
Chapter 2
Linear Models

In this chapter, a brief introduction of linear models is presented. Linearity can be
interpreted in terms of both linearity in parameters or linearity in variables. In this
book, we have considered linearity in parameters of a model. Linear models may
generally include regression models, analysis of variance models, and analysis of
covariance models. As the focus of this book is to address various generalized
linear models for repeated measures data using GLM and Markov chain/process, we
have reviewed regression models in this chapter very briefly.

2.1 Simple Linear Regression Model

Let us consider a random sample of n pairs of observations ðY1; X1Þ; . . .; ðYn; XnÞ.
Here, let Y be the dependent variable or outcome and X be the independent variable
or predictor. Then the simple regression model or the regression model with a single
predictor is denoted by

EðY XÞ ¼ b0 þ b1Xj : ð2:1Þ

It is clear from (2.1) that the simple regression model is a population averaged

model. Here EðY XÞ ¼ lY Xj
��� represents conditional expectation of Y for given X . In

other words,

lY Xj ¼ b0 þ b1X ð2:2Þ

which can be visualized from the figure displayed below (Fig. 2.1).
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An alternative way to represent model (2.1) or (2.2) is

Y ¼ b0 þ b1Xþ e ð2:3Þ

where e denotes the distance of Y from the conditional expectation or conditional
mean, lY Xj , as evident from expression shown below:

Y ¼ lY Xj þ e ð2:4Þ

where e denotes the error in the dependent or outcome variable, Y, attributable to the
deviation from the population averaged model and e is a random variable as well
with EðeÞ ¼ 0 and VarðeÞ ¼ r2.

2.2 Multiple Regression Model

We can extend the simple regression model shown in Sect. 2.1 for multiple
regression model with p predictors X1; . . .;Xp. The population averaged model can
be shown as

EðY XÞ ¼ b0 þ b1X1 þ . . .þ bpXp

�� : ð2:5Þ

Here EðY XÞj ¼ lY Xj as shown in Sect. 2.1.
Alternatively,

Y ¼ b0 þ b1X1 þ . . .þ bpXp þ e ð2:6Þ

which can be expressed as

Y ¼ lY Xj þ e: ð2:7Þ

Fig. 2.1 Population
Regression Model

10 2 Linear Models



In vector and matrix notation, the model in Eq. (2.6) for a sample of size n is

Y ¼ Xb þ e ð2:8Þ

where

Y ¼

Y1
Y2

..

.

Yn

0
BBBBB@

1
CCCCCA
; X ¼

1 X11 . . . X1p

1 X21 . . . X1p

..

.

1 Xn1 . . . Xnp

0
BBB@

1
CCCA; b ¼

b0
b1

..

.

bp

0
BBBBB@

1
CCCCCA
; e ¼

e1
e2

..

.

en

0
BBBBB@

1
CCCCCA
:

It is clear from the formulation of regression model that it provides a theoretical
framework for explaining the underlying linear relationships between explanatory
and outcome variables of interest. A perfect model can be obtained only if all the
values of the outcome variable are equal to conditional expectation for given values
of predictors which is not feasible in explaining real life problems. However, still it
can provide very important insight under the circumstance of specifying a model
that keeps the error minimum. Hence, it is important to specify a model that can
produce estimate of outcome variable as much close to observed values as possible.
In other words, the postulated models in Sects. 2.2 and 2.3 are hypothetical ide-
alized version of the underlying linear relationships which may be attributed to
merely association or in some instances causation as well.

The population regression model is proposed under a set of assumptions:
(i) EðeiÞ ¼ 0, (ii) VarðeiÞ ¼ r2, (iii) EðeiejÞ ¼ 0 for i 6¼ j, and (iv) independence of
X and e. In addition, assumption of normality is necessary for likelihood estimation
as well as for testing of hypotheses. Based on these assumptions, we can show the
mean and variance of Yi as follows:

EðYi Xij Þ ¼ Xib; andVarðYi Xij Þ ¼ r2;

where Xi is the ith row vector of the matrix X. Using (2.8), we can rewrite the
assumptions as follows: (i) EðeÞ ¼ 0, and (ii) CovðeÞ ¼ r2I. Similarly,
EðY Xj Þ ¼ Xb, and CovðY Xj Þ ¼ r2I.

