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Abstract There have been substantive recent advances in the existence theory of
pure-strategy Nash equilibria (PSNE) of finite-player Bayesian games with diffused
and dispersed information. This work has revolved around the identification of a
saturation property of the space of information in the formalization of such games.
In this paper, we provide a novel perspective on the theory through the extended
Lebesgue interval presented in Khan and Zhang (Adv Math 229:1080–1103, 2012)
[26] in that (i) it resolves the existing counterexample of Khan–Rath–Sun (J Math
Econ 31:341–359, 1999) [17], and yet (ii) allows the manufacture of new examples.
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Through the formulation of a d-property of an abstract probability space, we exhibit
a process under which a game without a PSNE in a specific class of games can be
upgraded to one with: a (counter)example on any n-fold extension of the Lebesgue
interval resolved by its (n + 1)-fold counterpart. The resulting dialectic that we
identify gives insight into both the saturation property and its recent generalization
proposedbyHe–Sun–Sun (Modeling infinitelymany agents,workingpaper,National
University of Singapore, 2013) [14] and referred to as nowhere equivalence. The
primary motivation of this self-contained essay is to facilitate the diffusion and use
of these ideas in mainstream non-cooperative game theory. (190 words).
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How Carathéodory came to think of this definition seems mysterious, since it is not in the
least intuitive. It is rather difficult to get an understanding of the meaning of ... measurability
except through familiarity with its implications... Carathéodory’s definition has many useful
implications. The greatest justification of this apparently complicated concept is, however,
its possibly surprising but absolutely complete success as a tool in proving the important
and useful extension theorem.

(Halmos (1950) and Hewitt-Stromberg (1965))1

1 Introduction

In two ground-breaking papers published in 1950–1951, Nash defined for a finite
game what, in anachronistic hindsight, is now termed a pure-strategy Nash equilib-
rium (henceforth PSNE) for a classical setting.2 As is well-understood, Nash could
not prove the existence of such an equilibrium for his game-theoretic set-up because
of the obvious reason that it was not true in general. Two decades were to pass
before Schmeidler [44] presented an existence proof for such an equilibrium in a
class of games with a continuum of players, each of whose payoffs were restricted
to depend on a suitably-defined aggregate of all the other players’ actions, rather
than on each individual action as in Nash. In a complete information setting of one-
shot simultaneous play, Schmeidler retained the assumption of a finite-action set for
each player, and pointed out how his existence theorem, apart from being of interest
for its own sake, implies the existence of a mixed-strategy Nash equilibrium, again
as defined and shown by Nash in 1950–1951. Indeed, 1973–1974 were significant

1The quotations are taken from Nillsen ([37], p. 340). The authors are grateful to Ashvin Rajan for
bringing Nillson’s book to their attention.
2These classical papers are well-known and now collected in [36].



On Sufficiently-Diffused Information in Bayesian Games ... 49

years for non-cooperative game theory as developed by Nash: Harsanyi in 1973 and
Aumann in 1974 presented scenarios inwhich pure-strategies taken under incomplete
information can be seen as rationalizing a given mixed-strategy Nash equilibrium
of a classical finite game.3 Harsanyi focused on disturbed (perturbed) games, while
Aumann considered games with private information and subjective beliefs. Both
papers used as their subtext Harsanyi’s pioneering papers in 1967–1968 on games
with incomplete information. We shall not have anything to say on Harsanyi’s work;
his formulation and results drew on formalizations of genericity, and thereby applied
to almost all games belonging to a well-specified class as opposed to a given game.4

The equivalence theorem of Aumann, on the other hand, deserves to be even
better known than it is. Given a mixed-strategy Nash equilibrium of a classical finite
player game of complete information, Aumann can be read as posing the question of
what conditions on a space of information and of subjective beliefs would guarantee
that the given equilibrium can be induced by each player playing a pure-strategy,
where the notion of a pure-strategy strategy is now lifted up from being a point in
an action set to being a function, a random variable, from the space of information
to the action set. In other words, Aumann asked for conditions on information and
beliefs that allow an equilibrium probability distribution of a classical finite game to
be induced by random variables in equilibrium. As is by now well-known and well-
understood, Aumann required that a player’s information be independent of, and his
beliefs be atomless on, the pooled information of all the other players. Succinctly
put, and in the vernacular that was subsequently to follow, it required the space
of information be rich enough so as to allow independent atomless supplements.
Aumann’s equivalence theorem is relevant to us here because of the significant role
that it has played for the formulation of games with private information.5

The literature on games with non-atomic measure spaces then bifurcates into two
distinct branches. Schmeidler’s paper originates the theory of large one-shot games
of complete information in which the existence of pure andmixed strategy equilibria,
as well as the relationship between them, as captured by the notion of a purifica-
tion, is investigated. We may also mention here Mas-Colell’s complementation of
Schmeidler’s existence result on non-anonymous (individualized) atomless games by
anonymous (distributionalized) ones.6 In Mas-Colell’s setting too, pure and mixed
strategy equilibria, as well as the relationship between them, as captured by the
notion of a symmetrization, is investigated. Radner–Rosenthal [40], henceforth RR,

3These papers are now classical andwell-known: for Harsanyi’s papers, see [10], and for Aumann’s,
[1]. In particular, we shall make extensive reference to the 1974 paper of Aumann’s and the 1983
paper of Aumann et al., and these are respectively Chaps. 31 and 30 in [1].
4Note that the 1973 paper of Harsanyi’s is available in [10, Sect. B], and so we only reference the
latter in our bibliography; also see Footnote 3 above. For games with incomplete information, see
[10, Sect. 1]; and also Myerson [35].
5The authors have revisited Aumann’s equivalence theorem in [29], and the reader should not
confuse it with the core equivalence theorem. It is important for the record to note that this was the
background paper at Khan’s talk at Tokyo.
6See Khan et al. [21, 22] for the terms large individualized and large distributionalized games, LIG
and LDG respectively, and references to the antecedent literature on the concepts they name.
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is the originating paper for the other branch. It is rooted in Aumann’s equivalence
theorem and is, in its undiluted essence, simply the observation that there are no
independent atomless supplements for an arbitrary measure space of information.
In three decisive examples, only the first of which is our concern here, they showed
that a two-player matching-pennies game, when converted into a game of private
information with each player’s information formalized by the Lebesgue interval, and
the joint space of information by the lower triangle of the Lebesgue square, has no
pure-strategy equilibria in the sense defined by Aumann. As such, there is then no
possibility of an equivalence theorem whereby the mixed strategy equilibrium of the
given matching-pennies game, one in which each player putting equal probability
on each of the two actions, can be induced by a pure-strategy equilibrium of the
game with private information. There is no pure-strategy equilibrium in the game
underlying the RR example, and so it inducing the given mixed strategy equilibrium
of the given matching-pennies game does not arise: it is aborted right at the very
beginning.

The RR example proved decisive for Aumann’s equivalence theorem. However,
if the assumption of independent and atomless information (dispersed and disparate
in the vernacular of RR) was made right at the outset, rather than as an extraction
requirement for the given space of information and beliefs, and the gamewith private
information as an object of interest in its own right, the question can be reformu-
lated from the search for an equivalence theorem to that for an existence theorem.
Indeed, such an existence theorem is an obvious consequence of Aumann’s result,
paired with Nash’s existence proved. If one allows the additional wrinkle that play-
ers’ payoffs also depend on their private information, one could show the existence
of pure-strategy equilibria for a game of private information. These are the 1982 RR
existence results. Their RR paper thus originates the theory of large one-shot games
of incomplete information in which the existence of pure and mixed strategy equi-
libria, as well as the relationship between them, again formalized by the notion of
purification, is investigated; also see here the contributions of Milgrom–Weber [34]
and their followers; also [42, 46]. But it bears emphasis that the resulting theory, in
so far as pure-strategy equilibria are concerned, is constrained to finite action sets,
just as it is in the Schmeidler–Mas-Colell set up.

The question then arises as to what happens to both branches of this theory of non-
atomic non-cooperative games when the restrictive assumption of finite-action sets
no longer holds. It took another decade beyond the Radner–Rosenthal–Milgrom–
Weber papers for a picture to emerge; see [40]. The outlines of this are by now well-
understood, and the details available in the PNAS announcement and the Handbook
chapter published as Khan–Sun [24], Khan–Sun [25] respectively. This need not
concern us here other than the following summary statement:

(i) Though they require some non-trivial technical work, the results all generalize
to denumerably-infinite action sets with arbitrary atomless measure spaces.

