {Al, Bob, Joe, Ted} with the values of symptoms
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Table 2.1 Symptom characteristics for the considered diagnoses in terms of HFSs

Temperature Headache Cough Stomach pain Stomach pain

Viral fever | {0.6,0.4,0.3} |{0.7,0.5,0.3,0.2} |{0.5,0.3} |{0.5,0.4,0.3,0.2,0.1} |{0.5,0.4,0.2,0.1}
Malaria {0.9,0.8,0.7} |{0.5,0.3,0.2,0.1} |{0.2,0.1} |{0.6,0.5,0.3,0.2,0.1} |{0.4,0.3,0.2,0.1}
Typhoid {0.6,0.3,0.1} |{0.9,0.8,0.7,0.6} |{0.5,0.3} |{0.5,0.4,0.3,0.2,0.1} |{0.6,0.4,0.3,0.1}

Stomach {0.5,0.4,0.2} |{0.4,0.3,0.2,0.1} |{0.4,0.3} |{0.9,0.8,0.7,0.6,0.5} |{0.5,0.4,0.2,0.1}
problem

Chest {0.3,0.2,0.1} |{0.5,0.3,0.2,0.1} |{0.3,0.2} |{0.7,0.6,0.5,0.3,0.2} |{0.9,0.8,0.7,0.6}
problem

Table 2.2 Symptom characteristics for the considered patients in terms of HFSs

Temperature Headache Cough Stomach pain Chester pain

Al {0.9,0.7,0.5} |{0.4,0.3,0.2,0.1} |{0.4,0.3} |{0.6,0.5,0.4,0.2,0.1} |{0.4,0.3,0.2,0.1}
Bob |{0.5,0.4,0.2} |{0.5,0.4,0.3,0.1} |{0.2,0.1} |{0.9,0.8,0.6,0.5,0.4} |{0.5,0.4,0.3,0.2}
Joe [{0.9,0.7,0.6} |{0.7,0.4,0.3,0.1} |{0.3,0.2} |{0.6,0.4,0.3,0.2,0.1} |{0.6,0.3,0.2,0.1}
Ted |{0.8,0.7,0.5} |{0.6,0.5,0.4,0.2} |{0.4,0.3} |{0.6,0.4,0.3,0.2,0.1} |{0.5,0.4,0.2,0.1}

V = {temperature, headache, cough, stomach pain, chest pain}. As in many cases
such as in traditional Chinese medical diagnosis or in emergency case that crisp
measuring instruments cannot be obtained, it is impossible to get the crisp values of
the symptoms but only vague information, which is described in terms of HFEs.
Before starting the diagnosis, a medical knowledge-based data set involving
symptom characteristic of the considered diagnoses is necessary to be constructed
(see Table 2.1). The symptoms of the patients are given in Table 2.2.

To derive a diagnosis for each patient, we can calculate the correlation coeffi-
cient between the symptom characteristic of each diagnose and that of each patient.
Using the correlation coefficient formula shown as Eq. (2.9), the correlation coef-
ficient values are obtained, shown in Table 2.3 and Fig. 2.1. From Table 2.3 and
Fig. 2.1, it is clear to see that Al, Joe and Ted suffer from Malaria, but Bob suffers
from Stomach problem.

Meanwhile, Xu and Xia (2011b) utilized the correlation formula Eq. (2.1) to
calculate the correlation coefficients and yielded their results, illustrated in
Table 2.4 and Fig. 2.2. Table 2.4 and Fig. 2.2 imply that Al and Ted suffer from
viral fever; Bob suffer from stomach problem; Joe suffer from malaria.

Table 2.3 Correlation coefficient values for each considered patient to the set of possible
diagnoses by using our approach

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.4597 0.9187 —0.4288 0.1323 —0.5372
Bob —0.5715 0.2546 —0.3166 0.8074 0.3042
Joe 0.5395 0.9803 —0.1217 —-0.1017 —0.4636

Ted 0.7330 0.9082 0.0210 —0.2230 —0.6506
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Fig. 2.1 Correlation coefficient values by using our approach

Table 2.4 Correlation coefficient values for each considered patient to the set of possible
diagnoses by using Xu and Xia (2011b)’s approach

Viral fever Malaria Typhoid Stomach problem Chest Problem
Al 0.9969 0.9929 0.9800 0.9902 0.9878
Bob 0.9900 0.9862 0.9792 0.9921 0.9909
Joe 0.9927 0.9929 0.9677 0.9817 0.9750
Ted 0.9942 0.9899 0.9787 0.9879 0.9772
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Fig. 2.2 Correlation coefficient values by using Xu and Xia (2011b)’s approach
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Comparing the results in Table 2.3 with those in Table 2.4, some interesting
findings can be derived. Firstly, we can find that all the values in Table 2.4 are
positive values within the unit interval [0, 1], but in Table 2.3, there are some
negative values. It is quite strange that all the HFEs are positively correlated even
though all the values over different symptom characteristics are quite different. This
is the first weakness of Xu and Xia (2011b)’s method. For example, let us look into
the symptom characteristics of Typhoid and those of Al. It is obvious that Al’s
symptoms are negative correlated to those of Typhoid. However, according to
Eq. (2.1), the correlation between Typhoid and Al is 0.9800, which implies that it is
highly probable that Al suffers from Typhoid. This is definitely wrong.

In addition, comparing Table 2.3 (or Fig. 2.1) with Table 2.4 (or Fig. 2.2), we
can find that all the correlation coefficients shown in Table 2.4 are quite close and
vary from 0.9677 to 0.9969. These similar values cannot clearly distinguish the
different between different diagnoses. Actually, if we draw a new figure (see
Fig. 2.3) according to Xu and Xia (2011b)’s results but restrict the correlation
coefficient values vary within the same domain as in Fig. 2.1, then it is very hard or
even impossible for us to distinguish the diagnoses. In other words, the results
derived from Table 2.4 are not very convincing (or at least not applicable) espe-
cially when the number of objects is a little large. However, Table 2.3 presents a
striking contrast to Table 2.4 as all the values in it lies between —0.4288 and
0.9803, which shows the differences among the diagnoses significantly. All these
above points imply that the correlation coefficient proposed in this chapter is much
more convincing in medical diagnosis.
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0 ---------------------------------------------------------
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Viral fever Malaria Typhoid Stomach problem Chest problem
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Fig. 2.3 Correlation coefficient values by using Xu and Xia (2011b)’s approach
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It is stated that in this example, we just use Eq. (2.9) as a representation to
describe the correlation coefficient between HFSs and illustrate its advantages over
the existing correlation coefficients for HFSs. In fact, we can also use the upper
bound pY(A, B), the lower bound p*(A, B), or the hesitant degree ¢, ) to better
identify the correlation coefficients in the above example.

