
Chapter 2
Distributed Computing

Abstract Distributed computing studies the theory and methods to solve compu-
tational problems in distributed systems. There are many interesting and important
problems that can be solved efficiently in distributed systems, such as data gather-
ing in wireless sensor networks, computing graph properties, and leader election in
a distributed system. In this chapter, we introduce the elementary concepts about
distributed computing and some of the important components of distributed comput-
ing. In Sect. 2.1, we introduce the concept of distributed computing and present an
example to illustrate it. Then, we present the communication models that are com-
monly utilized in Sect. 2.2, show the incompleteness of information in Sect. 2.3, and
discuss the aspect of timing which plays an important role in distributed computing
in Sect. 2.4.

2.1 What is Distributed Computing?

Distributed computing studies how to solve computational problems in distributed
systems or environments. Generally speaking, an entity in a distributed system can
compute its tasks completely locally against its “individual” goals. An analogywould
be that each individual has his own will and sentiments about certain public events.
However, these entities can also cooperate to solve global computational problems
which are tough or impossible for a single entity to handle, even though they may
not know the others’ information. For example, all individuals can contribute their
strength in crowdsourcing to provide some common needed services or to achieve
some common goal [1, 2, 6].

We use a simple example of wireless sensor networks to explain distributed com-
puting. As illustrated in Fig. 2.1, 9 sensors are deployed in the environment to detect
the temperature. The goal is to find out the highest temperature in the area at the
base station through the sensors. As shown in the figure, the sensors form a wireless
network where any two sensors are supposed to be connected if they are within each
other’s range of communication. Each sensor node can detect the temperature locally
and then share this local data by communicating with nearby neighboring sensors.
The 9 sensors can sense different temperature data and after receiving the others’ data

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_2

15



16 2 Distributed Computing

Fig. 2.1 An example of computing the maximum temperature in a wireless sensor network

Fig. 2.2 An example of update dating when we are to compute the maximum temperature through
the wireless sensor network

(the temperature data), each sensor can compute which temperature is the highest
among all neighbors and then update the data.

In Fig. 2.2, sensor 4 will update the local highest temperature data to 42 since
it can collect four values {19, 31, 38, 42}. Similarly, sensor 5 will update the local
temperature to 39 and sensor 9 to 41. However, having updated its data, a sensor
would communicate its updated data with the neighbors again. For example, when
sensor 4 has updated its max value to 42, it will also send the data to sensor 5, which
would also update the local highest temperature data to 42. After sensor 5 has updated
to 42, it will then send the information to sensor 9 which will finally send the data
to the base station. In this fashion, all sensors can cooperate to compute the highest
temperature and inform the base station.

Distributed computing is quite different from centralized computing where all
entities know the global information ahead of time. Considering the above example,
if all nodes know the others’ temperature data in advance, they (including sensor 9)



2.1 What is Distributed Computing? 17

can easily find out the global highest temperature. In distributed computing, although
each entity focuses on its private computation tasks, through reasonable communi-
cation (data transmission), the private computations of the entities can be combined
to realize a global computational task, which should produce the same result as
centralized computing, but with the extra cost of longer elapsed time.

Distributed computing has the following three traits. The first one is the commu-
nication model, which dictates how data are to be transferred between two entities;
the second one is the incompleteness of information, which reveals to what extent an
entity can know about thewhole system; the third one is synchrony and timing, which
indicates when the entity starts its computation and how the computation should be
paced.

2.2 Communication Model

In a distributed system, two connected entities can exchange and share their infor-
mation. There are two commonly used communication models:

(1) Message passing model (MPM): an entity can send data to its neighbors through
the connecting edges;

(2) sharedmemorymodel (SMM): the entities can use somekindof commonmemory
to perform data transmission.

In the message passing model, the communications between two entities are
explicit. When one entity wants to share information, it can transmit the data through
the edges connecting the neighboring entities. A large number of message passing
models have been proposed in the past; here, we describe two of them.

One type of message passing model is called point-to-point communication,
which allows direct information transmission between a specific pair of entities. For
example, in Fig. 2.3, the edges with both start and end arrows represent bidi-
rectional communication connections (or channels) between two entities, where
bidirectional communication means one node (entity) can both send and receive
information to/from the other node of the edge. In the figure, nodes a and b can both
share informationwith the other (the red rectangle represents themessage). However,
some systems may use just unidirectional communication connections, i.e. one node
can only send or receive from the other node. We use an edge with only one arrow
in the figure to represent a unidirectional connection. As shown in the figure, node c
has a directed edge to node a, which means node c can send its message to node a,
but node a cannot share its information with node c. Edges from node d to c, node e
to node d, node e to node g, and node h to node f are likewise unidirectional edges.

