
Chapter 2
Understanding-Oriented Unsupervised
Feature Selection

Abstract In many image processing and pattern recognition problems, visual con-
tents of images are currently described by high-dimensional features, which are often
redundant and noisy. Toward this end, we propose two novel understanding-oriented
unsupervised feature selection schemes. For exploring discriminative information,
nonnegative spectral analysis is proposed to learn more accurate cluster labels of the
input images. For feature selection, the hidden structure shared by different features
and the redundancy among different features are explored, respectively. Row-wise
sparse models with the �2,p-norm (0 < p ≤ 1) are leveraged to make the proposed
models suitable for feature selection and robust to noise.

2.1 Introduction

In many image processing and multimedia problems, images are usually represented
by high-dimensional visual features, such as local features (such as SIFT [28]). In
practice, it is well known that all features that characterize images are not usually
equal important for a given task and most of them are often correlated or redundant
to each other, and sometimes noisy [13]. Besides, it is hard to discriminate images
of different classes from each other in the high-dimensional space of visual features.
That is, these high-dimensional featuresmay bring some disadvantages, such as over-
fitting, low efficiency, and poor performance, to the traditional learning models [42].
As a consequence, it is necessary and challenging to select an optimal feature subset
from high-dimensional image to remove irrelevant and redundant features, increase
learning accuracy, and improve the performance comprehensibility.

The task of selecting the “best” feature subset is known as feature selection,
which is an important and widely used method. The importance of feature selection
in improving both the efficiency and accuracy of image processing is three-hold.
First, it can result in computationally efficient algorithms since the dimensional-
ity of selected feature subset is much lower. Second, it enables to provide a better
understanding of the underlying structure of the data. Finally, it can improve the
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performance by removing noisy and redundant features. Therefore, many feature
selection methods have been proposed and studied [5, 17, 19, 21, 27, 33, 34, 39,
47]. These algorithms can be categorized as supervised algorithms, semi-supervised
algorithms and unsupervised algorithms, according to theway of utilizing label infor-
mation. Since the discriminative information is encoded in the labels, supervised
and semi-supervised approaches can generally achieve good performance. However,
the labels of data annotated by human experts are typically expensive and time-
consuming and there is usually no shortage of unlabeled data in many real-world
applications. Consequently, it is quite promising and demanding to develop unsu-
pervised feature selection techniques, which may be more practical.

In unsupervised feature selection, features are selected based on a frequently used
criterion which evaluates features by their capability of keeping certain properties of
the data, such as the data distribution, the redundancy of features, or local structure.
The whole features contain necessary features (which are essential for the task),
redundant features (which are useful but dependent on each other. Thus, not all of
the redundant features are not necessary.), noisy features (which degrade the per-
formance), and indifferent features (which do not matter for the task). The goal of
feature selection is to select necessary features, discard noisy or indifferent features,
and control the use of redundant features. The previous methods do not jointly con-
sider these four features. Besides, they fail to exploit discriminative information from
data. On the other hand, due to the absence of labels that would guide the search
for discriminative features, unsupervised feature selection is considered as a much
harder problem [14], which evaluates feature relevance by their capability of keeping
certain properties of the data.

In light of all these factors, we propose a novel understanding-oriented unsuper-
vised feature selection framework to explore discriminative information from data
and the latent structural analysis, select necessary features, discard noisy or indif-
ferent features and control the use of redundant features simultaneously. Due to the
importance of discriminative information, it is necessary and beneficial to exploit
discriminative information in unsupervised feature selection. As a consequence,
we propose a novel nonnegative spectral analysis scheme to uncover discrimina-
tive information by learning more accurate cluster indicators. With nonnegative and
orthogonality constraints, the learned cluster indicators are much closer to the ideal
ones and can be readily utilized to obtain more accurate cluster labels, which can
be utilized to guide feature selection. The joint learning of the cluster labels and
feature selection matrix enables to select the most discriminative features. For the
sake of feature selection, the predictive matrix is constrained to be sparse in rows,
which is formulated as a general �2,p-norm (0 < p ≤ 1) minimization term. Fur-
thermore, on one hand, the features are correlated as they jointly reflect the semantic
components. It is reasonable to assume that the features share a common struc-
ture in a low-dimensional space. The cluster indicators are predicted by the original
features together with the features in the low-dimensional subspace. The latent struc-
tural analysis can uncover the feature correlations to make the results more reliable.
On the other hand, the redundancy between features is explicitly exploited to con-
trol the redundancy of the selected features. The proposed problems are formulated
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as optimization problems with well-defined objective functions. To solve the pro-
posed problems, simple yet efficient iterative algorithms are proposed. Extensive
experiments are conducted on face data, handwritten digit data, document data, and
biomedical data. The experimental results show that comparedwith several represen-
tative algorithms, the proposed approaches achieve encouraging performance. Most
of the work in this chapter has been published in [25, 26].

2.2 Related Work

According to the availability of label information, feature selection algorithms can be
classified into three broad categories: supervised, semi-supervised, and unsupervised
approaches.More details can be obtained in [19, 48]. In this section,wewill elaborate
unsupervised feature selection methods.

From the perspective of selection strategy, the unsupervised feature selection
approaches can be broadly categorized as the filter, wrapper, and embedded ones.
For filter methods [9, 17, 30, 47], a proxymeasure is utilized to score a feature subset
instead of the error rate. The simplest measure may be the variance score with the
assumption that larger variance means better representation ability. However, there is
no reason to assume that these features are useful for discriminating data in different
classes. Laplacian Score [17] selects features which can best reflect the underlying
manifold structure. However, the redundancy among features is not exploited, which
may result in redundant features and compromise the performance. Filters are usually
less computationally intensive than wrappers, but produce a feature set which is
not tuned to a specific type of predictive model. Wrapper methods [14, 42, 46]
score feature subsets using use a predictive model. They wrap feature search around
the learning algorithms and utilize the learned results to select features. Clustering
is a commonly utilized learning algorithm [5, 14, 46]. The clusterability of the
input data points is measured by analyzing the spectral properties of the affinity
matrix. MCFS [5] uses a two-step spectral regression approach to unsupervised
feature selection. Embedded methods [10, 23] perform feature selection as a part of
the model construction process, which fall in between filters and wrappers in terms
of computational complexity.

State-of-the-art algorithms exploit discriminative information and feature corre-
lation to select features [12, 27, 35, 38, 43]. Nonnegative Discriminative Feature
Selection (NDFS) [27] proposes nonnegative spectral clustering to guide feature
selection and selects features over the whole feature space. In [12], a global and a
set of locally linear regression model are integrated into a unified learning frame-
work. Qian et al. [35] extended NDFS to handle outliers or noise data. The graph
embedding and sparse spectral regression are improved in [38]. However, the above
methods do not explicitly control the redundancy between features, which may lead
to redundancy existing in the selected features.

Some methods have been designed to consider the dependency between
features. In [45], the redundancy between selected features is removed using a
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correlation-based filter. Peng et al. [34] proposed a mutual information-based two-
stage feature selection approach to choose features with least redundancy by mini-
mizing the mutual information among the selected features. A multilayer perceptron
neural network is designed for feature selectionwith consideration ameasure of linear
dependency to control the redundancy in [6]. However, they only focus on consid-
ering the dependency between features, and fail to select discriminative features. In
this work, we select features by considering the dependency between features and
the discriminant information simultaneously. The most discriminant features with
controlled redundancy are selected.