(2) The application of the correlation coefficients in cluster analysis

To better understand the strength of the novel correlation coefficients, in the
following, we show the applicability of the correlation coefficient between HFSs in
the process of clustering. Cluster analysis, or clustering, is defined as the unsu-
pervised process of group a set of data objects in such a way that objects in the same
group (called a cluster) are somehow more similar to each other than to those in
other groups (clusters) (Jain et al. 1999). It can be applied either as an exploratory
tool (to discover previously unknown pattern in data), or as an input to a decision
making process (Friedman et al. 2007). There are many algorithms for clustering,
which differ significantly in their notion of what constitutes a cluster and how to
efficiently find them. Within the context of hesitant fuzzy information, Chen et al.
(2013a) proposed an algorithm to cluster hesitant fuzzy data into different clusters.
In that algorithm, the correlation coefficient defined as Eq. (2.2) is used to measure
the relationship between different objects. In the following, we do not intend to
propose new clustering algorithm but use that algorithm to illustrate the efficiency
of our proposed correlation coefficient. The algorithm proposed by Chen et al.
(2013a) is described below:

Algorithm 2.1

Step 1. Let {A},Ay,...,A,} be a set of HFSs on X. We construct a correlation
matrix C = (p;), ~ where p; = p(A;,A;) and can be calculated via
Eq. (2.1) or Eq. (2.9) or Eq. (2.20).

Step 2. Check whether the correlation matrix satisfies C2CC,where C2=CoC
= (p;)mxm and pj; = mlflx{min{pik,pkj}}, i,j=1,2,...,m. If it does
not hold, then we construct the equivalent correlation matrix c?.c—
C?—C*— - — C¥ — until €% =2,

Step 3. For a given confidence level A € [0, 1], we construct a A-cutting matrix

C, = (pfj)mxm where p;; is defined as:

;,_{0 Fri<t i 4o m (2.24)

Pi= 1 ifpijzi

Step 4. Classify the HFEs by the principle: if all elements of the ith line in C; are
the same as the corresponding elements of the jth line, then the HFEs A;
and A; are supposed as the same type.

Step 5. End.
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An application example concerning the assessment of business failure risk is
utilized to validate the above algorithm and our proposed correlation coefficient for
HFSs. In this example, the weighted correlation coefficient defined as Eq. (2.20) is
used to measure the correlation coefficient between HFSs:

Example 2.4 (Liao et al. 2015b). The assessment of business failure risk, i.e., the
assessment of firm performance and the prediction of failure events has drawn the
attention of many researchers in recent years (Chen et al. 2013a). Suppose that there
are 10 firms A;(i =1,2,...,10) to be evaluated by several risk evaluation orga-
nizations from different aspects. To get fair assessments for these firms, the risk
evaluation organizations established five criteria: {; : managers work experience,
{, : profitability, {5 : operating capacity, {4 : debt-paying ability, and (s : market
competition, whose weighting vector is set as w = (0.15,0.3,0.2,0.25,0.1). As the
risk evaluation organizations have different backgrounds and knowledge, it is
possible that they may get different evaluation values from their perspectives. To
better reflect the opinions established by different organizations, the evaluation
values given by them are represented by HFEs and displayed in Table 2.5.

In the following, we use Algorithm 2.1 and the weighted correlation coefficient
to cluster the firms.

Step 1. By Eq. (2.20), we can calculate the weighted correlation coefficients
between each pair of the alternatives p(A;,4;), i,j =1,2,...,10:

1.0000 —0.8347 —0.6840 —0.0619 —0.7198 0.8272 04225 —0.6728 —0.2983 —0.3817
—0.8347 1.0000  0.9659  0.5143  0.6062 —0.8432 0.0948 05874  0.7511 —0.1724
—0.6840  0.9659  1.0000  0.6586  0.5097 —0.7364 03472 05766  0.8665 —0.3965
—0.0619 0.5143 0.6586 1.0000  —0.3041 —0.0295 0.7073 —0.0649 0.9365 —0.8463

- —0.7198  0.6062  0.5097 —0.3041 1.0000 —0.8852 —0.2776 0.8068  0.0388  0.3949
0.8272  —0.8432 —0.7364 —0.0295 —0.8852 1.0000 02176 —0.6119 —0.3648 —0.1863
04225 0.0948 03472 07073 —02776 02176  1.0000 —0.0034 0.6454 —0.9438
—0.6728 0.5874  0.5766 —0.0649 0.8068 —0.6119 —0.0034 1.0000  0.1741  0.2108
—0.2983  0.7511  0.8665 0.9365 0.0388 —0.3648 0.6454 0.1741 10000 —0.7634
—0.3817 —0.1724 —0.3965 —0.8463 0.3949 —0.1863 —0.9438 0.2108 —0.7634  1.0000

Table 2.5 The evaluation information for the 5 criteria of 10 firms

& & & & {s

Ay {0.3,0.4,0.5} {0.4,0.5} {0.8} {0.5} {0.2,0.3}

A, {0.4,0.6} {0.6,0.8} {0.2,0.3} {0.3,0.4} {0.6,0.7,0.9}

A {0.5,0.7} {0.9} {0.3,0.4} {0.3} {0.8,0.9}

Ay {0.3,0.4,0.5} {0.8,0.9} {0.7,0.9} {0.1,0.2} {0.9,1.0}

As {0.8,1.0} {0.8,1.0} {0.4,0.6} {0.8} {0.7,0.8}

Ag {0.4,0.5,0.6} {0.2,0.3} {0.9,1.0} {0.5} {0.3,0.4,0.5}

A, {0.6} {0.7,0.9} {0.8} {0.3,0.4} {0.4,0.7}

Ag {0.9,1.0} {0.7,0.8} {0.4,0.5} {0.5,0.6} {0.7}

Ao {0.4,0.6} {1.0} {0.6,0.7} {0.2,0.3} {0.9,1.0}

A o {0.9} {0.6,0.7} {0.5,0.8} {1.0} {0.7,0.8,0.9}
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Step 2. The equivalent correlation matrix is constructed as follows:

1.0000 0.0948 0.3472 0.4225 —0.2776 0.8272  0.4225 —0.0034 0.4225 —0.1863
0.0948  1.0000 0.9659 0.7511 0.6062  0.0948  0.6454  0.6062 0.8665 0.3949
0.3472  0.9659 1.0000 0.8665  0.6062  0.2176  0.6586  0.5874 0.8665 0.3949
0.4225 0.7511 0.8665 1.0000 0.5143  0.2176 ~ 0.7073  0.5766  0.9365 —0.0649
. —0.2776  0.6062 0.6062  0.5143 1.0000 —0.1863 0.3472  0.8068 0.6062 0.3949
v 0.8272  0.0948 02176 02176  —0.1863 1.0000  0.4225 —0.0034 0.2176 —0.1863
0.4225 0.6454 0.6586 0.7073  0.3472  0.4225 1.0000  0.3472  0.7073 —0.0034
—0.0034 0.6062 0.5874 0.5766  0.8068 —0.0034 0.3472 1.0000  0.5874  0.3949
0.4225 0.8665 0.8665 0.9365 0.6062  0.2176  0.7073  0.5874 1.0000 0.1741
—0.1863 0.3949 0.3949 —0.0649 0.3949 —0.1863 —0.0034 0.3949 0.1741  1.0000

