Chapter 2
Spectral Analysis of Deterministic Process

Abstract This chapter analyzes a deterministic process in the frequency domain via
Fourier series (for period process) and Fourier Transform (for non-period process).
Estimators based on a sample time history of the process are introduced and their
possible distortions arising from finite sampling rate (aliasing) and duration (leak-
age) are discussed. The Fast Fourier Transform provides an efficient computational
tool for digital implementation. The chapter contains a section that connects the
presented mathematical theory to implementation in Matlab, which is a convenient
platform for scientific computing.

Keywords Fourier series - Fourier Transform - Fast Fourier Transform - Matlab -
Aliasing - Leakage

A time series, or ‘process’, describes how a quantity varies with time. Viewing as a
function of time allows one to see, e.g., when it is zero, how fast it changes, the
minimum and maximum values. This ‘time domain’ view is not the only per-
spective. One useful alternative is the ‘frequency domain’ view, as a sum of
‘harmonics’ (sines and cosines) at different frequencies and studying how their
amplitude varies with frequency. This view is especially relevant for a variety of
processes that exhibit variations at different time scales, revealing the characteristics
of contributing activities. It also offers a powerful means for studying the oscillatory
response of systems with resonance behavior.

In this chapter we introduce the theory for analyzing a process in the frequency
domain, namely, ‘Fourier analysis’. The basic result is that a periodic process can
be written as a ‘Fourier series’ (FS), which is a sum of harmonics at discrete
frequencies. An analogous result holds for a non-periodic process with finite
energy, where the sum becomes an integral over a continuum of frequencies and is
called ‘Fourier Transform’ (FT). In digital computations, the integrals involved in
Fourier analysis can be approximated in discrete time and computed efficiently via
the ‘Fast Fourier Transform’ (FFT) algorithm. This approximation leads to dis-
tortions, namely, limited scope by ‘Nyquist frequency’, ‘aliasing’ and ‘leakage’.
These must be in check so that the calculated results reflect well their targets and are
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correctly interpreted. Fourier theory is often introduced in undergraduate texts of
differential equations, e.g., Boyce and DiPrima (2005). See Champeney (1987) for
Fourier theorems and Sundararajan (2001) for FFT. Digital signal processing is a
closely related subject, see, e.g., Lathi (2000). Smith (2002) gives a non-technical
coverage.

As the title tells, this chapter is about ‘deterministic process’, where the subject
time series is taken as ‘fixed’ or ‘given’. No probability concept is involved. While
all data (including the ones in operational modal analysis) are by definition deter-
ministic when they are obtained, their downstream effects can be understood much
better when they are modeled using probabilistic concepts. This will be taken up in
Chap. 4, where Fourier analysis is applied in a probabilistic context.

2.1 Periodic Process (Fourier Series)

A periodic process repeats itself at a fixed time interval. We say that a function x(z)
of time ¢ (s) is ‘periodic with period 7" if T is the smallest value such that

x(t+T)=x(¢t) foranyr (2.1)

The proviso ‘the smallest value’ is necessary to remove ambiguity, because if (2.1)
holds then for any integer m:

x(t+mT) =x@t+m—-1)T+T)=x@t+(m—-1)T)=---=x(t+T) = x(¢)
(2.2)

According to the Fourier theorem, a periodic process x(¢) can be written as a
‘Fourier series’ (FS):

x(t) = ap+ Z ay cos it + Z by sin @yt o = % (2.3)
k=1 k=1

Here, a; and by are called the (real) ‘Fourier series coefficients’, associated with
harmonic oscillations with period T/k (s), i.e., frequency @ = 2nk/T (rad/s). This
can be seen by noting that as ¢ goes from 0 to 7'/k the argument & in the cosine
and sine terms goes from 0 to 2w, hence completing one cycle. The term ag
accounts for the constant ‘static’ level of the process. Generally, a periodic process
need not be just a finite sum of cosines and sines, but the Fourier theorem says that
by including an infinite number of them with systematically increasing frequencies
it is possible to represent any periodic process.
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Amplitude and Phase
By writing

ay COS it + by sin iyt = \/af—kbz[\/w cos it + \/..__7 sin @t

cos qbk sin qbk
(2.4)

and using the compound angle formula cos(0; — 0,) = cos 0} cos 6, + sin 0, sin 65,
(2.3) can be written as

b
—ao—i-Z\/ak—i-bzcos cok t— d)k) tand)k:a—k (2.5)

k

amphlude trequency phdw

Expressions of Fourier Series Coefficients
Clearly, a; and by depend on x(z). They are given by

T/2
1
ao=1 / x(t) dt (2.6)
-T/2
2 T/2
== f ) cos @yt dt
7T/2 _
i k=1,2,... (2.7)
== f ) sin @yt dt
T 1p

In these expressions, the integration domain can be any continuous interval of
length T because x(z) has period T.