Different frompreviouswork, the proposed framework exploits nonnegative spec-
tral analysis, the underlying structure analysis and explicitly controls the redundancy
between features in a joint framework for unsupervised feature learning. One general
sparse model with �2,p-norm (0 < p ≤ 1) is adopted to learn a better sparsity matrix.

2.3 Clustering-Guided Sparse Structural Learning
for Unsupervised Feature Selection

Assume that we have n samples X = {xi }ni=1. Let X = [x1, . . . , xn] denote the data
matrix, in which xi ∈ Rd is the feature descriptor of the i th sample. Suppose these n
samples are sampled from c classes. Denote Y = [y1, . . . , yn]T ∈ {0, 1}n×c, where
yi ∈ {0, 1}c×1 is the cluster indicator vector for xi . That is, Yi j = 1 if the sample xi
is assigned to the j th cluster, and Yi j = 0 otherwise. The scaled cluster indicator
matrix F is defined:

F = [f1, f2, . . . , fc] = Y(YTY)−
1
2 , (2.1)

It turns out that
FTF = (YTY)−

1
2YTY(YTY)−

1
2 = Ic, (2.2)

where Ic ∈ Rc×c is an identity matrix.
To select the discriminative features for unsupervised learning, we propose a

Clustering-Guided Sparse Structural Learning (CGSSL) method to jointly exploit
the cluster analysis and sparse structural analysis simultaneously. Clustering tech-
niques are adopted to learn the cluster indicators (which can be regarded as pseudo
class labels), which are used to guide the process of structural learning. Meanwhile,
the pseudo class labels are also predicted by the structural learning with predic-
tive functions, which correlate the samples and the pseudo class labels. To conduct
effective feature selection, we impose the sparse feature selection models on the
regularization term. Therefore, CGSSL is formulated as

min
F,h

J (F) +
c∑

i=1

⎛

⎝α

n∑

j=1

l(hi (x j ), fi ) + Ω(hi )

⎞

⎠

s.t. F = Y(YTY)−
1
2 , (2.3)
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where J (F) is a clustering criterion, l(·, ·) is the loss function, hi (·) is a predictive
function for the i th cluster, and Ω(·) is a regularization function with sparsity. α is
a trade-off parameter.

2.3.1 Nonnegative Spectral Clustering

In cluster analysis, graph-theoretic methods have been well studied and utilized
in many applications. As one of graph-theoretic methods, spectral clustering has
been verified to be effective to detect the cluster structure of data and has received
significant research attention. Therefore, we adopt spectral clustering as the cluster
analysis technique.

Clearly, an effective cluster indicator matrix is more capable to reflect the dis-
criminative information of the input data. The local geometric structure of data plays
an important role in data clustering, which has been exploited by many spectral
clustering algorithms [32, 37, 40]. Note that there are many different algorithms to
uncover local data structure. In this work, we use the strategy proposed in [37] to
be the criterion for its simplicity. The local geometric structure can be effectively
modeled by a nearest neighbor graph on a scatter of data points. To construct the
affinity graph S, we define

Si j =
{
exp

(
−‖xi−x j‖2

σ 2

)
xi ∈ Nk(x j ) or x j ∈ Nk(xi )

0 otherwise,
None

where Nk(x) is the set of k-nearest neighbors of x. The local geometrical structure
can be exploited by

min
F

1

2

n∑

i, j=1

Si j‖ fi√
Eii

− f j√
E j j

‖22 = Tr[FTLF], (2.5)

where E is a diagonal matrix with Eii = ∑n
j=1 Si j and L = E−1/2(E − S)E−1/2 is

the normalized graph Laplacian matrix. Therefore J (F) is defined as

J (F) = Tr[FTLF]. (2.6)

According to the definition of F, its elements are constrained to be discrete values,
making the problem (2.3) anNP-hard problem [37]. Awell-known solution is to relax
it from discrete values to continuous ones while keeping the property of Eq. (2.2)
[37], i.e., the objective function (2.3) is relaxed to

min
F,h

Tr[FTLF] +
c∑

i=1

⎛

⎝α

n∑

j=1

l(hi (x j ), fi ) + Ω(hi )

⎞

⎠

s.t. FTF = Ic. (2.7)
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Note that according to the definition of the cluster indicatormatrixF, each element
Fi j indicates the relationship between the i th sample and the j th cluster, which is
nonnegative by nature. Unfortunately, the optimal F of the problem (2.7) has mixed
signs, which violates its definition. Moreover, the mixed signs make it difficult to get
the cluster labels. Discrete process, such as spectral rotation or Kmeans, is performed
in previous works to obtain the cluster labels. However, our work is a one-step model
and contains no discrete process, which makes the learned F severely deviate from
the ideal cluster indicators. To address this problem, it is natural and reasonable
to impose nonnegative constraints on F. When both nonnegative and orthogonal
constraints are satisfied, only one element in each row of F is greater than zero and
all of the others are zeros, which makes the results more appropriate for clustering.
Note that if there exists one row with at least two positive elements, F cannot satisfy
the orthogonality constraint because it results in positive nondiagonal elements in
FTF. Let us assume that there are m (m ≥ 2) positive elements in the i th row of F:
{Fik1, . . . , Fikm }. When j and l are within {k1, . . . , km}, and j �= l, we obtain:

(FTF) jl =
n∑

q=1

Fqj Fql ≥ Fi j Fil > 0, (2.8)

which conflicts the orthogonality condition.Because of this characteristic, the learned
F is more accurate, and more capable to provide discriminative information. There-
fore, we rewrite (2.7) as

min
F,h

Tr[FTLF] +
c∑

i=1

⎛

⎝α

n∑

j=1

l(hi (x j ), fi ) + Ω(hi )

⎞

⎠

s.t. FTF = Ic, F ≥ 0. (2.9)

It is worth noting that we adopt L defined in (2.5) for simplicity while other sophis-
ticated Laplacian matrices can be used as well.

2.3.2 Sparse Structural Analysis

In CGSSL, the features which are most discriminative to the pseudo class labels are
selected. To this end, we adopt a linear model to predict the pseudo labels. Since the
features are correlated to jointly reflect the semantic components that can represent
some semantic meaning, we propose to exploit feature combinations as well as the
original features for the pseudo label prediction. Motivated by [4, 20], the semantic
components are uncovered by a shared structure learning model, which enables to
learn a more discriminative predictors to make the learned results more reliable. For
simplicity, we assume that the shared structure is a hidden low-dimensional subspace
in this work. Therefore, the original data features together with the features in the
low-dimensional subspace are both used to predict the pseudo labels of samples:
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hi (xj) = vTi x j + pT
i Q

T x j , (2.10)

where vi ∈ Rd and pi ∈ Rr are the weight vectors, and Q ∈ Rd×r is the lin-
ear transformation to parameterize the shared r -dimensional subspace. To make
the problem tractable, the orthogonal constraint QTQ = Ir is imposed. Denote
V = [v1, . . . , vc] ∈ Rd×c and P = [p1, . . . ,pc] ∈ Rr×c. Thus, we have

c∑

i=1

⎛

⎝
n∑

j=1

l(hi (x j ), fi ) + Ω(hi )

⎞

⎠

= l((V + QP)TX,F) + Ω(V,P). (2.11)

