
Chapter 2
Knots

2.1 Knots and Diagrams

A knot is a submanifold of R3 that is homeomorphic to a circle. A link with μ com-
ponents means a union L = K1 ∪· · ·∪Kμ of mutually disjointμ knots K1, . . . , Kμ.
Each knot Ki is called a component of the link.

The knots illustrated in Fig. 2.1 are called a trivial knot, a trefoil knot, and a
figure-eight knot.

The links with two components illustrated in Fig. 2.2 are called a trivial link,
a Hopf link, and a Whitehead link. The link with three components illustrated in
Fig. 2.3 is called the Borromean rings.

When knots K and K ′ are ambient isotopic inR3, we say that they are equivalent,
and denote it by K ∼= K ′. The equivalence class of a knot (or a link) is called a knot
type (or a link type).

A smooth knot can be approximated by a PL knot.1 In what follows in this section,
we assume that knots are PL knots. When a smooth knot is depicted in a figure, we
regard it as a PL knot with a lot of small edges.2

Let K be a (PL) knot. Suppose that the intersection of a 2-simplex |a0a1a2| in R3

and K is an edge |a0a1|. Then K ′ = (K \ |a0a1|) ∪ (|a1a2| ∪ |a2a0|) is a knot. We
say that K ′ is obtained from K by a Δ-move along |a0a1a2|. The inverse operation
is also called a Δ-move.3

Two knots K and K ′ are said to be combinatorially equivalent if there exists a
finite sequence of Δ-moves transforming K to K ′.

1Refer to R.H. Crowell and R.H. Fox [30], Appendix I.
2The idea that a smooth-looking knot is PL with a bunch of edges is due to J.W. Alexander in the
1928 paper [3].
3A Δ-move is also called an elementary deformation in J.W. Alexander and G.B. Briggs [4]. This
combinatorial move is due to K. Reidemeister [145]. Refer also to K. Reidemeister [146–148].
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16 2 Knots

Fig. 2.1 A trivial knot, a trefoil knot, and a figure-eight knot

Fig. 2.2 A, trivial link, a Hopf link, and a Whitehead link

Fig. 2.3 Borromean rings

Theorem 2.1.1 For two (PL) knots K and K ′, the following conditions are mutually
equivalent4:
(1) K and K ′ are equivalent (i.e., ambient isotopic in R3).
(2) There exists an orientation-preserving PL self-homeomorphism of R3 carrying

K to K ′.
(3) There exists an orientation-preserving topological self-homeomorphism of R3

carrying K to K ′.
(4) K and K ′ are combinatorially equivalent.

An orientation of a knot K means an orientation of K as a 1-manifold.Aknotwith
a fixed orientation is called an oriented knot. When two oriented knots are ambient
isotopic with respect to the orientations, we say that they are oriented equivalent or
equivalent, and we denote it by K ∼= K ′.

For an oriented knot K , we denote by −K the same knot K with the reversed
orientation. When K and −K are equivalent, we say that K is invertible; otherwise
non-invertible.

It is easily seen that the knot depicted in Fig. 2.4 is invertible by rotating it along
an axis A. A knot is called strongly invertible if it is equivalent to a knot, say K ,
such that K is ambient isotopic to −K by a rotation along an axis.

4This theorem is also valid for links. For a proof, refer to G. Burde and H. Zieschang [14] or
A. Kawauchi [94].
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Fig. 2.4 A trefoil knot is
strongly invertible
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Fig. 2.5 817 is
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Fig. 2.6 The mirror image
and the orientation-reversed
of an oriented knot
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It is known that the knot depicted in Fig. 2.5 (Left), called 817, is a non-invertible
knot.5

The image r(K ) of a knot K by an orientation-reversing homeomorphism r :
R

3 → R
3 is called amirror image of K and is denoted by K !. See Fig. 2.6.

5Refer to A. Kawauchi [93] and H.F. Trotter [176].
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Exercise 2.1.2 Prove that the mirror image of a knot K is uniquely determined up to
equivalence; that is, it is independent of choice of reflection r .6

Two knots K and K ′ are said to be weakly equivalent if K ∼= K ′ or K ! ∼= K ′.
Note that two knots K and K ′ are weakly equivalent if and only if there exists a
homeomorphism h : R3 → R

3 with h(K ) = K ′.
When a knot K is equivalent to itsmirror image K !, we say that K is amphicheiral

or achiral. When a knot K is not equivalent to its mirror image K !, we say that K
is chiral or K is not amphicheiral.

The figure-eight knot is amphicheiral, and the trefoil knot is chiral.7

A right-handed trefoil knot is a knot equivalent to the one depicted in Fig. 2.1,
and its mirror image is called a left-handed trefoil knot.

It is obvious that (−K )! = −(K !) for any oriented knot K . When K ∼= K ! as
oriented knots, we say that K is positive amphicheiral. When −K ∼= K !, we say
that K is negative amphicheiral.

Example 2.1.3 The knot 817 (Fig. 2.5) is amphicheiral. Deform the knot as in illus-
trated in Fig. 2.5 (Right) and denote it by K . The dashed line means a 3-ball B3. We
divide the knot K to two arcs a1 and a2 such that a1 is inside B3 and a2 is outside.
Let h1 : R3 → R

3 be the homeomorphism with h1(x, y, z) = (−x,−y,−z). Then
h1(a1) = a1. Let h2 : R3 → R

3 be a homeomorphism such that the restriction to B3

is the identity map and that h2(h1(a2)) = a2. The homeomorphism h2 ◦ h1 revises
the orientation of R3 and K ! = h2 ◦ h1(K ) = K . Hence K is amphicheiral.

