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Abstract This chapter explores the concept of using ranked simulated sampling
approach (RSIS) to improve the well-known Monte-Carlo methods, introduced by
Samawi (1999), and extended to steady-state ranked simulated sampling (SRSIS)
by Al-Saleh and Samawi (2000). Both simulation sampling approaches are then
extended to multivariate ranked simulated sampling (MVRSIS) and
multivariate steady-state ranked simulated sampling approach (MVSRSIS) by
Samawi and Al-Saleh (2007) and Samawi and Vogel (2013). These approaches have
been demonstrated as providing unbiased estimators and improving the performance
of some of the Monte-Carlo methods of single and multiple integrals approximation.
Additionally, the MVSRSIS approach has been shown to improve the performance
and efficiency of Gibbs sampling (Samawi et al. 2012). Samawi and colleagues
showed that their approach resulted in a large savings in cost and time needed to
attain a specified level of accuracy.

1 Introduction

The termMonte-Carlo refers to techniques that use random processes to approximate
a non-stochastic k-dimensional integral of the form

θ =
∫

Rk

g(u)du, (1.1)

(Hammersley and Handscomb 1964).
The literature presents many approximation techniques, including Monte-Carlo

methods. However, as the dimension of the integrals rises, the difficulty of the inte-
gration problem increases even for relatively low dimensions (see Evans and Swartz
1995).Given such complications,many researchers are confused aboutwhichmethod
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to use; however, the advantages and disadvantages of each method are not the pri-
mary concern of this chapter. The focus of this chapter is the use of Monte-Carlo
methods in multiple integration approximation.

The motivation for this research is based on the concepts of ranked set sampling
(RSS), introduced by McIntyre (1952). The motivation is based on the fact that the
i th quantified unit of RSS is simply an observation from f(i), where f(i) is the density
function of the i th order statistic of a random sample of size n. When the underlying
density is the uniform distribution on (0, 1), f(i) follows a beta distribution with
parameters (i, n − i + 1).

Samawi (1999) was the first to explore the idea of RSS (Beta sampler) for inte-
gral approximation. He demonstrated that the procedure can improve the simulation
efficiency based on the ratio of the variances. Samawi’s ranked simulated sampling
procedureRSIS generates an independent random sampleU(1),U(2), . . . ,U(n), which
is denoted byRSIS,whereU(i) ∼ β(i, n − i + 1), {i = 1, 2, ..., n} and β(., .) denotes
the beta distribution. The RSIS procedure constitutes an RSS based on random sam-
ples from the uniform distribution U (0, 1). The idea is to use this RSIS to compute
(1.1) with k = 1, instead of using an SRS of size n from U (0, 1), when the range
of the integral in (1.1) is (0, 1). In case of arbitrary range (a, b) of the integral
in (1.1), Samawi (1999) used the sample: X(1), X(2), ..., X(n) and the importance
sampling technique to evaluate (1.1), where X(i) = F−1

X (U(i)) and FX (.) is the dis-
tribution function of a continuous random variable. He showed theoretically and
through simulation studies that using the RSIS sampler for evaluating (1.1) substan-
tially improved the efficiency when compared with the traditional uniform sampler
(USS).

Al-Saleh and Zheng (2002) introduced the idea of bivariate ranked set sampling
(BVRSS) and showed through theory and simulation that BVRSS outperforms the
bivariate simple random sample for estimating the population means. The BVRSS
is as follows:
Suppose (X,Y ) is a bivariate random vector with the joint probability density func-
tion fX,Y (x, y). Then,

1. A random sample of size n4 is identified from the population and randomly
allocated into n2 pools each of size n2 so that each pool is a square matrix with
n rows and n columns.

2. In the first pool, identify the minimum value by judgment with respect to the first
characteristic X , for each of the n rows.

3. For the n minima obtained in Step 2, the actual quantification is done on the pair
that corresponds to the minimum value of the second characteristic, Y , identified
by judgment. This pair, given the label (1, 1), is the first element of the BVRSS
sample.

4. Repeat Steps 2 and 3 for the second pool, but in Step 3, the pair corresponding to
the second minimum value with respect to the second characteristic, Y , is chosen
for actual quantification. This pair is given the label (1, 2).

5. The process continues until the label (n, n) is ascertained from the n2th (last) pool.
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The procedure described above produces aBVRSSof sizen2. Let [(X [i]( j),Y(i)[ j]),
i = 1, 2, . . . , n and j = 1, 2, . . . , n] denote the BVRSS sample from fX,Y (x, y)
where fX [i]( j) ,Y(i)[ j](x, y) is the joint probability density function of (X [i]( j)Y(i)[ j]).
From Al-Saleh and Zheng (2002),

fX [i]( j) ,Y(i)[ j](x, y) = fY(i)[ j](y)
fX( j) (x) fY |X (y|x)

fY[ j](y)
, (1.2)

where fX( j) is the density of the j th order statistic for an SRS sample of size n from
the marginal density of fX and fY[ j](y) be the density of the corresponding Y− value

given by fY[ j](y) =
∞∫

−∞
fX( j) (x) fY |X (y|x)dx, while fY(i)[ j](y) is the density of the i th

order statistic of an iid sample from fY[ j](y), i.e.

fY(i)[ j](y) = c.(FY[ j](y))
i−1(1 − FY[ j](y))

n−i fY[ j](y)

where FY[ j](y) =
y∫

−∞
(

∞∫
−∞

fX( j) (x) fY |X (w|x)dx)dw.
Combining these results, Eq. (1.2) can be written as

fX[i]( j) , Y(i)[ j](x, y) = c1(FY[ j] (y))
i−1(1 − FY[ j] (y))

n−i (FX (x)) j−1(1 − FX (x))n− j f (x, y)
(1.3)

where

c1 =
(

n!
(i − 1)!(n − i)! )(

n!
( j − 1)!(n − j)!

)
.

Furthermore, Al-Saleh and Zheng (2002) showed that,

1

n2

n∑
j

n∑
i

fX [i]( j),Y(i)[ j](x, y) = f (x, y). (1.4)

For a variety of choices of f (u, v), one can have (U, V ) bivariate uniform
with a probability density function f(u, v); 0<u, v<1, such that U ∼ U (0, 1) and
V ∼ U (0, 1) (See Johnson 1987). In that case, [(U[i]( j), V(i)[ j]), i = 1, 2, . . . , n and
j = 1, 2, . . . , n] should have a bivariate probability density function given by

f( j),(i)(u, v) =
[

n!
(i − 1)!(n − i)!