(ii) The results do not hold in general for uncountably-infinite action sets with
arbitrary atomless measure spaces.

(iii) The results hold for uncountably-infinite action sets if one restricts attention to
atomless Loeb measure spaces, as in Loeb [30].
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By 2005, it waswell-understand that the entire theory could be generalized beyond
atomless Loeb spaces to what were termed saturated or super-atomless measure
spaces. The particular name was hardly the issue: the point was that one could work
with abstract measures spaces of a type identified inMaharam [33], and conveniently
characterized by Hoover–Keisler [11], and that these spaces were not only sufficient
for the existence results, as atomless Loeb spaces were, but also necessary in some
well-specified sense. The actual publications originating this new direction were
Carmona–Podczeck [4] and Keisler–Sun [16].7 The point is that the σ-algebra of
a saturated or a super-atomless measure spaces is one which, modulo null sets, is
nowhere countably-generated. But what is it really? And what does it mean to say
that it is necessary? This essay is devoted to the pursuit of an answer to this question.
However, it is important for the reader to understand that in the sequel, we do this
only in the context of the use of these measure spaces in finite Bayesian games with
private information – the treatment of large games with complete information does
not concern us here.

A saturated probability space is in some sense an idealized limit space, but to
repeat, what is this sense? Again, even though one grants the validity of the necessity
result, as one must, the question nags as the substantive meaning of this claim. What
does it mean to say that a saturated space is necessary for the existence question? And
why is this result of any substantive (economic or game-theoretic) importance? To be
sure, the mathematical definition of a saturated space, and the various equivalences
underlying it, are clear enough,8 but what is its meaning in terms of the language
and vocabulary that mathematical economists and game theorists are used to? and
also what is its characterization in terms of the mathematics with which they work,
and are at ease, with? This essay then is addressed, at least in the first instance, to
these questions. It takes as its point of departure a neglected 1999 (KRS) example on
the non-existence of equilibria in Bayesian games based on an interval as a common
action set, and theLebesgue interval (LI) as the space of private information or types.9

In [28], the authors introduced the notion of a KRS-like game based on the KRS
example, and that of a measure spaces with the d-property with respect to a measur-
able,measure-preserving function and therebywith respect to a sub-σ-algebra. These
two concepts, though not technically intricate or in themselves mathematically deep,
can nevertheless be used to give insight and feel for answers to the questions posed
in the paragraph above. Specifically, we use these two concepts as crucial levers to
show that:

7There is some controversy stemming from the fact that the results inKeisler–Sun [16]were obtained
in 2002; see their acknowledgement, and also the use of their results by Noguchi in 2008. It is our
firm intention not to get bogged down in this controversy here.
8See Hoover–Keisler [11], and the comprehensive discussion in Fajardo–Keisler [5]; also the papers
of, Carmona–Podczeck [4] andKeisler–Sun [16]. In a recent important paper,Modukhovich–Sagara
[32] establish the relevance of the property in stochastic models of dynamic programming.
9See Khan–Rath–Sun [17], and also its footnote to the Fudenberg-Tirole text as to the possible
reason why it has remained neglected. Note that this example does not invoke any order structures
on the action sets.
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(i) an equilibrium does exist in the KRS example if the information spaces are
upgraded from the unit Lebesgue interval (LI) to the extended LI presented in
[26],

(ii) there exists an upgraded KRS example of a game without an equilibrium when
modeled on the extended LI,

(iii) the upgrading process reveals an infinite recursion in that a (counter)example
can always be constructed if the information spaces are modeled on any n-
fold extended10 LI, n a natural number, but one which can be resolved by a
(n + 1)-fold extended LI, (Proposition2 below),11

(iv) this “recursive upgrading” or “dialectic” then suggests the formulation of a
KRS-like game, one based on an abstract, atomless probability space, for which
a characterization and existence of PSNE can be established (Proposition1 and
Theorem1 below),12

(v) this infinite recursion establishes the importance of KRS-like games as a diag-
nostic tool to check whether a given information structure guarantees the exis-
tence of a PSNE for a general class of all private information games,

(vi) a visual and analytical content can be imparted into private information struc-
tures that are relatively-diffused, as inHe–Sun [13], or saturated, as in [27, 28].13

We now turn to an extended outline and overview of this essay.
After presenting the basic model and the antecedent results in Sect. 2, we recall in

Sect. 3 the principle result in [28] based on the two notions of a notion of a KRS-like
games, and the relative d-property with respect to a measure-preserving map. KRS-
like games are two-player gameswith the interval [−1, 1] as the (common) action set,
arbitrary atomless probability spaces, and with a structure of payoffs that lead their
equilibrium distributions, potential or otherwise, to have the same sort of structure as
those of the KRS example; see Proposition1 below.14 To be sure, one could consider
such games modeled on compact metric action spaces,15 but as we shall see in the
sequel, the underlying motivation for such games is to find the simplest setting that
illustrates, and can be used as a criterion for getting a handle on, the difficulties that

10This notation then would lead the LI to be viewed as 0-fold extended LI and the extended LI in
(i) above as a 1-fold extended LI.
11We shall be referring to this below as a “scrambling” operation on a particular game.
12In particular, the upgraded games in (i) and (ii) above belong to the class of KRS-like games that
is being singled out and studied in this paper.
13The references [9, 13, 14] to the relative-saturation property are also relevant in this connection.
Precise definitions of these and other properties referred to in this introduction will be offered in
the sequel.
14This is done on the basis of the fact that there exists a measurable mapping h from an abstract
atomless probability space to the usual Lebesgue unit interval such that its induced distribution is
the Lebesgue measure itself; see [16, Lemma 2.1] and the discussion in Sect. 2 below.
15This is a consequence of the well-known fact that there exists a continuous onto function from any
uncountable compact metric space to [−1, 1]; see, for example, Rath–Sun–Yamashige referenced
in [25] for this.
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come up in regard to the existence of a PSNE for all private information games. With
Proposition1 relating to KRS-like games in place, we turn to what we explicitly
identify as measure spaces satisfying the d-property with respect to a measurable,
measure-preserving function, and thereby with respect to a sub-σ-algebra. Such a
property of a probability space allows a measurable selection to be chosen from the
so-called d-correspondence, and one that induces a uniform measure on the range
of the correspondence.16 This property is motivated by a recent consideration in the
mathematical literature of correspondences that do not admit measurable selections
with pre-specified properties when based on the Lebesgue interval, but do so under an
extended Lebesgue interval that goes back to Kakutani in the forties, and one whose
σ-algebra is countably-generated.17 Sect. 3.4 places on the record sufficiency results
for the existence of PSNE in KRS-like games, Theorem1 and its three corollaries
based on the d-property. The prominence that we give to measure spaces having the
d-property is, to be sure, new to the literature: it undergirds the principal results of
this entire work.

Section4 is in keeping with the expositional thrust of this essay. It presents a
leisurely introduction to the construction of the Lebesgue extension based on a 1944
lemma of Kakutani’s, and originally introduced in [26]. Since this essay is motivated
to the non-expert reader, we also provide an exposition of the construction of the
Lebesgue interval based on Carathéodory’s theorem. This material of is of course
standard.

Section5 is the dialectical backbone of the paper, and its dynamic turns on two
sharp questions, the first of which is the following.

(a) Does the extended probability space, an extension of the Lebesgue interval,
resolve the KRS counterexample?