Proof of (2.6) and (2.7) (Fourier Series Coefficients)

The expression of aj in (2.6) can be shown by integrating both sides of (2.3) w.r.t.
t from —T/2 to T/2 and noting that the integrals of sines and cosines on the RHS
are all equal to zero. The derivation of a; and by (k > 1) makes use of the following
results (j and k are non-zero integers):

/2
_ (0 j#k
/ cos (;t cos iyt dt = { T/2 =k (2.8)
-T/2
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/2
L [0 j#k
/ sin ;¢ sin (gt dt = { T)2 =k (2.9)
)
/2
/ cos @;t sin tdt =0 any j, k (2.10)
-7/2

In particular, multiplying both sides of x(r) = ap+ 3%, ajcos @z + 3%, by sin ajt
with cos @t and integrating from —7/2 to T/2,

akT/Z
T/2 T/2 © T/2
/ x(t) cos @yt dt= ay / cos oyt dt + Z a; / COs (;t COs (it dt
-T/)2 -T/)2 =
0 T/2if j=k; else 0 (2.11)
)
G P _ akT
b; it tdt=—
+ Z} j / sin @;t cos Wy 5
U

0

Rearranging gives the expression of a; in (2.7). Multiplying x(7) = ap+
>y ajcos it + Y X, bysina;t with sin @t and following similar steps gives the
expression of by in (2.7). |

2.1.1 Complex Exponential Form
The FS in (2.3) contains for each frequency a sine and cosine term. It is possible to

combine the two terms into a single term using the ‘Euler formula’:

e’ =cosO+isind i =-1 (2.12)
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for any real number 6. Conversely, cosine and sine can be written in terms of ¢ as

cos 0 = = (el 471 sinf = %(ew —e 1) (2.13)

N —

Applying these identities to (2.3) and writing 1/2i = —i/2 gives

ay _ > ib k -
£ = "k lwkt lout kK l(L)kl iyt
x(t) ao+;2( +e +I; 5 )
=1 | . (2.14)
= ay + Zi(ak —iby) el + Zi(ak +iby) eIV
c e e — e ———
0 Ck C_k
The FS can then be written in a compact manner as
= - _ 2mk
x()= Y ad™ o= - (2.15)

where {c};- . are the ‘complex Fourier series coefficients’, related to the real

ones by )
1 .
= =gl —ib) oy, 2.16
o ao Ck:%(ak-f-ibk) gLy ( )
Substituting (2.7) into (2.16) gives ¢, in terms of x(¢):
/2
1 . 2nk
¢ =7 / x()e ™ dt @y = % k=0,£1,42,... (2.17)
-T/2
It can be verified that ¢; has the ‘conjugate mirror property’:
C_y =Ck (218)

where a bar on top denotes the complex conjugate, i.e., a + bi = a — bi for real
numbers a and b.

The complex form of FS significantly simplifies algebra in Fourier analysis and
is widely used. It takes some time to master algebraic skills with complex numbers
but is worthwhile to do so.
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2.1.2 Parseval Equality

The ‘energy’ of a process when viewed in the time or frequency domain can be
equated via the ‘Parseval equality’, which appears in different forms depending on

the context. For a periodic process with finite energy ffo/z )c(t)2 dt < o0,

T/2
1 1 o0 o0
- / Pdi=a@+ 33 @G+ = Y lal (2.19)
k=1 k=—00
-

——
— Freq. domain real coeff. Freq. domain complex coeff.
Time domain

The leftmost expression may be interpreted as the average energy per unit time.
The Parseval equality says that this energy can be viewed as the sum of contri-
butions from harmonics at different frequencies. If one substitutes the FS of x(¢) in
(2.3) into the leftmost expression, after squaring, one will obtain an integral of a
double sum of cosine and sine products. The non-trivial (and beautiful) result is that
only the integrals of cos X cos and sin X sin terms with the same frequency are
non-zero, giving the neat frequency domain expressions in the middle and right-
most that contain no cross terms.

Proof of (2.19) (Parseval Equality, Fourier Series)

We prove the Parseval equality (2.19) using the complex FS in (2.15). Writing

22 = XX,

T/2 T/2
! 1 - ia o .
T / x(l)zdIZ— / (Z cke'w”> (/Z C—je—l(()/-t> dt
T/2 T/2 k=—00 j=—00
Ly y " o 2.20
= = i(wp—a;)t ( )
— 7 Ckcj/ e it dt
—_——
T if j=k;else O
00
= 2 lad
k=—00

In the second equality, the order of infinite sum and integration has been swapped,
which is legitimate when the process has finite energy. The result of the integral can
be reasoned as follow. Clearly, it is equal to T when j = k. Otherwise (j # k),
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n(k—j) n(k—j)

0
72 — — PR S
/ RICE e (@ = @))T/2 _ ooy — @)T/2 ~ 2isin n(k —j)
B i (o — @) " 2mi(k—))/T
“1/2 ol
2n(k—j) /T

(2.21)
|

2.2 Non-periodic Process (Fourier Transform)

If a process is not periodic then it cannot be written as a FS. In this case, if it has
finite energy then it can still be represented as a sum of harmonics, although now
there is a continuum of contributing frequencies, each with infinitesimal contri-

bution. Specifically, a process x(f) defined for —oo<r<oo with finite energy

[, x(t)? dt < oo can be written as

x(t) = — / X(w)e dow (2.22)

X(w) = [ - x(r)e " dr (2.23)

Here, X(w) is called the ‘Fourier Transform’ (FT) of x(¢); and x(¢) is the ‘inverse
Fourier Transform’ of X(w). In FT, the frequency w is continuous-valued. This is in
contrast to FS, where the frequencies {@y} are discrete-valued. The factor 1/2x in
(2.22) may appear peculiar but it can be explained by consideration of units; see
Sect. 2.7.1 later.