] [
n!

( j − 1)!(n − j)!
]

[FY[ j] (v)]i−1[1 − FY[ j] (v)]n−i [u] j−1

[1 − u]n− j f (u, v).
(1.5)

Samawi and Al-Saleh (2007) extended the work of Samawi (1999) and Al-Saleh
and Zheng (2002) for the Monte-Carlo multiple integration approximation of (1.1)
when k = 2.
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Moreover, to further improve some of the Monte-Carlo methods of integration,
Al-Saleh and Samawi (2000) used steady-state ranked set simulated sampling
(SRSIS) as introduced by Al-Saleh and Al-Omari (1999). SRSIS has been shown to
be simpler and more efficient than Samawi’s (1999) method.

In Samawi and Vogel (2013) work, the SRSIS algorithm introduced by Al-Saleh
and Samawi (2000) was extended to multivariate case for the approximation of
multiple integrals using Monte-Carlo methods. However, to simplify the algorithms,
we introduce only the bivariate integration problem; with this foundation, multiple
integral problems are a simple extension.

2 Steady-State Ranked Simulated Sampling (SRSIS)

Al-Saleh and Al-Omari (1999) introduced the idea of multistage ranked set sampling
(MRSS). To promote the use of MRSS in simulation and Monte-Carlo methods, let
{X (s)

i ; i = 1, 2, . . . , n, } be an MRSS of size n at stage s. Assume that X (s)
i has

probability density function f (s)
i and a cumulative distribution function F (s)

i . Al-
Saleh and Al-Omeri demonstrated the following properties of MRSS:

1.

f (x) = 1

n

n∑
i=1

f (s)
i (x), (2.1)

2.

If s → ∞, then F(s)
i (x) → F(∞)

i (x) =
⎧⎨
⎩

0 i f x < Q(i−1)/n

nF(x) − (i − 1) i f Q(i−1)/n ≤ x < Q(i)/n

1 i f x ≥ Q(i)/n

,

(2.2)
for i = 1, 2, . . . , n, where Qα is the 100αth percentile of F(x).

3. If X ∼ U (0, 1), then for i = 1, 2, ..., n, we have

F (∞)
i (x) =

⎧⎨
⎩

0 i f x < (i − 1)/n
nx − (i − 1) i f (i − 1)/n ≤ x < i/n

1 i f x ≥ i/n
, (2.3)

and

f (∞)
i (x) =

{
n i f (i − 1)/n ≤ x < i/n
0 otherwise.

(2.4)

These properties implyX(∞)
i ∼ U ( i−1

n , i
n ),when the underlying distribution function

is U(0, 1).
Samawi and Vogel (2013) provided a modification of the Al-Saleh and Samawi

(2000) steady-state ranked simulated samples procedure (SRSIS) to bivariate cases
(BVSRSIS) as follows:
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1. For each (i, j), j = 1, 2, . . ., n and i = 1, 2, . . ., n generate independently

a. (Ui( j)from U
(

j−1
n ,

j
n

)
and independent W(i) j from U

(
i−1
n , i

n

)
, i = 1,

2, ..., n).

2. Generate Y(i) j = F−1
Y (W(i) j ) and Xi( j) = F−1

X (Ui( j)) from FY (y) and FX (x)
respectively.

3. To generate (X [i]( j),Y(i)[ j]) from f (x, y), generate U ′
i( j)from U

(
j−1
n ,

j
n

)
and

independent W ′
(i) j from U

(
i−1
n , i

n

)
, then

X [i]( j)|Y(i) j = F−1
X |Y (U ′

i( j)|Y(i) j ) and Y(i)[ j]|Xi( j) = F−1
Y |X (W ′

(i) j |Xi( j)).

The joint density function of (X [i]( j),Y(i)[ j]) is formed as follows:

f (∞)
X [i]( j)Y(i)[ j]

(x, y) = f (∞)
X [i]( j) (x) f

(∞)
Y i |X [i]( j) (y|X [i]( j)) = n2 fX (x) fY |X [i]( j) (y|X [i]( j)),

QX ( j−1)/n ≤ x < QX ( j)/n, QY (i−1)/n ≤ y < QY (i)/n ,

where QX (s) and QY (v) are the 100 sth percentile of FX (x) and 100 vth percentile of
FY (y), respectively.However, for the first stage, both Stokes (1977) andDavid (1981)
showed that FY |X [i]( j) (y|x) = FY |X (y|x). Al-Saleh and Zheng (2003) demonstrated
that joint density is valid for an arbitrary stage, and therefore, valid for a steady state.
Therefore,

f (∞)
X[i]( j)Y(i)[ j]

(x, y) = f (∞)
X[i]( j) (x) f

(∞)
Y i |X[i]( j) (y|X[i]( j)) = n2 fX (x) fY |X (y|x) = n2 fY,X (x, y),

QX ( j−1)/n ≤ x < QX ( j)/n, QY (i−1)/n ≤ y < QY (i)/n .
(2.5)

Thus, we can write:

1

n2

n∑
i=1

n∑
j=1

f (∞)
X[i]( j)Y(i)[ j]

(x, y) =
n∑

i=1

n∑
j=1

fY,X (x, y).I [QX ( j−1)/n ≤ x < QX ( j)/n ]I [QY (i−1)/n ≤ y < QY (i)/n ]

= f (x, y),

(2.6)

where I is an indicator variable. Similarly, Eq. (2.5) can be extended bymathematical
induction to the multivariate case as follows:

f (∞)(x1, x2, ..., xk) = nk f (x1, x2, ..., xk), QXi ( j−1)/n ≤ xi < QXi ( j)/n, i = 1,
. . . , k and j = 1, 2, .., n.. In addition, the above algorithm can be extended for k>2
as follows:

1. For each (il , l = 1, 2, ..., k), il = 1, 2, ..., n generate independently

Uil (is )from U

(
is − 1

n
,
is
n

)
, l, s = 1, 2, . . . , k and il , is = 1, 2, . . . , n.
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2. Generate Xil (is ) = F−1
Xil

(Uil (is ))l, s = 1, 2, . . . , k and il, is = 1, 2, . . . , n, from
FXil

(x), l = 1, 2, . . . , k, respectively.
3. Then, generate the multivariate version of the steady-state simulated sample by

using any technique for conditional random number generation.