Based on the intuitive discussion of the extension in Sects. 4, 5.1 answers this ques-
tion in the affirmative. There exists a PSNE in the KRS example if the information
spaces are modeled on the extension of the Lebesgue interval, rather than on the
Lebesgue interval itself. And so this appears to be all that there is to it.18 Unfortu-
nately, this success is more illusory than real. We show in Sect. 5.2 that the KRS

16This correspondence is reproduced in Fig. 2 below, and was referred to in [26] as the Debreu
correspondence simply as a mnemonic; and as indicated there, Hart-Kohlberg ascribe it to Debreu
in an entirely different context and for an entirely different purpose. Our current use of the letter d
for this correspondence, and for the d-property of a measure space based on it, is meant to indicate
a situation where each type of agent has a dual best-response. However, if the reader wishes, he or
she can capitalize d and make a non-obligatory nod in Debreu’s direction.
17One of these correspondences is precisely the d-correspondence. Another derives from the cele-
brated example of Lyapunov; see Claims 1–3 in [26, Sect. 1]. We underscore for the general reader
the intuitively-obvious fact that the Lebesgue extension is mathematically much simpler than the
saturated extension of the Lebesgue interval in [45]. For Lyapunov’s theorem, see [23] and their
references.
18This, by itself is no longer surprising. It is now understood, at least by the cognoscenti, that one
only needs a σ-algebra that is finer than the Lebesgue σ-algebra in the sense that it contains a set
of measure 1/2 and which is independent of the Lebesgue σ-algebra; see [13] written subsequent
to the first version of this paper.

http://dx.doi.org/10.1007/978-981-10-4145-7_3
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example can be modified and resituated on the extended information spaces to yield
another troublesome counterexample without a PSNE. This example is of a finite
game with information spaces “richer” than those used in the KRS example, but
with the payoffs suitably modified and refined to pertain to these spaces. It is this
upgrading of the (counter)example that motivates both a KRS-like game and mea-
sure spaces satisfying the d-property. In any case, one can now reformulate/repeat
the question under discussion, and ask:

(b) Does a further extension of the extended probability space resolve this “new”
counterexample?

Perhaps somewhat surprisingly, the answer is again affirmative in that the techniques
of [26], and recapitulated in Sect. 3, are up to the task. However, a recursion now
suggests itself and is indeed executable in the form of a general result. Even though
a finite game �n based on an n-fold extension of the Lebesgue interval has no Nash
equilibrium, we can construct an (n + 1)-fold extension of the information spaces
for which it has an equilibrium! And none of these constructed games �n can have
Nash equilibria in any of the sub-extensions. The point is that all these constructed
games are KRS-like games with their information spaces satisfying the d-property.19

Indeed, this recursive non-existence property culminates in a general theorem; see
Proposition2 in Sect. 5.3 below. The question then is what works? how can this
unfortunate recursion be terminated? And it is at this point that our exposition leads
to the punchline that we want to express. The dialectic can only be terminated when
one relies on the idealized limit of a saturated space, or a space satisfying the relative
diffuseness property. These observations relating to the results of [27], and their
extension in [13], constitute the two-paragraphed Sect. 5.4.

The final substantive section of this essay concerns recent work of He–Sun–Sun
[12, 14]. In a comprehensive treatment, the authors have posed the question as to
“whichmeasure spaces aremost suitable formodelingmany economic agents?”They
propose a class of measure spaces that they refer to as satisfying a condition they
term “nowhere equivalent.” Thus their work represents the next stage of the ongoing
trajectory that we have tried to sketch in this introduction: one that begins with the
Lebesgue interval and includes an atomless Loeb space. However, the authors prin-
cipal focus is on large games and economies, and they do not consider the relevance
of their novel concept to finite Bayesian games of private information, though they
are undoubtedly aware of how their basic argumentation would extend to this setting.
In Sect. 6, we consider how the Lebesgue extension can also be used to resolve a

19There is of course a Godelian parallel here. Let T1 be a suitable theory, which is to say, complete
and consistent. Then it admits an undecidable proposition, call it S1. Let T2 be T1 extended by S1,
and denoted T2 = {T1 + G1}.Observe that although G1 is trivially deducible in T2, there is another
undecidable in T2, say S2 etc. Sn is never decidable in Tn−1. In fact there is a countably-infinite
series of pairs of theories and undecidables ! Extensions of this type never work to furnish a general
theory. The authors are grateful to Josh Epstein for bringing the relevance of Godel’s incompleteness
theorem to their attention. Josh also singled out parallels to Galois theory whose pursuit in this paper
would have taken us too far afield.
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question raised in [14], the role that the dialectic that we have identified here also
plays in this setting.

We conclude the paper in Sect. 7 with two further remarks, and with an Appendix
that collects the purely technical arguments of this essay.

2 The Model

Aprivate information gamewith independent types consists of afinite set of �players,
each of whom (say i) chooses actions from a compact metric space Ai which is not
necessarily finite, and has access to (private) information and events, represented by
a measurable space (Ti , Ti ), and known only to him, and not necessarily to the other
players. This information, or type, is independently drawn among players, moreover,
the its distribution forms is a probability measure μi on (Ti , Ti ) that is known to all
players. We refer to {(Ti , Ti ,μi ) : i = 1, . . . , �} as the private information structure
of the game. The private information structure is called diffused if for every i , μi is
an atomless probability measure. We shall follow convention and denote the product
��

j=1A j by A, and � j �=i A j by A−i .
The payoff function of player i is ui : A × Ti → R, and it depends on the actions

chosen by all the players and on his own private information ti ∈ Ti . We consider
the following assumption on the payoff function.20

Assumption 1 For each player i ,

(i) ui (·, ti ) is a continuous function on A for every ti ∈ Ti ;
(ii) for each a ∈ A, ui (a, ·) is Ti -measurable on Ti ;
(iii) ui is integrably bounded, that is, there is an integrable functionφi on (Ti , Ti ,μi )

such that |ui (a, ti )| ≤ φi (ti ) holds for each a ∈ A.

We denote a Bayesian game with independent private information by

� = {(Ti , Ti ,μi ), Ai , ui : i = 1, . . . , �}.

A pure strategy of a Bayesian game � is a Ti -measurable mapping from Ti to Ai .
A pure strategy profile f = ( f1, . . . , f�) of a Bayesian game � is a pure-strategy
Nash equilibrium (PSNE) for the game � if for every player i , fi yields the maximal
expected utility when the other players choose f−i .

In the reminder of this section, we turn to the state-of-the-art results on the exis-
tence of PSNE in Bayesian games of independent private information that will serve
as the backdrop for the results presented in this paper. In terms of background, the
original existence RR results on games with finite moves, as in [18, 34, 40], were
generalized first to games with countably-infinite moves, and then to those with
uncountably infinite ones; see [25] for discussion and basic references. The latter

20We work with the simplest model; for extensions, see [7, 8, 19, 21, 39].



56 M. Ali Khan and Y. Zhang

generalization invoked an atomless Loeb probability space as the formalization of
the space of private information. In [27], the authors show that a saturated private
information structure is sufficient for the existence of PSNE in private information
games.21 More interestingly, they also show that this saturation property is also nec-
essary in the sense that if at least two players’ private information spaces are modeled
by non-saturated spaces, there is a private information game without a PSNE! As
such, it closes the circle.22

In subsequent work, the sufficiency result has been generalized in an interest-
ing way to which we turn. He–Sun [13] make a distinction between the aspects of
information with respect to which a player chooses a particular strategy as opposed
to those which lead his or her payoff functions to change. Following [14], they
propose the concept of relative-diffuseness in Bayesian games. Given a private infor-
mation structure {(Ti , Ti ,μi ) : i = 1, . . . , �} with respect to which the players take
strategies, let Fi be the smallest sub-σ-algebra of Ti with respect to which this
player’s payoff function is measurable. This private information structure is called
relatively diffused if Fi is setwise coarser than Ti in the sense that for every S ∈ Ti

with positive μ-measure, there exists an Ti -measurable subset S′ ⊆ S such that
μ

(
S′�S′′) > 0 for any S′′ ∈ F S

i where S′�S′′ = (S′\S′′) ∪ (S′′\S′). For simplic-
ity, we call {(Ti , Ti ,μi ),Fi : i = 1, . . . , �} a relative private information structure.
This leads to a natural variation of Assumption1.

Assumption1′ Conditions (ii) and (iii) in Assumption1 are changed to

(ii)′ for each a ∈ A, ui (a, ·) is Fi -measurable on Ti ;
(iii)′ ui is integrably bounded, that is, there is an Fi -integrable function φi on

(Ti ,Fi ,μi ) such that |ui (a, ti )| ≤ φi (ti ) holds for each a ∈ A.

We now denote a Bayesian game with relatively diffused independent private infor-
mation by

� = {((Ti , Ti ,μi ),Fi ), Ai , ui : i = 1, . . . , �}.