2.2.1 From Fourier Series to Fourier Transform

FT can be reasoned from FS as follow. Consider approximating x(7) by a periodic
function x,(r) with period T, where x,(r) = x(t) for —T/2<t<T/2 but simply
repeats itself elsewhere. This is illustrated in Fig. 2.1.

Intuitively, x,(z) (as a function) converges to x(f) as T — oo. For a given 7, let
cx be the complex FS coefficients of x,(r) at frequency @; = 2mk/T. Then
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Fig. 2.1 Original process x(r) and periodic proxy x,(t)
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since x,(f) =x(r) for —T/2<t<T/2. Using Cauchy-Schwartz inequality
(Sect. C.5.6),

T/2 T/2 | )
ek g )2 dix le P ar< = [ x(t)*dr (2.25)
—— T
-T/2 -T/2 1 —00
T

< 7 x(1)? dt

Since f dt<oo the above implies |cx| — 0 as T — oo. This indicates that
FS coefﬁc1ents are not legitimate quantities for studying the frequency character-
istics of a non-period process, because they all diminish trivially as T — oo, no
matter what the process is. The factor 1/7 is the source of diminishing magnitude.

The following function is motivated by taking out the factor 1/7 in (2.24) and
replacing @y by the continuous-valued frequency variable :

/)2

X, (o) = / x(f)e i dr (2.26)

-1)2

By construction, ¢x = X,(@;)/T and so



2.2 Non-periodic Process (Fourier Transform) 37

o0 o0
L 1
B =D ™ =Y X, (@) (2.27)

k=—00 k=—00 r

As T — oo, x,(f) — x(¢) as a function. Also, the frequency interval Aw =
@y +1 — @ = 2n/T diminishes. The infinite sum on the RHS of (2.27) tends to an
integral. Thus,

. . - g Ao 1 r o
o) = fim x,0) = Jim 3 X(@)e T =5 [ X@)ddo (.28
where
X(0) = Jim X,(0) = / x(t)e " di (2.29)

In the above reasoning, we have swapped the order of limit and integration. This is
legitimate when the process has finite energy.
2.2.2 Properties of Fourier Transform

Some properties of FT are listed in Table 2.1. They can be shown directly from
definition. The symbol F{x} denotes the FT of x(z). It is a function of frequency w
but this is omitted for simplicity.

Table 2.1 Some properties of Fourier Transform

Property Description

Conjugate Let X(w) be the FT of x(¢). Then X(—w) = X(w)

mirror

Linearity For any scalars a and b, F{ax+ by} = aF{x} +bF{y}

Differentiation | F{x} = ioF{x}

Time shift For any s, let y(¢) = x(¢+s). Then F{y} = e/ F{x}

Convolution Let z(7) be the ‘convolution” between x(¢) and y(¢), defined as
2(t) = [ x(r —1)y(r)dr
The FT of convolution is equal to the product of FTs, i.e.,
F{z} = F{x}F{y}
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2.2.3 Dirac Delta Function

The ‘Dirac Delta function’ d(¢), or Delta function in short, is an idealized unit
impulse of arbitrarily short duration centered at t = 0. It does not exist physically
but is frequently used in analysis and modeling. It has the property that

/ 5(1)x(e) dt = x(0) (2.30)

for any ¢ > 0 and function x(z). The FT of the Delta function is simply the constant
1 because

oo
/ d(t)e dr = e =1 for any w (2.31)

—00

The inverse FT of the constant 1 gives the FT representation of the Delta function:
1 o0
3(t) =5 / e“'dw (2.32)
This is frequently used in Fourier analysis.

2.2.4 Parseval Equality

For a non-period process x(z) that has FT X(w), the Parseval equality reads

/ x(t)2dt:% / X ()P de (2.33)

Proof of (2.33) (Parseval Equality, Fourier Transform)
The proof for (2.33) has a similar structure as the one in (2.20) for FS, except that
the infinite sums now become integrals:
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x(1) x(1)

oo

o o 1 o0 . 1 _ »
/x(t)zdt:/ 7 / X(w)e"dw, 7 / X(o)e ' do| dt
1

()X ()@= de' dendt

|
>

-2 / / X(0)X(0) 5 / O gt o deo -
:% / X(w) / X(0)d(w — o) do' do
X(o)
o
:% / X ()| dew

In arriving at the third equality, the order of integration w.r.t. ¢ and (w, @) has been
swapped. This is legitimate when the process has finite energy. |

2.3 Discrete-Time Approximation with FFT

In digital computations, a process is sampled at discrete time instants. The integrals
in FS and FT can be approximated by a Riemann sum on the grid of sampled time
instants. Let {x; = x(jAr) }jv:f)l be the N sample values of x(r) at equal time interval
At (s). A discrete-time approximation to the FT of x(z) is constructed by replacing

the integral in (2.23) with a Riemann sum:

® N—1
X(w) = / x()e W dt m X(w) = xe UM AL (2.35)
e =

Here, X(w) is called the ‘discrete-time Fourier Transform’ (DTFT) of x(r).

Evaluating X (o) for a given value of o involves a summation in the time domain.
In practice it is only calculated at the following uniformly spaced frequencies:
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2nk
o = % (rad/s) k=0,...,N — 1 (FFT frequencies) (2.36)

It is because the values of X(w) at these frequencies can be evaluated very effi-
ciently. This is discussed next.

