
Chapter 2
Language of Mathematics 2 (Set Theory)

This chapter contains a brief introduction to set theory which is essential for doing
mathematics. There are two main axiomatic systems to introduce sets, viz. Zermelo–
Fraenkel axiomatic system and the Gödel–Bernays axiomatic system. Here, in this
text, we shall give an account of Zermelo–Fraenkel axiomatic set theory together
with the axiom of choice (an axiom which is independent of the Zermelo–Fraenkel
axiomatic system). We also discuss some of the important and useful equivalents
of the axiom of choice. The ordinal and the cardinal numbers are introduced and
discussed in a rigorous way. For the further formal development of the theory, the
reader is referred to the ‘Set Theory and Continuum hypothesis’ by P.J. Cohen or the
‘Axiomatic set theory’ by P. Suppes.

2.1 Set, Zermelo–Fraenkel Axiomatic System

‘Set’, ‘belongs to,’ and ‘equal to’ are primitive terms of which the reader has intuitive
understanding. Their use is governed by some postulates in axiomatic set theory.

To take the help of intuition in ascertaining the use of the primitive terms, we
regard a set as a collection of objects. ‘A class of students,’ ‘a flock of sheep,’ ‘a
bunch of flowers,’ and ‘a packet of biscuits’ are all examples of sets of things. The
notation ‘a ∈ A’ stands for the statement ‘a belongs to A’ (‘a is an element of A,’ or
also for ‘a is a member of A’). The negation of ‘a ∈ A’ is denoted by ‘a /∈ A.’ The
notation ‘A = B’ stands for the statement ‘A is equal to B.’ The negation of ‘A = B’
is denoted by ‘A �= B.’ The following axiom relates ‘∈’ and ‘=.’

Axiom 1 (Axiom of extension) Let A and B be sets. Then,

‘A = B’ if and only if ‘for all x (x ∈ A if and only if x ∈ B).’
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14 2 Language of Mathematics 2 (Set Theory)

Thus, two sets A and B are equal if they have same members. Two equal sets are
treated as same. If A = B, then we may substitute A for B and B for A in any course
of discussion.

Remark 2.1.1 To be logically sound in the use of primitive terms, axiom of extension
is a necessity.

Let A and B be sets. We say that A is a subset of B (A is contained in B or
BcontainsA) if everymember ofA is amember ofB. The statement ‘A is a subset of B’
is the same as the statement ‘For all x(if x ∈ A, then x ∈ B).’ The notation ‘A ⊆ B’
(or also ‘B ⊇ A’) stands for the statement ‘A is a subset of B.’ Thus, ‘A = B’ (axiom
of extension) if and only if ‘A ⊆ B and B ⊆ A.’ The negation of ‘A ⊆ B’ is denoted
by ‘A � B.’ Since the negation of the statement ‘For all x(if x ∈ A, then x ∈ B)’
is logically same as the statement ‘There exists x(x ∈ A and x /∈ B),’ the notation
‘A � B’ stands for the statement ‘There exists x(x ∈ A and x /∈ B).’ Thus, to say
that A is not a subset of B is to say that there is an element of A which is not in B.

Every set is a subset of itself, because ‘For all x(if x ∈ A, then x ∈ A)’ is
a tautology (always a true statement). If A ⊆ B and A �= B, then we say that
A is a proper subset of B. The notation ‘A ⊂ B’ stands for the statement ‘A is
a proper subset of B.’ Thus, A is a proper subset of B if every member of A is
a member of B, and there is a member of B which is not a member of A. More
precisely, ‘A ⊂ B’ represents the statement ‘(For all x(if x ∈ A, then x ∈ B)) and
(there exists x(x ∈ B and x /∈ A)).’

Proposition 2.1.2 IfA ⊆ B and B ⊆ C, then A ⊆ C.

Proof Suppose that A ⊆ B and B ⊆ C. Let x ∈ A. Since A ⊆ B, x ∈ B. Further,
since B ⊆ C, x ∈ C. Thus, ‘for all x(if x ∈ A, then x ∈ C).’ This shows that A ⊆ C.
�

Some of the axioms of set theory are designed to produce different sets out of
given sets. The first one is to generate subsets of a set.

Consider the set A of all men and the statement ‘x is a teacher.’ Somemembers of
A are teachers, and some of them are not. The condition that ‘x is a teacher’ defines
a subset of A, namely the set of all male teachers. To make it more formal, we have:

Axiom 2 (Axiom of specification) Let A be a set, and P(x) be a valid statement
involving the free symbol x. Then, there is a set B such that

‘for all x(x ∈ B if and only if (x ∈ A and P(x)).’

Thus, to every set A, and to every statement P(x), there is a unique set B whose
members are exactly those members of A for which P(x) is true.

The set B described above is denoted by {x ∈ A | P(x)}. Clearly, B is a subset of
A.

Proposition 2.1.3 Let A be a set. Then there is a set B such that B /∈ A.



2.1 Set, Zermelo–Fraenkel Axiomatic System 15

Proof Consider the statement ‘x is a set and x /∈ x.’ By the axiom of specification,
there is a unique set B = {x ∈ A such that x is a set and x /∈ x}. We show that
B /∈ A. Suppose that B ∈ A. If B ∈ B, then B /∈ B. Next, if B /∈ B, then since B ∈ A
(supposition), and B is a set, B ∈ B. Thus, ‘B /∈ B if and only if B ∈ B.’ This is a
contradiction (P if and only if—P is a contradiction) to the supposition that B ∈ A.
Hence, B /∈ A. �

Corollary 2.1.4 There is no set containing all sets.1 �

Let A and B be sets. Consider the statement ‘x ∈ B.’ The set {x ∈ A | x ∈ B} is
denoted by ‘A

⋂
B,’ and it is called the intersection of A and B. Thus,

x ∈ A
⋂

B if and only if (x ∈ A and x ∈ B).

Since ‘[x ∈ A and x ∈ B] if and only if [x ∈ B and x ∈ A]’ is a tautology, we
have the following proposition.

Proposition 2.1.5 A
⋂

B = B
⋂

A. �

Proposition 2.1.6 A
⋂

B ⊆ A and A
⋂

B ⊆ B.

Proof By the definition, x ∈ A
⋂

B if and only if [x ∈ A and x ∈ B]. Further, ‘if
[x ∈ A and x ∈ B], then x ∈ A’ is a tautology. Thus, if x ∈ A

⋂
B, then x ∈ A. This

shows that A
⋂

B ⊆ A. Similarly, A
⋂

B ⊆ B. �

Proposition 2.1.7 If [C ⊆ A and C ⊆ B], then [C ⊆ A
⋂

B].
Proof Suppose that C ⊆ A and C ⊆ B. Let x ∈ C. Since C ⊆ A and C ⊆ B, x ∈ A
and x ∈ B. Thus, x ∈ A

⋂
B. Hence, if x ∈ C, then x ∈ A

⋂
B. This shows that

C ⊆ A
⋂

B. �

Proposition 2.1.8 [A⋂
B = A] if and only if [A ⊆ B].

Proof Suppose that A
⋂

B = A. Since A
⋂

B ⊆ B (Proposition 2.1.6), A ⊆ B.
Suppose that A ⊆ B. Since A ⊆ A, A ⊆ A

⋂
B (Proposition 2.1.7). Also, A

⋂
B ⊆ A

(Proposition 2.1.6). By the axiom of extension, A
⋂

B = A. �

Proposition 2.1.9 (A
⋂

B)
⋂

C = A
⋂

(B
⋂

C).

Proof Let x ∈ (A
⋂

B)
⋂

C. By the definition, (x ∈ A and x ∈ B) and x ∈ C.
This implies (tautologically) that x ∈ A and (x ∈ B and x ∈ C). It follows that
x ∈ A

⋂
(B

⋂
C). Thus, (A

⋂
B)

⋂
C ⊆ A

⋂
(B

⋂
C). Similarly, A

⋂
(B

⋂
C) ⊆

(A
⋂

B)
⋂

C. By the axiom of extension, the result follows. �

1In pre-axiomatic intuitive development of set theory, people took for granted that there is a set
containing all sets. The argument used in the proof of the Proposition 2.1.3 led to a paradox known
as ‘Russel’s paradox.’ In fact, the need for axiomatization of set theory was consequence of such
paradoxes.
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Let A and B be sets. Consider the statement x /∈ B. By the axiom of specification,
there is a unique set defined by {x ∈ A | x /∈ B}. This set is denoted by A− B, and it
is called the complement of B in A (or A difference B). Clearly, A − B is a subset of
A.

Proposition 2.1.10 A − B = A − (A
⋂

B).

Proof Let x ∈ A−B. By the definition, x ∈ A and x /∈ B. This implies (tautologically)
that x ∈ A and(x ∈ A and x /∈ B). Thus, x ∈ A − (A

⋂
B). This shows that

A− B ⊆ A− (A
⋂

B). Similarly, A− (A
⋂

B) ⊆ A− B. By the axiom of extension,
the result follows. �

To have something in our hand, we formally assume the existence of a set as an
axiom.

Axiom 3 (Axiom of existence) There exists a set.

Let A be a set. Consider A − A. If B is any set, then

(x ∈ A and x /∈ A) if and only if (x ∈ B and x /∈ B)

is a tautology (note that ‘(P and−P) if and only if (Q and−Q)’ is a tautology). Thus,
x ∈ (A − A) if and only if x ∈ (B − B), and so A − A = B − B. Therefore, the set
A − A is independent of A. This set is called the empty set, or the void set, or the
null set, and it is denoted by ∅. Thus, ∅ = {x ∈ A | x /∈ A}. Clearly, ‘x ∈ ∅’ is a
contradiction. Further, the statement ‘if x ∈ ∅, then Q’ is a tautology whatever the
statement Q may be.

Let P(x) be any contradiction involving the symbol x. Clearly, then ∅ = {x ∈ A |
P(x)}. Intuitively, one may think of ∅ as a set containing no elements.

Proposition 2.1.11 The empty set ∅ is a subset of every set.

Proof Let B be a set. We have to show that ‘if x ∈ ∅, then x ∈ B.’ Since x ∈ ∅ is a
contradiction, ‘if x ∈ ∅, then x ∈ B’ is a tautology. Hence, ∅ ⊆ B. �

Proposition 2.1.12 A − B = ∅ if and only if A ⊆ B.

Proof Suppose that A−B = ∅. Let x ∈ A. Since A−B = ∅, x /∈ A−B (for x /∈ ∅ is
a tautology). Further, since x ∈ A and x /∈ A− B, x ∈ B. Hence, A ⊆ B. Conversely,
suppose that A ⊆ B. We have to show that A−B = ∅. Already (Proposition 2.1.11),
we have ∅ ⊆ A − B. Let x ∈ A − B. Then, x ∈ A and x /∈ B. Since A ⊆ B, it follows
that x ∈ B and x /∈ B. This, in turn, implies that x ∈ ∅. Hence, A − B ⊆ ∅. �

Axiom 4 (Axiom of replacement) Let A be a set, and P(x, y) be a statement formula
involving x and y such that ∀x ∈ A((P(x, y) and P(x, z)) =⇒ y = z). Then, there is
a set B = {y | P(x, y) holds for some x ∈ A}.



2.1 Set, Zermelo–Fraenkel Axiomatic System 17

The axiom tells that if A is a set, and there is a correspondence from the members
of A to another collection of objects associating each member of A a unique member
of the collection, then the image is set. This axiom will be used in our discussions
on ordinals.

The following axiom helps us to generate more sets.

Axiom 5 (Pairing axiom) Let A and B be sets. Then, there is a set C such that A ∈ C
and B ∈ C.

Consider the statement ‘x = A or x = B.’ By the axiom of specification, we
have a unique set {x ∈ C | x = A or x = B}. This set is also independent of the set
C. It contains A and B as elements and nothing else. We denote this set by {A,B}.
The set {A,A} is denoted by {A}, and it is called a singleton.

We have the empty set ∅. Consider {∅}. Since ∅ ∈ {∅} and ∅ /∈ ∅, ∅ �= {∅}. If {∅} =
{{∅}}, then ∅ = {∅}. This is a contradiction. Hence, {∅} �= {{∅}}. Similarly, {{{∅}}} �=
{{∅}}. Axiom of pairing gives us other new sets such as {∅, {∅}}, {{∅, {∅}} and, {{∅}}}.
This way we produce several sets.