As before, a pure strategy for player i is still a Ti -measurable function from Ti to her
action space Ai . In a phrase, payoffs functions hinge on Fi and strategies on Ti .

It is then shown in [13, Theorem 1] that there exists a PSNE in a Bayesian game
satisfying Assumption1′ if the information on which the players condition their
actions is relatively diffused with respect to the information related to the payoffs.
This result is a generalization of the sufficiency result in [27, Theorem 1] based on
saturated probability spaces. These require that for any nonnegligible subset S ∈ T ,
the re-scaled probability space

(
S, T S,μS

)
is not essentially countably-generated.23

Since the σ-algebra generated by any given payoff function satisfying Assumption1

21Since Loeb spaces are saturated, the sufficiency result generalizes previous work; see [27].
22It is worthy of emphasis here that, as noted in [27], this necessary and sufficient result was
already conjectured in [16]. Indeed, the necessity claim was first made by Keisler–Sun in 2002; see
the relevant footnote in their paper.
23Here T S is the σ-algebra

{
S ∩ S′ : S′ ∈ T

}
and μS is defined on T S by μ(·) = μ(·)/μ(S). The

reader is referred [27] for details and references.
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is always setwise-coarser than the underlying σ-algebra of the saturated space, the
relative diffuseness assumption is automatically fulfilled. It is worth underscoring,
however, that there is no necessity result in [13].24

3 KRS-Like Games Revisited

KRS-like games are studied in [28], these games are constructed based on an example
of two-player private information games in [17], and now referred to as the KRS
example. It is a two-player, private information game satisfying Assumption1 with a
common action set of uncountable cardinality. Each player i = 1, 2, can take actions
from Ai = [−1, 1]. Let (Ti , Ti ,μi ), i = 1, 2 be two atomless probability spaces, and
let hi : Ti → [0, 1] be a Ti -measurable mapping such that the induced distribution
over [0, 1] is the Lebesgue measure η.25 The payoff functions for both players are
given as below:

uh11 (a1, a2, t1) = u1(a1, a2, h1(t1)) = −|h1(t1) − |a1|| + [h1(t1) − a1] · z(h1(t1), a2),
(1)

uh22 (a1, a2, t2) = u2(a1, a2, h2(t2)) = −|h2(t2) − |a2|| − [h2(t2) − a2] · z(h2(t2), a1);
(2)

where the function z : [0, 1] × [−1, 1] → R is defined as follows. For all t ∈
[0, 1/2], b ∈ [−1, 1]

z(t, b) =
⎧
⎨

⎩

b, if 0 ≤ b ≤ t;
t, if t < b ≤ 1;

−z(t,−b), if b < 0;

and for any t ∈ (1/2, 1], z(t, ·) = z(1/2, ·); see Fig. 1 for the graph of z(t, ·) for
three different values of t .

In particular, (Ti , Ti ,μi ) are the usual Lebesgue unit intervals and hi are the
identity maps on [0, 1], this KRS-like game is the original KRS game in [17]. It is
also clear that for each player i , and for each ti ∈ Ti ,ui (·, ·, ti ) is a continuous function
on [−1, 1] × [−1, 1]. For different ti ∈ Ti , all ui (·, ·, ti ) constitute an equicontinuous
family. Thus, for any a1, a2 ∈ [−1, 1], ui (a1, a2, ·) is Ti -measurable function. As a
result, KRS-like games satisfy Assumption1.

24Even though it constitutes a rather narrow perspective from which to view this paper, one could
in principle, see the results reported here as addressing themselves to the problem left open in [13].
25There always exists such a function hi , see [2, Proposition 9.1.11].
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Fig. 1 Graph of z(t, ·) for
different t

t

z(t, ·)

1/2 1 b

z(t, ·), t < 1/2

z(0, ·)

z(t, ·), t ≥ 1/2

When the private information spaces are given, we denote this game by

�h1,h2 =
{
(Ti , Ti ,μi ), Ai = [−1, 1], uhii : i = 1, 2

}
.

In this games, for each i , a pure strategy of player i is a Ti -measurable function
from Ti to [−1, 1]. If (g1, g2) be pure-strategy profile, and νi = ηg−1

i is the induced
distribution on the action set [−1, 1].

We are now ready to introduce the equilibria in KRS-like games. First for any
t ∈ [0, 1], any Borel probability measure ν on [−1, 1], let w(t, ν) be the integral of
z(t, ·) with respect to ν, i.e.,

w(t, ν) =
∫ 1

−1
z(t, ·)dν. (3)

The best-response correspondence in the KRS-like game �h1,h2 is as follows:

B1(t1; ν2) =
⎧
⎨

⎩

−h1(t1) or h1(t1), if w(h1(t1), ν2) = 0;
h1(t1), if w(h1(t1), ν2) > 0;

−h1(t1), if w(h1(t1), ν2) < 0.

B2(t2; ν1) =
⎧
⎨

⎩

−h2(t2) or h2(t2), if w(h2(t2), ν1) = 0;
−h2(t2), if w(h2(t2), ν1) > 0;
h2(t2), if w(h2(t2), ν1) < 0.

Moreover, suppose that there exists a PSNE (g∗
1 , g

∗
2) in the game �h1,h2 , where

g∗
i is a Ti -measurable function from (Ti , Ti ,μi ) to [−1, 1]. Let ν∗

i be the induced
distribution of g∗

i , i.e., ν
∗
i = μi ◦ (g∗

i )
−1. The equilibrium action distribution of each

player’s strategy also satisfies the following statement.

Proposition 1 (Khan-Zhang [28]) Suppose that ν∗
1 , ν

∗
2 are the induced action dis-

tributions of a PSNE of the game �h1,h2 , then for i = 1, 2, w(hi (ti ), ν∗
i ) = 0 for

μi -almost all ti ∈ Ti , and ν∗
i ([0, s]) = ν∗

i ([−s, 0]) = s/2 for any s ∈ [0, 1/2].
Khan and Zhang also find that PSNE in KRS-like games is intimately related to the
following d-property concept of probability spaces.
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Definition 1 (i) Given an atomless probability space (T,F ,μ) and a F-measurable
measure-preservingmap h from T to the Lebesgue interval ([0, 1],L, η),26 (T,F ,μ)

is said to have the relative d-property with respect to h if there is a F-measurable
map g from T to [−1, 1] such that g(t) ∈ {h(t),−h(t)} and g induces the uniform
distribution on [−1, 1]. (ii) Given an atomless probability space (T,G,μ)where G is
a sub-σ-algebra ofF , (T,F ,μ) is said to have the relative d-propertywith respect
to G if for all G-measurable measure-preserving map h from T to the Lebesgue
interval ([0, 1],L, η), (T,F ,μ) has the relative d-property with respect to h.

It is clear that the usual Lebesgue unit interval ([0, 1],L, η) does not have relative
d-property with respect to the identity map on the interval, which is obviously a
measure-preserving map. The following is straightforward from Proposition1.

Corollary 1 For i = 1, 2, if an atomless probability space (Ti , Ti ,μi ) has relative
d-property with respect to a measure preserving map hi from Ti to the Lebesgue
interval, then there exists a pure-strategy Nash equilibrium in the KRS-like game
�h1,h2 .

Here is a sufficient condition for the relative d-property.

Lemma 1 Given (T,G,μ), G as in Definition1. If there is a F-measurable subset
with μ-measure (1/2), and it is independent with G, then (T,F ,μ) has the relative
d-property with respect to G.
Moreover, the relative d-property of a probability space also furnishes a necessity
condition for modeling the private information spaces such that KRS-likes games all
have PSNE.

Theorem 1 (Khan-Zhang [28]) Given a diffused private information structure
{(Ti , Ti ,μi ) : i = 1, 2}, if for some i , (Ti , Ti ,μi ) does not have relative d-property
with respect to a measure preserving map hi from Ti to the Lebesgue unit interval,
then there exists a KRS-like game possessing no pure-strategy equilibrium.

4 A Lebesgue Extension à la Kakutani

In this section, we attempt to lay out for the general reader the basic intuitions
underlying the construction of the Lebesgue extension rather than simply using it as
a black-box that furnishes a pure-strategy equilibrium in a class of games that do not
possess such an equilibrium. To put the point another way, the principles underlying
the extension go beyond the technical to the substantive considerations.