Now we give an orientation to K and regard K as an oriented knot. Since
K ! = h2 ◦ h1(K ) = −K , the knot K is negative amphicheiral. The knot K is
not positive amphicheiral. (If K is positive amphicheiral, then it is positive and neg-
ative amphicheiral. This implies that K is invertible. However, it is known that K is
not invertible.8)

When two links L1 and L2 can be separated by a 2-sphere embedded in R
3, we

say that the link L = L1 ∪ L2 is a split union or a split sum of L1 and L2, and we
denote it by L1 ◦ L2. A link L is non-split if there exists no 2-sphere that separates L
into two sub-links. For given links L1 and L2, a split union L1 ◦ L2 is defined after
moving L1 or L2 such that they are separated by a 2-sphere in R3. The split union of
L1 and L2 is uniquely determined up to equivalence. Note that for links L1, L2 and
L3, (L1 ◦ L2) ◦ L3

∼= L1 ◦ (L2 ◦ L3).
A split union of μ trivial knots is called a trivial link with μ components.

6Hint. Let r ′ : R3 → R
3 be an orientation-reversing homeomorphism. Then r ◦ (r ′)−1 : R3 → R

3

is an orientation-preserving homeomorphism sending r ′(K ) to r(K ).
7The Jones polynomials (Sect. 2.7) of the trefoil knot and its mirror image are different.
8Refer to A. Kawauchi [93] and H.F. Trotter [176].
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Fig. 2.7 A regular
projection (Left) and a
diagram (Right)

Proposition 2.1.4 For a link L, the following conditions are mutually equivalent:

(1) L is a trivial link.
(2) L is the boundary of some mutually disjoint 2-disks embedded in R3.
(3) By an ambient isotopy of R3, L can be moved into a plane in R3.

Let K be a knot, or a link. Let f : K → R
2 be the composition of the inclusion

map ι : K → R
3 and the projection pr : R3 → R

2; (x, y, z) �→ (x, y). When f is
an immersion and every multiple point9 is a transverse double point, we say that K
is in general position with respect to the projection pr : R3 → R

2, and we call f or
the projection pr a regular projection of K . The image f (K ) by a regular projection
is also called a regular projection. See Fig. 2.7 (Left).

A double point of a regular projection is also called a crossing point or a crossing.
For a crossing p the inverse image f −1(p) consists of two points, say p1 and

p2. Assume that the z-coordinate of p1 is greater than that of p2. We call p1 the
overcrossing point, and p2 the undercrossing point. Taking a small neighborhood
N (p) = N (p;R2) of p in R2, the inverse image f −1(N (p)) is a union of two arcs,
say a1 and a2, such that p1 ∈ a1 andp2 ∈ a2. We call the arc a1 the over-arc of K at
p, and a2 the under-arc. The image f (a1) of the over-arc a1 is called the over-arc
of f (K ) at p, and the image f (a2) the under-arc of f (K ).

A diagram of a knot K means the regular projection f (K ) equipped with the
over-arc and under-arc information at each crossing point. A standard method of
describing the over-arc and under-arc information at a crossing point is removing a
small under-arc from f (K ) as in Fig. 2.7 (Right). We use this method in this book.

The local transformations on diagrams depicted in Fig. 2.8 are called
Reidemeister moves. They are called Reidemeister moves of type I, type II and
type III, respectively.10

Two diagrams are said to be Reidemeister equivalent or equivalent if they are
related by a finite sequence of Reidemeister moves and ambient isotopies of R2.

9A point p of f (K ) is a multiple point if f −1(p) consists of two points or more.
10The move indicated with III# in Fig. 2.8 is also a Reidemeister move of type III. For convenience,
here we distinguish between the moves of type III and III#.
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Fig. 2.8 Reidemeister moves
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Fig. 2.9 A relationship between a move of type III and a move of type III#

II II IIIII

Fig. 2.10 A pair of moves of type I obtained by moves of type II and III

Remark 2.1.5 A move of type III# is obtained by a sequence of moves of type III
and of II. Conversely, a move of type III is obtained by a sequence of moves of
type III# and II (Fig. 2.9). Thus, for the definition of Reidemeister equivalence, it is
sufficient to consider one of the moves of type III or III#.

Remark 2.1.6 Figure2.10 shows that a pair of moves of type I is obtained by a
sequence of moves of type II and III.

Theorem 2.1.7 (Reidemeister’s theorem) Let K and K ′ be knots (or links), and let
D and D′ be their diagrams. The knots (or links) K and K ′ are equivalent if and
only if D and D′ are Reidemeister equivalent.11

When K is an oriented knot, a diagram D of K is also assigned the orientation.
Reidemeister moves are considered on oriented diagrams of knots and links.

11This is due to K. Reidemeister in the 1926 article [145]. It is also found in the 1927 article by
J.W. Alexander and G.B. Briggs [4]. Refer also to Reidemeister’s book [146–148].
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Fig. 2.11 A generating set of Reidemeister moves on oriented diagrams

Fig. 2.12 An oriented move of type II with parallel orientations

Fig. 2.13 Another generating set of Reidemeister moves on oriented diagrams

Theorem 2.1.8 Let K and K ′ be oriented knots (or links), and let D and D′ be
their diagrams. K and K ′ are equivalent if and only if D and D′ are Reidemeister
equivalent.

It is known that the Reidemeister equivalence on oriented diagrams is accom-
plished by using the five moves depicted in Fig. 2.11 and ambient isotopies of R2.
For example, an oriented move of type II with parallel orientations can be realized as
shown in Fig. 2.12 by using the moves in Fig. 2.11 and ambient isotopies of R2. The
four moves depicted in Fig. 2.13 are another generating set of oriented Reidemeister
moves.12

Oriented Reidemeister moves of type III are classified into two groups. A move
of type III is said to be of cyclic type if the arcs around the triangle appearing in the
center are oriented cyclically; otherwise, it is said to be of braid type.