Axiom 6 (Union Axiom) Let A be a set of sets. Then, there is a set U such that
‘(X ∈ A and x ∈ X) implies that x ∈ U.’

By the axiom of specification, we have the unique set given by

{x ∈ U | x ∈ X for some X ∈ A}.

This set is denoted by
⋃

X∈A X, and it is called the union of the family A of sets.
Thus,

x ∈
⋃

X∈A
X if and only if x ∈ X for some X ∈ A.

What is
⋃

X∈∅ X? If x ∈ ⋃
X∈∅ X , then there exists X ∈ ∅ such that x ∈ X. But X ∈ ∅

is a contradiction. Hence,
⋃

X∈∅ X = ∅. Clearly, ⋃X∈{A} X = A.
The set

⋃
X∈{A,B} X is denoted by A

⋃
B. Thus,

x ∈ A
⋃

B if and only if x ∈ A or x ∈ B.

The set A
⋃

B is called the union of A and B.

Proposition 2.1.13 A ⊆ A
⋃

B.

Proof Suppose that x ∈ A. Then, the statement ‘x ∈ A or x ∈ B’ is true (if P,

then (P or Q) is a tautology). Hence, if x ∈ A, then x ∈ A
⋃

B. Thus, A ⊆ A
⋃

B. �

Proposition 2.1.14 A
⋃ ∅ = A.

Proof Since x ∈ ∅ is always false, x ∈ A if and only if (x ∈ A or x ∈ ∅). Hence,
A

⋃ ∅ = A. �
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Proposition 2.1.15 A
⋃

B = B
⋃

A.

Proof Clearly, ‘(x ∈ A or x ∈ B) if and only if (x ∈ B or x ∈ A)’ is a tautology.
Hence, A

⋃
B = B

⋃
A. �

Proposition 2.1.16 A
⋃

A = A.

Proof Since the statement ‘(x ∈ A or x ∈ A) if and only if x ∈ A’ is a tautology, the
result follows. �

Proposition 2.1.17 A
⋃

B = A if and only if B ⊆ A.

Proof Suppose that A
⋃

B = A. By the Proposition 2.1.13, B ⊆ A
⋃

B = A. Next,
suppose that B ⊆ A. Then, A ⊆ A

⋃
B ⊆ A

⋃
A = A. Hence, A

⋃
B = A. �

Proposition 2.1.18 (A
⋃

B)
⋃

C = A
⋃

(B
⋃

C).

Proof Let x ∈ (A
⋃

B)
⋃

C. By the definition, ‘(x ∈ A or x ∈ B) or x ∈ C.’ This
implies (tautologically) that ‘x ∈ A or (x ∈ B or x ∈ C).’ It follows that ‘x ∈
A

⋃
(B

⋃
C).’ Thus, ‘(A

⋃
B)

⋃
C ⊆ A

⋃
(B

⋃
C).’ Similarly, ‘A

⋃
(B

⋃
C) ⊆

(A
⋃

B)
⋂

C.’ By the axiom of extension, the result follows. �

Proposition 2.1.19 The union distributes over intersection, and the intersection dis-
tributes over union in the following sense:
1. A

⋃
(B

⋂
C) = (A

⋃
B)

⋂
(A

⋃
C), and

2. (A
⋂

(B
⋃

C) = (A
⋂

B)
⋃

(A
⋂

C).

Proof 1. Let x ∈ A
⋃

(B
⋂

C). By the definition, ‘x ∈ A or (x ∈ B and x ∈ C).’
This implies (tautologically) that ‘(x ∈ A or x ∈ B) and (x ∈ A or x ∈ C).’ In turn,
‘x ∈ (A

⋃
B)

⋂
(A

⋃
C).’ This shows that ‘A

⋃
(B

⋂
C) ⊆ (A

⋃
B)

⋂
(A

⋃
C).’

Similarly, ‘(A
⋃

B)
⋂

(A
⋃

C) ⊆ A
⋃

(B
⋂

C).’ By the axiom of extension, ‘A
⋃

(B⋂
C) = (A

⋃
B)

⋂
(A

⋃
C).’

Similarly, we can prove 2. �

Theorem 2.1.20 (De Morgan’s Law) Let A, B, and C be sets. Then,
1. A − (B

⋃
C) = (A − B)

⋂
(A − C).

2. A − (B
⋂

C) = (A − B)
⋃

(A − C).

Proof 1. First observe that the statement ‘x /∈ (B
⋃

C)’ is logically equivalent to
the statement ‘x /∈ B and x /∈ C.’ Let x ∈ A − (B

⋃
C). Then, by the definition,

‘x ∈ A and x /∈ (B
⋃

C).’ This implies that ‘x ∈ A and (x /∈ B and x /∈ C).’
In turn, it follows that ‘(x ∈ A and x /∈ B) and (x ∈ A and x /∈ C).’ Thus,
‘x ∈ (A − B)

⋂
(A − C).’ This shows that ‘A − (B

⋃
C) ⊆ (A − B)

⋂
(A − C).’

Similarly, ‘(A − B)
⋂

(A − C) ⊆ A − (B
⋃

C).’ The result follows by the axiom of
extension. The proof of 2 is similar. �
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Axiom 7 (Power Set Axiom) Given a set A, there is a set � such that B ⊆
A implies that B ∈ �.

Consider the statement ‘x is a subset of A.’ By the axiom of specification, we have
a unique set given by

{x ∈ � | x is a subset of A}.

This set is independent of the choice of � in the power set axiom. We denote this
set by ℘(A) and call it the power set of A.

Since the empty set ∅ is a subset of every set, ℘(A) can never be an empty set.
What is ℘(∅)? Since ∅ ⊆ ∅, ∅ ∈ ℘(∅). Suppose that A ∈ ℘(∅). Then, A ⊆ ∅. But,
then if x ∈ A, then x ∈ ∅. Since x ∈ ∅ is a contradiction, x ∈ A is also a contradiction.
Hence, A = ∅. Thus, ℘(∅) = {∅}. Further, A ∈ ℘({∅}) if and only if A ⊆ {∅}.
This shows that A = ∅ or A = {∅}. Thus, ℘({∅}) = {∅, {∅}}. Further, ℘({∅, {∅}}) =
{∅, {∅}, {{∅}}, {∅, {∅}}}, and so on.

Thenext axiom is the axiomof regularity (also called the axiomof foundation). It is
used specially in discussions involving ordinal arithmetic. In axiomatic set theory, the
members of sets are also sets. Indeed, any mathematical discussion can be modeled
so that all the objects considered are sets of sets. For example, 1 can represented by
{∅}, 2 can be represented by {∅, {∅}}, and so on. The axiom is designed to restrict
uncomfortable situations such as A ∈ A, (A ∈ B and B ∈ A), and (A ∈ B and B ∈
C and C ∈ A) in any course of discussion.

Axiom 8 (Axiom of regularity) If A is a nonempty set of sets, then ‘there exists
X(X ∈ A and X

⋂
A = ∅).’

Thus, given a nonempty set A of sets, there is a set X in A such that no member
of X is in A.

Theorem 2.1.21 Let A be a set of sets. Then, A /∈ A.

Proof Let A be a set. {A} �= ∅. By the axiom of regularity, there exists X ∈ {A}
such that if x ∈ X, then x /∈ {A}. Now, X ∈ {A} if and only if X = A. Thus,
if x ∈ A, then x /∈ {A}. Since A ∈ {A},A /∈ A. �

Theorem 2.1.22 Given sets A and B, A /∈ B or B /∈ A.

Proof Suppose that A ∈ B and B ∈ A. Then, B ∈ A, B ∈ {A,B}, A ∈ B, and also
A ∈ {A,B}. Thus, there is no X ∈ {A,B} such that x ∈ X implies that x /∈ {A,B}.
This contradicts the axiom of regularity. �

Let X be a set. The set X+ = X
⋃{X} is called the successor of X.

Proposition 2.1.23 Let X and Y be sets. Then, X+ = Y+ if and only if X = Y.

Proof If X = Y , then X+ = Y+. Suppose that X �= Y and X+ = Y+. Then,
X

⋃{X} = Y
⋃{Y}. Since X ∈ X

⋃{X}, X ∈ Y
⋃{Y}, and since X �= Y , X ∈ Y .

Similarly, Y ∈ X. This is a contradiction (Theorem 2.1.22). �
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A set S is called a successor set if

(i) {∅} ∈ S, and
(ii) X ∈ S implies X+ ∈ S.

The following axiom asserts that there is an infinite set.

Axiom 9 (Axiom of infinity) There exists a successor set.

Proposition 2.1.24 Let X be a set of successor sets. Then,
⋂

S∈X S is also a successor
set.

Proof Since each S is a successor set, {∅} ∈ S, for all S ∈ X. Hence, {∅} ∈ ⋂
S∈X S.

Let x ∈ ⋂
S∈X S. Then, x ∈ S, for all S ∈ X. Since each S ∈ X is a successor set,

x+ ∈ S, for all S ∈ X. Hence, x+ ∈ ⋂
S∈X S. �

Corollary 2.1.25 Let X be a successor set. Then X contains the smallest successor
set contained in X.

Proof The intersection of all successor sets contained in X is the smallest successor
set contained in X. �

Corollary 2.1.26 Let X and Y be successor sets. Let A be the smallest successor set
contained in X, and B the smallest successor set contained in Y. Then A = B.

Proof X
⋂

Y is also a successor set. Thus, A and B are both smallest successor sets
contained in X

⋂
Y . �

Let X be a successor set. The smallest successor set contained in X, which is
the smallest successor set contained in any other successor set, is called the set of
natural numbers. The set of natural numbers is denoted by N. {∅} is denoted by 1,
and it is called one. {∅}+ = {∅, {∅}} is denoted by 2, and it is called two, and so
on. The properties of the set N of natural numbers can be faithfully described in the
form of Peano’s axioms as given below:

Peano’s Axiom

P1. 1 ∈ N.
P2. For all x ∈ N, x+ ∈ N.
P3. x+ = y+ if and only if x = y.
P4. For all x ∈ N, 1 �= x+.
P5. If M is a set such that 1 ∈ M and x+ ∈ M for all x ∈ M

⋂
N, then N ⊆ M.

Further properties of the natural number system N will be discussed in detail in the
next chapter.

Exercises

2.1.1 Show that

(i) A
⋂ ∅ = ∅

(ii) A
⋃ ∅ = A
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(iii) A − ∅ = A
(iv) ∅ − A = ∅.
2.1.2 Show that A − (A − B) = A

⋂
B.

2.1.3 Show that A − (A
⋂

B) = A − B.

2.1.4 Show that A
⋃

B = A if and only if B ⊆ A.

2.1.5 Show that (A
⋂

B)
⋃

C = (A
⋃

C)
⋂

(B
⋃

C).

2.1.6 Show that (A
⋂

B)
⋃

C = A
⋂

(B
⋃

C) if and only if C ⊆ A.

2.1.7 Show that A ⊆ B implies C
⋃

A ⊆ C
⋃

B.

2.1.8 Show that (A − B) − C = (A − C) − B.

2.1.9 Show that

(i) A
⋂

(B
⋃

A) = A.
(ii) A = A

⋃
(B

⋂
A).

2.1.10 Put A
⊕

B = (A − B)
⋃

(B − A). Show that

(i) (A
⊕

B)
⊕

C = A
⊕

(B
⊕

C).
(ii) A

⊕∅ = A = ∅⊕
A.

(iii) A
⊕

B = B
⊕

A.
(iv) A

⊕
B = ∅ if and only if A = B.

(v) A
⋂

(B
⊕

C) = (A
⋂

B)
⊕

(A
⋂

C).
(vi) A

⊕
C = B

⊕
C if and only if A = B.

2.1.11 A ⊂ B if and only if ℘(A) ⊆ ℘(B).

2.1.12 Show that ℘(A
⋂

B) = ℘(A)
⋂

℘(B).

2.1.13 Show that ℘(A)
⋃

℘(B) ⊆ ℘(A
⋃

B). Show by means of an example that
equality need not hold.

2.1.14 Suppose that A contains n elements. Show that ℘(A) contains 2n elements.

2.1.15 Can ℘(A) be ∅? Support.
2.1.16 Show that a union of successor sets is a successor set.

2.1.17 Let A be a successor set. Can ℘(A) be a successor set? support.

2.1.18 Let A and B be successor sets. Can A − B be a successor set? Support.

2.1.19 Show that X+ �= X for every set X.

2.1.20 (X+)+ �= X for every set X.