2.3.1 Fast Fourier Transform

The ‘Fast Fourier Transform’ (FFT) algorithm (Cooley and Tukey 1965) provides
an efficient means for calculating the values of DTFT at a specific set of frequencies
as in (2.36). It is commonly coded in commercial software or programming
packages; see Sect. 2.9 later for an introduction. Here we focus on the definition
and properties of FFT.

The FFT of {xj}j.vzgl is the sequence {y;};_, defined by

N—1
Y=y xe N k=0, ,N-1 (FFT) (2.37)
=0

The ‘inverse FFT” of {y;}}, is defined as the sequence {zj}jv:f)l where

1 M=l 5
Z = Nkz:;ykeszkm j=0,....,N—1 (inverse FFT) (2.38)

Note that {yk}sz_ol is generally complex-valued, even though {xj}j]\]:f)l is
real-valued. In the literature, { yk}sz_Ol is referred as the ‘discrete Fourier Transform’

(DFT, not to be confused with DTFT) of {xj}]l-vzgl. In this book, we simply refer it as

FFT, because DFT is almost always evaluated via FFT and there is little distinction
between the two terms.

Inverse FFT Recovers the Original Sequence

The following shows that inverse FFT indeed recovers the original sequence that
produces the FFT, i.e., xj = z;,j = 0,...,N — 1. Substituting y; = erv:—ol x,e~2mrk/N
into (2.38),
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2

-1
_ 1 x,e 2k/N Q2Tik/N Zx Zezmo Y/N _ —x (2.39)
k:O r r=0 =

Il
<}

Yk Nif r=jielse 0

The result of the sum over k used above is discussed next.

Exponential Sum Formula

Sums of exponentials are frequently encountered in Fourier analysis and it is worth
to get familiarized with their analytical formulas. One basic result is that for any
integer k,

(2.40)

= 2N N k/N=0,+1,+2, .
otherwme

J=0

The first case when k is an integer multiple of N is trivial because e>™ = 1 for any
N-1

integer p. Otherwise, using the geometric series summation formula Z o al =
(1—a")/(1 — a) with a = e*™/N,
1
N-1 . | — o2rik k
Z e ™ / = l_em =0 (N not lnteger) (241)
Jj=0 N——
#1

Taking complex conjugate on (2.40) shows that the result is the same if 27ijk /N is
replaced by —2mijk/N.

Conjugate Mirror Property
The FFT {y}") of a real-valued sequence {xj};\:ol has the conjugate mirror
property that

YNk =Tk (2.42)

This is because

N-1 N—1
YNk = ije%nij(N*k)/N - ZXJ —2mij G2mijk/N _ er wkIN = 3 (2.43)
=0 =0 1

The conjugate mirror property is illustrated in Fig. 2.2. About half of the FFT
sequence carries redundant information, in the sense that it can be produced as the
complex conjugate of the other half.
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Im Im

(a) N odd (b) N even

Fig. 2.2 Conjugate mirror property of the FFT of a real-valued sequence. a N odd; b N even.
Ny, = integer part of N/2, is the index at or just below the ‘Nyquist frequency” (Sect. 2.4.1)

2.3.2 Approximating Fourier Transform and Fourier Series

Back to the problem of approximating the FT X(wy) with the FFT of {x; =
x(jA?) ;V:?)l as in (2.35). Denoting X; = X(wy) and noting wjAr = 2mjk/N,

N—1

= A e 2N (2.44)
j=0
ik (FFT)
Thus,
X(wp) =~ Xi = At (2.45)

For FS coefficients, let {x; = x(jAr) f:ol be the sampled sequence of a periodic
process x(#) with period 7. Assume that NAt = T so that the FFT frequency w; =
27k /N At coincides with the FS frequency @, = 2nk/T. Approximating the integral
in (2.17) by a Riemann sum,

T/2
1 i A 1= i
= T / x(t)e ot e o Cr = M;xje 2nijk /N At (246)
-T/2 N
Yk
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Thus

Yk

Ck"rla‘CkZN

(2.47)

The use of ¢ in (2.46) can be generalized to allow NAt # T, which may provide
convenience in practice, e.g., when the period is not known, data duration is not
equal to the period, or it is desirable to estimate the FS of measured data using more
than one period to average out noise.

2.3.3 Parseval Equality

For a real-valued sequence {xj}jN:_Ol with FET {y;}%~,, Parseval equality reads

2
2

-1
1
> =23 Il (248)

—
Il
f=)

k

Il
o

Proof of (2.48) (Parseval Equality, FFT)
The structure of the proof is similar to that for FS in (2.20) or FT in (2.34):

Xj Xj
N—1 N—1 1 N—1 N
X-2 _ - 2nljk/N —2mijr/N
; N Ve ) e
j=0 j=0 k=0 r=0
N-1N-1N-1
_ 1 —2mij(k—r) /N (2.49)
— A2 Yiyr€ .
=0 k=0 =0
1 N—1N-1 N—-1
_ - 2mij(k—r)/.
== iy Yy Pt E el®
k=0 r=0 =0
N if r=k;else 0

2.4 Distortions in Fourier Series

The discrete-time approximation of FS and FT leads to errors of a characteristic
nature. In the first place, the approximation is valid only up to the ‘Nyquist fre-
quency’ (1/2At Hz). It is also contaminated with harmonics in the original process
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beyond the Nyquist frequency. This is known as ‘aliasing’, where high frequency
variations are mistaken as low frequency ones. It is the same mechanism that our
eyes see the rotor blade of a flying helicopter as slowly rotating (sometimes
reversing direction). There is further contamination from harmonics that do not
have an integer multiple of cycles within the measured time span, in a O(1/NAr)
neighborhood of the subject frequency (and aliased counterparts). This is known as
‘leakage’. Aliasing is not repairable after discrete-time sampling and so harmonics
beyond the Nyquist frequency should be filtered out beforehand. Leakage can be
suppressed by increasing data duration. We first discuss the distortions in the FFT
approximation of FS. The discussion for FT follows in the next section.