12For details on these generating sets, refer to M. Polyak [136].
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Note that the move of type III in Fig. 2.11 is of braid type, while the move of type
III in Fig. 2.13 is of cyclic type.

Exercise 2.1.9 Observe that each step in the sequence of diagrams in Fig. 2.12 is a
move in Fig. 2.11 or an ambient isotopy of R2.

The number of crossings of a diagram D is denoted by c(D). For a knot K , the
crossing number c(K ) of K is defined by

c(K ) := min{c(D) | D is a diagram of a knot equivalent to K }.

2.2 Seifert Surfaces

Let K be an oriented knot. A Seifert surface of K means a compact, connected
oriented surface S in R3 with ∂S = K .

For an oriented link L , a Seifert surface is defined to be a compact oriented surface
S in R

3 with ∂S = L such that each connected component of S has a non-empty
boundary.13

The following theorem is due to F. Frankl, L. Pontrjagin [41] and H. Seifert [165].

Theorem 2.2.1 Any oriented knot, or link, has a Seifert surface.

Proof Let K be an oriented knot or link. Moving K by an ambient isotopy, we
assume that K is in general position with respect to the projection R

3 → R
2, and

consider a diagram, say D. Move K by an ambient isotopy so that most parts of K
is contained in the xy-plane, over-arcs of K at the crossings are in the upper half
space of R3 and the under-arcs are in the lower half space of R3. Let K ′ be the knot
in this way. Obviously K and K ′ has the identical diagram D. For a crossing of the
diagram, replace the over-arc and the under-arc of K ′ by two arcs as in Fig. 2.14.
This operation is called a smoothing. Applying smoothing at every crossing of D,
we obtain an oriented link, say L . The diagram of L has no crossings, and L is
contained in the xy-plane. Thus L is a trivial oriented link. Each circle of L is called
a Seifert circle. LetD be a union of mutually disjoint oriented 2-disks embedded in
the lower-half space with ∂D = L . See Fig. 2.15. For each crossing of D, attach a
twisted band to D as in Fig. 2.16 and we obtain a compact oriented surface S′ with
∂S′ = K ′. By reversing the ambient isotopy carrying K to K ′, we have an ambient
isotopy carrying S′ to a surface S such that ∂S = K . �

The method of constructing a Seifert surface in the proof above is called the
Seifert algorithm.14

13When μ ≥ 2, if an oriented link L with μ components has a Seifert surface such that the number
of connected components of S is μ, then L is called a boundary link.
14This method was introduced by H. Seifert [165]. Note that not every Seifert surface of a knot is
obtained by this method.
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Fig. 2.14 Smoothings of a diagram and Seifert circles

Fig. 2.15 Bounding disks to Seifert circles

Fig. 2.16 Attaching bands to obtain a Seifert surface

The minimum number among all genera of Seifert surfaces15 of K is called the
genus of K .

Exercise 2.2.2 Show that the genus of the trivial knot is 0 while the genus of the
figure-eight knot or the trefoil knot is 1.

Let S be a compact oriented surface in R
3. Let h : D2 × D1 → R

3 be a 3-
dimensional 1-handle in R

3 attaching to S (Sect. 1.1). We assume that h is coherent
with respect to the orientation of S. We call a 1-handle surgery on S along h a handle
addition to S.

A 2-handle surgery along a 3-dimensional 2-handle attaching to S is called a
handle reduction to S.

15The genus of a compact, connected, oriented surface means the genus of a closed surface obtained
by attaching disks along the boundary components.

http://dx.doi.org/10.1007/978-981-10-4091-7_1
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Consider an oriented 2-sphere inR3 that surrounds S, and apply a handle addition
to S ∪ S2 along a 1-handle connecting S and S2. This operation is called an infinity
passing move.

Definition 2.2.3 Let S and S′ be compact oriented surfaces inR3 such that ∂S = ∂S′.
We say that S and S′ are handle equivalent if there is a finite sequence of ambient
isotopes ofR3 rel ∂S, handle additions, handle reductions and infinity passing moves
that transforming S to S′.16

Theorem 2.2.4 Any two Seifert surfaces of an oriented link are handle equivalent.17

Whenwe consider non-orientable surfaces bounding a link,we have the following.
Let L be a link and N (L) a regular neighborhood of L .

Theorem 2.2.5 Let S and S′ be compact surfaces in R
3 with ∂S = ∂S′ = L.

If S ∩ N (L) = S′ ∩ N (L), then S and S′ are handle equivalent.18

2.3 Meridians and Longitudes

Let K be an oriented knot and N (K ) a regular neighborhood of K . There exists a
homeomorphism g : D2 × K → N (K ) with g((O, x)) = x (x ∈ K ). Here O is the
center of the 2-disk D2. The regular neighborhood N (K ) is also called a tubular
neighborhood.

A meridian disk of N (K ) means a properly embedded 2-disk D in N (K ) such
that K intersects D in a point transversely. An oriented loop in ∂N (K ) is called
a meridian of K if it bounds a meridian disk in N (K ). Here we assume that the
orientation of ameridian should be as in Fig. 2.17 (Left). Ameridianwith the reversed
orientation as in Fig. 2.17 (Right) is called a meridian with the negative orientation.

An oriented simple loop in ∂N (K ), say �, is called a longitude of K if it is
homotopic to K in N (K ).