From the figure, node a can get node b’s and node c’s data through the edges, but
it cannot receive both pieces of data at the same time. Point-to-point communication
means that the data transmission process happens between a pair of neighbors, but one
node cannot receive data frommultiple senders simultaneously. Through continuous
communication, node b can also receive node c’s information through node a, but



18 2 Distributed Computing

Fig. 2.3 An example of message passing model

Fig. 2.4 An illustration of message passing model with external ports for connection

it takes longer time and we say the information is delayed. However, node c cannot
get node b’s information through the depicted topology.

Another type of message passing model is called broadcast, where one node
can send its information to all the neighbors simultaneously. Its main difference
from the point-to-point communication model, where a message can be only sent
to one receiver at a time, is that it allows multiple recipients at the same time. For
example, in Fig. 2.3, node d can broadcast its message and nodes b, c, g can receive
this message simultaneously. This broadcast model hasmany important applications,
such as flooding in network construction [4, 5], and fast message propagation [7].

The first type of communication model is widely adopted since it reveals the con-
nection patterns directly. However, there is a more refined model of communication,
as shown in Fig. 2.4. The edges in the graph (Fig. 2.4) represent direct connections
between two nodes, which alsomeans the two nodes are relatively close to each other;
but they still need to rely on a connection channel for communication. Suppose each
node has a number of ports, i.e. external connection points, and every communica-
tion channel connects two ports of two connected nodes. When node a tries to send
a message to node b, it should load the data onto an appropriate port, such as port
1; when the message arrives at node b, it will be stored in b’s local buffer. However,



2.2 Communication Model 19

if node b does not choose port 1 or the connection channel between the two ports
cannot be established, node b cannot receive the message. This book focuses on the
rendezvous problem in distributed systems, which is the process of establishing a
common communication link (connection) between two connected external ports of
the communicating entities.

2.3 Information Incompleteness

In executing computational tasks in a networked system, centralization helps solve
the problems from a global view where each node in the system has full knowledge
of all relevant information about the tasks. Therefore, each node will achieve the
same result with the full knowledge (we do not consider randomized algorithms
here, which may lead to different results even with same input). The completeness of
information is equivalent to a full input to any problem in such a centralized setting.

However, centralized setting is hard to implement is real distributed systems. For
example, there are more and more mobile phones becoming active nowadays, and
it is costly to construct a static network and inform all users about the new phones’
information and the constructed topology. In distributed systems, every entity needs
to cope with the fact that only partial information of the system is available. This
is equivalent to the situation where only partial input to a problem is available,
and the user has to execute its task with its stored or information obtainable from
the surrounding. Moreover, each entity may not even be aware of who the other
participating entities are, where the computation begins, and which stage of the
computation the others are currently at. These uncertainties lead to difficulties in
coordinating the joint computation of the entities of a common task.

In some practical applications or computational tasks, the entity of a distributed
system may not need to have the full knowledge about the system. For example, if
each entity should compute the number of connected neighbors dynamically (since
some entities may join in or leave the system at any time), it only needs to find out
the active entities within its communication range. Actually, full system information
does not help perform such a task. Therefore, the entity may not need to know all
the outsiders’ information, and collectively the entities can also work well with only
local information in solving many computational problems.

There are a variety of models that govern concern the topological knowledge.
One typical model is known as anonymous system, where all entities (or nodes) are
indistinguishable and they have no identification labels. Moreover, each node knows
nothing about the topology of the network. This model is at the extreme end of the
spectrum, which makes distributed computing difficult. For example, it is hard for
a node to find out whether it has sent a message to all neighbors in a point-to-point
communication model, since it cannot tell whether two “different” end-points are
the same node. A more realistic model assumes that each node is assigned an unique
identifer and the node knows the identities of its neighbors. For example, a computer
or a mobile phone has a unique MAC address, which can be discovered by others.



20 2 Distributed Computing

Some models assume a node know even more about the system. For example, each
node may know the k-hop network topology, which means it is able to find out the
nodes that are reachable within k hops. This subnetwork information can help solve
some problems to a certain extent. When k becomes larger, more information can be
obtained by each node. The most powerful model assumes each node can have the
complete topological knowledge of the system, which degenerates to the centralized
setting; centralized setting is impractical and hard to implement.