2.1.21 Show that the empty set is not successor of any set.
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2.2 Cartesian Product and Relations

Let X be a set. Let a, b ∈ X. Then, the set {{a}, {a, b}} is a subset of℘(X). We denote
the set {{a}, {a, b}} by (a, b) and call it an ordered pair. Thus, (a, b) ∈ ℘(℘(X)).

Proposition 2.2.1 (a, b) = (b, a) if and only if a = b.

Proof Suppose that (a, b) = (b, a). Then, {{a}, {a, b}} = {{b}, {b, a}}. Since
{a, b} = {b, a}, {a} = {b}. Hence, a = b. Clearly, a = b implies (a, b) = (a, a) =
(b, a). �

Observe that (a, a) = {{a}, {a, a}} = {{a}, {a}} = {{a}}.
Let X and Y be sets. Then, the set

X × Y = {(a, b) | a ∈ X and b ∈ Y}

is called the cartesian product of X and Y . Clearly, X × Y ⊆ ℘(℘(X
⋃

Y)).

Proposition 2.2.2 Let A, B, and C be sets. Then,

(i) (A
⋃

B) × C = (A × C)
⋃

(B × C).
(ii) (A

⋂
B) × C = (A × C)

⋂
(B × C).

(iii) (A − B) × C = (A × C) − (B × C).

Proof (i). Let (x, y) ∈ (A
⋃

B) × C. By the definition, ‘x ∈ A
⋃

B and y ∈ C.’
This implies that ‘(x ∈ A and y ∈ C) or (x ∈ B and y ∈ C).’ Thus, ‘(x, y) ∈
(A × C) or (x, y) ∈ (B × C).’ By the definition, (x, y) ∈ (A × C)

⋃
(B × C).

It follows that ‘(A
⋃

B) × C ⊆ (A × C)
⋃

(B × C).’ Similarly, it follows that
‘(A × C)

⋃
(B × C) ⊆ (A

⋃
B) × C.’ By the axiom of extension, (A

⋃
B) × C =

(A × C)
⋃

(B × C).
Similarly, we can prove (ii) and (iii). �

Proposition 2.2.3 A × B = ∅ if and only if (A = ∅ or B = ∅).

Proof Suppose that A = ∅, and (x, y) ∈ A× B. Then, x ∈ ∅ and y ∈ B. Since x ∈ ∅
is a contradiction, (x, y) ∈ ∅×B is also a contradiction. Hence, ∅×B = ∅. Similarly,
A × ∅ = ∅. Now, suppose that A �= ∅ and B �= ∅. Then, there is an element x ∈ A
and an element y ∈ B. In turn, (x, y) ∈ A × B. Hence, A × B �= ∅. �

Relations

Consider the relation ‘is father of.’ Nehru is father of Indira, and Feroze Gandhi is
the father of Rajeev Gandhi. This gives us pairs (Nehru, Indira) and (Feroze Gandhi,
Rajeev Gandhi). If we look at the set R of all pairs (a, b), where a is father of b, then
the set R faithfully describes the relation of ‘is father of.’ One is genuinely tempted
to define a relation as a set of ordered pairs.

Definition 2.2.4 A subset R of X × X is called a relation on X. If (x, y) ∈ R, then
we say that x is related to y under the relation R. We also express it by writing xRy.
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Example 2.2.5 ∅ is a relation on X in which no pair of elements in X are related.
X × X is the largest (universal) relation on X in which each pair of elements in X is
related.

Example 2.2.6 
 = {(x, x) | x ∈ X} is a relation on X called the diagonal relation
on X. This is the most selfish relation on X.

Example 2.2.7 Let X = {a, b, c}. R = {(a, b), (b, a), (a, c)} is a relation on X.

Example 2.2.8 Let X be a set. Then, R = {(a, b) | a, b ∈ X and a ∈ b} is a relation
on X.

Example 2.2.9 Let X be a set. Then, R = {(A,B) | A,B ∈ ℘(X) and A ⊆ B} is a
relation on ℘(X).

Let R and S be relations on X. Then, R
⋃

S, R
⋂

S, and R−S are all subsets of X×X,
and hence, they are also relations on X.

Definition 2.2.10 Let R and S be relations on X. The relation

RoS = {(x, z) ∈ X × X | (x, y) ∈ S and (y, z) ∈ R for some y ∈ X}

is called the composition of R and S.

Proposition 2.2.11 Let R, S, and T be relations on X. Then,

(RoS)oT = Ro(SoT).

Proof Let (x, y) ∈ (RoS)oT . By the definition,

there exists z ∈ X such that (x, z) ∈ T , and (z, y) ∈ RoS.

Again, by the definition,

there exist z and u ∈ X such that (x, z) ∈ T , (z, u) ∈ S, and (u, y) ∈ R.

Thus,
there exists u ∈ X such that (x, u) ∈ SoT , and (u, y) ∈ R.

Hence, (x, y) ∈ Ro(SoT). This shows that (RoS)oT ⊆ Ro(SoT). Similarly,
Ro(SoT) ⊆ (RoS)oT . By the axiom of extension, the result follows. �

Proposition 2.2.12 Ro
 = R = 
oR.

Proof Since (x, x) ∈ 
 for all x ∈ X, (x, y) ∈ Ro
 if and only if (x, y) ∈ R. This
proves that Ro
 = R. Similarly, R = 
oR. �
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Proposition 2.2.13 Let R, S and T be relations on X. Then

(i) Ro(S
⋃

T) = (RoS)
⋃

(RoT)

(ii) Ro(S
⋂

T) ⊆ (RoS)
⋂

(RoT)

(iii) (R
⋃

S)oT = (RoT)
⋃

(SoT)

(iv) (R
⋂

S)oT ⊆ (RoT)
⋂

(SoT)

Proof (i) Let (x, y) ∈ Ro(S
⋃

T). By the definition,

there exists z ∈ X such that (x, z) ∈ S
⋃

T , and (z, y) ∈ R.

Thus,

there exists z ∈ X such that ((x, z) ∈ S, and (z, y) ∈ R) or ((x, z) ∈ T , and (z, y) ∈ R).

In turn, it follows that ‘(x, y) ∈ (RoS) or (x, y) ∈ (RoT).’ Hence, (x, y) ∈
(RoS)

⋃
(RoT). This shows that Ro(S

⋃
T) ⊆ (RoS)

⋃
(RoT). Similarly, (RoS)

⋃

(RoT) ⊆ Ro(S
⋃

T). By the axiom of extension, Ro(S
⋃

T) = (RoS)
⋃

(RoT).
Similarly, we can prove the rest. �

Example 2.2.14 Let X = {a, b, c}. Let R = {(a, b), (a, c)} and S = {(b, c), (b, b)}.
Then RoS = ∅, and SoR = {(a, c), (a, b)} = R(verify). Thus, RoS need not be SoR.
Observe that R = SoR = 
oR, and S �= 
. If we take T = {(a, a), (b, c), (b, b)},
then RoT = {(a, c), (a, b)} = R and ToR = R. But T �= 
. Thus, RoT = R = ToR
need not imply that T = 
.

Definition 2.2.15 Let R be a relation on X. Then, the relation

R−1 = {(x, y) ∈ X × X | (y, x) ∈ R}

is called the inverse of R.

Example 2.2.16 Let R = {(a, b), (a, c)} be a relation on the set X = {a, b, c}.
Then, R−1 = {(b, a), (c, a)}. Now, RoR−1 = {(b, b), (c, c)}, and R−1oR = {(a, a)}.
Thus, here again, RoR−1 �= R−1oR.

Proposition 2.2.17 Let R and S be relations on X. Then,
(i) (R−1)−1 = R
(ii) (RoS)−1 = S−1oR−1.

Proof Clearly, (x, y) ∈ R if and only if (y, x) ∈ R−1. Also, (y, x) ∈ R−1 if and
only if (x, y) ∈ (R−1)−1. Thus, R = (R−1)−1. To prove (ii), let (x, y) ∈ (RoS)−1.
Then, (y, x) ∈ RoS. Hence, there exists z ∈ X such that (y, z) ∈ S and (z, x) ∈ R.
Thus, (x, z) ∈ R−1, and (z, y) ∈ S−1 for some z ∈ X. But, then (x, y) ∈ S−1oR−1.
This shows that (RoS)−1 ⊆ S−1oR−1. Similarly, S−1oR−1 ⊆ (RoS)−1. �
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Types of Relations

Definition 2.2.18 A relation R on X is said to be
(i) a reflexive relation if (x, x) ∈ R for all x ∈ X, or equivalently if 
 ⊆ R.
(ii) a symmetric relation if (x, y) ∈ R implies that (y, x) ∈ R, or equivalently if
R−1 = R.
(iii) an antisymmetric relation if (x, y) ∈ R and (y, x) ∈ R implies that x = y, or
equivalently if R

⋂
R−1 ⊆ 
.

(iv) a transitive relation if when ever (x, y) ∈ R and (y, z) ∈ R, (x, z) ∈ R, or
equivalently if RoR ⊆ R.

Example 2.2.19 Let X = {a, b, c} and

R = {(a, a), (b, b), (c, c), (a, b), (b, c), (c, b)}.

Then, R is reflexive but none of the rest of the three.

Example 2.2.20 Let X = {a, b, c} and R = {(a, b), (b, a)}. Then, R is symmetric
but none of the rest of the three.

Example 2.2.21 LetX = {a, b, c} and R = {(c, b), (a, c)}. Then,R is antisymmetric
but none of the rest of the three.

Example 2.2.22 Let X = {a, b, c} and

R = {(a, b), (b, a), (a, a), (b, b), (a, c), (b, c)}.

Then, R is transitive but none of the rest of the three.

Example 2.2.23 Let X = {a, b, c} and

R = {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)}.

Then, R is reflexive and symmetric but neither antisymmetric nor transitive.

Example 2.2.24 Let X = {a, b, c} and

R = {(b, c), (c, b), (b, b), (c, c)}.

Then, R is symmetric and transitive but neither reflexive nor antisymmetric.

Proposition 2.2.25 Let R be a relation on X which is symmetric and transitive.
Suppose that for all x ∈ X, there exists y ∈ X such that (x, y) ∈ R. Then, R is
reflexive.

Proof Let x ∈ X. Then, (x, y) ∈ R for some y ∈ X. Since R is symmetric, (y, x) ∈ R.
Since R is transitive, (x, x) ∈ R. Thus, R is reflexive. �
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Example 2.2.26 The relation which is reflexive, symmetric, and antisymmetric is
the diagonal relation. Thus, a reflexive, symmetric, and antisymmetric relations are
also transitive.

Exercises

2.2.1 Suppose that A × C ⊆ B × C,C �= ∅. Show that A ⊆ B.

2.2.2 Show that (A × B = B × A) if and only if (A = ∅ or B = ∅ or A = B).

2.2.3 Suppose that A, B, and C are nonempty sets. Is
(A × B) × C = A × (B × C)? Support.

2.2.4 Show that (A
⋂

B) × (C
⋂

D) = (A × C)
⋂

(B × D).

2.2.5∗ Suppose that A ⊆ A × A. Show that A = ∅.
Hint. Use the axiom of regularity.

2.2.6∗ Suppose that A = A × B. Show that A = ∅.
2.2.7 Suppose that A contains n elements and B contains m elements. Show that
A × B contains n · m elements.

2.2.8 Show that the number of relations on a set containing n elements is 2n
2
.

2.2.9 Let X = {a, b, c},R = {(a, b), (b, c), (c, a)} and S = {(a, a), (a, c), (b, b)}.
Find out (i) R

⋃
S, (ii) R

⋂
S, (iii) RoS, and (iv) R−1.

2.2.10 Show by means of an example that equality in Proposition 2.2.13 (ii) and (iv)
need not hold.

2.2.11 Find out the number of reflexive relations on a set containing n elements.
Hint. A reflexive relation on X ×X can be written as �

⋃
S, where S ⊆ X ×X −�.

2.2.12 Find out the number of symmetric relations on a set containing n elements.

2.2.13 Findout the number of antisymmetric relations on a set containingn elements.

2.3 Equivalence Relation

The concept of equality in mathematics is best described in terms of equivalence
relations.