1.0000 0.4225 0.4225 0.4225 0.4225 0.8272 0.4225 0.4225 0.4225 0.3472
0.4225 1.0000 0.9659 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.9659 1.0000 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.8665 0.8665 1.0000 0.6062 0.4225 0.7073 0.6062 0.9365 0.3949
ch 0.4225 0.6062 0.6062 0.6062 1.0000 0.3472 0.6062 0.8068 0.6062 0.3949

v 0.8272 0.4225 0.4225 0.4225 0.3472 1.0000 0.4225 0.3472 0.4225 0.2176
0.4225 0.7073 0.7073  0.7073  0.6062 0.4225 1.0000 0.6062 0.7073 0.3949
0.4225 0.6062 0.6062 0.6062 0.8068 0.3472 0.6062 1.0000 0.6062 0.3949
0.4225 0.8665 0.8665 0.9365 0.6062 0.4225 0.7073 0.6062 1.0000 0.3949
0.3472  0.3949 0.3949 —0.0649 0.3949 0.2176 0.3949 0.3949 0.3949 1.0000

1.0000 0.4225 0.4225 0.4225 04225 0.8272 0.4225 0.4225 0.4225 0.3949
0.4225 1.0000 0.9659 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.9659 1.0000 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.8665 0.8665 1.0000 0.6062 0.4225 0.7073 0.6062 0.9365 0.3949
s _ 0.4225 0.6062 0.6062 0.6062 1.0000 0.4225 0.6062 0.8068 0.6062 0.3949

v 0.8272 0.4225 0.4225 0.4225 0.4225 1.0000 0.4225 0.4225 0.4225 0.3949
0.4225 0.7073 0.7073 0.7073 0.6062 0.4225 1.0000 0.6062 0.7073 0.3949
0.4225 0.6062 0.6062 0.6062 0.8068 0.4225 0.6062 1.0000 0.6062 0.3949
0.4225 0.8665 0.8665 0.9365 0.6062 0.4225 0.7073 0.6062 1.0000 0.3949
0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 1.0000

1.0000 0.4225 0.4225 04225 0.4225 0.8272 0.4225 0.4225 0.4225 0.3949
0.4225 1.0000 0.9659 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.9659 1.0000 0.8665 0.6062 0.4225 0.7073 0.6062 0.8665 0.3949
0.4225 0.8665 0.8665 1.0000 0.6062 0.4225 0.7073 0.6062 0.9365 0.3949
cl6 — 0.4225 0.6062 0.6062 0.6062 1.0000 0.4225 0.6062 0.8068 0.6062 0.3949

v 0.8272  0.4225 0.4225 04225 0.4225 1.0000 0.4225 0.4225 0.4225 0.3949
0.4225 0.7073 0.7073 0.7073 0.6062 0.4225 1.0000 0.6062 0.7073 0.3949
0.4225 0.6062 0.6062 0.6062 0.8068 0.4225 0.6062 1.0000 0.6062 0.3949
0.4225 0.8665 0.8665 0.9365 0.6062 0.4225 0.7073 0.6062 1.0000 0.3949
0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 0.3949 1.0000
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As C'6 = (8, then C® is an equivalent correlation matrix.

Step 3. For a confidence level 4, according to Eq. (2.24), we can construct a A-

cutting matrix C; = (pl’}) . Different 4 produces different A-cutting
mxm
matrix C; = (pfj) .
mxXm
Step 4. Based on the derived A-cutting matrix C; = (pg) , we can classify
mxm

these 10 firms A;(j = 1,2,...,10) into different clusters. The possible
classifications of these firms are shown in Table 2.6.

Chen et al. (2013a) utilized the correlation coefficient formula in the form of
Eq. (2.2) to conduct the cluster analysis and produced a correlation matrix and an
equivalent correlation matrix as well, based on which, some clustering results were
obtained (see Table 2.7).

Comparing our method with that of Chen et al. (2013a), the superiorities are
significant. Firstly, in terms of the correlation matrix, our correlation matrix consists
of different values varying from negative values to positive values; however, in
Chen et al. (2013a)’s correlation matrix, only positive values can be used, which
consequently cannot represent the negative correlation coefficients between the
firms. Secondly, as to the equivalent correlation matrix, the value range in C'® is
from 0.7984 to 1, which is quite narrow, and thus, it may be not quite convincing to
distinguish different clusters. But if using our weighted correlation coefficient, the
values in the produced equivalent correlation matrix vary from 0.3949 to 1, which
is twice wider than that of C'%, and thus can better reflect the differences between
different clusters.

Table 2.6 Clustering results with respect to the correlation coefficient

Class | Confidence level Clusters

0.9659<4<1 {A1} {40} {As} {As} {As} {Ac} {A7}, {As}, {Ao}, {Awo}
0.9365<4<0.9659 | {Ai},{A2,A3}, {As} {As} {Ac}. {A7}, {As}, {Ao}, {A1}
0.8665<4<0.9365 | {A1}, {A2,As}, {As, Ao}, {As}, (A}, {A7}, {As ), {Aro}
0.8272</<0.8665 | {A1}, {As, A3, As, Ao}, {As}, (A}, {A7}, {As}, {Aro}
0.8068 <4< 08272 | {A1,Ag}, {As. A, As, Ao}, {As 1, {A7}, {As}. Ao}
0.7073<7<0.8068 | {A1, Ao}, {As. As, As, Ao}, {As, As}, {A7}. {A10}
0.6062</<0.7073 | {A1,Ag}, {As, A3, Ay, A7, Ao}, {As, As}, {A10}
0.4225<7<0.6062 | {A1,Ag}, {A2, As, Ay, As, A7, Ag, Ao}, {A10}
03949<2<0.4225 | {A},As, A3, Ay, As, AcA7, As, Ao}, {A10}

0<7<0.3949 (A1, A2, A3, Ay, As, Ag, Ay, As, Ag, Aro}

—
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=N W R A Q|0 |0




2.2 Novel Entropy Measures of Hesitant Fuzzy Sets 57

Table 2.7 Clustering results with respect to Chen et al. (2013a)’s correlation coefficient