By definingW = V + QP and combining (2.9) and (2.11), our formulation becomes

min
V,W,Q,F

Tr[FTLF] + αl(WTX,F) + Ω(V,W)

s.t. FTF = Ic, F ≥ 0; QTQ = Ir . (2.12)

To solve the optimization problem in (2.12), we first decide which loss function
is chosen for l(·, ·) and which regularization functions used for Ω . In this work, we
utilize the least square loss l(x, y) = (x − y)2 for simplicity. For V, the quadratic
regularization is used, that is, ‖V‖2F = ‖W − QP‖2F . To achieve feature selection
across all samples, �2,1-norm regularization is adopted forW to guarantee thatW is
sparse in rows. So we have

min
P,W,Q,F

O = Tr[FTLF] + α‖F − XTW‖2F + β‖W‖2,1 + γ ‖W − QP‖2F
s.t. FTF =Ic, F ≥ 0; QTQ = Ir . (2.13)

β and γ are two regularization parameters. The joint minimization of the regres-
sion model and �2,1-norm regularization term enables W to evaluate the correlation
between pseudo labels and features, making it particularly suitable for feature selec-
tion. More specifically, wi , the i th row of W, shrinks to zero if the i th feature is
less discriminative to the pseudo labels F. Once W is learned, we can select the
top p ranked features by sorting all d features according to ‖wi‖2 (i = 1, . . . , d) in
descending order. Therefore, the features corresponding to zero rows of W will be
discarded when performing feature selection.

2.3.3 Optimization

The optimization problem (2.13) involves the �2,1-normwhich is nonsmooth and can-
not have a closed form solution. Consequently, we propose an iterative optimization
algorithm.
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We can see that the optimal P in the optimization problem (2.13) can be expressed
in terms of W and Q. By setting the derivative ∂O/∂P = 0, we obtain

2γ (QTQP − QTW) = 0 ⇒ P = QTW. (2.14)

Because we have the property that QTQ = Ir .
Now, by substituting P in O with Eq. (2.14), the objective function O is written

as follows:

O = Tr[FTLF] + α‖F − XTW‖2F + β‖W‖2,1
+ γTr[(W − QQTW)T (W − QQTW)]

= Tr[FTLF] + α‖F − XTW‖2F + β‖W‖2,1
+ γTr[WT (Id − QQT )(Id − QQT )W] (2.15)

Since (Id − QQT )(Id − QQT ) = Id − QQT , by setting the derivative ∂O/∂W = 0,
we get

αX(XTW − F) + βDW + γ (Id − QQT )W = 0

⇔ (αXXT + βD + γ (Id − QQT ))W = αXF

⇔ W = α(G − γQQT ))−1XF

⇔ W = αH−1XF (2.16)

Here D is a diagonal matrix with Dii = 1
2‖wi‖2 .

1 G = αXXT + βD + γ Id and H =
G − γQQT .

Owing to ‖A‖2F = Tr(ATA) for any arbitrary matrix A, we can rewrite Eq. (2.15)
as follows:

O = Tr[FTLF] + αTr[(XTW − F)T (XTW − F)]
+ β‖W‖2,1 + γTr[WT (Id − QQT )W]

= Tr[WT (αXXT + βD + γ Id − γQQT )W]
− 2αTr[WTXF] + αTr[FTF] + Tr[FTLF]

= Tr[WT (HW − 2αXF)] + Tr[FT (αIn + L)F] (2.17)

By substituting the expression forW in Eq. (2.16) into Eq. (2.17), sinceH = HT , we
obtain the following equation:

1In practice, ‖wi‖2 could be close to zero but not zero. Theoretically, it could be zeros. For this
case, we can regularize Dii = 1

2
√

(wT
i wi+ε)

, where ε is very small constant. When ε → 0, we can

see that 1

2
√

(wT
i wi+ε)

approximates 1

2
√
wT
i wi

.
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O = Tr[α2FTXT (H−1HH−1 − 2H−1)XF] + Tr[FT (αIn + L)F]
= Tr[FT (αIn + L)F] − α2Tr[FTXTH−1XF] (2.18)

By substitutingEq. (2.18) into the problem (2.13),wehave the followingoptimization
problem w.r.t. Q:

max
QTQ=Ir

Tr[FTXTH−1XF] (2.19)

To compute the matrix inverse, using the Sherman–Morrison–Woodbury formula
[18]: (A + UCV)−1 = A−1 − A−1U

(
C−1 + VA−1U

)−1
VA−1, we have

H−1 = (G − γQQT )−1

= G−1 + γG−1Q(Ir − γQTG−1Q)−1QTG−1. (2.20)

Thus, by using the property that Tr[AB] = Tr[BA] for any arbitrary matrices A and
B, the optimization problem (2.19) is equivalent to

max Tr[FTXTG−1Q(Ir − γQTG−1Q)−1QTG−1XF]
⇔max Tr[(Ir − γQTG−1Q)−1QTG−1XFFTXTG−1Q]
⇔ max Tr[(QT (Id − γG−1)Q)−1QTTQ]
⇔ max Tr[QTN−1TQ]

s.t. QTQ = Ir , (2.21)

where T = G−1XFFTXTG−1 and N = Id − γG−1. Note that N is positive definite
[20], thus Q can be easily obtained by the eigen-decomposition of N−1T.

Substituting the expression for O in Eq. (2.18) into Eq. (2.13), we obtain the
following optimization problem w.s.t. F.

min
F

Tr[FT (L + αIn − α2XTH−1X)F]
s.t. FTF = Ic; F ≥ 0 (2.22)

Then we relax the orthogonal constraint and rewrite the above optimization problem
as follows:

min
F≥0

Tr[FTMF] + λ

2
‖FTF − Ic‖2F . (2.23)

Here M = L + αIn − α2XTH−1X and λ > 0 is a parameter to control the orthog-
onality condition. In practice, λ should be large enough to insure the orthogonality
satisfied. Let φi j be the Lagrange multiplier for constraint Fi j ≥ 0 and Φ = [φi j ].
Since ‖A‖2F = Tr(ATA), the Lagrange function is
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Algorithm 1 CGSSL for Feature Selection
Input:

Data matrix X ∈ Rd×n ; Parameters α, β, γ , λ, k, c, r and p
1: Construct the k-nearest neighbor graph and calculate L;
2: The iteration step t = 0; Initialize F0 ∈ Rn×c and set D0 ∈ Rd×d as an identity matrix;
3: repeat
4: Gt = αXXT + βDt + γ Id ;
5: Nt = Id − γG−1

t ;
6: Tt = G−1

t XFtFT
t X

TG−1
t ;

7: Obtain Qt+1 by the eigen-decomposition of N−1
t Tt ;

8: Ht = Gt − γQt+1QT
t+1;

9: Mt = L + αIn − α2XTH−1
t X;

10: (Ft+1)i j = (Ft )i j
(λFt )i j

(MtFt+λFtFt T Ft )i j
;

11: Wt+1 = H−1
t XFt+1;

12: Update the diagonal matrix D as

Dt+1 =
⎡

⎢⎣

1
2‖(wt+1)1‖2 · · ·

1
2‖(wt+1)d‖2

⎤

⎥⎦;

13: t=t+1;
14: until Convergence criterion satisfied
Output:

Sort all d features according to ‖(wt )i‖2 in descending order and select the top p ranked features.