Definition 2.3.1 A relation R on X which is reflexive, symmetric, and transitive is
called an equivalence relation on X.

Example 2.3.2 The diagonal relation 
 is the smallest equivalence relation on X.
The universal relation X × X is the largest equivalence relation on X. The relation
R = {(a, a), (b, b), (c, c), (a, b), (b, a)} is an equivalence relation onX = {a, b, c}.
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Definition 2.3.3 Let R be an equivalence relation on X. Let x ∈ X. The subset

Rx = {y ∈ X | (x, y) ∈ R}

is called the equivalence class of X modulo R determined by the element x.

Thus, for example, the equivalence class 
x of X modulo 
 determined by x is
the singleton {x}. For the equivalence relation
R = {(a, a), (b, b), (c, c), (a, b), (b, a)} on X = {a, b, c}, the equivalence classes
are Ra = {a, b} = Rb and Rc = {c}.

Since R is reflexive, (x, x) ∈ R for all x ∈ X, and hence, x ∈ Rx for all x ∈ X.

Proposition 2.3.4 Let R be an equivalence relation on X. Then, the following hold.

(i) x ∈ Rx for all x ∈ X.
(ii) Rx = Ry if and only if (x, y) ∈ R.
(iii) Rx �= Ry if and only if Rx

⋂
Ry = ∅.

Proof (i) Since R is reflexive, (x, x) ∈ R for all x ∈ X, and hence x ∈ Rx for all
x ∈ X.

(ii) Suppose that Rx = Ry. Since R is an equivalence relation, y ∈ Ry = Rx. Hence
(x, y) ∈ R. Conversely, suppose that (x, y) ∈ R. Since R is symmetric, (y, x) ∈ R.
Let z ∈ Rx. Then, (x, z) ∈ R. Since R is transitive, (y, z) ∈ R. Thus, z ∈ Ry. Hence,
Rx ⊆ Ry. Similarly, Ry ⊆ Rx. This shows that Rx = Ry.

(iii) Suppose that Rx
⋂

Ry �= ∅. Let z ∈ Rx
⋂

Ry. Then, (x, z) ∈ R and (y, z) ∈ R.
Since R is symmetric and transitive, (x, y) ∈ R. It follows from (ii) that Rx = Ry.
Clearly, if Rx

⋂
Ry = ∅, then Rx �= Ry, for x ∈ Rx. �

Let X be a non emptyset. A set ℘ of nonempty subsets of X is called a partition of
X if the following hold.

(i) Union of members of ℘ is X, i.e.,
⋃

A∈℘ A = X.
(ii) If A and B are distinct members of ℘, then A

⋂
B = ∅.

Corollary 2.3.5 Let R be an equivalence relation on X. Then, ℘R = {Rx | x ∈ X} is
a partition of X.

Proof Follows from the above proposition. �

The partition ℘R is the partition determined by the equivalence relation R. The set
℘R is also denoted by X/R, and it is also called the quotient set of X modulo R.

Proposition 2.3.6 Let ℘ be a partition of X. Define a relation R℘ on X by R℘ =⋃
A∈℘ A × A. Then R℘ is an equivalences relation such that ℘R℘ = ℘.
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Proof Since union of members of℘ is X, given x ∈ X, x ∈ A for some A ∈ ℘. Hence
(x, x) ∈ R℘ for all x ∈ X. Thus, R℘ is reflexive. Suppose that (x, y) ∈ R℘ . Then,
there is an element A ∈ ℘ such that x, y ∈ A, and so y, x ∈ A. Hence, (y, x) ∈ R℘ .
Thus, R℘ is symmetric. Suppose that (x, y) ∈ R℘ and (y, z) ∈ R℘ . Then, there is
an element A ∈ ℘ and an element B ∈ ℘ such that x, y ∈ A and y, z ∈ B. Since
y ∈ A

⋂
B,A

⋂
B �= ∅. Further, since ℘ is a partition, A = B. Hence, x, z ∈ A ∈ ℘.

Thus, (x, z) ∈ R℘ . This shows that R℘ is transitive.
Next, R℘

x is the member A of ℘ such that x ∈ A. Hence, ℘R℘ = ℘. �

Proposition 2.3.7 R℘R = R for every equivalence relation R.

Proof Suppose that (x, y) ∈ R. Then x, y ∈ Rx ∈ ℘R. Hence (x, y) ∈ R℘R . Suppose
that (x, y) ∈ R℘R . Then there exists Rz ∈ ℘R such that x, y ∈ Rz. Hence, there is
an element z ∈ X such that (x, z) ∈ R and (y, z) ∈ R. Since R is symmetric and
transitive, (x, y) ∈ R. This shows that R = R℘R . �

Remark 2.3.8 It is apparent from the above discussions that every partition can be
realized faithfully as an equivalence relation, and every equivalence relation can be
realized faithfully as a partition.

Example 2.3.9 Let R be a relation (not necessarily equivalence) on X. Define Rx =
{y ∈ X | (x, y) ∈ R}. Suppose that ℘ = {Rx | x ∈ X} is a partition of X. Can we
infer that R is an equivalence relation? No. For example, take X = {a, b, c},R =
{(a, b), (b, c), (c, a)}. Then, Ra = {b},Rb = {c},Rc = {a}. Thus, {Ra,Rb,Rc} is a
partition of X, whereas R is not an equivalence relation (it is neither reflexive nor
symmetric nor transitive).

Example 2.3.10 Let ℘ ⊆ ℘(X) (not necessarily a partition). Consider the relation
R℘ on X given by R℘ = {(x, y) | such that x, y ∈ A for some A ∈ ℘}. Suppose
that R℘ is an equivalence relation. Can we infer that ℘ is a partition? Again, no.
For example, take ℘ = {{a, b}, {b, c}, {c, a}} ⊆ ℘(X), where X = {a, b, c}. Then,
R℘ = X × X is an equivalence relation.

Exercises

2.3.1 Let R and S be equivalence relations on X. Show that RoS is an equivalence
relation if and only if RoS = SoR.

2.3.2 Let pn denote the number of equivalence relations on a set containing n ele-
ments. Show that

pn+1 = �n
r=0(

nCr)pr

Hint. pn is the number of partitions of a set containing n elements.

2.3.3 Let X = {a, b, c, d} and

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (b, a), (c, b), (c, a)}.

Show that R is an equivalence relation. Find ℘R. Can we find
an other relation S such that ℘R = ℘S? Support.
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2.3.4 Show that the intersection of symmetric relations is symmetric. Deduce that
for every relation R on X, there is smallest symmetric relation containing R. This
relation is called the symmetric closure of R. Find the symmetric closures of all the
relations given above.

2.3.5 Show that the intersection of transitive relations is transitive. Deduce that for
every relation R on X, there is smallest transitive relation containing R. This relation
is called the transitive closure of R. Find the transitive closures of all the relations
given above.

2.3.6 Show that the intersection of equivalence relations is equivalence relation.
Deduce that for every relationRonX, there is smallest equivalence relation containing
R. This relation is called the equivalence closure of R. Find the equivalence closures
of all the relations given above.

2.3.7 Is composite of two symmetric relations always symmetric? If not under what
conditions it is symmetric.

2.3.8 Is composite of two transitive relations always transitive? If not under what
conditions it is transitive.

2.4 Functions

Let X and Y be sets. A subset f of X ×Y (the Cartesian product) is called a function
or a mapping (or a map) from X to Y if the following two conditions hold.

(i) For all x ∈ X, there exists y ∈ Y such that (x, y) ∈ f .
(ii) If (x, y1) ∈ f and (x, y2) ∈ f , then y1 = y2.

X is called the domain, and Y is called the co-domain of f . If (x, y) ∈ f , we write
y = f (x) and call it the image of the element x ∈ X under the map f . Thus, under
this notation, f = {(x, f (x)) | x ∈ X}.

Intuitively, a function f from X to Y is an association or a correspondence which
associates to each x ∈ X, a unique y ∈ Y which we denote by f (x). Thus, to define a
map f from X to Y , it is sufficient to give a unique f (x) in Y for all x ∈ X. Any two
functions f and g from X to Y are equal if and only if f (x) = g(x) for all x ∈ X.

We also adopt the notation f : X −→ Y to say that f is a map from X to Y .
Let f be a map from X to Y and g be a map from Y to Z . Then, gof defined by

gof = {(x, z) | (x, y) ∈ f and (y, z) ∈ g for some y ∈ Y}

is also a map from X to Z , and it is called the composite of f and g. Thus, the map
gof from X to Z is given by (gof )(x) = g(f (x)) for all x ∈ X.

The subset � of X × X is also a map from X to X. This map is called the
identity map on X, and it is denoted by IX . Thus, IX(x) = x for all x ∈ X. Clearly,
foIX = f = IYof for every map f from X to Y .
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Let Y be a subset of X. Then, iY = {(y, y) | y ∈ Y} is a map from Y to X called the
inclusion map from Y to X. This map is sometimes denoted by the symbol Y ↪→ X.

Let f be a map from X to A, and Y a subset of X. The composition foiY is a map
from Y to A, and it is called the restriction of f to Y . The map foiY is also denoted
by f |Y .

Let X and Y be sets and y ∈ Y . Then, X × {y} is a map f from X to Y such that
f (x) = y for all x ∈ X. This map is called a constant map.

Let X and Y be sets. Consider the Cartesian product X × Y . The map p1 from
X × Y to X defined by p1((x, y)) = x is called the first projection and the map p2
from X × Y to Y defined by p2((x, y)) = y is called the second projection map.

Proposition 2.4.1 Let f be a map from X to Y, g a map from Y to Z, and h a map
from Z to U. Then (hog)of = ho(gof ).

Proof Clearly, ((hog)of )(x) = (hog)(f (x)) = h(g(f (x))) = h((gof )(x)) =
(ho(gof ))(x) for all x ∈ X. Hence ho(gof ) = (hog)of . �

Let f be a map from X to Y . Then f ⊆ X × Y . Consider f −1 = {(y, x) | (x, y) ∈ f }.
Then f −1 ⊆ Y×X need not be a map from Y to X for two reasons: (i) for y ∈ Y , there
may not be any x ∈ X such that (x, y) ∈ f , and so there may not be any x ∈ X such
that (y, x) ∈ f −1, (ii) (y, x1) ∈ f −1 and (y, x2) ∈ f −1 need not imply that x1 = x2.
Thus, f −1 will be a map if and only if the following two conditions hold.

(i) For all y ∈ Y , there is an element x ∈ X such that (x, y) ∈ f .
(ii) If (x1, y) ∈ f and (x2, y) ∈ f , then x1 = x2.

A map f from X to Y is called a surjective map (also called an onto map) if
for all y ∈ Y , there is an element x ∈ X such that (x, y) ∈ f . Thus, f is a surjective
map if for all y ∈ Y , there is an element x ∈ X such that f (x) = y.

A map f from X to Y is called an injective map (also called a one − one map)
if (x1, y) ∈ f , (x2, y) ∈ f implies that x1 = x2. Thus, f is injective map if whenever
f (x1) = f (x2), x1 = x2. In other words, f is injective if whenever x1 �= x2, f (x1) �=
f (x2).

A map f which is injective as well as surjective is called a bijective map (also
called a one-one-onto map).

Thus, f −1 is a map if and only if f is bijective, and then, the map f −1 is called the
inverse of f . The inverse of a bijective map is also bijective.

Example 2.4.2 An injective map need not be surjective. For example, take X =
{a, b}, Y = {x, y, z}. Define a map f from X to Y by f (a) = x and f (b) = y. Then,
f is injective but it is not surjective, for there is no element in X whose image is z.

Example 2.4.3 A surjective map need not be injective. Take X = {a, b, c} and
Y = {x, y}. Define a map f from X to Y by f (a) = x = f (b), f (c) = y. Then, f is
surjective, but it is not injective.
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Proposition 2.4.4 Let f be a bijective map from X to Y. Then, f −1 is also a bijective
map from Y to X. Also (i) (f −1)−1 = f , (ii) f −1of = IX , and fof −1 = IY .