2.3 Estimation of Parameters

For estimating the regression parameters, we can use both method of least squares
and method of maximum likelihood. It may be noted here that for extending the
concept of linear models to generalized linear models or covariate dependent
Markov models, the maximum likelihood method will be used more extensively,
hence, both are discussed here although method of least squares is a more con-
venient method of estimation for linear regression model with desirable properties.
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2.3.1 Method of Least Squares

The method of least squares is used to estimate the regression parameters by
minimizing the error sum of squares or residual sum of squares. The regression
model is

Yi ¼ b0 þ b1Xi1 þ . . .þ bpXip þ ei; i ¼ 1; 2; . . .; n ð2:9Þ

and we can define the deviation between outcome variable and its corresponding
conditional mean for given values of X as follows:

ei ¼ Yi � ðb0 þ b1Xi1 þ . . .þ bpXipÞ: ð2:10Þ

Then the error sum of squares is defined as a quadratic form

Q ¼
Xn
i¼1

e2i ¼
Xn
i¼1

Yi � ðb0 þ b1Xi1 þ . . .þ bpXipÞ
� �2

: ð2:11Þ

The sum of squares of error is minimized if the estimates are obtained from the
following equations:

@Q
@b0

����
b¼b̂

¼ �2
Xn
i¼1

Yi � ðb̂0 þ b̂1Xi1 þ . . .þ b̂pXipÞ
h i

¼ 0 ð2:12Þ

@Q
@bj

�����
b¼b̂

¼ �2
Xn
i¼1

Yi � ðb̂0 þ b̂1Xi1 þ . . .þ b̂pXipÞ
h i

Xij ¼ 0; ð2:13Þ

j = 1,…,p. We can consider (2.12) as a special case of Eq. (2.13) for j = 0 and
X0 ¼ 1.

Using model (2.8), Q can be expressed as

Q ¼ e0e ¼ ðY � XbÞ0ðY � XbÞ: ð2:14Þ

The right-hand side of (2.14) is

Q ¼ Y 0Y � Y 0Xb� b0X 0Y þ b0X 0Xb

where Y 0Xb ¼ b0X 0Y . Hence the estimating equations are

@Q
@b

����
b¼b̂

¼ �2X 0Y þ 2X 0Xb̂ ¼ 0: ð2:15Þ
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Solving Eq. (2.15), we obtain the least squares estimators of regression
parameters as shown below:

b̂ ¼ ðX 0XÞ�1ðX 0YÞ: ð2:16Þ

The estimated regression model can be shown as

Ŷ ¼ Xb̂ ð2:17Þ

and alternatively

Y ¼ Xb̂þ e ð2:18Þ

where

Ŷ ¼

Ŷ1

Ŷ2

..

.

Ŷn

0
BBBBB@

1
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; X ¼

1 X11 . . . X1p

1 X21 . . . X2p

..

.

1 Xn1 . . . Xnp

0
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1
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b̂0

b̂1
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.

b̂p

0
BBBBBB@

1
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..

.

en

0
BBBBB@

1
CCCCCA
:

It may be noted here that e is the vector of estimated errors from the fitted model.
Hence, we can show that

e ¼ Y � Ŷ ð2:19Þ

and the error sum of squares is

e0e ¼ ðY � ŶÞ0ðY � ŶÞ: ð2:20Þ

2.3.1.1 Some Important Properties of the Least Squares Estimators

The least squares estimators have some desirable properties of good estimators
which are shown below.

(i) Unbiasedness: Eðb̂Þ ¼ b:

Proof: We know that b̂ ¼ ðX 0XÞ�1ðX 0YÞ and Y ¼ Xbþ e. Hence,

Eðb̂Þ ¼ E½ðX 0XÞ�1ðX 0YÞ�
¼ ðX 0XÞ�1X 0EðYÞ
¼ ðX 0XÞ�1X 0EðXbþ eÞ
¼ ðX 0XÞ�1X 0Xb
¼ b:
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(ii) Covðb̂Þ ¼ ðX 0XÞ�1r2:

Proof:

Covðb̂Þ ¼ Cov½ðX 0XÞ�1X 0Y �
¼ ðX 0XÞ�1X 0CovðYÞXðX 0XÞ�1

where CovðYÞ ¼ r2I. Hence,

Covðb̂Þ ¼ ðX 0XÞ�1X 0IXðX 0XÞ�1r2

¼ ðX 0XÞ�1r2:
ð2:21Þ

(iii) The least squares estimator b̂ is the best linear unbiased estimator of b.
(iv) The mean squared error is an unbiased estimator of r2. In other words,