3 Monte-Carlo Methods for Multiple Integration Problems

Very good descriptions of the basics of the various Monte-Carlo methods have
been provided by Hammersley and Handscomb (1964), Liu (2001), Morgan (1984),
Robert andCasella (2004), and Shreider (1966). TheMonte-Carlomethods described
include crude, antithetic, importance, control variate, and stratified sampling approaches.
However, when variables are related, Monte-Carlo methods cannot be used directly
(i.e., similar to the manner that these methods are used in univariate integration prob-
lems) because using the bivariate uniform probability density function f (u, v) as a
sampler to evaluate Eq. (1.1) with k = 2, f (u, v) is not consistent. However, in this
context it is reasonable to use the importance sampling method, and therefore, it fol-
lows that other Monte-Carlo techniques can be used in conjunction with importance
sampling. Thus, our primary concern is importance sampling.

3.1 Importance Sampling Method

In general, suppose that f is a density function on Rk such that the closure of the set
of points where g(.) is non-zero and the closure set of points where f (.)is non-zero.
Let [Ui i = 1, 2, ..., n] be a sample from f (.). Then, because

θ =
∫

g(u)

f (u)
f (u)du,

Equation (1.1) can be estimated by

∧
θ = 1

n

n∑
i=1

g(ui )

f (ui )
. (3.1)

Equation (3.1) is an unbiased estimator for (1.1), with variance given by

Var(θ̂) = 1

n
(

∫

Rk

g(u)2

f (u)
du − θ2).
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In addition, from the point of view of the strong law of large numbers, it is clear that
θ̂ → θ almost surely as n → ∞.

A limited number of distributional families exist in amultidimensional context and
are commonly used as importance samplers. For example, the multivariate Student’s
family is used extensively in the literature as an importance sampler. Evans and
Swartz (1995) indicated a need for developing families of multivariate distribution
that exhibit a wide variety of shapes. In addition, statisticians want distributional
families to have efficient algorithms for random variable generation and the capacity
to be easily fitted to a specific integrand.

This paper provides a new way of generating a bivariate sample based on the
bivariate steady-state sampling (BVSRSIS) that has the potential to extend the exist-
ing sampling methods. We also provide a means for introducing new samplers and
to substantially improve substantially the efficiency of the integration approximation
based on those samplers.

3.2 Using Bivariate Steady-State Sampling (BVSRSIS)

Let

θ =
∫

g(x, y)dx dy. (3.2)

To estimate θ , generate a bivariate sample of size n2 from f(x, y), which mimics
g(x, y) and has the same range, such as [(Xi j ,Yi j ), i = 1, 2, ..., n and
j = 1, 2, ..., n]. Then

θ̂ = 1

n2

n∑
i=1

n∑
j=1

g(xi j , yi j )

f (xi j , yi j )
. (3.3)

Equation (3.3) is an unbiased estimate for (3.2) with variance

Var(θ̂) = 1

n2
(

∫ ∫
g2(x, y)

f (x, y)
dx dy − θ2). (3.4)

To estimate (3.2) usingBVSRSIS, generate a bivariate sample of size n2, as described
in above, say [(X [i]( j), Y(i)[ j]), i = 1, 2, ..., n and j = 1, 2, ..., n]. Then

θ̂BV SRSI S = 1

n2

n∑
i=1

n∑
j=1

g(x[i]( j), y(i)[ j])
f (x[i]( j), y(i)[ j])

. (3.5)

Equation (3.5) is also an unbiased estimate for (3.2) using (2.5). Also, by using (2.5)
the variance of (3.5) can be expressed as
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Var(θ̂BV SRSI S) = Var(θ̂) − 1

n4

n∑
i=1

n∑
j=1

(θ
(i, j)
g/ f − θg/ f )

2, (3.6)

where, θ(i, j)
g/ f =E[g(X [i]( j),Y(i)[ j])/ f (X [i]( j), Y(i)[ j])], θ=

g/ f E[g(X,Y )/ f (X,Y )] = θ.

The variance of the estimator in (3.6) is less than the variance of the estimator in
(3.4).

3.3 Simulation Study

This section presents the results of a simulation study that compares the perfor-
mance of the importance samplingmethod described above usingBVSRSIS schemes
with the performance of the bivariate simple random sample (BVUSS) and BVRSS
schemes by Samawi andAl-Saleh (2007) as introduced by Samawi andVogel (2013).

3.3.1 Illustration for Importance Sampling Method When Integral’s
Limits Are (0, 1)x(0, 1)

As in Samawi and Al-Saleh (2007), illustration of the impact of BVSRSIS on impor-
tance sampling is provided by evaluating the following integral

θ =
1∫

0

1∫

0

(1 + v). exp(u(1 + v)) du dv = 3.671. (3.7)

This example uses four bivariate sample sizes: n= 20, 30, 40 and 50. To estimate
the variances using the simulation method, we use 2,000 simulated samples from
BVUSS and BVSRSIS. Many choices of bivariate and multivariate distributions
with uniform marginal on [0, 1] are available (Johnson 1987). However, for this
simulation, we chose Plackett’s uniform distribution (Plackett 1965), which is given
by

f (u, v) = ψ{(ψ − 1)(u + v − 2 uv) + 1}
{[1 + (u + v)(ψ − 1)]2 − 4ψ(ψ − 1)uv}3/2 , 0 < u, v < 1, ψ > 0.

(3.8)
The parameterψ governs the dependence between the components (U, V )distributed
according to f . Three cases explicitly indicate the role of ψ (Johnson 1987):

ψ → 0 U = 1 − V,

ψ = 1 U and V are independent,
ψ → ∞ U = V,
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Table 1 Efficiency of estimating (3.7) using BVSRSIS relative to BVUSS and BVRSS

n\ψ 1 2

20 289.92 (8.28) 273.68 (9.71)

30 649.00 (12.94) 631.31 (13.06)

40 1165.31 (16.91) 1086.46 (18.60)

50 1725.25 (21.67) 1687.72 (23.03)

Note Values shown in bold were extracted from Samawi and Al-Saleh (2007)

Table1 presents the relative efficiencies of our estimators using BVRSIS in compar-
ison with using BVUSS and BVSRSIS relative to BVUSS for estimating (3.7).