Tr[FTMF] + λ

2
Tr[(FTF − Ic)T (FTF − Ic)] + Tr[ΦFT ]. (2.24)

Setting its derivative with respect to F to 0, we have

2MF + 2λF(FTF − Ic) + Φ = 0. (2.25)

Using the Karush–Kuhn–Tuckre (KKT) condition [22] φi j Fi j = 0, we obtain the
updating rules:

2[MF + λF(FTF − Ic)]i j Fi j + Φi j Fi j = 0

⇒ Fi j ← Fi j
(λF)i j

(MF + λFFTF)i j
. (2.26)

Then we normalize F with (FTF)i i = 1, i = 1, . . . , c.
From the above analysis, we can see that D related to W is required to solve Q

and F and it is still not straightforward to obtainW,Q, and F. To this end, we design
an iterative algorithm to solve the proposed formulation, which is summarized in
Algorithm 1.

Now, we briefly analyze the computational complexity. In our case, c 
 n, c 
 d
and r < d. The complexity of calculating the inverse of a few matrices is O(d3)

and the eigen-decomposition of N−1T also needs O(d3) in complexity. In each
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iteration step, the cost for updating Q is O(d3 + nd2). It takes O(d3 + nd2 + dn2)
to update F and O(d3) to update W, respectively. Thus the overall cost for CGSSL
is O(t (d3 + nd2 + dn2)), where t is the number of iterations.

2.3.4 Convergence Analysis

The proposed iterative procedure in Algorithm 1 can be verified to converge to the
optimal solutions by the following theorem.

Theorem 2.1 The alternative updating rules in Algorithm 1monotonically decrease
the objective function value of (2.13) in each iteration.

Proof For convenience, let us denote

L (Q,F,W) = Tr[FTLF] + α‖F − XTW‖2F + β‖W‖2,1
+ γ ‖W − QQTW‖2F + λ

2
‖FTF − Ic‖2F (2.27)

From the above analysis, the problem (2.13) can be relaxed into the following prob-
lem:

min
QTQ = Ir ,F≥0,W

L (Q,F,W) (2.28)

With Ft and Wt fixed, we can see that

Qt+1 = arg max
QTQ=Ir

Tr[QTN−1
t TtQ]

⇒ Tr[QT
t+1N

−1
t TtQt+1] ≥ Tr[QT

t N
−1
t TtQt ]. (2.29)

Thus we obtain

L (Qt+1,Ft ,Wt ) ≤ L (Qt ,Ft ,Wt ). (2.30)

WithWt andQt+1 fixed, by introducing an auxiliary function ofL (Qt+1,Ft ,W)

as in [24], it is easy to prove

L (Qt+1,Ft+1,Wt ) ≤ L (Qt+1,Ft ,Wt ). (2.31)

It can easily verified that Eq. (2.16) is the solution to the following problem with
Qt+1 and Ft+1 fixed.

min
W

α‖XTW − Ft+1‖2F + βTr[WTDtW]
+ γ ‖W − Qt+1QT

t+1W‖2F (2.32)
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For the ease of representation, let us define g(W) = α‖XTW − Ft+1‖2F + γ ‖W −
Qt+1Pt+1‖2F . Accordingly, in the t th iteration, we have

Wt+1 = argmin
W

g(W) + βTr[WTDtW]
⇒ g(Wt+1) + βTr[WT

t+1DtWt+1] ≤ g(Wt) + βTr[WT
t DtWt ]

⇒ g(Wt+1) + β
∑

i

‖(wt+1)i‖22
2‖(wt )i‖2 ≤ g(Wt) + β

∑

i

‖(wt )i‖22
2‖(wt )i‖2

⇒ g(Wt+1) + β‖Wt+1‖2,1 − β(‖Wt+1‖2,1 −
∑

i

‖(wt+1)i‖22
2‖(wt )i‖2 )

≤ g(Wt ) + β‖Wt‖2,1 − β(‖Wt‖2,1 −
∑

i

‖(wt )i‖22
2‖(wt )i‖2 ). (2.33)

According to the Lemmas in [33], ‖Wt+1‖2,1 − ∑
i

‖(wt+1)i‖22
2‖(wt )i‖2 ≤ ‖Wt‖2,1 − ∑

i
‖(wt )i‖22
2‖(wt )i‖2 . Thus,

g(Wt+1) + β‖Wt+1‖2,1 ≤ g(Wt ) + β‖Wt‖2,1. (2.34)

Therefore, we arrive at

L (Qt+1,Ft+1,Wt+1) ≤ L (Qt+1,Ft+1,Wt ). (2.35)

Based on Eqs. (2.30), (2.31) and (2.35), we obtain

L (Qt+1,Ft+1,Wt+1) ≤ L (Qt+1,Ft+1,Wt )

≤ L (Qt+1,Ft ,Wt ) ≤ L (Qt ,Ft ,Wt ). (2.36)

Thus, the objective function monotonically decreases using the updating rules in
Algorithm 1 and Theorem2.1 is proved.

According to Theorem 2.1, we can see that the iterative approach in Algorithm
1 converges to local optimal solutions. The proposed optimization algorithm is effi-
cient. In the experiment, we observe that our algorithm usually converges around
only 20 iterations.

2.3.5 Discussions

In this section, we discuss the relationships between the proposedmethod and several
algorithms, including SPFS [48], MCFS [5], UDFS [43], and NDFS [27].
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Connection with SPFS: SPFS [48] performs feature selection by preserving
sample similarity, which can handle feature redundancy. It is formulated as:

min
‖W‖2,1≤τ

n∑

i, j=1

(xTi WWT x j − Si j )
2. (2.37)

Here τ(τ > 0) is a hyper-parameter. The connection between SPFS and CGSSL is
discovered as follows.

Proposition 2.1 SPFS has the similar fashion with the proposed CGSSL when α →
+∞, γ = 0 and the orthogonal and nonnegative constraints are removed.

Proof Whenα → +∞, and the orthogonal andnonnegative constraints are removed,
we have F = XTW. Then, with γ = 0 CGSSL becomes

min
W

Tr[WTXLXTW] + β‖W‖2,1

=1

2

n∑

i, j=1

Si j‖xTi W − xTj W‖2 + β‖W‖2,1. (2.38)

Compared the problems (2.37) with (2.38), they both try to keep data similarity with
different criteria. That is, Proposition 2.1 is proved.

Connection with MCFS: MCFS [5] uses a two-step strategy to select features
according to spectral analysis and is formulated as the following form.

min
FTF=Ic

Tr[FTLF] (2.39)

min
wi

‖fi − XTwi‖ + β‖wi‖1 (2.40)

‖wi‖1 is the �1-norm of wi .

Proposition 2.2 MCFS and CGSSL have similar fashions with different regulariza-
tion forms on W, when γ = 0 and the nonnegative constraint is removed.

Proof When γ = 0 and the nonnegative constraint removed, the proposed formula-
tion becomes

min
W,FTF=Ic

Tr[FTLF] + α‖F − XTW‖ + β‖W‖2,1. (2.41)

If we set α → 0 and β → 0, the above problem leads to a two-step algorithm. That
is,
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min
FTF=Ic

Tr[FTLF] (2.42)

min
W

c∑

i=1

‖fi − XTwi‖ + β

α
‖wi‖2. (2.43)

We can see that the regularization function for wi is different. Thus, Proposition 2.2
is proved.