Class Confidence level Clusters

10 0.9515<4<1 {A1}, {42}, {As}, {As}, {As}, {Ae}, {47}, {As}, {40}, {A10}
9 0.9306<1<0.9515 {A1},{A2}, {43}, {44}, {46}, {A7},{As},{Ao}, {As, A1}
8 0.9238 <1<0.9306 {A1},{A2}, {As}, {44, A0}, {A6}, {A7}, {As}, {As5,A10}

7 0.9104 <1 <0.9238 {A1},{A2}, {As}, {A4, A7, A0}, {As}, {As}, {As, A0}

6 0.9025 <1<0.9104 {A1,A6},{A2}, {43}, {A4, A7, A0}, {As}, {45, A10}

5 0.8997 <1 <0.9025 {A1,A6},{A2}, {A3},{A4,A7,A5, A0}, {As,A10}

4 0.8520<1<0.8997 {A1, A6}, {A2}, {A3,A4,A7,A5, Ao}, {As,A10}

3 0.8200< 1 <0.8520 {A1,Ac},{As}, {A3,A4,As,A7, A5, A9, A1}

2 0.7984 < 1 <0.8200 {A1,A6},{A2,A3,A4,As5,A7,A3,A9, A1}

1 0<1<0.7984 {A1,A2,A3,Aq,As, A6, A7,As,A9, A1}

2.2 Novel Entropy Measures of Hesitant Fuzzy Sets

2.2.1 The Existing Entropy Measures of Hesitant Fuzzy Sets

Motivated by the axiomatic definition of entropy for fuzzy sets, Xu and Xia (2012)
proposed the principles of entropy measure for HFE in terms of the fuzziness of a
HFE.

Definition 2.7 (Xu and Xia 2012). A real-valued function E : H — [0, 1] is called
an entropy for the HFE o, if it satisfies:

(1) E(a) =0 if and only if « = {0} or a = {1}.
(2) E(x) = 1 if and only if o) + 0ty 1) = 1, for i = 1,2,...,1,.
() E(o) <E(B) if oy <Pouy for Bo + Bouivy <1 or agi > Po for
ﬁa(i) +ﬂa’(lfi+l) Z 17 i= 1727 .. 'al'
4) E(o) = E(a).
Based on Definition 2.7, Xu and Xia (2012) introduced some entropy measures
for a HFE o.

B 1 Lyl (o + demiv ) . (2= o) = Oe—it1))
Ei(a) = m 2 (sm n + sin n — 1)
(2.25)
_ 1 - 7 (i) + %1, —i+ 1)) (2 = do(i) = %ot~ 1)
Ex(o) = mz (cos ) + cos y) - 1)

i=1

(2.26)
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l
l o
2 : i)t %o (ly—i (i) + Lo (ly—i
E3 o) = — (%(1) o(ly—i+1) 11" (i) o(ly—i+1)
(@) l;In2 4 2 : 2

2—0l(i) = Oo(ly—i+ 1) 141 2~ Oo(i) ~a(ly—i+ 1)
+ 2 In 2

1 L %o(i) F Oot—it )\ (2= %) = Uo—i+ 1)\’
E4(05) - _11(2(1—s)r _ 1) ; [(( ) + 3 -1

t#0,s#1,5s>0 (2.28)

(2.27)

All the above entropy measures satisfy the conditions in Definition 2.7.
However, if we apply them to the HFEs whose complements are equal to them-
selves, we can get the same entropy degree. This indicates that the entropy mea-
sures introduced by Xu and Xia (2012) cannot correctly discriminate different HFEs
in some cases.

Example 2.5 (Zhao et al. 2015). Let oy = {0.2,0.5,0.8} and o, = {0.4,0.5,0.6}
be two HFEs. Obviously, o; = of, a = a5 and the fuzziness of oy is greater than
that of o;. Applying the entropy measures E; (i = 1,2,3,4) to the HFEs o and o5,
we obtain E;(a;) = E;(a) = 1, for i = 1,2,3, 4, which are not consistent with our
intuition.

Based on the distance measure between HFEs (Xu and Xia 2011a), Farhadinia
(2013) gave the following axiomatic definition of entropy to measure the fuzziness
of a HFE.

Definition 2.8 (Farhadinia 2013). Let d(a,{0.5}) be the distance between the
HFE o and {0.5}. A real function E; : H — [0, 1] is called a distance-based entropy
for the HFE o, if it satisfies:

(1) E4(ax) =0 if and only if o = {0} or a = {1}.
(2) E;(a) = 1 if and only if o = {0.5}.

() Ea(2) <Eq(p) if d(e, {0.5}) > d(p, {0.5}).
(4) Eq(2) = Eq(a).

Theorem 2.4 provided an approach to generate the distance-based entropy
measures for HFEs.

Theorem 2.4 (Farhadinia 2013). Let Z :[0,1] — [0,1] be a strictly monotone
decreasing real function, and d(a,{0.5}) be the distance between the HFE o and
{0.5}. Then,

Z(2d(2,{0.5})) — Z(1) (2.29)

Eal) ===Z0)~ z(1)

is an entropy measure for the HFE o.
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Xu and Xia (2011a) defined three kinds of distance measures which can be used
to calculate the distance between the HFE o and {0.5}.

1/k
di(, {0.5}) = [ZW«” o.s}kl k=12 (2.30)

(2, {0.5}) = maxi{|ocg<,») - 0.5|"}, k=12 (2.31)

1k
+ maxe{ | — 0.5} .k =1,2

!
d3k(O€, {05}) = [%Z ’OCJ(,'> — 05|k
(2.32)

Let o be three HFEs {0, 1}, {0} and {1}, respectively. Then by Egs. (2.30)-
(2.32), we can calculate

di({0,1},{0.5}) = du({0},{0.5}) = di({1},{0.5}) =

)

1
2
(0.1}, (0:5) = ({0}, 03)) = du({1}, 05D = (3

k=
k
>7k=
1 N*

S k=1,2
3+ (3) -

N =

According to Theorem 2.4, we get

Edlk({07 1}) = Edlk({o}) = Edlk({l}) =0,k=1,2
Ed21<{07 1}) = Ed21({0}> = Edzl({l}) =0
Z(1/2) —z(1)
Eq,({0}) = Ea, ({1}) = Z0)=2(1) #0

E4,({0,1}) = E4, ({0}) = Ea, ({1}) = 0

Ean (10)) = B, ({1}) = %#0

The above results reveal that no matter which distance measure we employ, the
derived entropies for HFEs do not meet the first condition in Definition 2.8, which
implies that the entropy measure in Eq. (2.29) is unreasonable. Moreover, for any
two HFEs o and f, if d(o,{0.5}) =d(f,{0.5}), then by Eq. (2.29), we have
E(o) = E(p). That is to say, different HFEs that have the same distance from the
HFE {0.5} would yield the same entropy in case we use the entropy measure
proposed in Theorem 2.4. This is definitely unreasonable.
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Particularly, let Z(#) = 1 — r and d be the hesitant normalized Hamming distance
di1, then the entropy measure in Eq. (2.29) turns out to be:

(2.33)

Example 2.6 (Zhao et al. 2015). In a multiple criteria decision making problem,
two decision organizations consider the possible membership degrees of x to the set
M. The experts in the first organization think that the membership degree should be
0.01, while in the second organization, some experts deem it as 0.01, and the others
deem it as 0.99. Then, the membership degree provided by the first organization is
0.01, which is very small, and thus, we can easily deduce that the experts in the first
organization are inclined to consider that x does not belong to the set M. Similarly,
it can be easily deduced that some experts in the second organization tend to think
that x does not belong to the set M, and the others tend to believe that x belongs to
the set M, and the degrees that x belongs to and not to the set M are the same, which
implies that according to the decision information provided by the second decision
organization, we are not sure whether x belongs to the set M or not. Thus, we may
say that the decision information offered by the first organization is more specific
than that offered by the other one. We can use the HFEs o) = {0.01} and o, =
{0.01,0.99} to represent the possible membership degrees of x into M provided by
these two organizations, respectively. Then, by Eq. (2.33), we get Ey, (o) =
Ey, (o) = 0.02, which is unreasonable because these two HFEs are significantly
different in terms of specificity based on the above analysis.

2.2.2 Novel Two-Tuple Entropy Measures of Hesitant
Fuzzy Sets

As mentioned above, the entropy measures proposed by Xu and Xia (2012) and
Farhadinia (2013) are incapable to effectively distinguish HFEs in many cases. In
our opinion, for a HFE, except for the fuzziness, there exists another kind of
uncertainty, i.e., non-specificity. The fuzziness of a HFE is related to the deviation
between the HFE and its nearest crisp set, while the non-specificity is related to the
imprecise knowledge contained in the HFE. Suppose that the membership degrees
of the element x to the set A provided by a decision organization are presented by
the HFE h(x) = {0, 1}. From the HFE h(x) = {0, 1}, we know that the member-
ship degree of x to A may be 0 indicating that x absolutely does not belong to A, and
may be 1 implying that x completely belongs to A. We are not sure whether the
element x belongs to the set A or not. That is to say, this case involves
non-specificity. Non-specificity is another kind of uncertainty associated with a
HFE. In this section, we present a new axiomatic definition of the entropy for HFEs,
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which captures the two types of uncertainty associated with a HFE. Then, we
introduce some methods to construct the entropy measures for HFE.

Definition 2.9 (Zhao et al. 2015). Let Er, Eys : H — [0, 1] be two real functions.
The pair (Er,Eys) is called a two-tuple entropy measure for the HFE o if Ep
satisfies the following axiomatic requirements:

(1) Ep(o) = 0 if and only if o is crisp, that is, o = {0} or o = {1};

(2) Ep(a) =1 if and only if o = {0.5};

(3) Er(ax) = Ep(a);

(4) For any i=1,2,....0 if a5 <P, for B, <0.5 or if og;) > fy for
Bo(i) > 0.5, then Er(a) <Er(f), and Eys satisfies the following axiomatic
requirements:

(5) Ens(ax) = 0 if and only if there is only one value in o, that is, o« = {u} with
0<u<l;

(6) Eys(o) =1 if and only if « = {0, 1};

(7) Ens(o) = Ens(o);

(8) Epns(o) > Ens(p) if for any i,j =1,2,...,1, ‘oca(,-> - oca<,~)| >

:Ba(i) - ﬁa(]')

Definition 2.9 uses a pair (Ep, Eys) to represent the two kinds of uncertainty
linked to a HFE where Ep, called the fuzzy entropy, is considered as a measure of
fuzziness to quantify how far the HFE is from its closest crisp set, and Eyg, called
the non-specific entropy, is proposed to measure the non-specificity of a HFE. It is
noticed that the proposed non-specificity measure differs from that linked to the
fuzzy set or the IFS. The introduced two-tuple entropy measure (Er, Eys) not only
maintains the traditional properties of entropy, i.e., measuring the fuzziness aspect
of uncertainty, but also reflects another aspect of uncertainty, i.e., non-specificity.

(1) Fuzzy entropy Ep
In this part, we provide some methods to generate the measures to quantify the
fuzziness of a HFE.

Theorem 2.5 (Zhao et al. 2015). Let R : [0, 1]*— [0, 1] be a mapping and satisfy:

(1) R(x,y)=0ifand only if x=y=0o0orx=y=1.

(2) R(x,y) =1 ifand only if x =y =0.5.

(3) R(x,y) =R(1 —y,1 —x) for all x,y € [0,1].

@) If 0<x;<x,<0.5,0<y; <y, <0.5, then R(x1,y1) <R(x2,y2); if 0.5<x;
<x<1,0.5<y; <y, <1, then R(x1,y1) > R(x2,y2).

Then the mapping Ep : H — [0, 1] defined as

Ly
Ep(2) = mZZR(%W %)) (2.34)

i=1 j>i

fulfills the axioms (1)—(4) in Definition 2.9.
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Proof

(1) If « = {0}, then by Eq. (2.34), we get Er({0}) = R(0,0) = 0; if « = {1}, then
Ep({1}) = R(1,1) = 0. Conversely, if Ep(c) = 0, then R(cty(;), o4(;)) = 0, for
any i,j =1,2,...,1,, j>1i. According to the property (1) in Theorem 2.5, we
have o4 = 0 or a5 = 1, for any i = 1,2,...,1,. Thus, the condition (1) in
Definition 2.9 holds.

(2) If o« ={0.5}, then according to Eq. (2.34), we obtain Er({0.5}) = R(0.5,
0.5) =1. On the contrary, if Er(a) =1, then by Eq. (2.34), we have
R(0(1), %)) = 1, for any i,j=1,2,...,1,, j>i. According to the property
(2) in Theorem 2.5, we have o4 = 0.5, forany i = 1,2, ..., [,. Thus, the con-
dition (2) in Definition 2.9 holds.

(3) By Eq. (2.34), we have Ep(cf) = T +1 S Z]>1R( (i) 0(})). Since
ocf'y(i) =1 —a5(q,—is1), for i= 1,2,...,la, then, Er(a) :mZi:I iji
R(l — Ug(ly—i+1)s L — Og(t,—j+ 1)). According to the property (3) in Theorem 2.5,

C Za(
we have Ep(af) = mzi:l > s i R(to(t—j+1)s %o(t,—i+1)) = Er(x). Thus,
the condition (3) in Deﬁnition 2.9 holds.