Proof Let f be a bijective map. Then, we have already observed that f −1 is a map
from Y to X. Suppose that (y1, x) ∈ f −1 and (y2, x) ∈ f −1. Then, (x, y1) ∈ f and
(x, y2) ∈ f . Since f is a map, y1 = y2. Thus, f −1 is injective. Let x ∈ X, then
(x, f (x)) ∈ f , and hence, (f (x), x) ∈ f −1. This shows that f −1 is surjective. We
also observe that (f −1of )(x) = f −1(f (x)) = x for all x ∈ X, and (fof −1)(y) =
f (f −1(y)) = y for all y ∈ Y . Thus, f −1of = IX , and fof −1 = IY . The fact that
(f −1)−1 = f follows from the definition of f −1.

Proposition 2.4.5 (i) The composite of any two injective maps is an injective map,
(ii) the composite of any two surjective maps is a surjective, and (iii) the composite
of any two bijective maps is a bijective map.

Proof (i) Let f be an injective map from X to Y and g be an injective map from Y to
Z . Suppose (gof )(x1) = (gof )(x2). Then, g(f (x1)) = g(f (x2)). Since g is injective,
f (x1) = f (x2). Further, since f is injective, x1 = x2. Hence, gof is injective.
(ii) Suppose that f and g are surjective maps. Let z ∈ Z . Since g is surjective,
there exists an element y ∈ Y such that g(y) = z. Again, since f is surjective,
there exists an element x ∈ X such that f (x) = y. But, then (gof )(x) = g(f (x)) =
g(y) = z. Hence, gof is surjective.
(iii) Follows from (i) and (ii). �

Proposition 2.4.6 Let f be a map from X to Y and g be a map from Y to Z. Then,
the following hold. (i) If gof is surjective, then g is surjective. (ii) If gof is injective,
then f is injective.

Proof (i) Suppose that of gof is surjective. Let z ∈ Z . Since gof is surjective,
there exists x ∈ X such that (gof )(x) = z, i.e., g(f (x)) = z. Hence, g is surjective.

(ii) Suppose that gof is injective and f (x1) = f (x2). Then, g(f (x1)) = g(f (x2)),
i.e., (gof )(x1) = (gof )(x2). Since gof is injective, x1 = x2. Hence, f is injective. �

Corollary 2.4.7 If gof is bijective, then g is surjective and f is injective. �

Proposition 2.4.8 A map f from X to Y is injective if and only if it can be left
canceled in the sense that if fog = foh, then g = h. A map f is surjective if and only
if it can be right canceled in the sense that if gof = hof , then g = h.

Proof Suppose that f is injective and fog = foh. Then, f (g(z)) = (fog)(z) =
(foh)(z) = f (h(z)) for all z ∈ Z . Since f is injective, g(z) = h(z) for all
z ∈ Z . This shows that g = h. Now, suppose that f is not injective. Then,
there exist elements x1, x2 ∈ X such that x1 �= x2 and f (x1) = f (x2). Take Z =
{x1, x2}. Define a map g from Z to X by g(x1) = x1 = g(x2) and a map h from Z to
X by h(x1) = x2 = h(x2). Then, g �= h but fog = foh.
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Next, suppose that f is surjective and g, h are maps from Y to Z such that gof =
hof . Then, g(f (x)) = h(f (x)) for all x ∈ X. Since f is surjective, g(y) = h(y) for
all y ∈ Y . This shows that g = h. Now, suppose that f is not surjective. Then,
there exists an element y0 ∈ Y such that y0 �= f (x) for all x ∈ X. Take Z = {a, b}.
Define a map g from Y to Z by g(y0) = a, g(y) = b for all y �= y0, and a map h from
Y to Z by h(y) = b for all y ∈ Y . Clearly, then, g �= h and gof = hof . �

Corollary 2.4.9 A map f from X to Y is bijective if and only if it can be canceled
from left as well as from right. �

Proposition 2.4.10 Let f be a map from X to Y. Then f is bijective if and only if
there exists a map g from Y to X such that gof = IX and fog = IY . Further, then
g = f −1.

Proof If f is bijective, then f −1of = IX and fof −1 = IY (Proposition 2.4.4). Let
g be a map from Y to X such that gof = IX and fog = IY . Since gof = IX is
injective, f is injective. Since fog = IY is surjective, f is surjective. Further, then
f −1of = IX = gof , and fof −1 = IY = fog. The result follows from the above
corollary. �

Corollary 2.4.11 Let f be a bijective map from X to Y, and g be a bijective map
from Y to Z. Then (gof )−1 = f −1og−1.

Proof Clearly,

(f −1og−1)o(gof ) = (f −1o(g−1og))of = f −1of = IX .

Similarly,
(gof )o(f −1og−1) = IY .

The result follows. �

Proposition 2.4.12 There is no surjective map from any set X to its power set℘(X).

Proof Let f be a map from X to ℘(X). Consider the set A = {x ∈ X | x /∈ f (x)}.
Then, A ∈ ℘(X). Suppose that f (y) = A for some y ∈ X. If y /∈ A = f (y), then
y ∈ A. If y ∈ A = f (y), then y /∈ f (y) = A. Hence, the supposition that f (y) = A for
some y ∈ X is false. This shows that f can not be surjective. �

Let X and Y be sets. The set of all maps from X to Y is denoted by YX .
What are X∅ and ∅X?

Example 2.4.13 Let X be a set, and 2 denotes the set {0,1}. Define a map φ from
℘(X) to 2X by φ(A)(x) = 0 if x /∈ A and φ(A)(x) = 1 if x ∈ A. Check that the map
φ is bijective.

Let f be a map from X to Y . Let A ⊆ X and B ⊆ Y . The subset f (A) = {f (a) |
a ∈ A} of Y is called the image of A under the map f . The subset f −1(B) = {x ∈ X |
f (x) ∈ B} of X is called the inverse image of B under f .
What are f −1(Y) and f −1(∅)? To say that f is surjective is to say that f (X) = Y .
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Proposition 2.4.14 Let f be a map from X to Y and A ⊆ X. Then A ⊆ f −1(f (A)).
Also A = f −1(f (A)) for all A ⊆ X if and only if f is injective.

Proof Let a ∈ A. Then, f (a) ∈ f (A), and hence, by the definition, a ∈ f −1(f (A)).
Thus, A ⊆ f −1(f (A)). Suppose that f is injective. Let x ∈ f −1(f (A)). Then, f (x) ∈
f (A) (by def). Hence, there exists an element a ∈ A such that f (x) = f (a). Since f is
injective, x = a ∈ A. Thus, f −1(f (A)) ⊆ A, and therefore, A = f −1(f (A)). Suppose
that f is not injective. Then, there exist elements x1, x2 ∈ X, x1 �= x2 such that
f (x1) = f (x2) = y (say). Take A = {x1}. Then, f (A) = {y} and {x1, x2} ⊆ f −1(f (A)).
Hence, A �= f −1(f (A)). �

Proposition 2.4.15 Let f be a map from X to Y and B ⊆ Y. Then f (f −1(B)) ⊆ B.
Also B = f (f −1(B)) for all B ⊆ Y if and only if f is surjective.

Proof Let y ∈ f (f −1(B)). Then, y = f (x) for some x ∈ f −1(B). But then y =
f (x) ∈ B. Hence, f (f −1(B)) ⊆ B. Suppose that f is surjective and y ∈ B. Then,
there exists an element x ∈ X such that f (x) = y. Clearly, x ∈ f −1(B), and hence, y =
f (x) ∈ f (f −1(B)). Therefore, B = f (f −1(B)). Suppose now that f is not surjective.
Then, there exists an element b ∈ Y such that b /∈ f (X). But, then f −1({b}) = ∅, and
hence, f (f −1({b})) = ∅ �= {b}. �

Proposition 2.4.16 Let f be a map from X to Y. Let A1 and A2 be subsets of X. Then,
the following hold.

(i) f (A1
⋃

A2) = f (A1)
⋃

f (A2).
(ii) f (A1

⋂
A2) ⊆ f (A1)

⋂
f (A2).

Further, in (ii), equality holds for every pair of subsets A1 and A2 of X if and only if
f is injective.

Proof The proof of (i) and (ii) is left as exercises.Weprove the last assertion. Suppose
now that f is injective. Let y ∈ f (A1)

⋂
f (A2). Then, there is an element a ∈ A1 and

an element b ∈ A2 such that y = f (a) = f (b). Since f is injective, a = b ∈ A1
⋂

A2,
and so y = f (a) ∈ f (A1

⋂
A2). Thus, f (A1)

⋂
f (A2) ⊆ f (A1

⋂
A2). But already

(from (ii)) f (A1
⋂

A2) ⊆ f (A1)
⋂

f (A2). Thus, equality holds in (ii) if f is injective.
Conversely, suppose that f is not injective. Then, we have two distinct elements
x1, x2 in X such that f (x1) = f (x2) = b (say). Take A1 = {x1}, A2 = {x2}. Then,
f (A1

⋂
A2) = f (∅) = ∅, whereas f (A1)

⋂
f (A2) = {b} �= ∅. �

Proposition 2.4.17 Let f be a map from X to Y. Let B1 and B2 be subsets of Y . Then,
the following hold.

(i) f −1(B1
⋂

B2) = f −1(B1)
⋂

f −1(B2).
(ii) f −1(B1

⋃
B2) = f −1(B1)

⋃
f −1(B2).

(iii) f −1(B1 − B2) = f −1(B1) − f −1(B2).

Proof (i) Let x ∈ f −1(B1
⋂

B2). By the definition, f (x) ∈ B1
⋂

B2. Thus, f (x) ∈
B1 and f (x) ∈ B2. This implies that x ∈ f −1(B1) and x ∈ f −1(B2). In turn, x ∈
f −1(B1)

⋂
f −1(B2). This shows that f −1(B1

⋂
B2) ⊆ f −1(B1)

⋂
f −1(B2). Similarly,
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f −1(B1)
⋂

f −1(B2) ⊆ f −1(B1
⋂

B2). This proves (i). Similarly, we can prove the
rest of the two. �

Family of sets.
Let I be a set and X be a set of sets. A surjective map A from I to X is called a

family of sets. We denote the image A(α) of α by Aα. This family of sets is denoted
by {Aα | α ∈ I}. The set I is called the indexing set of the family.

Let {Aα | α ∈ I} be a family of sets. Then, the set

⋃

α∈I
Aα = {x | x ∈ Aα for some α ∈ I}

is called the union of the family, and

⋂

α∈I
Aα = {x | x ∈ Aα for all α ∈ I}

is called the intersection of the family.

Proposition 2.4.18 (De Morgan’s Law) Let X be a set and {Aα | α ∈ I} be a family
of sets. Then, {X − Aα | α ∈ I} is another family of sets and
(i) X − (

⋃
α∈I Aα) = ⋂

α∈I(X − Aα).
(ii) X − (

⋂
α∈I Aα) = ⋃

α∈I(X − Aα).

The proof of the above proposition is left as an exercise.
Let {Xi, i ∈ {1, 2}} = {X1, X2} be a family of sets containing only two sets

X1 and X2. An element (x1, x2) of the Cartesian product X1 × X2 can be faithfully
realized as a map x from {1, 2} to X1

⋃
X2 with x(1) = x1 and x(2) = x2. This

prompts us to define the Cartesian product of an arbitrary family as follows:

Definition 2.4.19 Let {Xα | α ∈ I} be a family of sets. Let
∏

α∈I Xα denote the set
of all maps x from I to

⋃
α∈I Xα with the property that x(α) ∈ Xα for all α ∈ I . The

set
∏

α∈I Xα is called the Cartesian product of the family.
Further, for eachα0 ∈ I , the map pα0 from

∏
α∈I Xα to Xα0 defined by pα0(x) = x(α0)

is called the αth
0 projection map.

The Axioms 1–9 constitute the Zermelo–Fraenkel (ZF) axiomatic system for set
theory.

Consider the set X of countries in the world. How to select a unique city in each
country? More explicitly, how to get a map c from the set X to the set of all cities
in the world so that c(A) ∈ A for all countries A in X. Here, we can give a rule to
define the map c by saying that c(A) is the capital of the country A. In general, if
{Xα | α ∈ I} is a nonempty family of nonempty sets, how to chose a unique member
from each class. The following is an other fundamental and important axiom of set
theory which ensures the existence of such a map.
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Axiom 10 (Axiom of Choice) Let {Xα | α ∈ I} be a nonempty family of nonempty
sets (i.e., I is nonempty, and Xα �= ∅ for all α ∈ I). Then,

∏
α∈I Xα is nonempty set.

More explicitly, there exists a map c from I to
⋃

α∈I Xα (called a choice function)
such that c(α) ∈ Xα for all α ∈ I .