Different from MCFS, CGSSL is an one-step algorithm. Thus, CGSSL is more
general. Second, F is constrained to be nonnegative. When both nonnegative and
orthogonal constraints are satisfied, the learned F is much closer to the ideal result,
and the solution can be directly obtained without discretization. Finally, we perform
clustering and feature selection simultaneously, which explicitly enforces that F can
be linearly approximated by the selected features, making the results more accurate.

Connection with UDFS: UDFS [43] was proposed to select discriminative fea-
tures by optimizing the following objective function

min
WTW=Ic

Tr[WTXLXTW] + β‖W‖2,1. (2.44)

Proposition 2.3 UDFS and CGSSL have similar fashions when α → +∞, γ = 0
and the nonnegative constraint is removed.

Proof With α → +∞ and the nonnegative constraint removed, we have F = XTW.
Then when γ = 0, the proposed CGSSL formulation becomes

min
WTXXTW=Ic

Tr[WTXLXTW] + β‖W‖2,1. (2.45)

Therefore, UDFS and CGSSL have similar fashions with different orthogonal con-
straints.

In this extreme case, F is enforced to be linear, i.e., F = XTW. However, as
indicated in [37], it is likely that F is nonlinear in many applications. Hence, CGSSL
is superior to UDFS due to its flexibility of linearity. Additionally, F is constrained to
be nonnegative, making it more accurate than the one with mixed signs. Therefore,
CGSSL ismore capable to select discriminative features, verified by our experiments.

Connection with NDFS: NDFS [27] is our preliminary version, which does not
exploit the underlying structure. Its formulation is presented as follows

min
W,F

Tr[FTLF] + α‖XTW − F‖2F + β‖W‖2,1
s.t. FTF = I, F ≥ 0. (2.46)

By setting γ = 0, the problem (2.13) leads to the above problem. Thus we have the
following proposition.
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Proposition 2.4 NDFS is a special case of the proposed CGSSL algorithm, when
λ = 0.

2.3.6 Experiments

In this section, we evaluate the performance of the proposed formulation, which
can be applied to many applications, such as clustering and classification. Following
previous unsupervised feature selection work [5, 43], we only evaluate the perfor-
mance of CGSSL for feature selection and compared with representative algorithms
in terms of clustering. In our experiments, we first select the top p features and then
utilize Kmeans algorithm to cluster samples based on the selected features.

2.3.6.1 Data Sets

The experiments are conducted on 12 publicly available datasets, including three face
image data sets (i.e., UMIST [1], JAFFE [29], and Pointing4 [16]), three handwritten
digit image data sets [i.e., a subset of MNIST used in [44], Binary Alphabet (BA)
[1] and a subset of USPS with 40 samples randomly selected for each class [1]],
three text data sets (i.e., WebKB collected by the University of Texas [11], tr11
[2], and oh15 [2]), and three biomedical data sets (i.e., Tox-171 [3], Tumors9 [3],
and Leukemia1 [3]). Data sets from different areas serve as a good test bed for a
comprehensive evaluation. Table2.1 summarizes the details of these 12 data sets
used in experiments.

Table 2.1 Dataset description

Domain Dataset n d c

Face images UMIST 575 644 20

JAFFE 213 676 10

Poingting4 2790 1120 15

Handwritten digits images MNIST 5000 784 10

BA 1404 320 36

USPS 400 256 10

Text data WebKB 814 4029 7

tr11 414 6429 9

oh15 913 3100 10

Biomedical data TOX-171 171 5748 4

Tumors9 60 5726 9

Leukemia1 72 5327 3
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2.3.6.2 Compared Scheme

To validate the effectiveness of CGSSL for feature selection, we compare it with
one baseline and several unsupervised feature selection methods. The compared
algorithms are enumerated as follows:

1. Baseline: All original features are adopted;
2. MaxVar: Features corresponding to the maximum variance are selected to obtain

the best expressive features;
3. LS [17]: Features consistent with Gaussian Laplacian matrix are selected to best

preserve the local manifold structure [17];
4. SPEC [47]: Features are selected using spectral regression;
5. SPFS-SFS [48]: The traditional forward search strategy is utilized for similarity

preserving feature selection in the SPFS framework.
6. MCFS [5]: Features are selected based on spectral analysis and sparse regression

problem;
7. UDFS [43]: Features are selected by a joint framework of discriminative analysis

and �2,1-norm minimization.
8. CGSSL: The proposed Cluster-Guided Sparse Structural Learning method.

2.3.6.3 Parameter Setting

There are some parameters to be set in advance. For LS, SPEC, MCFS, UDFS
and CGSSL, we set k = 5 for all the datasets to specify the size of neighbor-
hoods. For CGSSL, to guarantee the orthogonality satisfied, we fix λ = 108 in
our experiments. To fairly compare different unsupervised feature selection algo-
rithms, we tune the parameters for all methods by a “grid-search” strategy from
{10−8, 10−6, . . . , 108}. The dimensionality of the low-dimensional space is set r =
min(5 × max(� c−1

5 �, 1), c − 1) in the experiments since the performance is not very
sensitive to it. The numbers of selected features are set as {50, 100, 150, 200, 250,
300} for all the datasets except USPS. Because the total feature number of USPS is
256, we set the number of selected features as {50, 80, 110, 140, 170, 200}. For all
the algorithms, we report the the best clustering results from the optimal parame-
ters. Different parameters may be used for different databases. In our experiments,
we adopt Kmeans algorithm to cluster samples based on the selected features. The
performance of Kmeans clustering depends on initialization. Following [5, 43], we
repeat the clustering 20 times with random initialization for each setup. The average
results with standard deviation (std) are reported. In real applications, it is impossible
to tune parameters using the “grid-search” strategy. But it is an acceptable method to
tune parameters for experimental comparisons since all the compared methods are
with the well-chosen parameter values. The parameter sensitivity study and conver-
gence study for CGSSL will be shown in the following subsection.
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2.3.6.4 Evaluation Metrics

With the selected features, we evaluate the performance in terms of clustering by
two widely used evaluation metrics, i.e., Accuracy (ACC) and Normalized Mutual
Information (NMI). The larger ACC and NMI are, the better performance is. ACC
is defined by

ACC = 1

n

n∑

i=1

δ(ci ,map(gi )), (2.47)

where ci is the clustering label and gi is the ground truth label of xi . map(gi ) is
the optimal mapping function that permutes clustering labels and the ground truth
labels. The optimal mapping can be obtained by using the Kuhn–Munkres algorithm.
δ(ci , gi ) is an indicator function that equals to 1 if ci = gi and equals to 0 otherwise.
NMI is defined as

NMI =
∑c

l,h=1 tl,h log(
n×tl,h
tl t̂h

)
√(∑c

l=1 tl log
tl
n

)( ∑c
h=1 t̂h log

t̂h
n

) , (2.48)

where tl is the number of samples in the lth cluster Cl according to clustering results
and t̂h is the number of samples in the hth ground truth class Gh . tl,h is the number
of overlap between Cl and Gh .

2.3.6.5 Performance Comparison

We now empirically evaluate the performance of these nine feature selection algo-
rithms in terms of ACC and NMI. The detailed results on the face, handwritten digit,
text, and biomedical data sets are summarized in Tables2.2, 2.3, 2.4, and 2.5, respec-
tively. The results demonstrate that compared to the compared algorithms, CGSSL
achieves the best performance on all the 12 data sets, which validates its effectiveness.