Recall the context in (2.46), where x(z) is a periodic process with complex

FS coefficients {c}po_; {x = x(jAt)}jV: ! is a discrete-time sample sequence of

x(1); {m}r, is the FFT of {xj}j]\]:_ol; and ¢ = yi/N is a discrete-time approxi-
mation of cy.

2.4.1 Npyquist Frequency

Although {Gk}i\:ol is a sequence with N terms, only the first half is informative.
This stems from the conjugate mirror property:

ek =k (2.50)

It implies that ¢; is conjugate symmetric about the index N/2, i.e., frequency
fv,, = (N/2)/NAt = 1/2At (Hz), which is called the ‘Nyquist frequency’. As a
result, ¢; can only give a proper estimation of ¢; up to the Nyquist frequency.

2.4.2 Aliasing

Aliasing occurs when the original process x(¢) contains harmonics at frequencies
beyond the Nyquist frequency. Suppose the data duration is equal to the period of
x(t), i.e., NAt = T. Then it can be shown that (see the end)

E‘k = Z CmN +k (251)

m=—0o0

In addition to ¢ (the m = 0 term), ¢, also contains other terms, cy+y, Cr+ony and so
on. To see the contributing (positive) frequencies, separate the sum into positive
and negative m, and use the conjugate mirror property of cy:
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Ck—CkJrE CmN +k T E CmN +k

m=meo (2.52)
=cr+ (CN+I< +owk+ ) F(eongrFeoovgr+ o)

=c+(engx+owin+ )+ (@ +ows+ o)

Combining the two infinite sums,

3 Cemvie + @) (2.53)

’ m=1
freq.fx freq fi freq mfy + £y freq.mf, —fx

aliasing

That is, ¢; is contaminated with contributions from frequencies (in Hz) f; & fy,
2fy = fy, ..., where f; = 1 /At is the sampling frequency and f; = k/NAt is the
subject FFT frequency. Aliasing occurs by the same mechanism when the data
duration is an integer multiple of the period. When the data duration is not even an
integer multiple of the period, there will also be ‘leakage’; see the next section.

Example 2.1 (Aliasing with a single harmonic) Consider x(7) = 2 cos 2nft,
which is a single harmonic with frequency f (Hz). Its real FS coefficients {ay, by }
are zero except a; = 2. Its complex FS coefficients {c;} are zero except ¢; = 1 and

c_1 = 1. Suppose we obtain the samples {x; :x(jAt)}jN 01 at Ar=0.1 s and

N =10, i.e., for a duration of NAr = 1 s. Using {xj}Nf0 , we estimate the complex
FS coefficients by the FFT approximation ¢; = Z Vo e 2N in (2.46).
Figure 2.3 illustrates the possible distortions in ¢, depending on the source
frequency f. The plots on the left column show x(¢) (dashed line) and the sample
points {)c_j}jligl (dots). The plots on the right column show |¢| (dot with stick)
versus the FFT frequency fy = k/NAt (Hz) for k =0,...,N — 1. The shaded part
from 5 Hz (Nyquist frequency) to 10 Hz (sampling frequency) is just the mirror
image of that from O to 5 Hz. It is usually not plotted but is shown here for
illustration. When f = 1 or 4 Hz, |¢| is correctly estimated up to the Nyquist
frequency. When f = 6 Hz or 11 Hz, which are beyond the Nyquist frequency, the
harmonic is mistaken (aliased) to be 4 Hz and 1 Hz, respectively. |

Proof of (2.51) (Aliasing, Fourier Series)
Since NAt =T, ®, = 2nr/T =2nr/NAt and so ®,jAt = 2mjr/N. Substituting
X =300 ce?/N into ¢ in (2.46),
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Fig. 2.3 FS amplitude of x() = 2 cos 2nft estimated via the FFT of {x; = x(jAr) I{V:Bl with
Ar=0.1sand N = 10, for f = 1,4,6 and 11 Hz. Left column: dashed line = x(t), dot = x;. Right

column: dot with stick = |¢x|

Aj

1 N—1 oo
G =— Creanjr/N e—2n1/k/N
N

j=0 r=—00

| o Vol - (2.54)
=5 cr X Zez’"/(’*k)/ N = Z CmN + k
r=—00 j=0 m=—00
Nif (r—k)/N=0,£1,%2,...;else 0
|

2.4.3 Leakage

Leakage occurs in the FFT approximation of FS when the data duration NAz is not
an integer multiple of the period 7. In this case, a given FS frequency @, = 2nr/T
need not be matched by a FFT frequency w; = 2nk/NAt. When this occurs, the FS
harmonic will ‘leak out’ to other FFT frequencies. Leakage (and aliasing) can be
explained by the following general formula that expresses ¢ as the convolution of

{e,}2_ . with a ‘kernel function’ K;(w):
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Go= Y cKi(wx — @) (2.55)
13 sin(NwAt/2) _;
K _ —lwjAr _ —i(N—1)wAt/2 2.56
1) N;e N sin(wAr/2) (2:56)

See the end for proof. In terms of the dimensionless variable u = wAt /2,

. At
Ki(@) = Dy(u)e ™&-Du = ‘;—n (2.57)
where
sin N7tu
D = 2.
w () N sin 7tu (23

is known as the ‘Dirichlet kernel’, which plays an important role in Fourier theory.