Remark 2.4.20 K. Godel in 1932 proved that the axiom of choice is consistent with
the ZF axiomatic system. More explicitly, the negation of the axiom of choice is
not a theorem in the ZF axiomatic system. Later, P. Cohn established that the axiom
of choice is not a theorem in ZF axiomatic system. In turn, the axiom of choice is
independent of the ZF axiomatic system. It also follows that the ZF axiomatic system
is incomplete. The Axioms 1–10 constitute ZFC axiomatic system. The axiomatic
system ZFC is also incomplete. Consider the following hypothesis: ‘If there is an
injective map from N to X, and there is an injective map from X to 2N, then there is a
bijective fromN toX, or else there is a bijectivemap fromX to 2N.’ This hypothesis is
called the continuum hypothesis (CH). Godel and Cohen proved that the continuum
hopothesis is independent of the ZFC axiomatic system. The Whitehead problem in
group theory asks: ‘Is every abelian group A with EXT 1(A, Z) = {0} a free abelian
group?’ The Whitehead problem is also an undecidable proposition in ZFC.

Let f be amap fromX toY and g amap fromZ toU. Then, themap f ×g fromX×Z
to Y × U defined by (f × g)((x, z)) = (f (x), g(z)) is called the Cartesian product
of the map f with the map g. Clearly, products of injective maps are injective maps,
and those of surjective maps are surjective.

Let f be a map from X to Y and S an equivalence relation on Y . Then, (f × f )−1(S)
is an equivalence relation on X (verify). Let R be an equivalence relation on X. Then,
(f × f )(R) need not be an equivalence relation on Y even if f is surjective (give an
example to support this).

The equivalence relation (f × f )−1(
) on X is called the kernel of f , and it is
denoted by ker f . It follows from the definitions that f is injective if and only if
ker f = 
 (the diagonal relation on X).

Proposition 2.4.21 Let f be a surjective map from X to Y. Let R be an equivalence
relation on X containing the kernel of f . Then (f × f )(R) is an equivalence relation
on Y such that (f × f )−1((f × f )(R)) = R.

Proof Clearly, (f × f )(R) is symmetric. Since f is surjective, (f × f )(R) is also
reflexive. We prove that it is transitive also. Let (u, v), (v,w) ∈ (f × f )(R). Then,
there exist (x, y), (z, t) ∈ R such that (f (x), f (y)) = (u, v) and (f (z), f (t)) = (v,w).
This shows that f (y) = f (z) = v. Hence, (y, z) ∈ (f × f )−1(
) = ker f ⊆ R. Since R
is transitive, (x, t) ∈ R. But, then (u, w) = (f (x), f (t)) ∈ (f ×f )(R). Thus, (f ×f )(R)

is an equivalence relation. Finally, we show that (f × f )−1((f × f )(R)) = R. Clearly,
R ⊆ (f × f )−1((f × f )(R)). Let (x, y) ∈ (f × f )−1((f × f )(R)). Then, (f (x), f (y)) ∈
(f×f )(R). Hence, there exists (z, t) ∈ R such that (f (x), f (y)) = (f (z), f (t)). But then
f (x) = f (z) and f (y) = f (t). This shows that (x, z) and (y, t) belong to (f × f )−1(
).
Since (f × f )−1(
) is supposed to be contained in R, (x, z), (y, t) and (z, t) are all
in R. Since R is an equivalence relation, (x, y) ∈ R. This completes the proof. �
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Corollary 2.4.22 (Correspondence Theorem) Let f be a surjective map from X to
Y. Let R(X) denote the set of all equivalence relations on X containing ker f and
R(Y) the set of all equivalence relations on Y. Then, f induces a bijective map
f from R(X) to R(Y) defined by f (R) = (f × f )(R).

Proof From the above proposition, it follows that (f ×f )(R) ∈ R(Y)for all R ∈ R(X).
Thus, f is a map from R(X) to R(Y). Since f is surjective, f × f is also surjective.
Hence, (f×f )((f×f )−1(S)) = S for all S ∈ R(Y). This shows that f is surjective (note
that (f × f )−1(S) ∈ R(X)). Further, suppose that f (R1) = f (R2). Then, (f × f )(R1) =
(f×f )(R2). SinceR1 andR2 are equivalence relations containing ker f , it follows from
the above proposition thatR1 = (f×f )−1((f×f )(R1)) = (f×f )−1((f×f )(R2)) = R2.
This proves that f is injective. �

Let X be a set and R be an equivalence relation on X. Consider the quotient set
X/R = {Rx | x ∈ X}. The map ν from X to X/R defined by ν(x) = Rx is called the
quotient map. Clearly, ν is surjective and (ν × ν)−1(
) = {(x, y) | Rx = ν(x) =
ν(y) = Ry} = R. Thus, every equivalence relation is kernel of a map. We shall
show that if f is a surjective map from X to Y , then Y can be realized as a quotient
set through a bijective map.

Theorem 2.4.23 Let f be a surjective map from X to Y. Let R be an equivalence
relation on X containing ker f . Let S = (f × f )(R). Then, there is a bijective map f
from X/R to Y/S such that the diagram

X �f Y

�

ν

Y/SX/R �
f�

ν

is commutative.

Proof Suppose that Rx1 = Rx2 . Then, (x1, x2) ∈ R, and so (f (x1), f (x2)) ∈ (f ×
f )(R) = S. Hence, Sf (x1) = Sf (x2). This shows that we have a map f from X/R to
Y/S defined by f (Rx) = Sf (x). Further, since f is surjective, every member of Y/R
is of the form Sf (x) = f (Rx). This shows that f is surjective. Suppose that f (Rx1) =
f (Rx2). Then, Sf (x1) = Sf (x2). This means that (f (x1), f (x2)) ∈ S = (f × f )(R). In
turn, (x1, x2) ∈ (f × f )−1((f × f )(R)). From the Proposition 2.4.21, it follows that
(x1, x2) ∈ R. Thismeans thatRx1 = Rx2 , and so f is also injective. The commutativity
of the diagram is evident. �
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Corollary 2.4.24 (Fundamental Theorem of Maps) Let f be a surjective map from
X to Y, and R = (f × f )−1(
) = ker f . Then there is a bijective map φ from X/R to
Y such that φoν = f .

Proof Clearly, (f × f )((f × f )−1(
)) = 
. Take S = 
 in the above theorem.
One also observes that the quotient map ν from Y to Y/
 is bijective map given by
ν(y) = {y}. Take φ = ν−1of . The result follows from the above theorem. �

Exercises

2.4.1 LetX be a finite set containing n elements andY be a set containingm elements.
Suppose that n ≤ m. Find the number of injective maps from X to Y . What happens
if m < n?

2.4.2 Find the number of surjective maps from a set containing n elements to a set
containing m elements.

2.4.3 Let X be a set. Show that there is no injective map from P(X) to X.

2.4.4 Let XY denote the set of all maps Y to X. Suppose that X �= ∅. Show that there
is a surjective map from Y to XY if and only if X is a singleton set.

2.4.5 LetX,Y , and Z be sets. Show that there is a bijective map from XY×Z to (XY )Z .

2.4.6 Let R and S be two equivalence relations on a set X such that R ⊆ S. Show
that there is a bijective map φ : X/S −→ (X/R)/(ν × ν)(S) such that the diagram
formed by quotient maps is commutative.

2.4.7 Let {Xα | α ∈ I} be a family of nonempty sets. Show that each projection map
is a surjective map.
Hint. Use the axiom of choice.

2.4.8 Let f : X −→ Y be a surjective map. Show that there is an injective map t
from Y to X such that fot = IY .
Hint. Use the axiom of choice.

2.4.9 Let f : X −→ Y be an injective map. Show that there is a surjective map
s : Y −→ X such that sof = IX .

2.4.10 Let X be a nonempty set. Show that the following conditions on X are equiv-
alent:

(i) Every injective map from X to X is surjective.
(ii) Every surjective map from X to X is injective.
(iii) Every injective map from X to X is bijective.

Hint. Use the Exercises 2.4.8 and 2.4.9.
A set satisfying the condition in Exercise 2.4.10 is called a finite set. A set which is
not finite is called an infinite set.
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2.4.11 Show that every subset of a finite set is finite, and every set containing an
infinite set is infinite.

2.4.12 Show that the union of two finite sets is finite.

2.4.13 Show that every successor set is infinite (This justifies the name ‘Axiom of
Infinity’ for the existence of successor set).
Hint. If X is a successor set, then the map x ←− x+ is an injective map from X

⋃{∅}
to itself which is not surjective.

2.4.14 Show that f (A) − f (B) ⊆ f (A − B). Show further that the equality holds
provided that f is injective.

2.5 Partial Order

Let X be a set. A relation R on X is called a partial order if it is reflexive, anti-
symmetric, and transitive. Usually, a partial order is denoted by ‘≤.’ A pair (X,≤),
where ≤ is a partial order on X, is called a partially ordered set.

Example 2.5.1 Let Y be a set and X = ℘(Y). Then, the relation {(A,B) | A ⊆ B}
is a partial order, and it is called the inclusion relation on X. We denote this relation
also by ⊆. Thus, (X,⊆) is a partial ordered set. Note that the inverse of a partial
order is also a partial order. Thus, ⊇ is also a partial order on X.

Example 2.5.2 Let X = {a, b, c, d}. Then,

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (c, d)}

is a partial order on X.

Let (X,≤) be a partially ordered set and Y be a subset of X. Then, the induced
relation on Y is also a partial order on Y which is denoted by ≤Y .

A partial order ≤ on X is called a total order if given x, y in X, x ≤ y or y ≤ x.
Example 2.5.2 is not a total order. Example 2.5.1 is a total order if and only if Y is
singleton (prove it).

Example 2.5.3 Let X = {a, b, c, d} and

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (c, d), (a, d), (b, d)}.

Then, R is a total order on X

Let (X,≤) be a partially ordered set. A subset Y of X is called a chain in X if the
induced partial order on Y is a total order on Y .

Example 2.5.4 Let Y = {a, b, c} and X = ℘(Y). Then, the inclusion relation is a
partial order on X. The subset Z = {∅, {a}, {a, b}, {a, b, c}} is a chain in X.
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Let (X,≤) be a partially ordered set and A ⊆ X. An element x ∈ X is called an
upper bound (lower bound) of A if a ≤ x(x ≤ a) for all a in A.

Remark 2.5.5 A subset of a partially ordered set need not have any upper bound
(lower bound). It may have several upper bounds (lower bounds). Give examples to
support it.

Let (X ≤) be a partially ordered set. An element a ∈ X is called a maximal
(minimal) element if a ≤ x(x ≤ a) implies that x = a.

In Example 2.5.2, b and d are maximal elements, whereas a and c are minimal
elements of X. Thus, there may be so many maximal or minimal elements of a
partially ordered set. There may not be any maximal or minimal elements (give
examples to support it).

Example 2.5.6 Let X = ℘(Y) − {Y ,∅}, where Y = {a, b, c}. Then, X is a par-
tially ordered set with respect to inclusion. Clearly, {a, b}, {b, c}, {a, c} are maximal
elements and {a}, {b}, {c} are minimal elements.

Example 2.5.7 LetX = {a, b, c} and
 = {(a, a), (b, b), (c, c)}. Then,
 is a partial
order on X such that each element is maximal and also each element is minimal.

Example 2.5.8 Let Y be an infinite set and X be the set of all finite subsets of Y .
Then, X is a partially ordered set with respect to inclusion relation which has no
maximal element. If we take the set Z of infinite subsets of Y , then it has no minimal
elements.

Let (X ≤) be a partially ordered set. An element a ∈ X is called the largest (least)
element of X if x ≤ a(a ≤ x) for all x ∈ X. If x1 and x2 are largest (least) elements of
X, x1 ≤ x2 and x2 ≤ x1. By the antisymmetry of ≤, x1 = x2. Thus, there is a unique
largest (least) element in a partially ordered set provided it exists.

It may be observed that a largest (least) element is also a maximal(minimal) but a
maximal (minimal) element need not be the largest (least). In Example 2.5.2, b and
d (a and c) are maximal (minimal) but none of them are largest (least). It may also
be noticed that largest (least) need not exist(see Example 2.5.6).