A meridian of K in ∂N (K ) is uniquely determined up to ambient isotopy of
∂N (K ). However, a longitude � in ∂N (K ) is not determined uniquely up to ambient
isotopy of ∂N (K ). A longitude � with [�] = 0 ∈ H1(R

3 \ int N (K )) is called a
preferred longitude or a standard longitude. A preferred longitude is uniquely
determined up to ambient isotopy of ∂N (K ).

16When we consider surfaces S and S′ in S3, infinity passing moves are not needed. Handle equiv-
alence is also called tube equivalence in D. Bar-Natan, J. Fulman, and L.H. Kauffman [10].
17This theorem is used in J. Levine [109] to prove the uniqueness of the S-equivalence classes of
Seifert surfaces (Sect. 2.6). For a proof, refer to D. Bar-Natan, J. Fulman, and L.H. Kauffman [10]
or Proposition 7.2.2 of A. Kawauchi [96].
18When we consider non-orientable surface S, we do not assume that the 1-handle h is coherent
with respect to an orientation of S in the definition of a handle addition. This theorem can be proved
by an argument similar to the proof of Proposition 7.2.2 of A. Kawauchi [96].
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K

positive
orientation
(direction)

negative
orientation
(direction)

K

Fig. 2.17 Orientations of a meridian

Let S be a Seifert surface of K . A longitude � with � = ∂N (K ) ∩ S is a preferred
longitude. (Since � bounds a compact oriented surface S ∩ R

3 \ int N (K ) in R
3 \

int N (K ), we have [�] = 0 ∈ H1(R
3 \ int N (K )).) Conversely, for any preferred

longitude �, there exists a Seifert surface S with � = ∂N (K ) ∩ S.
The ambient isotopy class in ∂N (K ) of a longitude is called a framing of K .
For an oriented link L = K1 ∪ · · · ∪ Kμ, we consider a meridian mi and a

longitude �i for each component Ki . A meridian mi of Ki is uniquely determined
up to ambient isotopy of ∂N (Ki ). However, we may consider two kinds of preferred
longitudes of L .

Let �1, . . . , �μ be longitudes of K1, . . . , Kμ, respectively.

(1) When [�i ] = 0 ∈ H1(R
3 \ int N (Ki )) for i = 1, . . . μ, we call �1, . . . , �μ

absolutely preferred longitudes of L . For each i , �i is a preferred longitude of
Ki when we ignore the other components of L .

(2) When [�1]+· · ·+[�μ] = 0 ∈ H1(R
3 \ int N (L)), we call �1, . . . , �μ relatively

preferred longitudes of L .

Let L = K1 ∪ · · · ∪ Kμ be an oriented link. Longitudes �1, . . . , �μ are relatively
preferred longitudes of L if and only if there exists a Seifert surface S of L with
S ∩ ∂N (L) = �1 ∪ · · · ∪ �μ.

Figure2.18 (Left) shows absolutely preferred longitudes of a Hopf link, where
bold lines denote the link, and thin lines denote the longitudes. Figure2.18 (Middle)
shows relatively preferred longitudes. When we reverse the orientation of one com-
ponent K2 of the link, we have relatively preferred longitudes of K1 ∪ (−K2) as in
Fig. 2.18 (Right). Note that the longitude of K1 also changes.

K K
K-

K
K K

1 1
2

1
2 2

Fig. 2.18 Preferred longitudes
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Let K and K ′ bemutually disjoint oriented knots. The homologygroup H1(R
3\K )

is an infinite cyclic group, and the homology class [m] represented by a meridian m
of K is a generator. Then [K ′] = n[m] ∈ H1(R

3 \ K ) for some integer n. We call
this integer n the linking number of K and K ′, and we denote it by Lk(K , K ′).

Let K and K ′ be mutually disjoint oriented knots. Let S be a Seifert surface of K .
Moving K ′ slightly, we assume that K ′ intersects with S transversely in some points.
We assign a sign (∈ {+1,−1}) to each intersection of K ′ and S as in Fig. 2.19. The
sum of the signs over all intersections of K ′ and S is denoted by Int(S, K ′), and it is
called the algebraic intersection number or simply the intersection number of S
and K ′.

Similarly, let S′ be a Seifert surface of K ′. The algebraic intersection number
Int(S′, K ) is also considered.

Proposition 2.3.1 The equality Lk(K , K ′) = Int(S, K ′) = Int(S′, K ) holds.

The linking number and the intersection number are also defined for oriented
links. Let L = K1 ∪ · · · ∪ Kμ and L ′ = K ′

1 ∪ · · · ∪ K ′
ν be mutually disjoint links.

Letm1, . . . ,mμ be meridians of L . The homology group H1(R
3 \ L) is a rank μ free

abelian group, with basis {[m1], . . . , [mμ]}. When [L ′] = n1[m1] + · · · + nμ[mμ],
we define the linking number by Lk(L , L ′) = ∑μ

i=1 ni .
Let S be a Seifert surface of L , and let Int(S, L ′) be the algebraic intersection

number of S and L ′. Then Lk(L , L ′) = Int(S, L ′).

Exercise 2.3.2 Prove that when we move L ∪ L ′ by an ambient isotopy of R3, the
linking number Lk(L , L ′) does not change.

Linking numbers can be calculated from diagrams. For a diagram of an ori-
ented knot or link, each crossing looks as in Fig. 2.20. We call a crossing a positive
crossing or a negative crossing, respectively. The sign of a crossing v is +1 or −1,
respectively, and we denote it by sign(v).

Let L and L ′ be mutually disjoint links, and let D be a diagram of L ∪ L ′. Let
X (L > L ′) be the set of crossings of D such that the over-arc is in L and the under-
arc is in L ′. Let X (L , L ′) be the set of crossings of D such that (i) the over-arc is in
L and the under-arc is in L ′ or (ii) the over-arc is in L ′ and the under-arc is in L .