From the above four tables, we have the following observations. (1) Compared
with the baseline, it can be observed that feature selection is necessary and effective
by removing the noise and redundancy. It can not only reduce the number of features
and make the algorithms more efficient, but also enhance the performance. (2) It is
better to perform feature selection jointly. The joint feature selection algorithms, such
as MCFS, UDFS, and CGSSL are always superior to the methods selecting features
one after another, such as MaxVar and SPEC. (3) By utilizing the local geometric
structure of data distribution, LS, SPEC, MCFS, UDFS, and CGSSL usually yield
superior performance. (4)MCFS, UDFS, and CGSSL achieve more accurate cluster-
ing performance by exploiting discriminative information, which demonstrates that
it is crucial to uncover the discriminative information in the unsupervised case. (5)
CGSSL outperforms SPEC andMCFS. SPEC andMCFS adopt a two-step approach
to introduce spectral analysis into feature selection while CGSSL is an one-step
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framework and performs spectral analysis and feature selection simultaneously. (6)
CGSSL achieves higher ACC and NMI than MCFS by imposing the nonnegative
constraint, which makes the scaled cluster indicators more accurate. In summary,
CGSSL achieves best performance on all data sets by exploiting nonnegative spec-
tral analysis and structural learning with �2,1-norm regularization simultaneously for
feature selection.

2.4 Nonnegative Spectral Analysis and Redundancy
Control for Unsupervised Feature Selection

The proposed CGSSLmethod ignores the redundancy among the features. The select
subset may be not compact. To select the discriminative features with controlled
redundancy, we propose a new Nonnegative Spectral analysis with Constrained
Redundancy (NSCR) method to exploit clustering analysis and explicitly consider
the redundancy between features simultaneously. NSCR is formulated as

min
F,W

J (F) + αl(h(W;X),F) + βΩ(W) + λg(W)

s.t. F = Y(YTY)−
1
2 , (2.49)

where J (F) is a clustering criterion, l(·, ·) is the loss function, h(·) is a predictive
function, Ω(·) is a regularization function with row sparsity, and g(·) is a function
to control the redundancy. α, β, and λ are three nonnegative trade-off parameter.

2.4.1 The Objective Function

For the clustering criterion J (F), following the above section, we utilize the proposed
nonnegative spectral analysis.

J (F) = Tr[FTLF], s.t. FTF = Ic, F ≥ 0. (2.50)

In NSCR, the features which are most discriminative to the cluster indicators are
selected. To this end, we assume that there is a linear transformation between features
and the cluster indicators and adopt a linear model to predict the cluster indicators.
Therefore, we have the following function:

h(W;X) = XTW (2.51)

where W = [w1, . . . ,wc] ∈ Rd×c is the linear transformation matrix to predict the
cluster indicators. To learn a more discriminative predictors for more reliable results
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and make our method robust to noisy features, we impose a more general and better
sparse model on W. It has been verified by extensive computational studies that
�p-norm (0 < p < 1) can lead to sparser solution than using �1-norm [7, 8], and
�2,p-norm based minimization can also achieve a better sparsity solution than �2,1-
norm [41]. Thus, we introduce a �2,p-norm based regularization for Ω to guarantee
that W is sparse in rows. It can discard noisy or indifferent features

Ω(W) =
d∑

i=1

‖wi‖p
2 = ‖W‖p

2,p. (2.52)

The proposed problem in (2.49) can be rewritten as

min
F,W

J (F) + αl(XTW,F) + β‖W‖p
2,p + λg(W) s.t. FTF = Ic, F ≥ 0. (2.53)

Under the guide of nonnegative spectral clustering, the feature selection matrix
with �2,p-norm regularization can select necessary features and discard noisy or
indifferent features. However, correlated features may be selected simultaneously
since currently we do not penalize the proposed method for redundant features. For
example, if the i th feature is highly correlated to the j th feature, we do not need to
select both of them simultaneously. Toward this end, we introduce a penalty factor
g(W) into our feature selection scheme to control the redundancy while selecting
features. Many strategies can be used to define the penalty for using redundant
features. In this work, we adopt the correlation between features to define g(W).

g(W) = 1

d(d − 1)

d∑

i=1

‖wi‖2
d∑

j=1, j �=i

‖w j‖2Ci j (2.54)

Ci j ≥ 0 is a measure of correlation between the i th feature and the j th feature.
‖wi‖2 is a weight to measure the importance of the i th feature. The correlation can
be measured linearly or nonlinearly. For a linear measure, the Pearsons correlation
coefficient between the i th feature and the j th feature can be used. The mutual
information between the i th feature and the j th feature can be used to measure the
nonlinear correlation. In this work, the mutual information is adopted. If we set
Cii = 0, we have

g(W) = 1

d(d − 1)

d∑

i, j=1

‖wi‖2‖w j‖2Ci j . (2.55)

The normalized factor 1
d(d−1) is used just tomake the regularization term independent

of the number of features. By taking the redundancy into account, our method can
avoid selected many members of a redundant set of features.



34 2 Understanding-Oriented Unsupervised Feature Selection

By incorporating the nonnegative spectral clustering, sparse prediction model and
the redundancy control into a unified framework, we obtain the following optimiza-
tion problem:

min
F,W

Tr[FTLF]+αl(XTW,F) + β‖W‖p
2,p + λ

d(d − 1)

d∑

i, j=1

‖wi‖2‖w j‖2Ci j

s.t. FTF =Ic, F ≥ 0. (2.56)

To solve the optimization problem in (2.56), we first decide which loss function
is chosen for l(·, ·). In this work, we utilize the least square loss l(x, y) = 1

2 (x − y)2

for simplicity and set γ = λ
d(d−1) . Hence we have

min
F,W

Tr[FTLF]+α

2
‖F − XTW‖2F + β‖W‖p

2,p + γ

d∑

i, j=1

‖wi‖2‖w j‖2Ci j

s.t. FTF =Ic, F ≥ 0. (2.57)

The joint minimization of the regression model and �2,p-norm regularization term
enables W to evaluate the correlation between pseudo labels and features, making
it particularly suitable for feature selection. More specifically, wi , the i th row of
W, shrinks to zero if the i th feature is less discriminative to the pseudo labels F. It
can guarantee that the necessary features are selected and the noisy or indifferent
features are discarded. The consideration of the redundancy can explicitly control
the redundancy between the selected features. OnceW is learned, we can select the
top r ranked features by sorting all d features according to ‖wi‖2 (i = 1, . . . , d) in
descending order. Therefore, the features corresponding to zero rows of W will be
discarded when performing feature selection.

2.4.2 Optimization

Since �p (0 < p < 1) vector norm is neither convex nor Lipschitz continuous, �2,p
matrix pseudo norm is not convex or Lipschitz continuous yet. The optimization
problem (2.57) involves the �2,p-norm which is not convex and nonsmooth. Con-
sequently, we propose an iterative optimization algorithm to solve the optimization
problem (2.57). For the ease of representation, let us define

L (F,W) = Tr[FTLF]+α

2
‖F − XTW‖2F + β‖W‖p

2,p + γ

d∑

i, j=1

‖wi‖2‖w j‖2Ci j .