Let (X ≤) be a partially ordered set and A ⊆ X. Let U(A)(L(A)) denote the
set of all upper (lower) bounds of A (note that U(A)(L(A)) may be empty sets also).
Then,≤ induces a partial order onU(A)(L(A)). Note that all elements of A are lower
(upper) bounds of U(A)(L(A)). Thus, A ⊆ L(U(A))(A ⊆ U(L(A))).
The least (largest) element of U(A)(L(A)) (if exists) is called the
least upper bound(greatest lower bound) of A. The least upper bound (greatest
lower bound) of A is denoted by l.u.b(A)(g.l.b(A)) or supA(infA). If A has the
largest (least) element, then that is the l.u.b(g.l.b) of A.

Remark 2.5.9 Least upper bound (greatest lower bound) need not exist even if A has
upper (lower) bounds: Let Y = {a, b, c, d} andX = ℘(Y)−{{a, b}}. Then,⊆ defines
a partial order on X. Take A = {{a}, {b}}. Then, U(A) = {{a, b, c}, {a, b, d},Y}.
Clearly, U(A) has no least element. Thus, A has no l.u.b.
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Theorem 2.5.10 Let (X ≤) be a partially ordered set. Then, the following conditions
are equivalent.
(1) Every nonempty subset of X which has an upper bound has least upper bound in
X.
(2) Every nonempty subset of X which has a lower bound has greatest lower bound.

Proof Assume 1. Let A be a nonempty subset of X which has a lower bound. Then,
L(A) �= ∅. Clearly, ∅ �= A ⊆ U(L(A)). Hence, L(A) has an upper bound. By 1, L(A)

has the least upper bound a (say). Since a is the least element of U(L(A)) (by the
definition of l.u.b) and A ⊆ U(L(A)), a ≤ x for all x ∈ A. Thus, a ∈ L(A). Further, if
y ∈ L(A), then y ≤ x for all x ∈ U(L(A)). In particular, y ≤ a. Thus, a is the largest
element of L(A). This shows that a is the g.l.bA.
The proof of 2 =⇒ 1 is similar. �

A partial order ≤ on X is called a complete order if it satisfies any one (and hence
both) of the equivalent conditions of the above theorem.

Let (X,≤) be a partially ordered set. A subset Y of X is called an initial segment
of X if y ∈ Y and x ≤ y implies that x ∈ Y . Thus, X itself is an initial segment of
(X,≤). For each x ∈ X, the subset σx = {y ∈ Y | y ≤ x} is an initial segment
of X associated with the element x ∈ X. The map σ from X to ℘(X) defined by
σ(x) = σx is an injective map from X to℘(X)which is order preserving in the sense
that ‘x ≤ y ⇐⇒ σx ⊆ σy.’ Again, for each x ∈ X, the subset ηx = {y ∈ X | y < x}
is also an initial segment. This initial segment is called the strict initial segment
associated with x.

A partial order≤ onX is called awell-order if every nonempty subset ofX has the
least element. A pair (X,≤), where ≤ is a well-order, is called a well-ordered set.
Every well-order is a total order: Let ≤ be a well-order on X. Let x, y ∈ X. Then,
{x, y} is a nonempty subset of X. Since ≤ is a well-order, {x, y} has a least element.
If x is the least element, then x ≤ y; if y is the least element, then y ≤ x. This proves
that every well-order is a total order. Indeed, a well-order is a complete order. For,
suppose that ≤ is a well-order on X. Let A be a nonempty subset of X which has an
upper bound. Then, the set U(A) of upper bounds of A is a nonempty subset of X.
Since ≤ is a well-order on X, U(X) has the least element a (say). Evidently, a is the
least upper bound of A. A complete order need not be a well-order. For example, the
inclusion relation on the power set ℘(X) of X = {a, b, c} is a complete order, but
it is not a well-order.

Proposition 2.5.11 Let (X,≤) be a well-ordered set. Then, a proper subset Y of X
is an initial segment if and only if it is strict initial segment ηx for some x ∈ X. It
need not be σx for any x ∈ X.

Proof Let Y be a proper subset of X. Then, X − Y �= ∅. Since (X,≤X) is a well-
ordered set, X − Y has least element x (say). Clearly, ηx ⊆ Y . Since Y is an initial
segment, x �X y for any y ∈ Y . This shows that Y ⊆ ηx. Thus, Y = ηx. Note that
the successor N+ of N is a well-ordered set with usual inclusion ordering, and N is a
proper subset of N+ which is an initial segment, but it is not σx for any x ∈ N+. �
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Finally, we state and prove the two important equivalents of axiom of choice which
are commonly used in mathematics.

Zorn’s Lemma: Let (X,≤) be a nonempty partially ordered set in which every
chain has an upper bound. Then, (X,≤) has a maximal element.

Well-ordering principle: On every set, there is a well-order.

Theorem 2.5.12 The following are equivalent:

(1) Axiom of choice.
(2) Zorn’s lemma.
(3) Well-ordering principle.

Proof The following is the scheme of the proof. We shall prove that 2 =⇒ 3, 3 =⇒
1, and then 1 =⇒ 2.

(2 =⇒ 3). Assume 2. Let X be a set. We have to show the existence of a well-
order on X. If X = ∅, then there is nothing to do. Assume that X is a nonempty set.
Consider the set � given by

� = {(Y ,≤Y ) |≤ is a well-order on Y , where Y ⊆ X}.

If x ∈ X, then there is the unique partial order ≤{x} on {x} which is a well-order.
Thus, ({x},≤x) ∈ �. Hence, � is nonempty set. We say that (Y ,≤Y ) ≤ (Z,≤Z) if
(Y ,≤Y ) = (Z,≤Z) or else Y ⊂ Z, ≤Z /Y = ≤Y , and Y = ηz for some z ∈ Z .
Clearly, (�,≤) is a nonempty partially ordered set. Let � = {(Yα,≤Yα

) | α ∈ �}
be a chain in (� ≤). Take Y0 = ⋃

α∈� Yα. Then, there is a unique order ≤Y0
on Y0 whose restriction to each Yα is ≤Yα

. If A is a nonempty subset of Y0, then
A

⋂
Yα0 �= ∅ for some α0 ∈ �. If (Yα,≤Yα

) ≤ (Yα0 ,≤Yα0
) for all α ∈ �, then

Y0 = Yα0 , and so A has the least element. If not, then there is an element α ∈ �

such that (Yα0 ,≤Yα0
) < (Yα,≤Yα

). Hence, there is an element x ∈ Y0 such that
Yα0 = ηx.

Let a be the least element of A
⋂

Yα0 . Let b be any element of A. Then, b is not
strictly less that a, for then b will be a member of A

⋂
Yα0 . Hence, a ≤Y0 b. Thus,

a is the least element of A. It follows that (Y0,≤Y0) is a well-ordered set, and it is
an upper bound of �. This shows that every chain in (�,≤) has an upper bound.
By the Zorn’s lemma, there is a maximal element (M,≤M) of (�,≤). We show
that M = X. Suppose not. Then, there is an element x0 ∈ X − M. Consider the
set L = M

⋃{x0}. Extend the well-order ≤M on M to the well-order ≤L on L by
defining x ≤L x0 for all x ∈ M. Clearly, (L,≤L) ∈ �, and it is larger than (M,≤M).
This is a contradiction to the maximality of (M,≤M). Thus, M = X, and ≤X is a
well-order on X. This completes the proof of 2 =⇒ 3.

(3 =⇒ 1). Assume 3. Let {Xα | α ∈ �} be a nonempty family of nonempty sets.
By the well-ordering principle, there is a well-order ≤α on Xα for each α. For each
α ∈ �, let c(α) denote the least element of Xα. This gives us a map c from � to⋃

α∈� Xα such that c(α) ∈ Xα. This completes the proof of 3 =⇒ 1.
(1 =⇒ 2). Assume 1. Let (X,≤) be a nonempty partially ordered set in which

every chain has an upper bound.We need to show the existence of amaximal element.
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Recall the map σ from X to℘(X) given by σ(x) = σx, where σx = {y ∈ X | y ≤ x}
is the initial segment associated with x. Clearly, σ is an injective map which is order
preserving in the sense that ‘x ≤ y if and only if σ(x) ⊆ σ(y).’ Consider Y = σ(X).
Then, (X,≤) is order isomorphic to (Y ,⊆). It is sufficient, therefore, to show that
(Y ,⊆) has a maximal element. Let C(X) denote the set of all chains in X. Then,
(C(X),⊆) is also a partially ordered set. Further, since every chain in (X,≤) has
an upper bound, every member of C(X) is contained in a member of Y . Thus, Y is
co-final in (C(X),⊆). It follows that the maximal members of (Y ,⊆) are same as
those of (C(X),⊆). It is sufficient, therefore, to show that (C(X),⊆) has a maximal
element.

Now, C(X) satisfies the following two properties:

(i) If A ∈ C(X), then all subsets of A also belong to C(X). In particular, ∅ ∈ C(X).
(ii) If 	 is a chain in (C(X),⊆), then

⋃
A∈	 A ∈ C(X).

By the axiom of choice, we have a map c from℘(X)−{∅} to X such that c(A) ∈ A
for all A ∈ ℘(X)−{∅}. For each A ∈ C(X), consider the set Ã = {x ∈ X | A⋃{x} ∈
C(X)}. To say that A is maximal in (C(X),⊆) is to say that Ã = A. Define a map
χ from C(X) to X by χ(A) = A if Ã − A = ∅, and χ(A) = A

⋃{c(Ã − A)} if
Ã − A �= ∅. We need to show that there is an element A ∈ C(X) such that χ(A) = A.

Let us call a subset � of C(X) to be a tower in C(X) if the following 3 conditions
hold.

(i) ∅ ∈ �.
(ii) χ(A) ∈ � for all A ∈ �.
(iii) If 	 is a chain in (�,⊆), then

⋃
A∈	 A ∈ �.

Clearly,C(X) is a tower, and the intersection of a family of towers is a tower. Let�0

denote the smallest tower in C(X). Indeed, it is the intersection of all towers in C(X).
It is sufficient to show that�0 is a chain in (C(X),⊆). For, then B = ⋃

A∈�0
A ∈ �0,

and so χ(B) ∈ �0. Since χ(B) ⊆ B, it follows that χ(B) = B.
Now, we show that �0 is a chain in C(X). More explicitly, we need to show that

for any pair A,B ∈ �0, A ⊆ B, or B ⊆ A. Let

	 = {A ∈ �0 | for all B ∈ �0, A ⊆ B or B ⊆ A}.

Clearly, ∅ ∈ 	. Let A ∈ 	. Consider

	A = {B ∈ �0 | B ⊆ A or χ(A) ⊆ B}.

We show that 	A is tower. Clearly, ∅ ∈ 	A. Let B ∈ 	A. Then, B ⊆ A or χ(A) ⊆ B.
Suppose that B ⊆ A. If B = A, then χ(A) = χ(B), and so in this case, χ(B) ∈ 	A.
Suppose that B ⊂ A. Then, χ(B) ⊆ A. For, if not, then, since A ∈ 	, A ⊂ χ(B).
This is not true, for χ(B) contains at the most one more element than B. Thus, in
this case also, χ(B) ∈ 	A. Finally, if χ(A) ⊆ B, then χ(A) ⊆ χ(B). In this case also,
χ(B) ∈ 	A.
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Let {Bα | α ∈ �} be a chain in 	A. Then, from the definition of 	A, either each
Bα is contained in A or χ(A) is contained in some Bα. This shows that

⋃
α∈� Bα ⊆ A

or χ(A) ⊆ ⋃
α∈� Bα. Hence,

⋃
α∈� Bα ∈ 	A.

This completes the proof of the fact that 	A is a tower contained in �0. Since �0

is the smallest tower, it follows that 	A = �0.
Finally, we prove that	 = �0. Indeed, again, we prove that	 is a tower. Clearly,

∅ ∈ 	. Let A ∈ 	. Consider χ(A). Let B ∈ �0. Then, from what we have proved
above, 	A = �0, and so B ∈ 	A. Hence, B ⊆ A ⊆ χ(A), or χ(A) ⊆ B. This
shows that χ(A) ∈ 	. Let {Aα | α ∈ �} be a chain in 	. Let B ∈ �0. Then, either
each Aα is contained in B, or B ⊆ Aα for some α. This means that

⋃
α∈� Aα ⊆ B, or

B ⊆ ⋃
α∈� Aα. This means that

⋃
α∈� Aα ∈ 	. Hence,	 is a tower. In turn,	 = �0.