As illustrated in Table1, BVSRSIS is clearly more efficient than either BVUSS
or BVRSIS when used for estimation.

3.3.2 Illustration When the Integral’s Limits Are Arbitrary
Subset of R2

Recent work by Samawi and Al-Saleh (2007) and Samawi and Vogel (2013) used an
identical example in which the range of the integral was not (0, 1), and the authors
evaluated the bivariate normal distribution (e.g., g(x, y) is the N2 (0, 0, 1, 1, ρ)

density.) For integrations with high dimensions and a requirement of low relative
error, the evaluation of the multivariate normal distribution function remains one of
the unsolved problems in simulation (e.g., Evans and Swartz 1995). To demonstrate
how BVSRSIS increases the precision of evaluating the multivariate normal distri-
bution, we illustrate the method by evaluating the bivariate normal distribution as
follows:

θ =
z1∫

−∞

z2∫

−∞
g(x, y) dx dy, (3.9)

where g(x, y) is the N2(0, 0, 1, 1, ρ) density.
Given the similar shapes of the marginal of the normal and the marginal of the

logistic probability density functions, it is natural to attempt to approximate the
bivariate normal cumulative distribution function by the bivariate logistic cumulative
distribution function. For the multivariate logistic distribution and its properties, see
Johnson and Kotz (1972). The density of the bivariate logistic (Johnson and Kotz
1972) is chosen to be

f (x, y) = 2! π2e−π(x+y)/
√
3(1 + e−π z1/

√
3 + e−π z2/

√
3)

3(1 + e−πx/
√
3 + e−πy/

√
3)3

, − ∞ < x < z1; − ∞ < y < z2.

(3.10)
It can be shown that the marginal of X is given by
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f (x) = πe−πx/
√
3(1 + e−π z1/

√
3 + e−π z2/

√
3)√

3 (1 + e−πx/
√
3 + e−π z2/

√
3)2

, − ∞ < x < z1. (3.11)

Now let W = Y +
√
3

π
ln(1 + e−πX/

√
3 + e−π z2/

√
3). Then it can be shown that

f (w|x) = 2 π e−πw/
√
3

√
3

(
1+e−πx/

√
3

1+e−πx/
√
3+e−π z2/

√
3
+ e−πw/

√
3
)3 ,

− ∞ < w < z2+

√
3

π
ln

(
1 + e−πx/

√
3 + e−π z2/

√
3
)
.

(3.12)

To generate from (3.10) proceed as follows:

1. Generate X from (3.11).
2. Generate W independently from (3.12)
3. Let Y = W −

√
3

π
ln(1 + e−πX/

√
3 + e−π z2/

√
3).

4. Then the resulting pair (X,Y ) has the correct probability density function, as
defined in (3.10).

For this illustration, two bivariate sample sizes, n = 20 and 40, and different
values of ρ and (z1,z2) are used. To estimate the variances using simulation, we use
2,000 simulated samples from BVUSS, BVRSIS, and BVSRSIS (Tables2 and 3).

Notably, when Samawi andVogel (2013) used identical examples to those used by
Samawi and Al-Saleh (2007), a comparison of the simulations showed that Samawi
and Vogel (2013) BVSRSIS approach improved the efficiency of estimating the
multiple integrals by a factor ranging from 2 to 100.

As expected, the results of the simulation indicated that using BVSRSIS substan-
tially improved the performance of the importance sampling method for integration

Table 2 Efficiency of using BVSRSIS to estimate Eq. (3.9) relative to BVUSS

(z1, z2) n = 20 n = 40
ρ =
± 0.20

ρ =
±0.50

ρ =
±0.80

ρ =
±0.95

ρ =
±0.20

ρ =
±0.50

ρ =
±0.80

ρ =
±0.95

(0, 0) 5.39
(6.42)

9.89
(21.70)

5.98
(144.31)

49.65
(171.22)

9.26
(12.2)

22.50
(63.74)

15.80
(526.10)

158.77
(612.50)

(−1, −1) 22.73
(75.82)

29.43
(182.27)

22.48
(87.42)

95.10
(23.71)

55.99
(255.75)

90.24
(688.59)

69.85
(336.58)

380.87
(100.40)

(−2, −2) 148.30
(200.46)

133.21
(143.62)

125.37
(30.45)

205.99
(42.75)

506.63
(759.81)

408.66
(568.77)

411.19
(128.94)

802.73
(45.55)

(−1, −2) 173.07
(91.08)

281.60
(42.89)

216.86
(08.47)

24.11a 714.92
(382.01)

1041.39
(148.16)

882.23
(43.19)

98.76a

Note Values shown in bold are results of negative correlations coefficients
aValues cannot be obtained due the steep shape of the bivariate distribution for the large negative
correlation
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Table 3 Relative efficiency of estimating Eq. (3.9) using BVRSIS as compared with using BVUSS

(z1, z2) n = 20 n = 40
ρ = 0.20 ρ = 0.50 ρ = 0.80 ρ = 0.95 ρ = 0.20 ρ = 0.50 ρ = 0.80 ρ = 0.95

(0, 0) 2.39 3.02 2.29 3.21 3.80 4.85 3.73 5.66

(−1, −1) 4.73 4.30 4.04 3.79 7.01 8.28 7.83 7.59

(−2, −2) 8.44 8.47 8.73 5.65 15.69 15.67 16.85 11.02

Source Extracted from Samawi and Al-Saleh (2007)

approximation. BVSRSIS also outperformed the BVRSIS method used by Samawi
and Al-Saleh (2007). Moreover, increasing the sample size in both of the above
illustrations increases the relative efficiencies of these methods. For instance, in the
first illustration, by increasing the sample size from 20 to 50, the relative efficiency
of using BVSRSIS as compared with BVUSS to estimate (3.10) is increased from
289.92 to 649.00, with the increase dependent on the dependency between U and
V . A similar relationship between sample size and relative efficiencies of these two
methods can be demonstrated in the second illustration.