Equation (2.55) indicates that ¢; contains contributions from all FS frequencies.
The sum need not even contain a term at the subject frequency w;. The contribution
from frequency @, is not directly c,, but is ‘attenuated’ by K;(w; — @,), which
depends on how far @, is from wy.

Figure 2.4 shows a schematic plot of |Dy(u)|. It has a period of 1, with a
symmetric basic branch on (—1/2,1/2). In this branch it has a global maximum of
1 atu = 0; and a series of zeros at u = +1/N,£2/N, ..., up to £1/2. For u ranging
between +1/2, w = 2nu/At ranges between +xn/At (rad/s), i.e., £Nyquist fre-
quency. Due to convolution effect, ¢, comprises the harmonics in x() at frequencies

(1) near the subject frequency fy = k/NAr Hz;

(2) in a O(1/NAr) (Hz) neighborhood around f; (leakage); and

(3) in the O(1/NAt) (Hz) neighborhoods around f; & f, 2f; £ f;, ... (aliased
counterparts of leakage), where f; = 1/Ar Hz is the sampling frequency.

T
0

=
Lio)e

f 1
1 12
2 NN
... periodic ... 7 ... periodic ...
Basic branch

Fig. 2.4 Schematic plot of |Dy(u)|, the modulus of the Dirichlet kernel
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Example 2.2 (Leakage from a single harmonic) Revisit Example 2.1. Everything
else being the same, the sampling duration is now slightly extended to NAr = 1.2 s, i.e.,
with N = 1.2/0.1 = 12 points (A¢ = 0.1 s). Results analogous to Fig. 2.3 are shown
inFig. 2.5.Forf = 1,4, 6 and 11 Hz, the number of cycles within the data duration is
SNAr = 1.2,4.8, 7.2 and 13.2. None of these are integer and so leakage occurs, in
addition to aliasing (when f = 6 and 11 Hz). The FFT frequencies are now f; =
k/NAt =0, 0.833, 1.667, ..., 9.167 Hz, instead of 0, 1, ..., 9 Hzin Fig. 2.3. N

Proof of (2.55) (Leakage, Fourier Series)
Substituting the FS x; = >°°° _ ¢,el®/A" into & in (2.46),

= _Z Z l(ﬂr]At —lwijl Z Cr— Ze_l«m o )jAt (259)

7=0 r=—o0 r=——o0
Y Ki(wp — @)
where
Ki(w) = lNi g iw/Ar (2.60)
N =

as defined in (2.56). Using Z olal = (1 —d")/(1 — a) with a = e M,

1— efiNu)Al
Ki(w) = N{1 — e ToAr) (2.61)
1.5
o -
f=1Hz b T 1
2 e 0 L SN PP |
0 0.10203040506070809 1 1112 o 1 2 3 4 5 6 7 8 9 10
2. Py . 1.5
f=arz o[ v i
2 "\ ! A .,_-"' o s ot 0.5
0 o o. o . °? ? o o .

f=11Hz

bl

0
0 010203040506070809 1 1.11.2 o 1 2 3 4 5 6 7 8 9 10
t (sec) Freq. f, = k/NAt (Hz)

Fig. 2.5 FS amplitude of x(r) = 2 cos 2xft estimated via the FFT of {x; = x(jAt)}jl.V: 61 with Ar =
0.1 sand N =12, for f = 1,4,6 and 11 Hz. Same legend as in Fig. 2.3
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Note that for any real 6,

1— e—i(} — e—i()/Z (ei()/z _ e—i()/2) — 2ie—i()/2 Sln<0/2) (262)
N—————
2isin(0/2)

Using this identity,

 2ie VoA 2 5in(NwAt/2)  sin(NwAt/2) e—i(N-1oAr/2
 2ie wA2Nsin(wAt/2) N sin(wAt/2)

Ki(o) (2.63)

which is the rightmost expression in (2.56). |

2.5 Distortions in Fourier Transform

Nyquist frequency limit, aliasing and leakage in the FFT approximation of FT
occurs by a similar mechanism as in FS. Analogous to (2.55), the DTFT approx-

imation X () in (2.35) is related to the target FT X(w) by a convolution integral:

X(w) = % / X(o0 Ky (0 — o )do' (2.64)
—in(N—1)u wAt
K> (w) = NAIK, (w) = NAtDy (u)e w=—-— (2.65)

See the end for proof.

Aliasing and leakage can be explained based on (2.64). To see aliasing, note that
|Dn(u)| has local maxima 1 at u = 0,41,42,...; see Fig. 2.4. Correspondingly,
|Kz(w — @')| as a function of @' has local maxima at o' = w + 2nr/Ar¢ for
r=0,1,2,.... Using the conjugate  mirror property of FT,
X(w —2nr/At) = X(2nr/At — @), and so X(w) receives significant contributions
from the frequencies 2nr/At + w (r =0,1,2,...). This is aliasing.