(2.58)
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By computing the derivative of L with respect to wi ,2 we obtain:

∂L

∂wi
= αX(XTwi − fi ) + β

wi

‖wi‖2 + γ

∑
j ‖w j‖2Ci j

‖wi‖2 wi . (2.59)

The following equation can be easily induced

∂L

∂W
= αX(XTW − F) + βDW + γHW, (2.60)

where D is a diagonal matrix with Dii = p

2‖wi‖2−p
2

and H is another diagonal matrix

with Hii =
∑

j ‖w j‖2Ci j

2‖wi‖2 . Setting ∂L (F,W)

∂W = 0, we have

αX(XTW − F) + βDW + γHW = 0

⇒ W = α(αXXT + βD + γH)−1XF

= G−1XF (2.61)

Here G = XXT + β

α
D + γ

α
H.

Owing to ‖A‖2F = Tr(ATA) for any arbitrary matrix A, we can rewrite Eq. (2.58)
as follows:

L = Tr[FTLF] + αTr[(XTW − F)T (XTW − F)] + βTr[WTDW] + γTr[WTHW]
= Tr[FTLF] + αTr[FTF] − 2αTr[WTXF] + Tr[WT (αXXT + βD + γH)W]. (2.62)

By substituting the expression for W in Eq. (2.61) into the above equation, we have

L (F) = Tr[FT (L + αIn − αXTG−1X)F]. (2.63)

Thus, we obtain the following optimization problem w.s.r. F

min
F

Tr[FTMF] s.t. FTF = Ic; F ≥ 0. (2.64)

HereM = L + αIn − αXTG−1X. Then we relax the orthogonal constraint by incor-
porating the orthogonal constraint of F into the objective function via Langrange
multiplier and obtain the optimization problem as follows:

min
F≥0

Tr[FTMF] + μ

2
‖FTF − Ic‖2F (2.65)

2In practice, ‖wi‖2 could be close to zero but not zero. Theoretically, it could be zeros. For this
case, we can regularize ‖wi‖2 ← ‖wi‖2 + ε, where ε is a very small constant. When ε → 0, we
can see that ‖wi‖2 + ε approximates ‖wi‖2.
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μ > 0 is a parameter to control the orthogonality condition. In practice, λ should be
large enough to insure the orthogonality satisfied. Let φi j be the Lagrange multiplier
for constraint Fi j ≥ 0 and Φ = [φi j ]. The Lagrange function is

Tr[FTMF] + μ

2
Tr[(FTF − Ic)T (FTF − Ic)] + Tr[ΦFT ]. (2.66)

Setting its derivative with respect to F to 0, we have

2MF + 2μF(FTF − Ic) + Φ = 0. (2.67)

Using the Karush–Kuhn–Tuckre (KKT) condition [22] φi j Fi j = 0, we obtain the
updating rules:

2[MF + λF(FTF − Ic)]i j Fi j + Φi j Fi j = 0

⇒ [MF + λF(FTF − Ic)]i j Fi j = 0. (2.68)

There may exist mix-signed elements in M. To guarantee the nonnegative property
of F, by introducing M = M+ − M−, where M+

i j = (|Mi j | + Mi j )/2 and M−
i j =

(|Mi j | − Mi j )/2, the above equation is equivalent to

[(M+ − M−)F + μF(FTF − Ic)]i j Fi j = 0. (2.69)

Here | · | denotes the absolute value function. Thus, we have

Fi j ← Fi j
(M−F + μF)i j

(M+F + μFFTF)i j
. (2.70)

Then we normalize F with (FTF)i i = 1, i = 1, . . . , c.
From the above analysis, we can see that D and H related to W is required to

solve F and it is still not straightforward to obtain W and F. To this end, we design
an iterative algorithm to solve the proposed formulation, which is summarized in
Algorithm 2.

The alternative updating rules in Algorithm 2 monotonically decrease the objec-
tive function value of (2.57) in each iteration. That is, the proposed iterative procedure
in Algorithm 2 can be verified to be convergent. The convergence is also experimen-
tally verified in our experiments. Besides, the proposed optimization algorithm is
efficient. In the experiments, we observe that our algorithm usually converges around
only 20 iterations.

Now, we briefly analyze the computational complexity. In our case, c 
 n and
c 
 d. It takes O(nd2) to obtain C. The complexity of calculating the inverse of a
matrix is O(d3). In each iteration step, the cost for updatingG based onW and C is
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Algorithm 2 The Proposed NSCR Method
Input:

Data matrix X ∈ Rd×n ;
Parameters α, β, γ , μ, k, c and p

1: Construct the k-nearest neighbor graph and calculate L;
2: Construct the correlation matrix between features C;
3: The iteration step t = 1; Initialize Ft ∈ Rn×c, set Dt ∈ Rd×d as an identity matrix and Ht ∈

Rd×d as a zero matrix;
4: repeat
5: Gt = XXT + β

α
Dt + γ

α
Ht ;

6: Mt = L + αIn − αXTG−1
t X;

7: M+
t = (|Mt | + Mt )/2 and M−

t = (|Mt | − Mt )/2;

8: (Ft+1)i j = (Ft )i j
(M−

t Ft+μFt )i j
(M+

t Ft+μFtFT
t Ft )i j

;

9: Wt+1 = G−1
t XFt+1;

10: Update the diagonal matrix D as

Dt+1 =
⎡

⎢⎣

p

2‖(wt+1)1‖2−p
2 · · ·

p

2‖(wt+1)d‖2−p
2

⎤

⎥⎦;

11: Update the diagonal matrix H as

Ht+1 =

⎡

⎢⎢⎣

∑
j ‖(wt+1) j ‖2C1 j

2‖(wt+1)1‖2 · · · ∑
j ‖(wt+1) j ‖2Cdj

2‖(wt+1)d‖2

⎤

⎥⎥⎦;

12: t=t+1;
13: until Convergence criterion satisfied
Output:

Sort all d features according to ‖(wt )i‖2 in descending order and select the top r ranked features.

O(cd + d2). It needsO(d3) to obtainG−1. The cost for updatingM isO(nd2 + n2d).
It takes O(cn2) to update F and O(nd2) to updateW, respectively. Thus the overall
cost for the proposed NSCR is O(T (d3 + nd2 + dn2)), where T is the number of
iterations.

2.4.3 Experiments

In this section, we experimentally evaluate the performance of the proposed NSCR
method for unsupervised feature selection, which can be applied to many applica-
tions, such as clustering and classification. We only evaluate the performance of
NSCR and compared with representative algorithms in terms of clustering. In our
experiments, we first select the top r features and then utilize Kmeans algorithm to
cluster images based on the selected features.
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2.4.3.1 Data Sets

The experiments are conducted on nine publicly available image datasets, including
four face image data sets, i.e., UMIST [1], AT&T [36], JAFFE [29], and Pointing4
[44], three handwritten digit data sets, i.e., MNIST used in [44], Binary Alphabet
(BA) [1] and a subset of USPS with 40 samples randomly selected for each class [1],
and two object image databases, i.e., COIL20 [31] and Caltech101 [15]. Data sets
from different areas serve as a good test bed for a comprehensive evaluation.

Some datasets have been introduced in Sect. 2.3. In the AT&T face image dataset
[36], there are 10 gray scale images for each of the 40 human objects. There were
taken at different times, varying the lighting, facial expressions and facial details.
The image size is 32 × 32. The COIL20 [31] database contains 32 × 32 gray scale
images of 20 objects viewed from varying angles and each object has 72 images. The
Caltech101 dataset [15] contains 9144 images of 101 classes and an additional class
of background images. In our experiments, we select the 10 largest categories, except
the BACKGROUND_GOOGLE category. The SIFT descriptor is extracted and then
1000-dimensional bag of visual word is generated to represent each image. Table2.6
summarizes the details of these nine benchmark data sets used in the experiments in
terms of the total number n of images, the total number c of clusters and the feature
dimension d.