Based on the above conclusions, BVSRSIS can be used in conjunction with other
multivariate integrationprocedures to improve the performanceof thosemethods, and
thus providing researchers with a significant reduction in required sample size. With
the use of BVSRSIS, researchers can perform integral estimation using substantially
fewer simulated numbers. Since using BVSRSIS in simulation does not require
any extra effort or programming, we recommend using BVSRSIS to improve the
well-knownMonte-Carlo method of numerical multiple integration problems. Using
BVSRSIS will yield an unbiased and more efficient estimate of those integrals.
Moreover, this sampling scheme can be applied successfully to other simulation
problems. Last, we recommend using the BVSRSIS method for integrals with a
dimension no greater than 3. For higher dimensional integrals, other methods in
the literature can be used in conjunction with independent steady ranked simulated
sampling.

4 Steady-State Ranked Gibbs Sampler

Many approximation techniques are found in the literature, including Monte-Carlo
methods, asymptotic, and Markov chain Monte-Carlo (MCMC) methods such as the
Gibbs sampler (Evans and Swartz 1995). Recently, many statisticians have become
interested in MCMC methods to simulate complex, nonstandard multivariate distri-
butions. Of the MCMC methods, the Gibbs sampling algorithm is one of the best
known and most frequently used MCMC method. The impact of the Gibbs sampler
method on Bayesian statistics has been detailed by many authors (e.g., Chib and
Greenberg 1994; Tanner 1993) following the work of Tanner and wong (1987) and
Gelfand and Smith (1990).
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To understand the MCMC process, suppose that we need to evaluate the Monte-
Carlo integration E[f(X)], where f (.) is any user-defined function of a random vari-
able X . The MCMC process is as follows: Generate a sequence of random variables,
{X0, X1, X2, . . .}, such that at each time t ≥ 0, the next state Xt+1 is sampled from
a distribution P(Xt+1|Xt ) which depends only on the current state of the chain, Xt .
This sequence is called a Markov chain, and P(.|.) is called the transition kernel
of the chain. The transition kernel is a conditional distribution function that repre-
sents the probability of moving from Xt to the next point Xt+1 in the support of X .
Assume that the chain is time homogenous. Thus, after a sufficiently long burn-in
of k iterations, {Xt ; t = k + 1, . . . , n} will be dependent samples from the station-
ary distribution. Burn-in samples are usually discarded for this calculation, given an
estimator,

f̄ ≈ 1

n − k

n∑
t=k+1

f (Xt ). (4.1)

This average in (4.1) is called an ergodic average. Convergence to the required
expectation is ensured by the ergodic theorem. More information and discussions on
some of the issues in MCMC can be found in Roberts (1995) and Tierney (1995).

To understand how to construct a Markov chain so that its stationary distribution
is precisely the distribution of interest π(.), we outline Hastings’ (1970) algorithm,
which is a generalization of the method first proposed by Metropolis et al. (1953).
The method is useful for obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult. The method is as follows: At
each time t , the next state Xt+1 is chosen by first sampling a candidate point Y
from a proposal distribution q(.|Xt ) (ergodic). Note that the proposal distribution
may depend on the current point Xt . The candidate point Y is then accepted with
probability α(Xt ,Y ) where

α(Xt ,Y ) = min

(
1,

π(Y )q(Xt |Y )

π(Xt )q(Y |Xt )

)
. (4.2)

If the candidate point is accepted, the next state becomes Xt+1 = Y . If the candi-
date is rejected, the chain does not move, that is, Xt+1 = Xt . Thus the Metropolis–
Hastings algorithm simply requires the following:

Initialize X0; set t = 0.

Repeat {generate a candidate Y from q(.|Xt )

and a value u from a uniform (0, 1), if

u ≤ α(Xt ,Y ) set Xt+1 = Y

Otherwise set Xt+1 = Xt

Increment t}.
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Aspecial case of theMetropolis–Hastings algorithm is theGibbs samplingmethod
proposed byGeman andGeman (1984) and introduced byGelfand and Smith (1990).
To date, most statistical applications of MCMC have used Gibbs sampling. In Gibbs
sampling, variables are sampled one at a time from their full conditional distributions.

Gibbs sampling uses an algorithm to generate random variables from a marginal
distribution indirectly, without calculating the density. Similar to Casella and George
(1992), we demonstrate the usefulness and the validity of the steady-state Gibbs
sampling algorithm by exploring simple cases. This example shows that steady-state
Gibbs sampling is based only on elementary properties of Markov chains and the
properties of BVSRSIS.

4.1 Traditional (standard) Gibbs Sampling Method

Suppose that f (x, y1, y2, . . . , yg) is a joint density function on Rg+1 and our purpose
is to find the characteristics of themarginal density such as themean and the variance.

fX (x) =
∫

. . .

∫
f (x, y1, y2, . . . , yg)dy1, dy2, . . . , dyg (4.3)

In cases where (4.3) is extremely difficult or not feasible to perform either analyt-
ically or numerically, Gibbs sampling enables the statistician to efficiently generate
a sample X1, . . . , Xn ∼ fx (x), without requiring fx (x). If the sample size n is large
enough, this method will provide a desirable degree of accuracy for estimating the
mean and the variance of fx (x).

The followingdiscussionof theGibbs samplingmethoduses a two-variable case to
make the method simpler to follow. A case with more than two variables is illustrated
in the simulation study.

Given a pair of random variables (X,Y ), Gibbs sampling generates a sample from
fX (x) by sampling from the conditional distribution, fX |Y (x |y) and fY |X (y|x), which
are usually known in statistical models application. The procedure for generating a
Gibbs sequence of random variables,

X ′
0,Y

′
0, X

′
1,Y

′
1, . . . , X

′
k,Y

′
k, (4.4)

is to start from an initial value Y ′
0 = y′

0, (which is a known or specified value) and
obtaining the rest of the sequence (4.4) iteratively by alternately generating values
from

X ′
j ∼ fX |Y (x |Y ′

j = y′
j )

Y ′
j+1 ∼ fY |X (y|X ′

j = x ′
j ).

(4.5)
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For large k and under reasonable conditions (Gelfand and Smith 1990), the final
observation in (4.5), namely X ′

j = x ′
j , is effectively a sample point from fX (x).

A natural way to obtain an independent and identically distributed (i.i.d) sample
from fX (x) is to follow the suggestion of Gelfand and Smith (1990) to use Gibbs
sampling to find the kth, or final value, from n independent repetitions of the Gibbs
sequence in (4.5). Alternatively, we can generate one long Gibbs sequence and use a
systematic sampling technique to extract every rth observation. For large enough r ,
thismethodwill also yield an approximate i.i.d sample from fX (x). For the advantage
and disadvantage of this alternate method see, Gelman and Rubin (1991).