E
e0e

n� p� 1

� �
¼ r2 ð2:22Þ

Proof: Let us denote SSE ¼ e0e ¼ ðY � Xb̂Þ0ðY � Xb̂Þ and s2 ¼ SSE
n� p� 1 where p is

the number of predictors. Total sum of squares of Y is Y 0Y . The sum of squares of
errors can be rewritten as

SSE ¼ Y 0Y � Y 0Xb̂� b̂0X 0Y þ b̂0X 0Xb̂

¼ Y 0Y � 2b̂0X 0Y þ b̂0X 0Xb̂

where Y 0Xb̂ ¼ b̂0X 0Y . Then replacing b̂ by ðX 0XÞ�1ðX 0YÞ, it can be shown that

SSE ¼ Y 0Y � 2b̂0X 0Y þ b̂0X 0Xb̂ ¼ Y 0Y � b̂0X 0Y

¼ Y 0Y � ½ðX 0XÞ�1X 0Y �0X 0Y

¼ Y 0Y � Y 0XðX 0XÞ�1X 0Y

¼ Y 0½I � Y 0XðX 0XÞ�1X 0�Y

It can be shown that the middle term of the above expression is a symmetric
idempotent matrix and SSE

r2 is chi-square with degrees of freedom equal to the rank of

the matrix ½I � Y 0XðX 0XÞ�1X 0�. The rank of this idempotent matrix is equal to the
trace½I � Y 0XðX 0XÞ�1X 0� which is n – p − 1. Hence,
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E½ðn� p� 1Þðs2Þ=r2� ¼ E SSE=r2ð Þ ¼ trace½I � Y 0XðX 0XÞ�1X 0� ¼ n� p� 1.

This implies EðSSEÞ ¼ ðn� p� 1Þr2 and E SSE
n� p� 1

� �
¼ r2: In other words, the

mean square error is an unbiased estimator of r2, i.e. Eðs2Þ ¼ r2:

2.3.2 Maximum Likelihood Estimation

It is noteworthy that the estimation by least squares method does not require nor-
mality assumption. However, the estimates of regression parameters can be
obtained assuming that Y �Nn Xb; r2Ið Þ where EðY XÞj ¼ Xb and VarðY XÞj ¼
r2I. The likelihood function is

Lðb; r2Þ ¼ 1

ð2pÞn=2½r2I�1=2
e�ðY �XbÞ0ðr2IÞ�1ðY �XbÞ=2

¼ 1

ð2pr2Þn=2
e�ðY �XbÞ0ðY �XbÞ=2r2 :

The log-likelihood function can be shown as follows:

ln Lðb; r2Þ ¼ � 1
2
n lnð2pÞ � 1

2
n ln r2 � 1

2r2
ðY � XbÞ0ðY � XbÞ: ð2:23Þ

Differentiating (2.23) with respect to parameters and equating to zero, we obtain
the following equations:

@ ln L
@b

����
b¼b̂; r2¼r̂2

¼ � 1
2r̂2

ð�2X 0Y � 2X 0Xb̂Þ ¼ 0 ð2:24Þ

@ ln L
@r2

����
b¼b̂; r2¼r̂2

¼ � n
2r̂2

þ 1

2ðr̂2Þ2 ðY � Xb̂Þ0ðY � Xb̂Þ ¼ 0 ð2:25Þ

Solving (2.24) and (2.25), we obtain the following maximum likelihood estimators:

b̂ ¼ ðX 0XÞ�1ðX 0YÞ;

and

r̂2 ¼ 1
n
ðY � Xb̂Þ0ðY � Xb̂Þ:
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2.3.2.1 Some Important Properties of Maximum Likelihood
Estimators

Some important properties of maximum likelihood estimators are listed below:

(i) b̂�Npþ 1 b; r2ðX 0XÞ�1
h i

;

(ii) nr̂2
r2 � v2ðn� p� 1Þ;

(iii) b̂ and r̂2 are independent,
(iv) If Y is NnðXb; r2IÞ then b̂ and r̂2 are jointly sufficient for b and r2, and
(v) If Y is NnðXb; r2IÞ then b̂ have minimum variance among all unbiased

estimators.

2.4 Tests

In a regression model, we need to perform several tests, such as: (i) significance of
the overall fitting of model involving p predictors, (ii) significance of each
parameter to test for significant association between each predictor and outcome
variable, and (iii) significance of a subset of parameters.