2.4.3.2 Compared Scheme

To validate the effectiveness of the proposed NSCR for feature selection, we com-
pare it with one baseline and several unsupervised feature selection methods. The
compared algorithms are enumerated as follows:

• Baseline: All original visual features are adopted.

Table 2.6 Image dataset description. n is the number of images; d denotes the dimension of
features; c is the number of clusters.

Domain Dataset n d c

Face image UMIST 575 644 20

AT&T 400 1024 40

JAFFE 213 676 10

Poingting4 2790 1120 15

Handwritten digits image MNIST 5000 784 10

BA 1404 320 36

USPS 400 256 10

Object image Coil20 1440 1024 20

Caltech101 3379 1000 10
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• MaxVar: Features corresponding to the maximum variance are selected to obtain
the expressive features.

• LS [17]: Features consistent with Gaussian Laplacian matrix are selected to pre-
serve the local manifold structure.

• SPEC [47]: Features are selected using spectral regression based on pairwise
image similarity.

• SPFS-SFS [48]: The traditional forward search strategy is utilized for similarity
preserving feature selection in the SPFS framework.

• MCFS [5]: Features are selected based on spectral analysis and sparse regression
in a two-step scheme;

• UDFS [43]: Features are selected by exploiting the local structure for local discrim-
inative information and row-sparsemodels for feature correlations simultaneously.

• SCR: A special case of the proposed method without considering the redundancy
constraint for unsupervised feature selection, i.e., γ = 0.

• NSCR: The proposed method with Nonnegative Spectral analysis and Controlled
Redundancy for unsupervised feature selection.

In the compared methods, there are some hyper-parameters to be set in advance.
The same strategy used in Sect. 2.3 is adopted.

2.4.3.3 Results on Synthetic Data

Towell evaluate the effectiveness of the proposedNSCRmethod on the feature selec-
tion task, we conduct experiments on one widely used synthetic dataset, i.e., Corral
[45]. It contains six Boolen features (A0, A1, B0, B1, I , R), in which the relevant
features, irrelevant features, and redundant features are provided. Specifically, the
class labels of data points are defined by (A0 ∧ A1) ∨ (B0 ∧ B1)while A0, A1, B0,
and B1 are independent to each other. Feature R is redundant by matching the class
label 75% of the time, while feature I is uniformly random. That is, features A0, A1,
B0, and B1 are necessary features, feature R is the redundant feature while feature I
is the noisy feature. The results of features ranked by different methods are presented
in Table 2.7. For each method, features are selected from left to right, top to bottom.
It can be seen that if the top four features are selected, only the proposed method
can remove the noisy feature and the redundant feature simultaneously while other
methods fail to filter out the redundant feature, which demonstrates the effectiveness
of the proposed method for feature selection.

Table 2.7 The rank of features by different methods on the Corral data. Features are selected from
left to right, top to bottom.

MaxVar LS SPEC SPFS-SFS MCFS UDFS SCR NSCR

Rank R, A0, A1, R, A0, B0, R, A0, A1, R, B1, A0, R, A0, B0, A1, R, B0, B0, B1, A1, B1, B0, A1,

B0, B1, I A1, B1, I B0, B1, I B0, A1, I A1, B1, I A0, B1, I R, A0, I A0, R, I
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2.4.3.4 Performance Comparison on Real-world Data

We now empirically evaluate the performance of these nine feature selection algo-
rithms for clustering in terms of ACC and NMI. The detailed results on the face,
handwritten digit and object data sets are summarized in Tables 2.8, 2.9, and 2.10,
respectively. The results demonstrate that NSCR achieves the best performance on
all the nine image sets compared to other eight feature selection algorithms, which
validates its effectiveness.

From the above experimental results, we have the following observations. First,
it is observed that NSCR achieves better performance than SCR by considering the
nonnegative constraint. It demonstrates that it is necessary and effective to introduce
the nonnegative constraint. The improved NSCR enables to remove the redundant
features while preserving the necessary features. Second, NSCR is both superior to
MCFS by introducing the nonnegative constraint, which makes the scaled cluster
indicators more accurate. They can select more necessary features. Third, NSCR,
UDFS, and MCFS achieve larger values of ACC and NMI by exploiting discrimina-
tive information from data. It demonstrates that it is crucial to uncover the discrim-
inative information in the unsupervised case, which can remove noisy features and
indifferent features. Fourth, NSCR achieves more accurate clustering performance
thanSPECandMCFS.SPECandMCFSadopt a two-step approach to introduce spec-
tral analysis into feature selectionwhileNSCR is an one-step framework and perform
spectral analysis and feature selection simultaneously. Fifth, by exploiting the local
geometric structure of data distribution, LS, SPEC, MCFS, UDFS, and NSCR usu-
ally yield superior performance. Besides, it can be seen that it is necessary to select
features jointly rather than one by one. The joint feature selection algorithms, such
as MCFS, UDFS, and NSCR are always superior to the methods selecting features
one after another, such as MaxVar and SPEC. Finally, compared with the baseline,
it can be observed that feature selection is necessary and effective by removing
the noise. It can not only reduce the number of features and make the algorithms
more efficient, but also improve the performance. In conclusion, NSCR achieves
the best performance on all data sets by exploiting nonnegative spectral analysis
and redundancy between features simultaneously for feature selection, which can
select necessary features, control the use of redundant features and discard noisy or
indifferent features.

2.5 Discussions

In this chapter, we propose a novel understanding-oriented unsupervised feature
selection framework, which exploits nonnegative spectral analysis, the latent struc-
ture analysis, and explicitly control the redundancy between features while a parse
model with the �2,p-norm is introduced. The proposed framework can select nec-
essary features, remove noisy, or indifferent features while control the redundancy
between the selected features. The cluster indicators learned by nonnegative spectral
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clustering are used to provide label information for unsupervised feature selection. To
facilitate feature selection, the predictive matrix is constrained to be sparse in rows.
By imposing the �2,p-norm regularization, the proposed methods jointly selects the
most discriminative features across the entire feature space. For future work, we
will focus on extending our methods in the kernel learning framework and the local
learning framework. Besides, how to select the adaptive hyper-parameters and the
number of selected features are also our directions for future research.

By the proposed understanding-oriented feature selection framework, better fea-
ture subsets can be chosen to represent the contents of images. However, the con-
tents of images are still described by the low-level visual features. The semantic gap
between low-level features and high-level semantic still exist, although it may be
reduced to a certain degree by the understanding-oriented feature selection methods.
The better way may be to learn a good representation for data, i.e., feature extraction.
The understanding-oriented feature representation is desired to be studied.

On the other hand, we known that social images are associated with user-provided
tags. Although these tags are imperfect, they can reflect the semantic information of
images to a certain degree. It is believed that users express their individual under-
standing through tags. Thus, the user-provided tags enable to help us to select better
feature subsets or learn better data representation.Meanwhile, the imperfect problem
of the user-provided tags should be handled during the learning procedure. Better
data representations can be found by exploring the user-provided tags.
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