2.4 Timing and Synchrony

In distributed computing, timing is a subtle concept that deals with when the entities
may execute their tasks or computational steps [3]. In our normal living, we have a
global clock that tells the time and all the entire world agrees to the same rules for
defining time. However, in a distributed system, timing is hard to coordinate and a
global clock is hard to implement if it is to to be used by all distributed entities.

We mention two models that have to do with timing: synchronous model and
asynchronous model.

In the synchronousmodel, all entities in the distributed system share a global clock,
which indicates the exact times of the events in the system. Time can be considered
as divided into slots of equal length (the analogy is that we use “second” as the
elementary unit in physical clocks), and each entity should execute the following
three steps in each slot:

(1) Receive messages from (some of) the neighbors;
(2) execute local computation based on its local status and the received messages;
(3) send messages to (some of) the neighbors.

The time cost of local computation on each entity is assumed to negligible com-
pared to the message transmissions. Therefore, in the model, an entity only needs
to wait for its message and then send out a computed message. This model satisfies
an important property: if entity a sends a message to entity b in slot t , the message
must be received by entity b before or in slot t + 1. Thus, all entities’ activities can
be regarded as driven by a global clock.

However, in the asynchronous model, messages are not guaranteed to be trans-
mitted to the other entity timely. All entities do not access the global clock and they
have to decide on their own actions. Generally speaking, messages sent from one
entity to another will arrive within some finite but unpredictable time. Therefore,
one cannot rely on the elapsed time to deduce whether a message was sent from a
neighbor or not. Thus, the algorithms for this model are always event driven, i.e. the
entity will execute its local computations when a message is received, or when some
local memory has changed. Therefore, the execution steps are as follows:



2.4 Timing and Synchrony 21

Fig. 2.5 An example of distributed computing upon received messages

(1) Wait for an event, where the event could be receiving messages from (some of)
the neighbors, or the local memory has changed;

(2) execute local computations based on its localmemory and the receivedmessages;
(3) trigger an event, such as sending messages to (some of) the neighbors, or change

the local memory.

Clearly, the entities’ computations could be affected by the messages’ arrival
times. However, it is impossible to rely on the ordering of the arrived messages for
executing local computations.

For example, in Fig. 2.5, node a and node b are connected to node c. The tasks
for node a and node b are to send its local value to node c, and then terminate.
Meanwhile, the task of node c is to add the received values and update its local
value; and then, it will terminate. In the asynchronous model, the messages could be
delayed by different reasons. Suppose node a sends the value to node c earlier than
node b, if the messages can arrive at node c timely and sequentially, node c will get
node a’s value and update its local value to 3+4 = 7. However, in the asynchronous
system, node b’s message may arrive earlier at node c and it will update the value to
5+ 4 = 9, which leads to different results.

Therefore, timing plays an important role in distributed computing. Some asyn-
chronousmodels assume the entities start the algorithm in different time slots, but the
messages are guaranteed to be received in the next time slot. Therefore, in the above
figure, if one node sends its local value earlier than the other, for example, node a
sends the data Δ > 0 time slots earlier than node b, node c will update the value to
3 + 4 = 7 timely, and then terminate. In this book, we design efficient distributed
algorithms for both synchronous and asynchronous scenarios; we use exactly this
type of asynchronous model which we will introduce later.



22 2 Distributed Computing

References

1. Doan, A., Ramakrishnan, R., &Halevy, A. Y. (2011). Crowdsourcing systems on the world-wide
web. Communications of the ACM 54(4).

2. Huberman, B. A., Romero, D. M. & Wu, F. (2009). Crowdsoucring, attention and productivity.
Journal of Information Science, 35(6).

3. Lamport, L.(1978). Time, clocks, and the ordering of events in a distributed system. Operating
System.

4. Lim, H. & Kim, C. (2001). Flooding in wireless ad hoc networks. Computer Networks, 24(3–4).
5. Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2001). A distributed and efficient flooding

scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems, 18(5).

6. Morschheuser, B., Hamari, J., Koivisto, J. (2016). Gamification in crowdsourcing: A Review.
In 49th Annual Hawaii International Conference on System Sciences (HICSS)

7. Ye, S., Wu, S. F. (2010). Measuring message propagation and social influence on twitter. In
International Conference on Social Informatics, Springer, Berlin



http://www.springer.com/978-981-10-3679-8


	2 Distributed Computing
	2.1 What is Distributed Computing?
	2.2 Communication Model
	2.3 Information Incompleteness
	2.4 Timing and Synchrony
	References