(i) Test for significance of the model

In the regression model, Y ¼ b0 þ b1X1 þ . . .þ bpXp þ e, it is important to examine
whether none of the predictors X1; . . .;Xp is linearly associated with outcome
variable, Y, against the hypothesis that at least one of the predictors is linearly
associated with outcome variable. As the postulated model represents a hypothetical
relationship between population mean and predictors, EðY XÞ ¼ b0 þj
b1X1 þ . . .þ bpXp:, the contribution of the model can be tested from the regression
sum of squares which indicates the fit of the model for the conditional mean,
compared to the error sum of squares that measures deviation of observed values of
outcome variable from the postulated linear relationship of predictors with condi-
tional mean. It may be noted here that total sum of squares due to outcome variable
can be partitioned into two components for regression and error as shown below:

Y 0Y ¼ b̂0X 0Y þðY � Xb̂Þ0ðY � Xb̂Þ

where b̂0X 0Y is the sum of squares of regression (SSR) and ðY � Xb̂Þ0ðY � Xb̂Þ is
the sum of squares error (SSE).

The coefficient of multiple determination, R2, measures the extent or proportion
of linear relationship explained by the multiple linear regression model. This is the
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squared multiple correlation. The coefficient of multiple determination can be
defined as:

R2 ¼ Regression Sumof Squares
Total Sum of Squares

¼ b̂0X 0Y � n�Y2

Y 0Y � n�Y2 : ð2:26Þ

and the range of R2 is 0�R2 � 1, 0 indicating that the model does not explain the
variation at all and 1 for a perfect fit or 100% is explained by the model.

The null and alternative hypotheses for overall test of the model are:

H0 : b1 ¼ . . . ¼ bp ¼ 0 and H1 : bj 6¼ 0; for at least one j, j = 1, … , p.

Under null hypothesis, sum of squares of regression is v2pr
2 and similarly sum of

squares of error is v2n� p� 1r
2. The test statistic is

F ¼ SSR=p
SSE=ðn� p� 1Þ �Fp;ðn� p� 1Þ: ð2:27Þ

Rejection of null hypothesis indicates that at least one of the variables in the
postulated model contributes significantly in the overall or global test.

(ii) Test for the significance of parameters

Once we have determined that at least one of the predictors is significant, next step
is to identify the variables that exert significant linear relationship with outcome
variable. Statistically it is obvious that inclusion of one or more variables in a
regression model may result in increase in regression sum of squares and thus
decrease in error sum of squares. However, it needs to be tested whether such
inclusion is statistically significant or not. These tests will be elaborated in the next
section in more details. The first task is to examine each individual parameter
separately to identify predictors with statistically significant linear relationship with
outcome variable of interest.

The null and alternative hypotheses for testing significance of individual
parameters are:

H0 : bj ¼ 0 andH1 : bj 6¼ 0:

The test statistic is

t ¼ b̂j

seðb̂jÞ
ð2:28Þ

which follows a t distribution with (n – p − 1) degrees of freedom. We know that
Covðb̂Þ ¼ ðX 0XÞ�1r2 and estimate for the covariance matrix is Ĉovðb̂Þ ¼
ðX 0XÞ�1s2 where s2 is the unbiased estimator of r2. The standard error of b̂j can be
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obtained from corresponding diagonal elements of the inverse matrix ðX 0XÞ�1. In
this rejection of null hypothesis implies a statistically significant linear relationship
with outcome variable.

(iii) Extra Sum of Squares Method

As we mentioned in the previous section that inclusion of a variable may result in
increase in SSR and subsequently decrease in SSE, it needs to be tested whether the
increase in SSR is statistically significant or not. In addition, it is also possible to
test whether inclusion or deletion of a subset of potential predictors result in any
statistically significant change in the fit of the model or not. For this purpose, extra
sum of squares principle may be a very useful procedure.

Let us consider a regression model

Y ¼ Xbþ e

where Y is n� 1, X is n� k, b is k � 1, and k ¼ p þ 1. If we partition b as follows

b ¼ b1
b2

� �

where

b ¼

b0
b1
..
.

br�1
br

..

.

bp

0
BBBBBBBB@

1
CCCCCCCCA
; b1 ¼

b0
b1
..
.

br�1

0
BBB@

1
CCCA and b2 ¼

br
..
.

bp

0
B@

1
CA:

We can express the partitioned regression model as

Y ¼ X1b1 þX2b2 þ e ð2:29Þ

where

X1 ¼
1 X11 . . . X1;r�1

1 X21 . . . X2;r�1

..

.