To see leakage, note that X (w) at frequency  receives contribution from the FT
X(w') of the original process at frequency «'. The contribution is attenuated by
K>(w — '), which depends on how far @’ is from . For the contribution to be
non-zero, o’ need not be the subject frequency w or aliased counterparts. This is
leakage. Since a non-periodic process generally contains harmonics at a continuum
of frequencies, leakage exists regardless of the data duration. Nevertheless, the
effect diminishes as the data duration increases, because |K>(w — w')| is negligible
for |w — @'| > 21 /NAt.
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Proof of (2.64) (Distortion, Fourier Transform)
Substituting the inverse FT x; = (21) ' [*°_X(o')eiMday into X(w) in (2.35),

Xj
NoL g x
X(Q)) = _ / X(w/)eiw’jAtdw/ efiijtAt
~— (21T
J=0 S
Ki(o — o) (2.66)
= i /OC X((U/) NAr x ljfe—i((zi—rx)’)jAz do'
271 N Py
Ky(w— o)

which gives (2.64). -

2.6 Summary of FFT Approximations

Table 2.2 summarizes the Fourier formulas and their FFT approximations. They are
generally related by a convolution (sum or integral). Relevant sections are indi-
cated. The last row for power spectral density applies to a stationary stochastic
process, which is discussed in Chap. 4.

2.7 Summary of Fourier Formulas, Units
and Conventions

Table 2.3 summarizes the Fourier formulas and their Parseval equalities. Unit
matters, and is indicated. The table assumes that x(z) has a unit of volt (V) and time
is measured in second (s). Relevant sections are indicated.

2.7.1 Multiplier in Fourier Transform

One common confusion in Fourier analysis is the definition of the inverse FT, in
particular, the multiplier 1/27 in x(r) = (27) " 7 X(w)e!”"dw. Different authors
may use a different multiplier. It may appear arbitrary but in fact has a direct
implication on the unit of the FT X(w). As seen in Table 2.3, if x(#) has unit V,
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X(®) has unit V/Hz rather than V/(rad/s), despite the fact that the integral in
x(1) = 2n) 7" [ X(w)e” dw is w.r.t. o (rad/s). The factor 1/27 (with unit 1/rad)
makes up for this; w/2x is the frequency in Hz. If one omits 27 and writes
x(t) = [ X(w)e' dw, then X(w) must have a unit of V/(rad/s), and vice versa.
The same rule applies to the FFT approximation X (w). This issue is not relevant to
the FS coefficient ¢, because the multiplier e in x(r) =Y ;0 cxel® is
dimensionless.

2.8 Connecting Theory with Matlab

Matlab provides a convenient platform for signal processing and
scientific/engineering computing in general. This section presents the connection of
some theoretical results with the functions in Matlab. The focus is on FFT and
related functions. In the following, quantities in Matlab are in typewriter font.

In Matlab, the index of an array starts from 1. In this book, the index of a
discrete-time sequence starts from 0, which is found to simplify presentation. Thus,

{xj};\:(,l in this book is an array x of length N in Matlab with
x(1) =x0, x(2)=2xp,...,x(N) =xy_;.
Let {y;}»_, be the FFT of {xj}ﬁv:?)l. In Matlab, FFT can be performed by the

built-in function £ft. The call y = £ft (x) returns an array y of length N. By
definition,

N—1
o= e N f =0, N-1 (2.67)
j=0
N s
y(k) = x(j) e PUTIEIN x =y N (2.68)

y(1) =yo  (zero frequency)
y(2) =y (frequency f; = 1/NAt Hz)
¥(3) =» (frequency f, = 2/NAt Hz)

and so on, up to

y(Ng+1) =yw,
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where Ng = floor (N/2) (integer part of N/2). The remaining entries in y are just
the conjugate mirror image of those below the Nyquist frequency.

Table 2.4 shows the connection of some theoretical properties with Matlab. The
symbol ‘=’ denotes that the quantities on both sides are numerically the same when
evaluated in Matlab. Unless otherwise stated, x and y are assumed to be real N by 1
array. See Chap. 4 for the last three properties regarding correlation function and
power spectral density.

2.9 FFT Algorithm

To supplement Sect. 2.3.1, the FFT algorithm is briefly introduced here. Originally,
evaluating the DTFT in (2.35) at N frequencies requires a computational effort of
the order of N2, i.e., O(N?). Using the FFT algorithm, it is reduced to O(N log, N),
although the values are evaluated at a specific set of equally spaced frequencies.
The key lies in the discovery that, for N being some power of 2, i.e., N = 2" for
some integer m, a FFT sequence of length N can be obtained from two FFT
sequences of length N/2; and similarly each FFT sequence of length N/2 can be
obtained from another two FFT sequences of length N/4; and so on. The general
algorithm has provisions for other cases of N, but here we confine our discussion to
N =2".