Fig. 2.19 Signs of
intersections and normal
orientations

positive
intersection

negative
intersection

positive normal orientation negative normal orientation

Fig. 2.20 A positive
crossing and a negative
crossing

sign(  )= +1 sign(  )= -1v v

positive
crossing

negative
crossing
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Proposition 2.3.3 Lk(L , L ′) = ∑
v∈X (L>L ′) sign(v) = 1

2

∑
v∈X (L ,L ′) sign(v).

Proof We first prove the left equality. Let v be a crossing of D belonging to X (L >

L ′). Replace the diagram so that the over/under information at v is switched. (This
operation is called a crossing change, which is an unknotting operation (Sect. 7.3).)
Let D′ be the diagram after the crossing change, and let L ∪ L ′

(1) be a corresponding
oriented link. Here we change L ′ by L ′

(1) without changing L . The difference [L ′] −
[L ′

(1)] in the homology group H1(R
3 \ L) is the class of a meridian of L . Thus

the linking number decreases by sign(v). Applying crossing changes at all crossings
belonging to X (L > L ′), we obtain a link L∪L ′′ such that Lk(L , L ′) = Lk(L , L ′′)+∑

v∈X (L>L ′) sign(v). Since L and L ′′ are split, we have Lk(L , L ′′) = 0. Thus we have
the left equality. We omit the proof for the right equality. �

Linking numbers have the following properties.

Proposition 2.3.4 For mutually disjoint links L and L ′, the following holds:

(1) Lk(L , L ′) = Lk(L ′, L).
(2) Lk(−L , L ′) = Lk(L ,−L ′) = −Lk(L , L ′).
(3) When L = L1 ∪ · · · ∪ Lμ and L ′ = L ′

1 ∪ · · · ∪ L ′
ν ,

Lk(L , L ′) =
μ∑

i=1

ν∑

j=1

Lk(Li , L
′
j ).

2.4 Band Surgeries and Connected Sums

Let L be a link. An embedded 2-disk B in R
3 is called a band attaching to L if

B ∩ L = ∂B ∩ L and this is a union of two disjoint arcs. The two arcs are called the
attaching arcs of the band.

A band B attaching to a link L is a 2-dimensional 1-handle in R
3 attaching to

L in the sense introduced in Sect. 1.1. An embedding h : D1 × D1 → R
3 with

L ∩ h(D1 × D1) = h(D1 × ∂D1) is a 2-dimensional 1-handle, and the image
h(D1 × D1) is a band B attaching to L . The attaching arcs α ∪ α′ are the attaching
region. The core h(O × D1) of the 1-handle h is called a core of the band B.

Put h(L; B) := h(L; h) = L ∪ ∂B \ (int α ∪ int α′), which is a link. We say that
h(L; B) is obtained from L by a band surgery along B. A band surgery is nothing
more than a 1-handle surgery. It is also called a hyperbolic transformation.

When mutually disjoint bands B1, . . . , Bn are attaching to a link L , we denote by
h(L; B1, . . . , Bn) the link obtained from L by applying band surgeries along them
simultaneously. It is also denoted by h(L; {B1, . . . , Bn}) or by h(L; B1 ∪ · · · ∪ Bn).
See Fig. 2.21.

Let L be an oriented link and let B be a band attaching to L . When a 1-handle
h : D1 ×D1 → R

3 with h(D1 ×D1) = B is coherent to the orientation of L , we say

http://dx.doi.org/10.1007/978-981-10-4091-7_7
http://dx.doi.org/10.1007/978-981-10-4091-7_1
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Fig. 2.21 Band surgery

SL L1 2
S

Fig. 2.22 A band sum

S 2 SL1 L

Fig. 2.23 A connected sum

that the band B is coherent to L . Then the link h(L; B) is regarded as an oriented
link with the orientation induced from the orientation of L .

Let L1 and L2 be two links that are separated by an embedded 2-sphere S in R3.
Let B be a band attached to L1 ∪ L2 such that one of the attaching arcs is on L1 and
the other is on L2. The link h(L1 ∪ L2; B) is called a band sum of L1 and L2 along
B (Fig. 2.22). Moreover, if the core of the band B intersects with S on a point, then
the link h(L1 ∪ L2; B) is called a connected sum of L1 and L2, that is denoted by
L1#L2 (Fig. 2.23).

Proposition 2.4.1 When K1 and K2 are oriented knots and the band B is coherent,
a connected sum K1#K2 is uniquely determined up to equivalence; that is, it is
independent of the choice of B.

Exercise 2.4.2 (1) Prove Proposition 2.4.1.
(2) Show that K1#K2

∼= K2#K1 and (K1#K2)#K3
∼= K1#(K2#K3).
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Fig. 2.24 A decomposition
of a link

S S

L
L L

A A A

1 2

1 2

Let L be a link and S a 2-sphere embedded in R
3 such that L intersects with S

transversely in two points p1 and p2. Take a simple arc in S connecting p1 and p2,
say A. Let L ′ be a link obtained from L by removing a neighborhood of {p1, p2} in
L and connecting the endpoints with two arcs A1 and A2 that are parallel to A. Then
L ′ = L1 ◦ L2. When neither L1 nor L2 is a trivial knot, we say that L is decomposed
to L1 and L2, and S is a decomposing sphere (Fig. 2.24). This operation is the right
inverse of the operation taking a connected sum, i.e., when L is decomposed into L1

and L2 then L = L1#L2.
A knot is called a composite knot if it is equivalent to a connected sum of two

non-trivial knots. In other words, a composite knot is a knot that can be decomposed
into two non-trivial knots. A knot is called a prime knot if it is not a composite knot.