Next, we provide a brief explanation of why Gibbs sampling works under reason-
able conditions. Suppose we know the conditional densities fX |Y (x |y) and fY |X (y|x)
of the two random variables X and Y, respectively. Then the marginal density of X ,
fX (x) can be determined as follows:

fX (x) =
∫

f (x, y)dy,

where f (x, y) is the unknown joint density of (X,Y ). Using the fact that fXY (x, y) =
fY (y). fY |X (x |y), then

fX (x) =
∫

fY (y). fY |X (x |y)dy.

Using a similar argument for fY (y), then

fX (x) =
∫ [∫

fX |Y (x |y) fY |X (y|t)dy
]
fX (t)dt =

∫
g(x, t) fX (t)dt, (4.6)

where g(x, t) = ∫
fX |Y (x |y) fY |X (y|t)dy As argued by Gelfand and Smith (1990),

Eq. (4.6) defines a fixed-point integral equation for which fX (x) is the solution and
the solution is unique.

4.2 Steady-State Gibbs Sampling (SSGS): The Proposed
Algorithms

Toguarantee anunbiased estimator for themean, density, and thedistribution function
of fX (x), Samawi et al. (2012) introduced two methods for performing steady-state
Gibbs sampling. The first method is as follows:

In standard Gibbs sampling, the Gibbs sequence is obtained using the conditional
distribution, fX |Y (x |y) and fY |X (y|x) , to generate a sequence of random variables,

X ′
0,Y

′
0, X

′
1,Y

′
1, . . . , X

′
k−1,Y

′
k−1, (4.7)
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starting from an initial, specified value Y ′
0 = y′

0 and iteratively obtaining the rest of
the sequence (4.7) by alternately generating values from

X ′
j ∼ fX |Y (x |Y ′

j = y′
j )

Y ′
j+1 ∼ fY |X (y|X ′

j = x ′
j ).

(4.8)

However, in steady state Gibbs sampling (SSGS), the Gibbs sequence is obtained as
follows:

One step before the kth step in the standard Gibbs sampling method, take the last
step as

X ′
i( j) ∼ F−1

X |Y (Ui( j)|Y ′
k−1 = y′

k−1)

Y ′
(i) j ∼ F−1

Y |X (W(i) j |X ′
k−1 = x ′

k−1),

X [i]( j) ∼ F−1
X |Y (U ′

i( j)|Y ′
(i) j = y′

(i) j )

Y(i)[ j] ∼ F−1
Y |X (W ′

(i) j |X ′
i( j) = x ′

i( j))

(4.9)

where {Ui( j),U ′
i( j)} fromU

(
j−1
n ,

j
n

)
and {W(i) j ,W ′

(i) j } fromU
(
i−1
n , i

n

)
as described

above. Clearly, this step does not require extra computer time since we generate the
Gibbs sequences from uniform distributions only. Repeat this step independently for
i = 1, 2, . . . , n and j = 1, 2, . . . , n to get an independent sample of size n2, namely
[(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j = 1, 2, . . . , n]. For large k and under reason-
able conditions (Gelfand and Smith 1990), the final observation in Eq. (4.9), namely
(X [i]( j) = x[i]( j),Y(i)[ j] = y(i)[ j]) is effectively a sample point from (2.5). Using the
properties of SRSIS, [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j = 1, 2, . . . , n], will pro-
duce unbiased estimators for the marginal means and distribution functions. Alterna-
tively, we can generate one long standard Gibbs sequence and use a systematic sam-
pling technique to extract every rth observation using a similar method as described
above. Again, a SSGS sample will be obtained as

X ′
i( j) ∼ F−1

X |Y (Ui( j)|Y ′
r−1 = y′

r−1),

Y ′
(i) j ∼ F−1

Y |X (W(i) j |X ′
r−1 = x ′

r−1),

X [i]( j) ∼ F−1
X |Y (U ′

i( j)|Y ′
(i) j = y′

(i) j ),

Y(i)[ j] ∼ F−1
Y |X (W ′

(i) j |X ′
i( j) = x ′

i( j)),

(4.10)

where {Ui( j),U ′
i( j)} from U

(
j−1
n ,

j
n

)
and {W(i) j ,W ′

(i) j } from U
(
i−1
n , i

n

)
to obtain

an independent sample of size n2, that is, [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j =
1, 2, . . . , n].
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Using the same arguments as in (4.1), suppose we know the conditional densi-
ties fX |Y (x |y) and fY |X (y|x) of the two random variables X and Y, respectively.
Equation (4.6) is the limiting form of the Gibbs iteration scheme, showing how sam-
pling from conditionals produces a marginal distribution. As in Gelfand and Smith
(1990) for k → ∞, X ′

k−1 ∼ fX (x) and Y ′
k−1 ∼ fY (y) and hence F−1

Y |X (W(i) j |x ′
k−1) =

Y ′
(i) j ∼ f ∞

Y(i)
(y) , F−1

Y |X (Ui( j)|x ′
k−1) = X ′

(i) j ∼ f ∞
X( j)

(x)whereW(i) j ∼ U
(
i−1
n , i

n

)
and

Ui( j) ∼ U
(

j−1
n ,

j
n

)
. Therefore,

F−1
X |Y ′

(i) j
(U ′

i( j)|Y ′
(i) j ) = X [i]( j)|Y ′

(i) j ∼ f ∞
X [i]( j)|Y ′

(i) j
(x |Y ′

(i) j ) and

F−1
Y |X ′

i( j)
(W ′

(i) j |X ′
i( j)) = Y(i)[ j]|X ′

i( j) ∼ f ∞
Y(i)[ j]|X ′

i( j)
(y|X ′

i( j)).

This stepproduces an independent bivariate steady-state sample, [(X [i]( j),Y(i)[ j]), i =
1, 2, . . . , n and j = 1, 2, . . . , n], where some characteristic of the marginal distrib-
utions are to be investigated. To see how to apply this bivariate steady-state sample
Gibbs sampling, using (2.5) we get

fX [i]( j)(x) =
Q (i)

n∫

Q (i−1)
n

n2 fY (y). fX |Y (x |y)dy =
Q (i)

n∫

Q (i−1)
n

n fX |Y (x |y)n
Q ( j)

n∫

Q ( j−1)
n

fX (t) fY |X (y|t)dtdy

=
Q ( j)

n∫

Q ( j−1)
n

⎡
⎢⎢⎣

Q (i)
n∫

Q (i−1)
n

n fY |X (y|t) fX |Y (x |y)dy

⎤
⎥⎥⎦ n fX (t)dt (4.11)

=
Q ( j)

n∫

Q ( j−1)
n

⎡
⎢⎢⎣

Q (i)
n∫

Q (i−1)
n

n fY |X (y|t) fX |Y (x |y)dy

⎤
⎥⎥⎦ fX [i]( j)(t)dt.