To be sure, the extension of the Lebesgue measure has by necessity to build on the
construction of the Lebesgue measure itself, and we begin this section by recalling

26A map h : (T,F,μ) → ([0, 1],L, η) is called measure-preserving if h isF − L-measurable and
the induced distribution of h is the Lebesgue measure on the unit interval.



60 M. Ali Khan and Y. Zhang

the basic (standard) principles underlying this construction.27 Towards this end, we
begin by recalling the notion of an outer measure θ on the power setP(X) of a space
X. This is simply a non-negative function that gives zero value to the empty set, is
monotonic and countably subadditive. This is to say

θ(∅) = 0, A ⊆ B =⇒ θ(A) ≤ θ(B) and θ(∪n∈NEn) ≤
∑

n∈N
θ(En).

If the outer measure of X is unity, then it is a pre-probability, and what one needs
to get a bona fide probability is to strengthen countable subadditivity to countably
additivity. The point is that on restricting anoutermeasure to a specific class of subsets
of X, this can be done and it turns into a measure. It is important to understand this
restricted class of sets, and we turn to it.

It is clear that any set A can be disjointly decomposed through another set B by
viewing it as the intersection of it with E and the set of its points that do not belong
to E . In symbols,

A = (A ∩ E) ∪ (A/E) where A, E ∈ P(X).

We can refer to E as a decomposing set, and the sets A ∩ B and A/E as its decom-
positions with respect to it. This much is entirely trivial.28 Now focus on a set E that
decomposes any subset of P(X) in a way that the outer measure of the set and the
sum of the outer measures of the its decompositions with respect to E are identical.
This is to ask for a focus on

∑
= {E ∈ P(X) : θ(A) = θ(A ∩ E) + θ(∪(A/E)) for all A ∈ P(X).

Now what is not trivial is that
∑

is a σ-algebra, which is to say in the language
of probability theory, a bona fide event space: closed under complementation and
countable unions. Andmore to the point, the outer measure θ restricted to this class is
a measure which is to say countably additive for a disjoint sequence of events. Again,
in the restricted language of probability theory, a pre-probability has been rendered
by restriction to a probability, a result that goes by the name of Carathéodory.29

So far, in the consideration of an abstract set X, we have had nothing to say
as regards a Lebesgue measure. Indeed, we have simply specified a methodology
by which a given outer measure on a power set can be turned into a measure on a
specific distinguished σ-algebra chosen from that power set. We now specialize X to
R, and rather than assume an outer measure, construct it. For any two real numbers

27Several excellent treatments of this standard material are available, but we hope that the following
two paragraphs will not only set the stage for what is to follow but will speak to the general reader;
for details, we recommend [6, 37].
28But see Nillson’s singling this equality out in [37, Eq.5.6, p. 304]. Khan would like to take this
opportunity to thank Metin Uyanik for discussion concerning this “Carathéodory equation.”
29See the epigraph, and the discussion in [37, Sect. 5.4].
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a and b, consider as a building block the half-open interval {x ∈ R : a ≤ x < b},
and associate with it the number b − a when b ≥ a, and zero otherwise. Refer to
this association as a function � on half-open intervals on R. This has the intuitive
property30 that the number associated with any half-open interval I , �(I ), is not
greater than the sum of the numbers associated with any countable cover of half-
open intervals I j , j ∈ N,which is to say,

∑
j∈N �(I j ).Two points need to be noticed:

the statement pertains only to half-open intervals and to any countable cover of them,
much less themost parsimonious one.As a consequence,λ is not yet an outermeasure
on P(R).

It is nowa straightforwardmatter to use the functionλdefinedon the basic building
blocks to construct a function θ defined on P(R) by limiting ourselves to the most
parsimonious cover of an arbitrary subset A in R. The symbolism is transparent:

θ(A) = inf{I j } j∈N

⎧
⎨

⎩

∑

j∈N
�(I j ) : A ⊆

⋃

j∈N
I j

⎫
⎬

⎭
,

though it bears emphasis that the infimum is taken over all countable covers of A.The
fact that θ gives the zero value to the empty set, and that it is monotonic is a triviality;
in order to show that it is countably subadditive is a routine computation drawing
what it means to have an infimum.31 But now we can appeal to Carathéodory’s
procedure to obtain a distinguishedσ-algebra inP(X), the (Lebesgue σ-algebra) and
a measure (the Lebesgue measure) on it. This measure space furnishes the Lebesgue
unit interval when it is restricted to the unit interval; and it is the extension of this
space (L = [0, 1],L, η) that is at issue.

Thus, consider the Lebesgue unit interval, L = ([0, 1],L, η) as the primitive
object to which we seek an extension. Even a cursory perusal of the argumentation
underlying the construction of the extended Lebesgue interval shows its dependence
on a 1944 Lemma of Kakutani, [15]. To facilitate the intuition behind the procedures
of this extension, think in terms of an allegory of a “treasure hunt” in which one is
to find bills of denomination ranging from zero to one, K = [0, 1], buried in loca-
tions proxied by numbers between zero to one, L = [0, 1]. The set of locations is
already furnished with a Lebesgue measure-theoretic structure: this is to say that we
have assumed an ability to measure the length of any interval between two locations
(�, �′). Let us now also explicitly assume a Lebesgue measure-theoretic structure
([0, 1],K,κ) on the set of denominations K , and seek to estimate a measure of the
size of the ‘treasure”– the total of the amount given by the bills of denomination
between (k, k ′) and buried in the strip of land between (l, l ′). To repeat, we aim here
for an exposition that gives the basic intuition behind the construction, and refer any
reader interested in the details of the rigorous argumentation to [26].

30Even though the property is intuitive, relying as it does on the notion of a length of an interval and
what it means to have cover, it nevertheless requires a proof. Henceforth, by cover we shall mean
a cover of half-open intervals.
31See the notes and comments in Fremlin ([6]; Sect. 113); also see [3, 37].
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Kakutani’s Lemma: There exists a partition of uncountable cardinality of L =
[0, 1], denoted by {Ck : k ∈ K = [0, 1]}, such that the Lebesgue outer-measure32 of
Ck is one for all k ∈ K = [0, 1].

NowKakutani’s lemma furnishes the rudiments fromwhich a “treasuremap”C in
the space of all the locations and the denominations can be constructed. The lemma
furnishes a partition of the unit interval indexed by each denomination. Heuristically,
every location is assigned a unique amount of wealth, and the location of bills with
a given denomination level k is rather dispersed among the set of all locations.
Symbolically, we are furnished with {Ck ⊆ [0, 1] : k ∈ K } such that ∪k∈[0,1]Ck =
[0, 1] and Ci �= C j , i �= j. However, the point is that the length of these Ck cannot
be determined: none of them are in general Lebesgue measurable, but only Lebesgue
outer-measurable, each with unit outer-measure. This is to say that the “smallest”
Lebesgue measurable set containing a given Ck has a unit Lebesgue measure. We
can now take this partition and “unfold” it as the “treasure-map” C where

C = ∪k∈[0,1]Ck × {k} ⊆ L × K .

The point is that this setC is also only outer-measurable with unit (square) Lebesgue
measure η ⊗ κ. The “treasure map” is not accurate enough!

To overcome this deficiency, consider the σ-algebra generated by C and the sets
inL ⊗ K, and extend the square Lebesgue measure η ⊗ κ to this extended σ-algebra
T . Denote this extended measure by γ, and note that we have a measure-theoretic
structure, (C, T , γ), onC such that the σ-algebra T is the restriction of the Lebesgue
product σ-algebraL ⊗ K on C. This takes us to the second foothold of the extension
procedure. It is simply that the size of any set of the form ((l, l ′) × (k, k ′)) ∩ C with
respect to γ inherits the size of the rectangle (l, l ′) × (k, k ′) in the square. This is to
say that for all 0 ≤ l < l ′ ≤ 1 and 0 ≤ k < k ′ ≤ 1,

γ
[
((l, l ′) × (k, k ′)) ∩ C

] = (l ′ − l)(k ′ − k).

Finally, we project the unit square to the unit interval. This is to say that we consider
the projection p from C to L , and observe it to be a one-to-one measurable map-
ping. Hence it induces a probability structure on [0, 1] by projecting the probability
structure on C .