Theorem 2.4.3 (The prime decomposition theorem) Any non-trivial knot is equiv-
alent to a connected sum of a finite number of prime knots. Such a prime decom-
position is unique, i.e., if K1#K2# · · · #Km

∼= K ′
1#K

′
2# · · · #K ′

n for prime knots Ki

(i = 1, . . . ,m) and K ′
j (n = 1, . . . , n), then m = n and there is a permutation σ on

{1, 2, . . . ,m} such that K1
∼= K ′

σ(1), …, Km
∼= K ′

σ(m).
19

2.5 Knot Groups

Let K be a knot and N (K ) a regular neighborhood of K . The space E(K ) := R
3 \

int N (K ) is called the exterior of K , and the spaceR3 \K is called the complement
of K .

The fundamental group π1(R
3 \ K ) of the complement is called the knot group

of K and is denoted by G(K ). For a link, it is also called the link group.
If two knots are weakly equivalent, they have isomorphic knot groups. If two

knots have homeomorphic complements, then they have isomorphic knot groups.

Theorem 2.5.1 (1) Two knots having homeomorphic complements are weakly
equivalent.

(2) Two prime knots having isomorphic knot groups are weakly equivalent.

This theorem is due to C. McA. Gordon and J. Luecke [49].

19This theorem is due to H. Schubert [163]. For a link case, refer to Y. Hashizume [51].
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Fig. 2.25 Non-equivalent
knots having isomorphic
knot groups

Fig. 2.26 The relation rel(v)
at a crossing v:
x−1
j xi x j = xk a

a

a i

j

k

The two composite knots illustrated in Fig. 2.25 have isomorphic knot groups.
However they are not weakly equivalent.

Theorem 2.5.2 A knot is trivial if and only if the knot group is an infinite cyclic
group.20

The knot group can be calculated from a knot diagram. Let K be an oriented knot.
Consider a diagram D of K , that is a union of some mutually disjoint oriented arcs.
(The diagram D may have some loops without crossings. For simplicity, they are
also called arcs here.) Let Arc(D) = {a1, . . . , am} be the set of oriented arcs of D.

We assign the letter xi to the arc ai (for i = 1, . . . ,m), and consider the free
group 〈x1, . . . , xm〉. Let v be a crossing of D and let ai , a j , ak be the arcs appearing
around v. Suppose that a j is the over-arc at v. When we face v in the orientation
of a j , suppose that the arc on the right side is ai and the arc on the left side is ak .
See Fig. 2.26. Then we define the relation rel(v) by x−1

j xi x j = xk . (Note that in
the definition of rel(v), we do not use the orientations of ai and ak .) Consider the
relations rel(v1), . . . , rel(vn) for all crossings v1, . . . , vn of D.

Now we have a group presentation

〈x1, . . . , xm | rel(v1), . . . , rel(vn)〉.

The group determined by this presentation is called the group determined from the
diagram D and is denoted by G(D).

Theorem 2.5.3 Let K be an oriented knot and D a diagram of it. The knot group
G(K ) is isomorphic to the group G(D) determined from D.

Proof Move K by an ambient isotopy of R3 to obtain a knot K ′ as follows. The
intersection of K ′ and the xy-plane is D, and the remaining part of K ′ is in the open
lower-half space {(x, y, z) ∈ R

3 | z < 0} as in Fig. 2.27 (Right).We regard the arcs ai
(i = 1, . . . ,m) as subsets of K ′. The knot groups G(K ′) and G(K ) are isomorphic.

20This is due to C.D. Papakriakopoulos [134].



2.5 Knot Groups 31

Fig. 2.27 The relation at a
crossing: x−1

j xi x j = xk

a
a a

x x
x

i
j

k

i
j k

Take a base point p of G(K ′) in the open upper-half space {(x, y, z) ∈ R
3 | z > 0}.

For each arc ai (i = 1, . . . ,m), let Bi be ameridian disk at an interior point of ai . Take
apointqi on ∂Bi in the openupper-half space.Letαi be a straight path fromqi to p. Let
mi be a positive meridian loop that starts at qi and goes along ∂Bi . Then α−1

i miαi is a
loop in R3 \ K ′ with base point p. Put xi := [α−1

i miαi ] ∈ G(K ′) = π1(R
3 \ K ′, p).

The fundamental group G(K ′) is generated by x1, . . . , xm , and for each crossing
point, we have rel(v) : x−1

j xi x j = xk . By van-Kampen’s theorem, we see that G(K ′)
is isomorphic to G(D). For the details, refer to R.H. Crowell and R.H. Fox [30]. �

Let K be an oriented knot (or link),G(K ) the knot group with base point p. Let B
be a meridian disk of K , and q a point on ∂B. Let α be a path from q to p in R3 \ K .
We call the loop α−1mα a meridian loop or simply a meridian associated with α.
Here m is a loop with base point q that goes along ∂B in the positive direction. An
element of G(K ) represented by a meridian loop is called a meridian, a meridian
element or ameridional element.

The generators x1, . . . , xm of G(D) in the proof of Theorem 2.5.3 are meridians
of K ′.

The knot group G(K ) of a knot K is isomorphic to the group G(D) determined
from a diagram D, and the latter group has a presentation whose generators are
x1, . . . , xm , and each of the defining relations is in a form of x−1

k x−1
j xi x j . Such a

group presentation is called a Wirtinger presentation.

2.6 Seifert Matrices

Let K be an oriented knot or link, and S a connected Seifert surface of K . The positive
normal orientation of S is determined from the orientation of S as in Fig. 2.19.