Table 2.4 Connection between theory and Matlab

Property Matlab
First entry of FFT y = fft(x);
v(1l) = sum(x)
Conjugate mirror y = fft(x);
y(2:end) = conj(y(end:-1:2))
Inverse FFT ifft (fft(x)) =x
Parseval equality sum(abs (fft (x)) .”2) = N*sum(x."2)
Symmetry of convolution | conv (x,y) = conv (y,x)
Convolution theorem fft(conv(x,y))= fft([x;zeros(N-1,1)]1).*fft([y;zeros(N-1,1)1)
Wiener-Khinchin theorem | s = ££t£ ([0;xcorr(x,y)]); % (2N,1) array
s(l:2:end-1) = fft(x) .*conj (fft(y))
Asymmetry of xcorr xcorr (x,y) = xcorr(y(end:-1:1),x(end:-1:1))
xcorr and conv xcorr(x,y) = conv(x,y(end:-1:1))
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2.9.1 Basic Idea

Given {xj} ! let {y}3~) be the FFT sequence to be computed, i.e.,

N—1
=Y xe N k=0, . ,N—1 (2.69)
j=0

Let
wy = e 2H/N (2.70)

so that (WN)N = 1. Then y; can be written in terms of wy:

N—1
= xwi (2.71)
J=0

Separating the sum into even and odd terms of j,

Vi = xowN +x2W,2vk + .- +xN_2w$72>'k (j even)
+xwh w4yl U (j odd)

(2.72)

(N/2)-1 (N/2)- (2r+ Dk

= Z erwgzvrk—i- Z X2r+1Wy
r=0 r=0
Since w,z\, = Wy/2, We can write w%,’k = wlr\f/z and w(zr+1> = wN/sz Then

(N/2)-1 (N/2)-1

Vi = Z xzrwlr\l,‘/2 —l—wfv Z xz,+1w]’\],‘/2 (2.73)
r=0 r=0

On the other hand, suppose we separate {x,}jN: _01 into two sequences of length
N/2, one containing the even j terms and the other containing the odd j terms, i.e.,

{x2: 1,25 (N/2=1 and {xX2r 11 }gﬁ{f)_], respectively. Their FFTs are respectively given by

, e e 2mirk/(N/2) — w2 ok
Vi = ; ;::0 X2rWy 1 N
(N/2)-1 (N/2)—1 k:O,--.,E— 1 (274)
V=2 Xrgi1e ~2ndrk/(N/2) = > sz_le/2

r=0 r=0
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Comparing (2.73) and (2.74), we see that

—1 (2.75)

N
Ve = v, +whol k:0,...,§

The first half of {y;}}_, can thus be obtained from {y}c}g{f)_l and {y/ },(!iéz)_l.
The remaining half can be produced using the conjugate mirror property of FFT,
ie., Yk = YN—k-

The above shows that the FFT of a length N sequence can be obtained from the
FFTs of two length N /2 sequences. The FFT of each length N /2 sequence can be
further obtained from the FFTs of another two length N /4 sequences, and so on.
Carrying this on recursively, eventually it involves the FFT of a length 1 sequence,
i.e., a number, which is the sequence itself.

2.9.2 Computational Effort

To assess the computational effort of the FFT algorithm, let Cy denote the number
of multiplications to produce a FFT sequence of length N. The effort for additions,
subtractions and complex conjugate can be considered negligible. Also, assume that

{w’,ﬁ,}itol has been computed upfront. Its computational effort is not counted in Cy.
Based on (2.75),

Cv =2 Cyp + N/2 (2.76)
~— = ~—
FFT of length N FFT of length N /2 Multiply w¥, for N//2 times

By sequential substitution or induction, and recalling N = 2™, it can be shown that
N
Cy =C|N+ ElogzN (2.77)

Since the FFT of a length 1 sequence is just the sequence itself, C; = 0.
Consequently,

N
Cy = Elog2 N (2.78)

The computational effort for the FFT of a length N sequence is therefore
O(N log, N) instead of O(N?).

Example 2.3 (FFT algorithm) Figure 2.6 illustrates the recursive breakdown of the
calculations for a FFT sequence of length N =23 = 8. On the right, each brace
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Fig. 2.6 Illustration of FFT Mult. count Sequence breakdown
algorithm for a sequence of 1x4 {0,1,2,3,4,5,6,7)
length N = 8 /' e '\
2x2 {0, 2, 4, 6} {1,3,57)
4x1 {0, 4} {2, 6} {1, 5} (3,7}
0 oy {4 {2 {8 {1 {5 38 {7
contains a sequence. The FFT of the original sequence {0, 1, ..., 7} is obtained

from the FFTs of two shorter sequences {0, 2, 4, 6} and {1, 3, 5, 7}. The same
applies to other sequences.

The left side of the figure counts the number of multiplications involved in
producing the longer sequences from the shorter ones. Starting from the bottom, no
multiplication is needed to obtain the FFTs of the sequences of length 1. To produce
the FFT of {0, 4} from the FFTs of {0} and {4}, it requires 1 multiplication because
the first FFT entry (k = 0) involves a multiplication with wA; the second can be
produced as the complex conjugate of the first. The same applies to other sequences
{2, 6}, {1, 5} and {3, 7}. The number of multiplications to produce the four
sequences of length 2 from 8 sequences of length 1 is therefore 4 x 1. Similarly, to
produce the FFT of {0, 2, 4, 6} from the FFTs of {0, 4} and {2, 6}, it involves 2
multiplications for the first two FFT entries (k = 0, 1); the other two entries (k =
2,3) do not involve any multiplication as they are produced from the complex
conjugate of the first two. The number of multiplications to produce the FFT of two
sequences of length 4 from four sequences of length 2 is therefore 2 x 2. Finally, it
involves 1 x 4 multiplications to obtain the FFT of {0, 1, ..., 7} from the FFTs of
{0, 2,4, 6} and {1, 3, 5, 7}. The total number of multiplications is 4 x 1 + 2 X
2 4+ 1 x 4 = 12. This checks with (2.78), which gives Cs = (8/2)log, 8 =12. B
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