Denote the new probability structure on [0, 1] by ([0, 1], I,λ), and this is the
extension of the Lebesgue unit interval that we seek. It is now worthwhile to sum-
marize the procedure. Each type has a double identity: an explicit identity or trait
(say, e.g., the location) indexed by elements of L and another implicit identity or
trait (say, e.g., the wealth level) indexed by elements of K , and the two traits
co-exist in single-dimensional set I . The point of consequence is that these two
traits are governed by two independent σ-algebras, and the extended Lebesgue

32Given a measure space (T, T ,μ), the associated outer measure, denoted by μ∗, is defined as
follows: for any subset E ⊆ T , μ∗(E) = inf {�nμ(En) : En ∈ T , E ⊆ ∪n En}, it bears emphasis
that the infimum is taken over all countable covers of E .
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measure is atomless on both. Next, we turn to this. For all 0 ≤ k < k ′ ≤ 1, let
Dkk ′ = ∪k<k ′′<k ′Ck ′′ , which is the set of all implicit traits lying between k and k ′.
Notice that p−1(Dkk ′) = ([0, 1] × [k, k ′)

) ∩ C , and by virtue of the way that the
extended σ-algebra I was obtained on I, Dkk ′ ∈ I. Furthermore, by virtue of the
way that the extended Lebesgue measure was obtained on I, we have

λ(Dkk ′) = γ
[
p−1(Dkk ′)

] = γ
[([0, 1] × (k, k ′)

) ∩ C
] = k ′ − k.

That is, the probability of a type whose implicit trait lies between k and k ′ is exactly
k ′ − k. That is, the wealth level, viewed as a random variable on the extended
Lebesgue interval, is a measurable measure-preservingmap to the Lebesgue interval.

Next, we claim that the two random variables, the wealth level and the location,
are independent. Fix 0 ≤ k < k ′ ≤ 1 and 0 ≤ l < l ′ ≤ 1, consider the probability of
types where the wealth lies between k and k ′ and the location lies between l and
l ′. Independence of the two random variables simply means that the probability of
the types that lie in the intersection of the two sets is the product of the probabil-
ity that the type lies in each of the sets. But this clear on account of the fact that
p−1

(
Dkk ′ ∩ (l, l ′)

) = (
(l, l ′) × (k, k ′)

) ∩ C, and thus

λ
(
Dkk′ ∩ (l, l ′)

) = γ
[
p−1 (

Dkk′ ∩ (l, l ′)
)] = γ

[(
(l, l ′) × (k, k′)

) ∩ C
] = (l ′ − l)(k′ − k).

(4)

We thus completes the proof of the independence between the wealth level and the
location.

In summary, the extension proceeds in the following steps: (i) the Kakutani par-
tition of the Lebesgue unit interval, (ii) the lifting of this partition to a set C in the
Lebesgue square, (iii) the extension of the square Lebesgue measure-theoretic struc-
ture to include C , (iv) restriction of this structure to C , and finally, (v) a projection
of this restricted structure to the given Lebesgue interval.33 The point is that one can
now estimate the size of many more sets by λ than we could before.

Once this extension is understood, only a little more is involved in understand-
ing that a sequence of Lebesgue extensions {([0, 1], In,λn) : n = 0, 1, . . .} can be
constructed in which the first countably-generated Lebesgue extension ([0, 1], I,λ)

is denoted by ([0, 1], I0,λ0), and for any n ∈ N, ([0, 1], In,λn) is an extension of
([0, 1], In−1,λn−1), where the former is obtained from the latter in precisely the way
that ([0, 1], I,λ) is obtained from the Lebesgue interval.34 We can now record the
following properties of these extensions.

33The details of each of these steps are spelt out in [26]. It is a good exercise for the interested
reader to work out for herself the routine arithmetic behind each of these steps. She should note,
in particular, that the proof of the claim that the outer-measure of C is unity (straightforwardly)
invokes Fubini’s theorem.
34As in Footnote 32, we send the reader interested in the details to [26]; and in this particular
context, to Sects. 5.2.2 and 5.2.3 in that paper.
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Lemma 2 (i) For each n ∈ N, In−1 is setwise coarser than In. (ii) For every n ∈ N,
there exists an In-measurable measure-preserving map hn such that for any E ∈ In,
there exists a Lebesgue measurable subset S ⊆ [0, 1] such that λn[E�h−1

n (S)] = 0
where � is the symmetric difference operator in In. (iii) The n-fold Lebesgue
extension does not have d-property with respect to hn, for all n ∈ N. In partic-
ular, when restricted to h−1

n ([0, 1/2]), there is no selection of the corresponding
d-correspondence of hn such that the induced distribution is uniform on [−1/2, 1/2].
Remark 1 The m-th fold Lebesgue extension has d-property with respect to In . We
also note that Lemma2(iii) allow us to assert that no matter how large a natural
number n is, the n-fold Lebesgue extension extension is not a saturated space. The
point in part (ii) is that ([0, 1], In,λn) does not have the relative d-property with
respect to the measure-preserving map hn .

5 KRS-Like Games Based on Lebesgue Extensions

In this section, we turn to the KRS example itself, and ask whether one can obtain
a PSNE in the game �0 by jettisoning the usual Lebesgue unit interval, and turning
not to a saturated or super-atomless probability space,35 but to an atomless prob-
ability structure whose measure-theoretic is rich enough only to the point that is
required to show the existence of a PSNE in the specific game �0. This is to ask
for a measure-theoretic structure that is oriented towards resolving and subduing the
canonical counterexamples. We develop the answer to this question in Sect. 5.1 by
using the countably-generated extension of the usual Lebesgue unit interval offered
by the authors in [26]. However, in Sect. 5.2, we show that this “more sophisticated
and enriched” atomless probability space generates its own example of finite-player
gameswithout a PSNE.As already stated informally in the introduction, this counter-
example on the extended information space can in its turn be resolved by a further
enrichment of the (extended) σ-algebra. In Sect. 5.3, we conclude with a general
result formalizing this dialectic. However, prior to all this, we review for the reader
the highlights of the construction of the extended Lebesgue interval.36

5.1 The KRS Example Resolved

Wenow turn to the non-existence of a PSNE in the game�, and askwhether the use of
extended Lebesgue interval as the space of private information resolves the problem.

35See [4, 16] for definition of these terms.
36It may be worth pointing out that this is the first substantive application, and an exposition, of
this extended Lebesgue interval in the economics literature.
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The affirmative answer to this question can now be routinely outlined. Consider the
game,

�̃0 = {(Ti , Ti ,μi ) = ([0, 1], I,λ), Ai = [−1, 1], ui : i = 1, 2},

and note that �̃0 is identical to �0 except for the fact that each player’s private
information space is replaced by the (countably-generated) Lebesgue extension. We
have subdued the counterexample and resolved its negativity by this “tilde” operation
involving a move from �0 to �̃0. This move is important for the argument that is
being developed here. We can now present

Claim 1 There exists a PSNE in the game �̃0.

This result is an easy consequence of Proposition1 and Lemma2(i).
However, a natural question arises as to whether a general theorem can be devel-

oped for Bayesian games with compact metric actions sets based on information
spaces modeled by the extended Lebesgue intervals. as we shall see in the next
subsection, the answer is unfortunately resoundingly negative.

5.2 Yet Another Counterexample

In order to develop the counterexample, we return to Lemma2(ii), and work with the
measurable the measure-preserving map h0 from ([0, 1], I,λ) to the usual Lebesgue
interval guaranteed therein. Use this map h0 to formulate the following KRS-like
game, �h0,h0 .

�h0,h0 = {(Ti , Ti ,μi ) = ([0, 1], I,λ), Ai = [−1, 1], uh0i : i = 1, 2.}

We can now appeal to Lemma2(iii) to assert that

Claim 2 There does not exist a PSNE in the game �h0,h0 .