For a union � of loops on S, we denote by �+ a parallel copy of � obtained by
pushing out � in the positive normal orientation of S, and by �− a parallel copy of �

obtained by pushing out � in the negative normal orientation of S.
Let φ : H1(S) × H1(S) → Z be the map defined by

φ(x, y) = Lk(�+
x , �y) (= Lk(�x , �

−
y ))
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where �x is a union of simple loops on S representing the homology class x , and
�y is one representing the homology class y. We call φ : H1(S) × H1(S) → Z the
Seifert form of K associated with S.

A presentation matrix V of the Seifert form φ with respect to a basis of H1(S) is
called a Seifert matrix of K .

A Seifert matrix V depends on a connected Seifert surface S and a basis of
H1(S). However, when we consider an equivalence relation on matrices called
S-equivalence, the S-equivalence class of V is determined from K .21

Let K be an oriented knot or link, and V a Seifert matrix of K . Let T V denote
the transpose of V . The signature sign(V + T V ) of the symmetric matrix V + T V
is uniquely determined from K . It is called the signature of K , and is denoted by
σ(K ).22

For a symmetric matrix M , after transforming M into a diagonal matrix, the
number of 0s appearing in the diagonal is called the nullity of M . The nullity of
V + T V is called the nullity of K , and is denoted by n(K ).

The absolute value |det(V + T V )| of the determinant of the matrix V + T V is
called the determinant of K , and is denoted by Det(K ).

The signature σ(K ), the nullity n(K ) and the determinant Det(K ) are invariants
of K .23

We denote by Z[t, t−1] the ring of integral Laurent polynomials in variable t .24

An Alexander polynomial of K is defined by det(V − t T V ) ∈ Z[t, t−1], which
is denoted by ΔK (t). It is determined up to multiplication by units ±tm (m ∈ Z) of
the ring Z[t, t−1].25

Exercise 2.6.1 For a trefoil knot and a figure-eight knot, compute their signatures,
determinants and Alexander polynomials.

2.7 Skein Relations and Polynomial Invariants

In this section we introduce some invariants of knots and links that can be computed
by using skein relations on diagrams. We assume that links are oriented.

A triple (D+, D−, D0) of link diagrams D+, D− and D0 is called a skein triple if
there exists a 2-disk, say M , in R2 such that (i) D+, D− and D0 are identical outside
M , (ii) the restrictions of D+, D− and D0 to M are as in Fig. 2.28, respectively.

21This is due to J. Levine [109]. Refer to A. Kawauchi [96] for details.
22Refer to H.F. Trotter [175], K. Murasugi [127], J. Levine [109], C. McA. Gordon and R.A.
Litherland [48] for signatures of knots and links.
23When K is a knot, n(K ) = 0.
24A Laurent polynomial is a polynomial that may have negative powers of the variable. When the
coefficients are integers, we call it an integral Laurent polynomial. For example, 3t2−6+2t−1−t−3.
25Refer to J.W. Alexander [3].
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Fig. 2.28 The local pictures
of D+, D− and D0 in a skein
triple

A triple (L+, L−, L0) of links L+, L− and L0 is called a skein triple if they have
diagrams in a skein triple.

In what follows, O means a trivial knot and (L+, L−, L0) means any skein triple
of links.

The Conway polynomial ∇L(z) of L is a link invariant that satisfies

∇O(z) = 1, ∇L+(z) − ∇L−(z) = z∇L0(z).

The latter equality is understood to hold for every skein triple (L+, L−, L0). This
condition is called the skein relation for the Conway polynomial.

The Alexander–Conway polynomial ΔL(t) of L is a link invariant that satisfies

ΔO(t) = 1, ΔL+(t) − ΔL−(t) = (
t1/2 − t−1/2

)
ΔL0(t).

This is an Alexander polynomial of L defined in the previous section using a Seifert
matrix. When we define ΔL(t) by the skein relation, we do not need to consider
it up to multiplication by units of the integral Laurent polynomial ring. It is also
obtained from the Conway polynomial by the relation ΔL(t) = ∇L(t1/2 − t−1/2).26

The Jones polynomial VL(t) of L is a link invariant valued in Z[t1/2, t−1/2] that
satisfies27

VO(t) = 1, t−1VL+(t) − tVL−(t) = (
t1/2 − t−1/2

)
VL0(t).

We denote by Z[�, �−1,m,m−1] the ring of integral Laurent polynomials in two
variables � and m.

TheHOMFLY-PT polynomial28 PL(�,m) is a link invariant that takes values in
Z[�, �−1,m,m−1] and satisfies

PO(�,m) = 1, �PL+(�,m) + �−1PL−(�,m) + mPL0(�,m) = 0.

26The invariant ∇L (z) was defined by J.H. Conway [29], where it was called the potential function
and the relathion between the Alexander polynomial and the potential funtion was given there.
27Refer to V.F.R. Jones [60, 61]. L.H. Kauffman [87, 88] introduced a state model for the Jones
polynomial.
28HOMFLY is the initials of the authors, P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett,
and A. Ocneanu of [36] (cf. [110]) and PT is that of the authors, J.H. Przytycki and P. Traczyk of
[142].
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The HOMFLY-PT polynomial is a generalization of the Jones polynomial, and it is
sometimes called the 2-variable Jones polynomial. The Conway polynomial is also
obtained from the HOMFLY-PT polynomial.

Exercise 2.7.1 For a trivial linkwith twocomponents, a trefoil knot and afigure eight
knot, compute theConwaypolynomials, the Jones polynomials and theHOMFLY-PT
polynomials.