(4) For any i=1,2,..., ) < ﬁ <0.5, according to the property (4) in
Theorem 2.5, we get R(ocd,-), oc(,(j)) gR(B(,(i),ﬁwO, =12, 1>

Then according to Eq. (2.34), we gain Er(a) < Er(f). The other case can be
illustrated in a similar way. Thus, the condition (4) in Definition 2.9 holds.

Remark 1t is observed that Er () is a fuzzy entropy for the HFE «. By Eq. (2.34),
we have Er({0,1}) = $R(0, 1) # 0, which shows that the fuzzy entropy of {0, 1}
is different from those of the HFEs {0} and {1}.

Theorem 2.6 (Zhao et al. 2015). Let R : [0,1]°— [0,1] be a mapping and the
mapping Er : H — [0, 1] defined as:

L
Ep(a) = +1 Z R (%) %)) (2.35)
=1 j>

<

satisfies the axioms (1)—(4) in Definition 2.9, then

(1) R(0,0) =0 and R(1,1) =0.

(2) R(0.5,0.5) = 1.

(3) If for all x,y € [0,1], R(x,y) = R(y,x), then R(x,y) = R(1 —y,1 —x) for all
x,y € [0,1].

@) If 0<x1<x,<0.5, then R(x;,x1)<R(x2,x2); if 05<x1<x;<1, then
R(xl,xl) ZR()Q,XQ).
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Proof (1) and (2) are easy to check, thus, we here only give the proofs of (3) and
).

(3) Suppose that there exist x,y € [0,1] such that R(x,y) # R(1 —y,1 — x).
Without loss of generality, assume that x <y and R(x,y) > R(1 —y, 1 — x). Given a
HFE o = {05(1), %(2) } Where a,(1) = x and a,(2) = y, Then by Eq. (2.35), we get

1 _ _
Er (@) = 3 [R(%(1)s %) + R (%0(1) %0(2)) + R(%012), 2%02))
and
L ] ]
Er (o) = 3 [R(1 = 22), 1 = t2)) +R(1 = 252), 1 = tto(1)) +R(1 = 250), 1 = 1))

According to the condition (3) in Definition 2.9, we have Ep({a)}) =

Er({1 = ao)}) and Er({ao0)}) = Er({1 =t }), that is, R(se(1), (1)) =
R(l — 060(1), 1-— oca(l)) and R(OCJ<2), O{g<2)) = R(l — (xg(z), 1-— OCG<2)). Thus,
Er(ax) > Ep(a©), which contradicts the condition (3) in Definition 2.9. In other
words, the property (3) holds.

(4) Assume that there exist xj,x; €[0,0.5] with x; <x, such that
R(xl,xl) >R()C2,XQ), then by Eq. (2.35), we get Ep({xl}):i?(xl,xl) >
R(x2,x) = Ep({x2}), which contradicts the condition (4) in Definition 2.9.
Similarly, the other case can be proven.

It is not easy to look for the bivariate function R in Theorem 2.5. In what
follows, we try to reduce it to a univariate function.

Theorem 2.7 (Zhao et al. 2015). Let ¢ : [0, 1] — [0, 1] be a mapping and satisfy:

(1) @(x) =0 if and only if x = 0.

(2) @(x) =1 if and only if x = 0.75.

(3) ¢ is monotone non-decreasing in [0,0.75) and monotone non-increasing in
(0.75,1].

Then, the mapping Er : H — [0, 1] defined as

2 Ly
Ep(a) = mz Z @ (1 = o 0()) - @ (i) — %oy %) + %) (2.36)

i=1 j>i

fulfills the axioms (1)—(4) in Definition 2.9.

Proof Suppose that ¢ is defined as the above statement and
R(x,y) = ¢(1 —xy) - (x —xy+y). Then we only need to prove that R(x,y)
possesses the properties (1)—(4) in Theorem 2.5.

() If R(x,y) =0, that is, (1 —xy) - ¢(x —xy+y) =0, then ¢(1 —xy) =0 or
o(x —xy+y) =0.If (1 — xy) = 0, then by the condition (1) in this theorem,
we get xy = 1. Thus, x=y=1. If o(x —xy+y) =0, then x —xy+y=0.
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Therefore, we deduce that x =y =0. The converse is easy to prove.
Accordingly, the property (1) in Theorem 2.5 holds.

(2) If R(x,y) = 1, that is, @(1 — xy) - ¢(x —xy+y) = 1, then we get ¢(l —xy) =
1 and @(x — xy+y) = 1. By the condition (2) in this theorem, we deduce that
xy = 0.25 and x — xy +y = 0.75, from which we get x =y = 0.5. It is easy to
prove the converse. Then we finish the proof of property (2) in Theorem 2.5.

G RI-y,1-x)=0(l=(1-y)(1-x) @(1-y—(1-y)1-x)+1-x)

= o(x—xy+y) - o(l —xy) = R(x,y)

(4) Assume 0<x; <x,<0.5 and 0<y; <y, <0.5, then 0.75<1 —xy, <1 —
x1y1 <land 0 <x; —x1y1 +y1 <x2 — xy2 +y2 <0.75. By the condition (3) in
this theorem, we obtain @(1 —x;y1) < @(1 — x2y2) and @(x; — x;y1 +y1) <
@(x2 — x2y2 +y2), from which we derive R(x1,y;) < R(x,y,). Similarly, the
other case can be illustrated. Thus, the property (4) in Theorem 2.5 holds.

Based on Theorem 2.7, we can set out two entropy measures for HFEs as
illustrative examples.

(1) Let o(t) = 1 — (3|41 — 3|)" with r > 1. Obviously, ¢ satisfies the conditions in
Theorem 2.7. Then we get the following entropy measure for HFEs:

Epr(2) +1 ZZ <1 - G|4°‘a<i>%o> - 1|>r>'

11]>1

1 r
(1 - (g [405() = 42%(3) %o + 404 — 3|> )

For the simplicity of calculation, we take » = 1. Then the entropy measure in
Eq. (2.37) becomes

(2.37)

I

—

E}(a — (3 = |42ty — 1]) - (3 — |4to(s) — 40500y %ey) + 40t5() — 3|)

9

1:1 >i

(2.38)

(2) Let ¢(t) =3[min(2r — 1,2 —2r) + 1]. Then ¢ satisfies the conditions in
Theorem 2. 7 and the generated entropy measure for HFEs is

E — 2001\ 0 20c oL +1
F (o) Zm o()%a(i)» 2% (i) %o(j)) + 1) (239)

1
(min(1 — (1 = tto(i)) (1 = (), 2(1 = %)) (1 = %)) + 1)
The following example illustrates that the entropy measures proposed in this

chapter can produce better results than those introduced by Xu and Xia (2012) in
distinguishing HFEs.
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Tab!e 2.8 The results Results EL(2;) E2 (o) E3 (o) Er(a)

obtained by different entropy —

measures i=1 0.8696 0.9851 0.9981 0.8696
i=2 0.5065 0.7385 0.8391 0.5065

Example 2.7 (Zhao et al. 2015). Consider two HFEs o;={0.4,0.5,0.6} and
0,={0.1,0.5,0.9}. Obviously, oy=0 and oy = o5, and intuitively, the fuzziness of
oy should be greater than that of o,. Utilizing the entropy measures shown in
Egs. (2.25)—(2.28) to calculate the entropy of the HFE o;(i =1,2), we get
Ej(o1) = Ej(an) = 1 (j = 1,2,3,4), which are counter-intuitive. On the contrary, if
we use the entropy measures shown in Egs. (2.37)-(2.39), we can get different
results presented in Table 2.8.