But now one is on a roll. One can ask whether the non-existence of a PSNE in
the KRS-like game �h0,h0 can be is resolved in precisely the same way that the non-
existence issue for the KRS game �0 was resolved. This is to check whether a further
extension of the extended Lebesgue interval would subdue the new example. This
can be done by a consideration of the following game,

�̃h0,h0 = {(Ti , Ti ,μi ) = ([0, 1], I1,λ1), Ai = [−1, 1], uh0i : i = 1, 2},

in which each player’s private information space is “upgraded” from ([0, 1], I,λ)

to ([0, 1], I1,λ1). To use the earlier vernacular, the resolution hinges on a further
“tilde” operation involving a move from �h0,h0 to �̃h0,h0 . We can now again record
the following easy consequence of Proposition1 and Lemma2(i).

Claim1′ There does exist a PSNE in �̃h0,h0 .
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([0, 1],L, η)

([0, 1],I, λ)([0, 1],I1, λ1)([0, 1],In, λn)

C ([−1, 1] × [−1, 1])

Fig. 2 Lebesgue extensions and KRS-like games

5.3 A General Negative Result

The interesting question is whether there is a general recursion theorem here. We
develop such a result in this subsection. The point is that the argumentation in
Sect. 5.2 can be continued inductively ad infinitum. First, a sequence of countably-
generated probability spaces {([0, 1], In,λn) : n = 0, 1, . . .} can be constructed,
where the first countably-generated Lebesgue extension ([0, 1], I,λ) is denoted by
([0, 1], I0,λ0), and for any n ∈ N, ([0, 1], In,λn) is a countably-generated exten-
sion of ([0, 1], In−1,λn−1). Second, if each player’s private information space is
modeled by ([0, 1], In−1,λn−1), there exists a KRS-like game �hn−1,hn−1 without
any PSNE. Such that there does not exist a PSNE. Third, as far as this KRS-like
game is concerned, the “tilde” operation whereby each player’s private information
space is modeled by the countably-generated space ([0, 1], In,λn), again guaran-
tees a PSNE. This argumentation can be succinctly illustrated and summarized by
Fig. 2, where C ([−1, 1] × [−1, 1]) means the space of all continuous functions on
[−1, 1] × [−1, 1].

In terms of a formal statement, we can offer:

Proposition 2 For each n ∈ N, there does not exist a PSNE in the KRS-like game
�hn ,hn but there does exist one in the game �̃hn ,hn , where the private information space
for each player in �̃hn ,hn is upgraded from the n-fold extension to the (n + 1)-fold
extension.

Proposition2 embraces both a positive and a negative result, and in conclusion, it is
worthy of note that Claims1 and 2 above follow as its special cases.

5.4 A Discussion of the Results

The positive result in Proposition2 can be viewed as an illustration of Theorem1 of
[13] since the relative diffuseness assumption in such KRS-like games are satisfied.
However, as far as the KRS example and the KRS-like games �hn ,hn are concerned,
it follows from Lemma1 that a rather simpler and more modest extension of the
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underlying private information space suffices: all one has to do is to include a subset
with measure one-half and one that is independent of the underlying σ-algebra. It
serves as the “right” model of the private information space.

The negative result in Proposition2, the non-existence of PSNE in the KRS-like
games �hn ,hn , can be viewed as a special case of the necessity result, Theorem 2, in
[27]. There it states that if two players’ private information spaces are both modeled
by non-saturated probability spaces, then there exists a counterexample of a private
information game without any PSNE. In the KRS-like game �hn ,hn , the underly-
ing private information spaces are both n-fold Lebesgue extensions, and thereby
essentially countably generated spaces, and automatically not saturated spaces.37

However, the non-existence argument here is different from the one in the proof of
Theorem2 in [27]: here it is a rather straightforward consequence of Proposition1 and
Lemma2(iii). It is in this regard that the approach used in this paper is self-consistent,
as far as the construction of the counterexamples �hn ,hn are concerned.

6 A Condition of He–Sun–Sun

In work circulated in 2013, He et al. have proposed a far-reaching generalization
of the saturation property in the form of condition they of nowhere equivalence of
two σ-algebras of a probability space. They have relied on this condition to present
a comprehensive theory of economies and games with a continuum of agents, and
of the three basic mathematical operations that undergird it: integration, distribution
and conditional expectation. This work is important enough this expository paper
would not be complete in its scope without making some reference to this work. In
this section we relate the Lebesgue extension and the ideas presented above to this
important work.

He–Sun–Sun [14] motivate their condition, and their results based on it, by a
series of examples of games and economies which show pathological features as far
as the existence, closed graph and “determinateness” properties of the equilibria are
concerned. Here we consider Example 3 of [14], henceforth the HSS example. In
this example, there are two large games, both have Lebesgue interval as agent space,
the common action space is [−1, 1]. Moreover, in both games, each player’s payoff
only depends on her own action, not anybody else’s. Namely, for all agent i ∈ [0, 1],
a ∈ [−1, 1], and any action distribution ν on [−1, 1],

G1(i, a, ν) = −(a + i)2(a − i)2, and G2(i, a, ν) =
{
G1(2i, a, ν), if i ∈ [0, 1/2),
G1(2i − 1, a, ν), if i ∈ [1/2, 1].

37More precisely, in the KRS-like game �hn ,hn , the corresponding s1, s2 in the proof of
[27, Theorem 2] are both one.



68 M. Ali Khan and Y. Zhang

Note that in G1, player i’s best strategy, no matter what the strategy of all others,
is always either i or −i , while in G2, the best strategy for Mr i is either 2i or −2i ,
for i less than one half, and either 2i − 1 or 1 − 2i for i great than one half. As a
result, in G1, a PSNE will be a Lebesgue measurable map from [0, 1] to [−1, 1]
such that the value at i is either i or −i , or a Lebesgue-measurable selection of the
correspondence � : [0, 1] � [−1, 1] with �(i) = {i,−i}. Similarly, a PSNE in G2

is a Lebesgue-measurable selection of the correspondence� : [0, 1] � [−1, 1]with

�(i) =
{ {2i,−2i}, if i ∈ [0, 1/2),

{2i − 1, 1 − 2i}, if i ∈ [1/2, 1].

These two games G1 and G2 induce the same distribution on the space of payoff
functions, namely space of all continuous functions on the product space of [−1, 1]
and all Borel probability measure on [−1, 1]. However, the set of action distribution
of all PSNE in G1, denoted by D(G1) is not the same as that in G2, denoted by
D(G2); see Claim 3 in [14]. Namely, D(G1) is the set of induced distribution by
all Lebesgue-measurable selection of the correspondence �, and D(G2) the set of
induced distribution by all Lebesgue-measurable selection of the correspondence �.
More precisely, the uniform distribution on [−1, 1] is an element of D(G2) but not
of D(G1); see Fig. 3 below.

However, if the agent spaces in these two games are bothmodeled by the Lebesgue
extension as in Sect. 4, and if D′(G1) is the set of induced distribution of all
Le-measurable selections of � and D′(G2) the set of induced distributions by all
Le-measurable selections of �, we obtain the following result.

Proposition 3 If in this example, both agent spaces are modeled by the Lebesgue
extension, then D′(G2) = D′(G1).

13
4

1

−1

11/2

1

−1

Fig. 3 One selection of � and one of �
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The proof is postponed to the appendix.
To summarize, the problem raised in Example 3 of [14] automatically disappears

when modeling agent space by the Lebesgue extension. This result is not surprising
because the extended sigma algebra in the Lebesgue extension satisfies the conditions
in Theorem 3 of [14]. The following is a concept proposed in [14].

Definition 2 Given an atomless probability space, (T,F ,μ), and a sub-σ-algebra
G ofF .F is said to be nowhere equivalent to G if for every D ∈ F with μ(D) > 0,
there exists a F-measurable subset D0 of D such that μ(D0�D1) > 0 for any D1 ∈
GD.

In the current context, we only need to claim that the extended Lebesgue σ-algebra
in Sect. 5 is nowhere equivalent to the original Lebesgue σ-algebra. The proof of this
claim is provided in the Appendix.

We conclude this subsection with two observations. First, we note that the HSS
example, and the HSS theorems based on it, concern large games with a continuum
of players; and that the reader can generalize the necessary and sufficient results
presented in [27, 28] to a finite-playerBayesian games, focused on in the essay,where
the analog of the HSS condition is expressed for the spaces of private information.
Second, we leave it to the reader to think out for herself a dialectical argumentation
underlying the HSS example of the kind that we have considered in his essay for the
KRS example.