1 Xn1 . . . Xn;r�1

0
BBB@

1
CCCA; X2 ¼

X1;r . . . X1;p

X2;r . . . X2;p

..

.

Xn;r . . . Xn;p

0
BBB@

1
CCCA:

Let us consider this model as the full model. In other words, the full model is
comprised of all the variables under consideration. We want to test, whether some
of the variables or a subset of the variables included in the full model contributes
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significantly or not. This subset may include one or more variables and the cor-
responding coefficients or regression parameters are represented by the vector b2.
Hence, a test on whether b2 ¼ 0 is an appropriate null hypothesis here. This can be
employed for a single parameter as a special case.

Regression and error sum of squares from full and reduced models are shown
below.

Full Model:
Under full model, the SSR and SSE are:

SSR (full model) = b̂0X 0Y
SSE (full model) = Y 0Y � b̂0X 0Y

Reduced Model:
Under null hypothesis, the SSR and SSE are:

SSR (reduced model) = b̂
0
1X

0
1Y

SSE (reduced model) = Y 0Y � b̂
0
1X

0
1Y

Difference between SSR (full model) and SSR (reduced model) shows the
contribution of the variables Xr; . . .;Xp which can be expressed as:

SSR b2 b1jð Þ ¼ b̂0X 0Y � b̂01X
0
1Y :

This is the extra sum of squares attributable to the variables under null
hypothesis.

The test statistic for H0 : b2 ¼ 0 is

F ¼ SSR b2 b1jð Þ=ðk � rþ 1Þ
s2

�Fðk�rþ 1Þ;ðn�kÞ: ð2:30Þ

Acceptance of null hypothesis implies there may not be any statistically sig-
nificant contribution of the variables Xr; . . .;Xp and the reduced model under null
hypothesis is equally good as compared to the full model.

2.5 Example

A data set on standardized fertility measure and socioeconomic indicators from
Switzerland is used for application in this chapter. This data set is freely available
from ‘datasets’ package in R. Full dataset and description are available for
download from the Office of Population Research website (site https://opr.
princeton.edu/archive/pefp/switz.aspx). Following variables are available in the
‘swiss’ dataset from datasets package. This data set includes indicators for each of
47 French-speaking provinces of Switzerland in 1888. The variables are:
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Fertility common standardized fertility measure
Agriculture % of males involved in agriculture as occupation
Examination % draftees receiving highest mark on army examination
Education % education beyond primary school for draftees
Catholic % ‘catholic’ (as opposed to ‘Protestant’)
Infant Mortality live births who live less than one year.

Here the first example shows a fitting of a simple regression model where the
outcome variable, Y = common standardized fertility measure and X = percent
education beyond primary school for draftees. The estimated model is Ŷ ¼
79:6101� 0:8624X: Education appears to be negatively associated with fertility
measure in French-speaking provinces (p-value < 0.001). Figure 2.2 displays the
negative relationship. Table 2.1 summarizes the results.

Fig. 2.2 Simple Linear Regression

Table 2.1 Estimates and
tests of parameters of a simple
regression model

Variable Estimate Std. error t-value Pr(>|t|)

Constant 79.6101 2.1041 37.836 0.000

Education −0.8624 0.1448 −5.954 0.000

Table 2.2 Estimates and
tests of parameters of a
multiple linear regression
model

Variable Estimate Std. error t-value Pr(>|t|)

Constant 62.10131 9.60489 6.466 0.000

Agriculture −0.15462 0.06819 −2.267 0.029

Education −0.98026 0.14814 −6.617 0.000

Catholic 0.12467 0.02889 4.315 0.000

Infant Mortality 1.07844 0.38187 2.824 0.007
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Using the same data source, an example for the fit of a multiple regression model
is shown and the results are summarized in Table 2.2. For the same outcome
variable, four explanatory variables are considered, percent males involved in
agriculture as profession ðX1Þ, education ðX2Þ, percent catholic ðX3Þ; and infant
mortality ðX4Þ. The estimated model for the outcome variable, fertility, is
Ŷ ¼ 62:10131� 0:15462X1 � 0:98026X2 þ 0:12467X3 þ 1:08844X4:

All the explanatory variables show statistically significant linear relationship
with fertility, agriculture, and education are negatively but percent catholic and
infant mortality are positively related to the outcome variable. The fit of the overall
model is statistically significant (F = 24.42, D.F. = 4 and 42, p-value < 0.001).
About 70% (R2 = 0.699) of the total variation is explained by the fitted model.
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