From Table 2.8, we can find that no matter which entropy measures we use, the
entropy of o is always greater than that of o;. This is consistent with our intuition.
In other words, the proposed entropy measures are able to overcome the drawback
of Xu and Xia (2012)’s entropy measures, that is, those measures cannot differ-
entiate the different HFEs which are equal to their complements.

(2) Non-specific entropy Eys

Now we pay attention to the other aspect of uncertainty associated with a HFE,
i.e., the non-specificity, and introduce some measures to quantify the
non-specificity of a HFE.

Let

2, =1
<’“>{11(11— ), 1L,>2

Firstly, we give the following general result:

Theorem 2.8 (Zhao et al. 2015). Let F : [0,1)— [0, 1] be a mapping and satisfy:

(1) F(x,y) =0 if and only if x = y.

(2) F(x,y) =l ifand only if {0,1} N {x,y} # ¢.

(3) F(x,y) =F( —y,1 —x) for all x,y € [0,1].

(4) For x,y,z,w € [0,1], if |x —y| > |z — w|, then F(x,y) > F(z,w).

Then the mapping Ens : H — [0, 1] defined as:

Iy
Eys(a) = <i> D> F (s %) (2.40)

i=1 j>i

satisfies the axioms (5)—(8) in Definition 2.9.
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Proof

(1) If there is only one value in the HFE o, that is, « = {u}, then by Eq. (2.40), we
get Eys(a) = F(u,u) = 0.
Conversely, if Eys(z) =0, then F(oc(,(i>,oc(,(,»)) =0, for any i,j=1,2,...,
ly,j>1i. According to the property (1) in this theorem, we deduce that
Og(i) = O%g(j)» TOT any i,j =1,2,...,1,,j > i. That is to say, the HFE o has only
one value. Thus, the condition (5) in Definition 2.9 holds.

(2) If o = {0, 1}, then according to Eq. (2.40) and the property (1) and property
(2) in this theorem, we have Eyg(a) = F(0,0)+ F(0,1)+ F(1,1) = 1.
On the contrary, if Eys(x) =1 with o0 = {ats(1), %6(2); - - -, %o(1,) }» Iz > 2, then
by Eq. (2.40), we obtain F (o), %)) = 1, for any i,j =1,2,...,1,,j > i. If
I, = 2, then according to the property (2) in this theorem, we obtain o) = 0
and o,(;) = 1, thatis, o = {0, 1}. If I, > 2, for instance, let [, = 3, then we get
F(oc,f(l) Uo(2 >) =1, F(ocg( 1) ,,( )) =1and F(ot(,m, ota@)) = 1. By the first two
equations, we deduce that o) = 0, 0,52) = 1 and o3y = 1, and by the third
equation, we deduce that o5 ) =0 and cxgm = 1, which is contradictory. In a
similar way, we can illustrate that it is contradictory when [, takes any value
larger than 3. Thus, the condition (6) in Definition 2.9 holds.

(3) The proof of the condition (7) is similar to that of the condition (3) in
Theorem 2.5.

(4) The proof of the condition (8) is straightforward according to the property (4) in
this theorem.

Theorem 2.9 (Zhao et al. 2015). Let F : [0,1]°— [0, 1] be a mapping and let the
mapping Ens : H — [0, 1] defined as:

l7

Z 7%, %)) (2.41)

iz

Ens(a

satisfy the axioms (5)—(8) in Definition 2.9, then
(1) F(x,y) =0 if and only if x = y.
(2) If F(x,y) = F(y,x), for all x,y € [0, 1], then (i) F(x,y) =1 if and only if

{O,I}Q{X,y} 7é ¢,’ (”) F(X,y) :F(l _yal_x) fOr all x,yE [Oa 1}’ (l”)
F(x,y) > F(z,w) if |[x = y| > |z = w] for x,y,z,w € [0, 1].

Proof

(1) Assume that there exist x,y € [0, 1] with x # y such that F(x,y) = 0. Without
loss of generality, suppose x<y. Consider the HFEs f = {ocg(l)} and y =
{ocﬂ@)} assigned by o(1) = x and 0,52y = y, respectively. Then according to the
requirement (5) in Definition 2.9, we have
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Ens(B) = F (tto(1), %(1)) = 0, Ens(7) = F(at(2), 0%(2)) = 0
For the HFE o = {oca(l), ocg(z)}, we have

Eys () = F (tto(1), %o(1)) + F (%(1), %(2) + F (%(2):%(2) =0 (2:42)

By the requirement (5) in Definition 2.9, Eq. (2.42) holds if and only if
Og(1)=%g(2), that is, x =y, which is contradictory. Similarly, the converse can
be proven.

(2) (1) Let o = {0, 1}, then according to Eq. (2.41) and the requirement (6) in
Definition 2.9, we get Eys(a) = F(0,0)+F(0,1)+F(1,1) =1. Since
F(0,0) = F(1,1) = 0, then we obtain F(0,1) = 1. Since F(x,y) = F(y,x), for
all x,y € [0,1], then F(1,0) = 1. Conversely, suppose that there exist x,y €
[0,1] with {0, 1} N {x,y} = ¢ such that F(x,y) = 1. Without loss of generality,
assume that x > y. Let a HFE o be o = {5(1), 05(2) } defined by o5(;) = y and
%g(2) = X. Then by Eq. (2.41), we get

ENS(OC) = F((Za(l), 0(0(2)) = F(y,x) =1 (243)

According to the requirement (6) in Definition 2.9, Eq. (2.43) holds if and only
if o5(1) = 0 and a,(2) = 1, which is contradictory.

(ii) Suppose that there exist x,y € [0, 1] such that F(x,y) # F(1 —y, 1 —x).
Without loss of generality, assume that x<y and F(x,y) > F(1 —y,1 — x).
Given a HFE o as o = {05(1), %5(2) }» Where we assign a,(1) = x and o,(2) = y,
then we get

Ens(a) = F (051, %(2)) > F(1 = 052), 1 — 05(1)) = Ens(o°)

which contradicts the axiomatic requirement (7) in Definition 2.9.