As argued by Gelfand and Smith (1990), Eq. (4.11) defines a fixed-point integral
equation for which fX [i]( j)(x) is the solution and the solution is unique.

We next show how SSGS can improve the efficiency of estimating the sample
means of a probability density function f (x).

Theorem 4.1 (Samawi et al. 2012).Under the same conditions of the standardGibbs
sampling, the bivariate SSGSsample above [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j =
1, 2, . . . , n] from f (x, y) provides the following:

1. Unbiased estimator of themarginalmeans of X and/or Y .Hence E(X̄ SSGS) = μx ,
where μx = E(X).

2. Var(X̄ SSGS) ≤ Var(X̄), where X̄ =
n2∑
i=1

Xi

n2 .
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Proof Using (2.5),

E(X̄ SSGS) = 1

n2

n∑
i=1

n∑
j=1

E(X[i]( j)) = 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

x f (∞)
X[i]( j)Y (i)[ j] (x, y)dxdy

= 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

xn2 f (x, y)dxdy

=
n∑
j=1

QX ( j)/n∫

QX ( j−1)/n

x fx (x)dx
n∑

i=1

QY (i)/n∫

QY (i−1)/n

fY |X (y|x)dy = E(X) = μx .

Similarly,

var(X̄ SSGS) = 1

n4

n∑
i=1

n∑
j=1

Var(X[i]( j)) = 1

n4

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx[i]( j) )
2 f (∞)X[i]( j)Y (i)[ j](x, y)dxdy

= 1

n4

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx[i]( j) ±μx )
2n2 f (x, y)dxdy

= 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

[(x − μx ) − (μ[i]( j) − μx ]2 f (x, y)dxdy

and,

var(X̄ SSGS) = 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

{(x − μx )
2 − 2(x − μx )(μx[i]( j) − μx )

+ (μx[i]( j) − μx )
2} f (x, y)dxdy

=
1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx )
2 f (x, y)dxdy − 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

2(x − μx )(μx[i]( j) − μx ) f (x, y)dxdy

+ 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy

= 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx )
2 f (x, y)dxdy − 1

n2

n∑
i=1

n∑
j=1
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QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy

= σ 2
X

n2
− 1

n2

n∑
i=1

n∑
j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy ≤ V (X̄) = σ 2

X

n2
,

where σ 2
X = Var(X). Similar results can be obtained for the marginal mean of

Y and the marginal distributions of X and Y . Note that as compared with using
standard Gibbs sampling, using SSGS not only provides a gain in efficiency by but
also reduces the sample size required to achieve a certain accuracy in estimating the
marginal means and distributions. For very complex situations, the smaller required
sample size can substantially reduce computation time. To provide insight to the gain
in efficiency by using SSGS, we next conduct a simulation study.

4.3 Simulation Study and Illustrations

This section presents the results of a simulation study comparing the performance
of the SSGS with the standard Gibbs sampling methods. To compare the perfor-
mance of our proposed algorithm, we used the same illustrations as Casella and
George (1992). For these examples, four bivariate samples of sizes, n = 10, 20, and
50 and Gibbs sequence length k = 20, 50 and 100 and r = 20, 50, and 100 in the
long sequence Gibbs sampler. To estimate the variances of the estimators using the
simulation method, we completed 5,000 replications. Using the 5,000 replications,
we estimate the efficiency of our procedure relative to the traditional (i.e., standard)

Gibbs sampling method by eff(θ̂ , θ̂SSGS) = Var(θ̂ )

Var(θ̂SSGS)
, where θ is the parameter of

interest.

Example 1 Casella and George (1992).
X and Y have the following joint distribution, f (x, y) ∝ (m

x

)
yx+α−1(1 − y)m−x+β−1,

x = 0, 1, . . . ,m, 0 ≤ y ≤ 1. Assume our purpose is to determine certain character-
istics of the marginal distribution f (x) of X. In Gibbs sampling method, we use
the conditional distributions f (x |y) ∼ Binomial(m, y) and f (y|x) ∼ Beta(x +
α,m − x + β).

Tables4 and 5 show that, relative to the standard Gibbs sampling method, SSGS
improves the efficiency of estimating the marginal means. The amount of improve-
ment depends on two factors: (1) which parameters we intend to estimate, and (2)
the conditional distributions used in the process. Moreover, using the short or long
Gibbs sampling sequence has only a slight effect on the relative efficiency.
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Table 4 StandardGibbs samplingmethodcomparedWith theSteady-StateGibbsSampling (SSGS)
method (Beta-Binomial distribution)

m = 5, α = 2, and β = 4

n2 k Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.672 1.668 3.443 0.340 0.334 3.787
50 1.667 1.666 3.404 0.333 0.333 3.750

100 1.667 1.666 3.328 0.333 0.333 3.679

400 20 1.666 1.666 3.642 0.333 0.333 3.861
50 1.669 1.667 3.495 0.333 0.333 3.955

100 1.668 1.667 3.605 0.333 0.333 4.002

2500 20 1.666 1.666 3.760 0.333 0.333 4.063
50 1.668 1.667 3.786 0.333 0.333 3.991

100 1.667 1.667 3.774 0.333 0.333 4.007

m = 16, α = 2, and β = 4

100 20 5.321 5.324 1.776 0.333 0.333 1.766
50 5.334 5.334 1.771 0.333 0.333 1.766

100 5.340 5.337 1.771 0.334 0.334 1.769

400 20 5.324 5.327 1.805 0.333 0.333 1.811
50 5.333 5.333 1.816 0.333 0.333 1.809

100 5.330 5.331 1.803 0.333 0.333 1.806

2500 20 5.322 5.325 1.820 0.333 0.333 1.828
50 5.334 5.334 1.812 0.333 0.333 1.827

100 5.334 5.333 1.798 0.333 0.333 1.820

Note The exact mean of x is equal to 5/3 and the exact mean of y is equal to 1/3 for the first case

Example 2 Casella and George (1992).
Let X and Y has the following conditional distributions that are exponential dis-
tributions, restricted to the interval (0, B), that is f (x |y) ∝ ye−yx , 0 < x < B <

∞ and f (y|x) ∝ xe−yx , 0 < y < B < ∞.