7 Concluding Remarks

In [27], the authors show that if each player’s private information space is modeled
by a saturated probability space, then every private information game has a PSNE.
As to whether such a saturated private information structure is a “minimal” one for
the existence of PSNE in such games, a complete answer is provided in [28] that if
every KRS-like game has a PSNE, the underlying information space for each player
must be saturated. With these two results in hand, under a given private information
structure, the hypothesis that all KRS-like games have PSNE implies that all private
information games also have PSNE! In other words, KRS-like games are precisely
the “trouble-makers” we need to consider and rule-out to establish a general theory
on the existence of PSNE for a given private information structure. It is in this sense
that we say that KRS-like games serve as a diagnostic tool for the existence of PSNE
in private information games.

The dialectic arguments using Lebesgue extensions provide some further elabora-
tion and elucidation on the above “minimal” requirement on the private information
structure to guarantee the existence of PSNE. Note that in a saturated probability
space, it has a “rich” sigma algebra such that when restricted to any non-negligible
subset, the sub-sigma algebra under the restricted measure cannot be essentially
countably generated, i.e., there is no hope to find a countable number of sets in the
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restricted sub-algebra to generate the restricted sub-algebra itself. However, in the
n-fold extensions of the Lebesgue interval considered in this essay, the underlying
sigma-algebra, no matter how large n is, is essentially countably generated; and, as a
result, each n-fold Lebesgue extension cannot be saturated. This is why there is such
a KRS-like game without a PSNE as claimed in Proposition2, a result also implied
by the necessity result in [28].

It is worth pointing out another distinction between the Lebesgue extensions con-
sidered in this paper and a saturated space. As is made clear in the construction of the
Lebesgue extension in Sect. 5, the 1-fold Lebesgue extension, the original Lebesgue
σ-algebra is enlarged in a way such that it can accommodate at most two inde-
pendent random variables, each of which is a measurable measure-preserving from
the Lebesgue extension to the Lebesgue interval. Similarly, in the n-fold Lebesgue
extension, the underlying σ-algebra can at most accommodate n independent ran-
dom variables, each of which is a measurable measure-preserving from the n-fold
Lebesgue extension to the Lebesgue interval. In comparison, in a saturated proba-
bility space, the underlying σ-algebra can accommodate at least a countable number
of such pairwise-independent random variables.

We conclude this discussion by an observation that looks at the dialectic of these
results from another, and more critical, point of view. The necessity result ensures
that for this extended probability space, there will always exist a large game without
pure-strategy Nash equilibria, but this game may not have any substantive interest.
It may be an artifice, a purely technical construction testifying to a mathematical
necessity, but with no counterpart in terms of concrete “real-life” applications. Thus,
one could legitimately hold the view that as far as the substantive applications are
concerned, there is little need for a result that proceeds beyond the modest extension
articulated in [26] all the way to a saturated space, or to the spaces satisfying the
HSS condition. This is a point of view explicitly articulated in [26] in the context
of large non-anonymous games, and further discussion and exploration of whether
this is, or is not, only cold comfort for finite games with private information, must
be left for future work that turns to concrete applications. For these, see [34, 43] and
the references therein, especially to the work of Athey and McAdams. Recall also
that the introduction of [34] opens with William Vickrey’s auction paper of 1961.
The reader should keep this cautionary skepticism in mind now that she has worked
through the dialectical argumentation.

8 Technicalities of the Proofs

Proof of Lemma2. We first prove Part (i). Note that for any natural number n, the
n-fold Lebesgue extension is constructed from the (n − 1)-fold in a similar way as
([0, 1], I,λ) from the Lebesgue unit interval. As a result, we only need to show that
([0, 1], I,λ) has the relative d-property for all measure preserving map from the
Lebesgue interval to itself.
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It follows from Lemma2 of [26] that there exists a I-measurable subset S such
that λ(S) = 1/2, and both S and Sc is independent with (0, t) for all t ∈ [0, 1], where
Sc is the complement of S. Note that the Lebesgue σ-algebra L is generated by these
subsets (0, t), t ∈ [0, 1], as a result, both S and Sc are independentwith anyLebesgue
measurable subset. Given any measure-preserving map h from the Lebesgue interval
to itself, let g : ([0, 1], I,λ) → [0, 1] defined to be g(t) = h(t) for all t ∈ S, and
g(t) = −h(t) for all t /∈ S. It is clear that g is an I-measurable map.

We finally check that g induces the uniform distribution on [−1, 1]. For
any s ∈ [0, 1], λ{t : g(t) ∈ [−s, 0]} = λ(Sc ∩ h−1([0, s])) = 1

2λ(h−1([0, s])) = s
2 ,

where the second equation follows from that Sc is independent with the Lebesgue
subset h−1([0, s])which is of measure s; similarly, λ{t : g(t) ∈ [0, s]} = s

2 . We thus
complete the proof of Part (i).

We next prove Part (ii). The existence of this measure preserving mapping hn
from the n-fold Lebesgue extension to the Lebesgue unit interval is guaranteed by
[26, Corollary 1, p. 1093], the key here is that the n-fold Lebesgue extension is an
atomless (essentially) countably generated space. �
Proof of Proposition2. The existence of pure-strategy Nash equilibria in �̃hn ,hn , for
all n, follows from Corollary1 and Part (i) of Lemma2.

We next prove the non-existence result for the KRS-like game �hn ,hn . By
Proposition1, it suffices to show that there does not exist an In-measurable map
from [0, 1] to the Lebesgue unit interval such that it takes value either hn(t)
or −hn(t) for all t , and it induces the uniform distribution on when restricted
on [−1/2, 1/2]. Suppose not, there is such a mapping g. Let S = {t : g(t) ≥ 0}.
It is clear that S ∈ In and λn(S) = 1

2 . By the construction of hn in Lemma2,
there exists an Lebesgue subset E , such that λn(S�h−1

n (E)) = 0. By Part (ii)
of Proposition1, for any s ∈ [0, 1/2], s

2 = λn{t : g ∈ [0, s]} = λn(S ∩ h−1
n [0, s]) =

λn(h−1
n (E) ∩ h−1

n [0, s]) = η(E ∩ [0, s]), where the last equation follows from the
measure preserving property. This contradicts the fact that there is no Lebesgue set
which is independent with all sets [0, s], s ∈ [0, 1/2]. �
Proof of the claim in Sect.6. Let D be an I-measurable subset with λ(D) > 0. Note
that [0, 1] = D01, it is clear that there exists two numbers k, k ′ ∈ [0, 1], such that
0 < λ(Dkk ′ ∩ D) < λ(D). We next fix such a pair of numbers k, k ′ and construct a
required subset D0 ∈ D as inDefinition2.Namely, for any subinterval [l, l ′] ⊆ [0, 1],
[l, l ′] ∩ D and D0 differ up to a non-negligible λ-null subset. If this Dkk ′ ∩ D and
[l, l ′] ∩ D do not differ up to a null set for all l, l ′, let D0 = Dkk ′ ∩ D. Otherwise,
for some l, l ′, this subset Dkk ′ ∩ D and [l, l ′] ∩ D differ up to a λ-null set. That
is, Dkk ′ ∩ [l, l ′] ⊆ D holds subject to a null set. Let D0 = Dkk" ∩ D = Dkk" ∩ [l, l ′]
where k ′′ = k+k ′

2 . It is clear that 0 < λ(D0) < λ(D) and D0 is a required subset in
Definition2, since Dkk" is independent with all subsets [a, b] for all a, b. �
Proof of Proposition3. It is clear thatD′(G1) ⊆ D′(G2).What remains is to prove the
converse direction. For any distribution μ generated by a Le-measurable selection
of �. Now consider the restricted distribution on [0, 1], still denoted by μ. It is
clear that μ is absolutely continuous with respect to the Lebesgue measure on [0, 1],
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moreover, for any t ∈ [0, 1], μ([0, t]) is at most of value t . As such, all the conditions
of Lemma 3 in [26] are satisfied, therefore, there exists Sμ ∈ Le such that for any
t ∈ [0, 1], μ([0, t]) = λe(Sμ ∩ [0, t]). Let f be a Le-measurable selection of � such
that f (i) = i if i ∈ Sμ and f (i) = −i if i /∈ Sμ. It is clear that this f induces the
same distribution μ on [−1, 1]. �
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