(iii) Suppose that there exist x,y,z,w € [0, 1] with |x — y| > |z — w| such that
F(x,y)<F(z,w). Without loss of generality, assume that x<y and z<w.
Considering the HFE o = {a5(1), 05(2) } defined as o5(1) = x and o5(2) = y, and

the HFE f = {ﬁa(l), ﬁo‘(Z)} given by S,y =z and ;) = w, we obtain

ENS(OC) = F(aa(l)v O‘a(2)) <F(ﬁa(l)a ﬁU(Z)) = ENS(ﬁ)
which contradicts the requirement (8) in Definition 2.9. This completes the
proof of Theorem 2.8.

Bustince et al. (2012) introduced the grouping function to measure to what
extent an element belongs to at least one of two given classes.
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Definition 2.10 (Bustince et al. 2012). A grouping function is a mapping G :
[0, 1]°— [0, 1] such that:

(1) G(x,y) = G(y,x) for all x,y € [0, 1].

(2) G(x,y) =0 if and only if x =y = 0.

(3) G(x,y) =1ifand only if x=1or y = 1.

(4) G is monotonically increasing in both variables.

We can construct the non-specific entropy measure for HFE by means of the
grouping function.

Theorem 2.10 (Zhao et al. 2015). Let G be a grouping function. Then the mapping

EnsG : H — [0, 1] shown as:

Iy

) > 6(lwn — %o, [t — 2%03))

i=1 j>i

\S}

Eppg(x) =

defines a non-specific entropy measure for the HFE o satisfying the axioms (5)—(8)
in Definition 2.9.

Proof Tt is observed that the mapping F(x,y) = G(|x — y|, |x — y|) satisfies the
properties (1)—(4) stated in Theorem 2.8. Thus, Erpg(a) is a non-specific entropy
measure for o.

If we define G:[0,1°— [0,1] as G(x,y) = x+y —xy, then G satisfies the
conditions in Definition 2.10. That is to say, G is a grouping function. Thus, based
on Theorem 2.10, we get a non-specific entropy measure:

Epgel Z > 2ty — | — (o) — gy’ (2.44)

llj>l

If we define G : [0, 1= [0, 1] as G(x,y) = 1 — \/(17)()(17(1;);‘7*(?’7@(170, then G

is a grouping function, and the corresponding non-specific entropy measure is

-~

1 — |ota(i) — %)

. (2.45)
e R U el ),

2
ENSG

Clearly, it is a bit difficult to look for such a bivariate function satisfying the
conditions in Theorem 2.8. Below we attempt to reduce it to a univariate function.

Theorem 2.11 (Zhao et al. 2015). Let g : [0, 1] — [0, 1] be a mapping and satisfy:

(1) g(x) =0ifand only if x=10
(2) g(x) =1 ifand only if x = 1.
(3) g is monotone non-decreasing.
Then the mapping Eys : H — [0, 1] defined as:
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Ens(o

i=1 j>i
satisfies the axioms (5)—(8) in Definition 2.9.

Proof Let F(x,y) = g(|x — y|), then the mapping F(x,y) satisfies the properties in
Theorem 2.8.
Below we give several specific examples to illustrate Theorem 2.11.

(1) Let g:[0,1] — [0,1] be defined as g(r) = 2. It satisfies the conditions in

Theorem 2.11. Thus, the corresponding non-specific entropy measure is

; 2|o< o)
1
Ejs( o | o (2.47)

=1 j>i

(2) Let g:[0,1] — [0,1] be g(¢) = lgi;’), then g satisfies the conditions in

Theorem 2.11, and the corresponding non-specific entropy measure is

2 g o) — %))
2
Ens(®) = 77 ; > 5 (2.48)

™

(3) Let g:[0,1] —[0,1] be g(t) =te'"!, then g satisfies the conditions in
Theorem 2.11, and the correspondmg non-specific entropy measure is

Eys(@) — (|l 00| (2.49)

11)>z

It can be easily observed that the automorphisms of the unit interval satisfy the
conditions in Theorem 2.11. In the following, we set out several non-specific
entropy measures produced by them.

(4) Let ¢ : [0,1] — [0,1] be defined as ¢(¢) = ¢ with r > 0. Then ¢ is an auto-
morphism of the unit interval, i.e., ¢ is continuous, strictly increasing and
satisfies the conditions ¢(0) =0, ¢(1) = 1 (Bustince et al. 2003). According
to Theorem 2.11, we obtain the corresponding non-specific entropy measure as:

2 & ,
Epsy (@) = 2 Z|%(i)—%(;) (2.50)

Especially, if we take r = 1, then the non-specific entropy measure becomes
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Table 2.9 The results generated by different non-specific entropy formulas

Result | Eyeo (o) | Exgg() | Ens(en) | Exg(ou) | Ens(2) | Ensa() | Ensa (%)
i=1 0.84 0.6774 0.75 0.6781 0.4022 0.6 0.84
i=2 0.2467 0.2196 0.2323 0.1793 0.0571 0.1333 0.2467

Exsa(20) — ()| (2.51)

i=1 j>i
(5) Let ¢ : [0,1] — [0, 1] be defined as ¢(¢) =1 — (1 — )" with r > 0. Then ¢ is
an automorphism of the unit interval. Based on Theorem 2.11, we get the
generated non-specific entropy measure:

Eyga(2) (1= oty — ooy ])” (2.52)

=1 j>i
In particular, when r = 2, the non-specific entropy measure becomes

1,
(1 = Jop — og])° (2.53)

=1 j>i

It is noted that the entropy measures introduced by Farhadinia (2013) cannot
discriminate the HFEs having the same distance from the HFE {0.5}. The following
example shows that our entropy measures can overcome this drawback perfectly.

Example 2.8 (Zhao et al. 2015). Suppose two HFEs oy = {0.2,0.8} and
o = {0.1,0.2,0.3}. Clearly, the information expressed by o, is more specific than
that of ;. Nevertheless, by Eq. (2.33), we get Eg, , (o) = Eg,, (02) = 0.4, which is
unreasonable. For «; and oy, applying the proposed non-specific entropy measures
(2.47)—(2.53), we can get different results, which are listed in Table 2.9.

From Table 2.9, it can be observed that no matter which measure is applied, we
always get that the non-specificity of o« is greater than that of a,, which is con-
sistent with our intuition. From this example, we can see that our non-specific
entropy measures can distinguish those HFEs that have the same distance from the
HFE {0.5}, while the entropy measure in Eq. (2.33) cannot.
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