2.8 2-Bridge Knots, Torus Knots, Satellite Knots

Let p : R3 → R, (x, y, z) �→ z be the projection.
Any knot K in R

3 is equivalent to a knot K ′ such that all maximal points of the
restriction map p|K ′ : K ′ → R are inR2×{a} and all minimal points are inR2 ×{b}
for some a > b. Then we say that K ′ is a bridge presentation of K . The number of
maximal points of K ′ is called the index of the bridge presentation.

The bridge index of a knot K is defined to be the minimum among all indices of
bridge presentations of K .

An m-bridge knot is a knot whose bridge index is m.
For links, one can also define the notions of a bridge presentation, the bridge index

and anm-bridge link. Note that if a link withμ components has a bridge presentation
of index m, then μ ≤ m. Thus the braid index of a link is greater than or equal to the
number of components.

A 1-bridge knot is a trivial knot. There are a lot of 2-bridge knots and 2-bridge
links.

For a sequence (a1, a2, . . . , an) of non-zero integers, let C(a1, a2, . . . , an) be the
knot or link illustrated in Fig. 2.29. Here a box indicated by a stands for |a| times
twists as in Fig. 2.30. For example, C(3, 4,−2, 3, 3) is depicted in Fig. 2.31.

a

a

a a

a-

a

n

n

- -
1

2

3 n

n

4

: odd

: even

Fig. 2.29 C(a1, a2, a3, . . . , an)

a
a a

a
a

-
: positive : negative

Fig. 2.30 A notation presenting twists
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Fig. 2.31 C(3, 4,−2, 3, 3)

Fig. 2.32 A meridian m and
a longitude l on a standard
torus

m

l

It is known that any 2-bridge knots and links are equivalent to C(a1, a2, . . . , an)
for some n and a sequence (a1, a2, . . . , an). It is said to be in Conway’s normal
form.29

There is another method of describing 2-bridge knots and links called Schubert’s
normal form.30 By H. Schubert [164], all 2-bridge knots and links are classified.

Let T be a standardly embedded torus in R
3, and let m and l be simple loops

illustrated in Fig. 2.32, whichwe call ameridian and a longitude. The first homology
group H1(T ) of T is an free abelian group with basis {[m], [l]}.
Proposition 2.8.1 (1) Let C be a simple loop on T such that [C] �= 0 ∈ H1(T ).

When [C] = p[m] + q[l] ∈ H1(T ), p and q are co-prime.
(2) For any co-prime integers p and q, there exists a simple loop C on T such that

[C] = p[m] + q[l] ∈ H1(T ).
(3) In (2), the ambient isotopy class of C in T is uniquely determined from p and q.

For a proof of this proposition, refer to D. Rolfsen [150].
A simple loop C on T is said to be of type-(p,q) if [C] = p[m] + q[l] �= 0 ∈

H1(T ).
A knot is called a torus knot of type-(p, q) if it is equivalent to a knot on T that

is of type-(p, q) (Fig. 2.33).
A link L with μ components is called a torus link of type-(a, b) if a/μ and b/μ

are co-prime integers and L is equivalent to a link on T each of whose components
is of type-(a/μ, b/μ).

A torus knot or a torus link of type-(a, b) is denoted by T (a, b) in this book.

29The length n and the sequence (a1, a2, . . . , an) are not determined uniquely. One may take such
a sequence (a1, a2, . . . , an) in even numbers. Especially, when we consider oriented 2-bridge knots
and links, a sequence (a1, a2, . . . , an) in even numbers is preferred.
30Refer to A. Kawauchi [94].
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Fig. 2.33 A torus knot of type-(3, 4)

KP KCpattern companion satellite knot

Fig. 2.34 A pattern KP , a companion KC and a satellite knot

Exercise 2.8.2 Show the following.

(1) T (−m,−n) ∼= −T (m, n) ∼= T (m, n).
(2) T (m,−n) ∼= T (m, n)!.
Theorem 2.8.3 Let p and q are co-prime integers. The following holds:31

(1) T (p, q) is a trivial knot if and only if p = ±1 or q = ±1.
(2) Let T (p, q) and T (p′, q ′) be non-trivial knots. T (p, q) and T (p′, q ′) are equiv-

alent if and only if (p′, q ′) equals one of (p, q), (q, p), (−p,−q) and (−q,−p).
(3) A non-trivial torus knot T (p, q) is chiral.

Let T be a standard torus in R
3 and m and l be a meridian and a longitude as in

Fig. 2.32. Let V be the solid torus in R
3 bounded by T .

Let KC be an oriented knot and N (KC) a regular neighborhood of KC , and letmC

and lC be a meridian and a preferred longitude on ∂N (KC). Let f : V → N (KC)

be a homeomorphism sending m to mC and l to mC .
For a knot KP in the interior int V of V , the image f (KP) is a knot in R

3 that is
contained in int N (KC).

Suppose that KC is a non-trivial knot, KP is not ambient isotopic in V to the core
of V , and m is not homotopic in V \ KP to a point (i.e., [m] �= 1 ∈ π1(V \ KP)).
Then we call the knot f (KP) a satellite knot, and call KP and KC the pattern and
the companion, respectively (Fig. 2.34).

31Refer to A. Kawauchi [96].
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Let K be a knot in S3 = R
3 ∪ {∞}. When the complement S3 \ K admits a

complete hyperbolic structure of finite volume, K is called a hyperbolic knot. The
figure-eight knot is a hyperbolic knot. There exist many hyperbolic knots. In fact,
the following is known.

Theorem 2.8.4 A knot K is a hyperbolic knot if and only if K is neither a torus knot
nor a satellite knot.32

32It follows from Thurston’s hyperbolization theorem. G. Perelman proved Thurston’s geometriza-
tion conjecture, that implies Thurston’s hyperbolization theorem and the Poincaré conjecture. Refer
to J. Morgan and G. Tian [125, 126].
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