Similarly, Table6 shows that SSGS improves the efficiency of marginal means
estimation relative to standard Gibbs sampling. Again, using short or long Gibbs
sampler sequence has only a slight effect on the relative efficiency.

Example 3 Casella and George (1992).
In this example, a generalization of the joint distribution is f (x, y,m) ∝ (m

x

)
yx+α−1

(1 − y)nx+β−1, e−λ λm

m! , λ > 0, x = 0, 1, . . . ,m, 0 ≤ y ≤ 1,m = 1, 2, . . . .
Again, suppose we are interested in calculating some characteristics of the mar-

ginal distribution f (x) of X . InGibbs samplingmethod,we use the conditional distri-
butions f (x |y,m) ∼ Binomial(m, y), f (y|x,m) ∼ Beta(x + α,m − x + β) and
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Table 5 Comparison of the Long Gibbs sampling method and the Steady-State Gibbs Sampling
(SSGS) method (Beta-Binomial distribution)

m = 5, α = 2, and β = 4

n2 r Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.667 1.666 3.404 0.333 0.333 3.655
50 1.665 1.665 3.506 0.333 0.333 3.670

100 1.668 1.667 3.432 0.334 0.333 3.705

400 20 1.667 1.667 3.623 0.333 0.333 4.014
50 1.666 1.666 3.606 0.333 0.333 3.945

100 1.667 1.667 3.677 0.333 0.333 3.997

2500 20 1.667 1.666 3.814 0.333 0.333 4.011
50 1.667 1.667 3.760 0.333 0.333 4.125

100 1.667 1.667 3.786 0.333 0.333 4.114

m = 16, α = 2, and β = 4

100 20 5.338 5.338 1.770 0.334 0.334 1.785
50 5.335 5.334 1.767 0.334 0.334 1.791

100 5.335 5.334 1.744 0.334 0.333 1.763

400 20 5.332 5.332 1.788 0.333 0.333 1.820
50 5.337 5.336 1.798 0.333 0.333 1.815

100 5.332 5.333 1.821 0.333 0.333 1.820

2500 20 5.332 5.332 1.809 0.333 0.333 1.821
50 5.335 5.335 1.832 0.333 0.333 1.827

100 5.333 5.333 1.825 0.333 0.333 1.806

Note The exact mean of x is equal to 5/3 and the exact mean of y is equal to 1/3

f (m|x, y)∞e−(1−y)λ [(1−y)λ]m−x

(m−x)! ,m = x, x + 1, . . .. For this example, we used the
following parameters: m = 5, α = 2, and β = 4.

Similarly, Table7 illustrates the improved efficiency of using SSGS for marginal
means estimation, relative to standard Gibbs sampling. Again using a short or long
Gibbs sampling sequence has only a slight effect on the relative efficiency. Note that
this example is a three-dimensional problem, which shows the improved efficiency
depends on the parameters under consideration.

We show that SSGS converges in the same manner as in the standard Gibbs
sampling method. However, Sects. 3 and 4 indicate that SSGS is more efficient than
standard Gibbs sampling for estimating themeans of the marginal distributions using
the same sample size. In the examples provided above, the SSGS efficiency (versus
standard Gibbs) ranged from 1.77 to 6.6, depending on whether Gibbs sampling
used the long or short sequence method and the type of conditional distributions
used in the process. Using SSGS yielded a reduced sample size, and thus, reduces
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Table 6 Relative efficiency of Gibbs sampling method and Steady-State Gibbs Sampling (SSGS)
method (Exponential Distribution)

Standard Gibbs Algorithm B = 5

n2 k Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.265 1.264 4.255 1.264 1.263 4.132
50 1.267 1.267 4.200 1.265 1.264 4.203

100 1.267 1.267 4.100 1.263 1.265 4.241

400 20 1.263 1.264 4.510 1.266 1.265 4.651
50 1.265 1.265 4.341 1.262 1.263 4.504

100 1.263 1.264 4.436 1.265 1.265 4.345

2500 20 1.264 1.264 4.461 1.264 1.264 4.639
50 1.264 1.264 4.466 1.265 1.265 4.409

100 1.265 1.264 4.524 1.265 1.264 4.525

Long Gibbs Algorithm

n2 r B = 5

100 20 1.265 1.265 4.305 1.264 1.265 4.349
50 1.267 1.264 4.254 1.261 1.264 4.129

100 1.264 1.265 4.340 1.265 1.265 4.272

400 20 1.265 1.264 4.342 1.263 1.264 4.543
50 1.265 1.265 4.434 1.265 1.265 4.446

100 1.266 1.265 4.387 1.264 1.264 4.375

2500 20 1.264 1.264 4.403 1.264 1.264 4.660
50 1.265 1.265 4.665 1.264 1.264 4.414

100 1.265 1.265 4.494 1.264 1.264 4.659

computing time. For example, if the efficiency of using SSGS is 4, then the sample
size needed for estimating the simulation’s distribution mean, or other distribution
characteristics, when using the ordinary Gibbs sampling method is 4 times greater
than when using SSGS to achieve the same accuracy and convergence rate. Addi-
tionally, our SSGS sample produces unbiased estimators, as shown by theorem 4.1.
Moreover, the bivariate steady-state simulation depends on n2 simulated sample size
to produce an unbiased estimate. However, in k dimensional problem, multivariate
steady-state simulation depends on nk simulated sample size to produce an unbiased
estimate. Clearly, this sample size is not practical and will increase the simulated
sample size required. To overcome this problem in high dimensional cases, we can
use the independent simulation method described by Samawi (1999) that needs only
a simulated sample of size n regardless of the number of dimensions. This approach
slightly reduces the efficiency of using steady-state simulation. In conclusion, SSGS
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performs at least as well as standard Gibbs sampling and SSGS offers greater accu-
racy. Thus, we recommend using SSGS whenever a Gibbs sampling procedure is
needed. Further investigation is needed to explore additional applications and more
options for using the SSGS approach.
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