Hence, �0 is a chain. �

Exercises

2.5.1 Let (X,≤) be a partially ordered set. Let A ⊆ B. Show thatU(A) ⊇ U(B) and
L(A) ⊇ L(B).

2.5.2 Show that U(A) = U(L(U(A))) and L(A) = L(U(L(A))).

2.5.3 Show that g.l.b need not exist.

2.5.4 Let A ⊆ B. Show that

(i) g.l.bB ≤ g.l.bA
(ii) l.u.bA ≤ l.u.bB.

2.5.5 Show by means of an example that l.u.bA need not belong to A.

2.5.6 Show that (P(X),⊆) is order complete.

2.5.7 Give an example of a partially ordered set which is not complete.

2.5.8 A partially ordered set (L,≤) is called a lattice if any pair of points a, b has
the least upper bound denoted by a

∨
b as well as the greatest lower bound a

∧
b.

Show that (P(X),⊆) is a lattice.

2.5.9 Let (X,≤X) and (Y ,≤Y ) bewell-ordered sets. Show thatX×Y with dictionary
order is a well-ordered set.

2.5.10 Let f be a surjective map from X to Y . Use axiom of choice to show the
existence of an injective map g from Y to X such that fog is the identity map on Y .

2.6 Ordinal Numbers

Definition 2.6.1 A well-ordered set (α,≤) is called an ordinal number if for each
x ∈ α, the strict initial segment ηx = {a ∈ α | a < x} is same as x.
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There is a unique well-order φ = φ × φ on the set φ. Clearly, the statement
‘∀x ∈ φ, ηx = {a ∈ α | a < x} = x’ is vacuously satisfied. Thus, the ∅ together
with this ordering is an ordinal. This ordinal number is denoted by 0. However, if
(α,≤) is an ordinal number, where α �= ∅, then ∅ ∈ α, and indeed, φ is the least
element of α. For, by the definition of an ordinal number, if x is the least element of
α, then ∅ = {a ∈ α | a < x} = ηx = x.

Example 2.6.2 Consider the set 1 = {∅}. There is only one well-order ≤ on 1. The
strict initial segment η∅ = {x | x < ∅} = ∅. It follows that (1,≤) is an ordinal
number. The set 2 = {φ, {φ}} with the inclusion ordering is clearly an ordinal
number. Indeed, all natural numbers are ordinals.

Example 2.6.3 Consider the set N of natural numbers together with inclusion order-
ing. Let A be a nonempty subset of N. If ∅ ∈ A, then φ is the least element of A. Let
x ∈ A. Then, since x ∈ N is an ordinal, ηx = x is a well-ordered set. Clearly, the
least element of A

⋂
ηx is the least element of A. It follows that N together with the

usual inclusion ordering is a well-ordered set. By the definition, ηx = x. Thus, N
with usual ordering is an ordinal. This ordinal will be denoted by ω.

Example 2.6.4 Consider the set the successor N+ of the set N of natural numbers.
We extend the well-ordering ofN to the ordering≤N+ onN+ by defining n ≤N+ N for
all n ∈ N. Clearly, (N+,≤N+) is a well-order. Further, it is also an ordinal number,
for the strict initial segment ηN = {n ∈ N+ | n <N+ N} = N. This ordinal
is the continuation of ω, and it is denoted by ω + 1. Similarly, we have the ordinal
number ω + 2, and so on. The axiom of replacement ensures the existence of the
set {ω + n | n ∈ ω} of ordinal numbers such that ω + n+ = (ω + n)+. This
is a well-ordered set of ordinal numbers with ω the least ordinal number. Indeed,
ω + n+ is the continuation of ω + n. There is a unique well-order ≤ω(2) on the union
ω2 = ⋃

n∈ω(ω + n) subject to the condition that their restriction to each ω + n
is the order ≤ω+n of the ordinal number ω + n. This process continues to generate
different ordinal numbers.

Definition 2.6.5 Two partially ordered sets (X,≤X), and (Y ,≤Y ) are said to be
order isomorphic (also called similar) if there is a bijective map f from X to Y such
that a ≤X b implies that f (a) ≤Y f (b).

Proposition 2.6.6 Let f be an order isomorphism from a partially ordered set
(X,≤X) to a partially ordered set (Y ,≤Y ). Then

(i) a <X b implies that f (a) <Y f (b),
(ii) f −1 is an order isomorphism from (Y ,≤Y ) to (X,≤X), and
(iii) the relation of being ‘order isomorphic to’ is an equivalence relation on any

set of partially ordered sets.

Proof (i) Suppose that a <X b. Then, by the definition, f (a) ≤Y f (b). Suppose that
f (a) = f (b). Since f is bijective, a = b. This is a contradiction to the supposition
that a <X b.
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(ii) Suppose that f is an order isomorphism. Suppose that c ≤Y d, where c, d ∈ Y .
Suppose that a = f −1(c), and b = f −1(d). Then, f (a) = c and f (b) = d. If
b <X a, then from (i), d = f (b) <Y f (a) = c. This is a contradiction. Hence,
f −1(c) ≤X f −1(d).

(iii) Since IX is an order isomorphism from (X,≤X) to itself, the relation is reflex-
ive. If f is an order isomorphism from (X,≤X) to (Y ,≤Y ), then, from (ii), it follows
that f −1 is an order isomorphism from (Y ,≤Y ) to (X,≤X). This shows that the
relation is symmetric. Since the composition of two-order isomorphism is an order
isomorphism, it follows that the relation is transitive.

Proposition 2.6.7 A well-ordered set (X,≤X) may be order isomorphic to a proper
subset Y with induced well-ordering. If f is an injective order preserving map from
a well-ordered subset (X,≤X) to itself, then a ≤ f (a) for all a ∈ X.

Proof N is a well-ordered set with usual ordering, and the successor map s from N
to its proper subset N − {∅} is an order isomorphism. Let f be an injective order
preserving map from a well-ordered subset (X,≤X) to itself. Let A = {x ∈ X |
f (x) <X x}. Suppose that A �= ∅. Since (X,≤X) is a well-ordered set, A has the least
element b (say). Then, f (b) <X b. From the above proposition, f (f (b)) <X f (b).
This means that f (b) ∈ A. This is a contradiction. Hence, A = ∅, and so a ≤X f (a)
for all a ∈ X. �

Corollary 2.6.8 Let (X,≤X) and (Y ,≤Y ) be two well-ordered sets which are order
isomorphic. Then, there is a unique order isomorphism from X to Y.

Proof Let f and g be two-order isomorphisms from X to Y . Then, g−1of is an order
isomorphism from X to itself. From the previous proposition, a ≤X g−1(f (a)) for all
a ∈ X. This means that g(a) ≤X f (a) for all a ∈ X. Similarly, considering the order
isomorphism f −1og, we conclude that f (a) ≤X g(a) for all a ∈ X. This shows that
f = g. �

Corollary 2.6.9 A well-ordered set can not be order isomorphic to any of its strict
initial segment.

Proof Let (X,≤X)be awell-ordered set. Let x ∈ X. Consider the strict initial segment
ηx. Let f be a map from X to ηx. Then, f (x) <X x. From the Proposition 2.6.7, it
follows that f can not be an order isomorphism. �

Corollary 2.6.10 The only order isomorphism from a well-ordered set (X,≤X) to
itself is the identity map. �

Corollary 2.6.11 Let (X,≤X) and (Y ,≤Y ) be well-ordered sets. Then, one and only
one of the following hold:

(i) (X,≤X) is order isomorphic to a strict initial segment of (Y ,≤Y ).
(ii) (Y ,≤Y ) is order isomorphic to a strict initial segment of (X,≤X).
(iii) (X,≤X) is order isomorphic to (Y ,≤Y ).
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Proof From the Corollary2.6.9, it follows that at the most one of the above condition
can hold. We need to prove that at least one of the three conditions hold. Let (X,≤X)

and (Y ,≤Y ) be well-ordered sets. Further, from the Corollary2.6.9, it again follows
that in any well-ordered set the strict initial segment associated with a is order
isomorphic to an strict initial segment associated with b if and only if a = b. Let

� = {x ∈ X | ηx is order isomorphic to ηy for some, y ∈ Y}.

Let a ∈ �, and x <X a, x ∈ X. Then, there is a unique element b ∈ Y such that ηa is
order isomorphic to ηb. Let f be the unique order isomorphism from ηa to ηb. Then,
f (x) ∈ ηb, and the restriction of f to ηx is an order isomorphism from ηx to ηf (x).
Hence, x ∈ �. This ensures that� is an initial (not necessarily proper) segment of X.
We have the map χ from� to Y given by the condition that ηx is order isomorphic to
ηχ(x). Clearly, χ is an injective order preserving map. Observe that the image χ(�)

is also an initial segment of Y . If � = X, then X will either be order isomorphic
to Y or it is order isomorphic to a proper initial segment of Y . Suppose that � �= X.
Then, � is a proper segment, and hence, there is an element x ∈ X − � such that
ηx = �. Suppose that χ(�) �= Y . Then χ(�) is a proper segment of Y . Hence,
there exists an element y ∈ Y such that χ(�) = ηy. But then ηx is order isomorphic
to ηy, where x /∈ �. This is a contradiction to the choice of �. Hence, χ(�) = Y .
This means that Y is order isomorphic to the initial segment � of X. �

Proposition 2.6.12 Let (α,≤α) and (β,≤β) be ordinal which are order isomorphic
as well-ordered set. Then (α,≤α) = (β,≤β).

Proof Let f be an order isomorphism from α to β. We need to show that f (x) = x
for all x ∈ α. Consider γ = {x ∈ α | f (x) = x}. Suppose that γ �= α. Then,
α − γ �= ∅. Since (α,≤α) is a well-ordered set, α − γ �= ∅ has the least element a
(say). Then, f (x) = x for all x ∈ ηa. Since f is an order isomorphism, and α and β
are ordinals, a = ηa = f (ηa) = ηf (a) = f (a). This is a contradiction. Hence,
γ = α. This shows that (α,≤α) = (β,≤β). �

Corollary 2.6.13 Every set of ordinal numbers is a total order.

Proof Follows from Corollary 2.6.11 and the above proposition. �

Corollary 2.6.14 Every set of ordinal numbers is well-ordered.

Proof Let � be a set of ordinal numbers. Let � be a nonempty subset of �. Let
α ∈ �. If α ≤ β for all β ∈ �, then α is the least element of �, and there is
nothing to do. Suppose that there is a β ∈ � such that β < α. From the definition
of ordinal number, β ∈ α. This means that α

⋂
� is non empty subset of α. Since

α is a well-ordered set, it has the least element γ (say). We show that γ is the least
element of�. Let δ ∈ �. Ifα ≤ δ, then γ ≤ δ. If not, then δ < α, and so δ ∈ α

⋂
�.

Since γ is the least element of α
⋂

�, γ ≤ δ. This shows that γ is the least element
of �. �



2.6 Ordinal Numbers 47

The ordinals are of two types: Consider the ordinal ω. For all n < ω, there is
an ordinal number m such that n < m < ω. In other words, there is no immediate
predecessor ofω. Such ordinals are called the limit ordinals. All the natural numbers
have immediate predecessors. These are not limit ordinals. The ordinal ω2 is also a
limit ordinal.

Corollary 2.6.15 Let � be a set of ordinal numbers. Then, � is a order complete
with respect to the ordering of ordinal numbers.

Proof The result follows from the fact that every well-ordered set is order
complete. �

Corollary 2.6.16 Let�be a set of ordinal numbers. Then, there is an ordinal number
α /∈ �. In other words, there is no set containing all ordinal numbers.

Proof Let � be a set of ordinal numbers. Let β = ⋃
α∈� α. Then, there is a unique

order ≤β on β whose restriction to each α ∈ � is the order ≤α on α. Consider
(β,≤β). Let a ∈ β. Then, a ∈ α for some α ∈ �. Hence, the strict initial segment
ηa is a itself. This shows that (β,≤β) is an ordinal number which is an upper bound
(indeed, l.u.b of �) of �. β may be a member of � in case it is a limit ordinal.
However, the successor β+ of β is an ordinal number which does not belong to �. �

Proposition 2.6.17 Let (X,≤X) be a well-ordered set. Then, there is a unique
ordinal (α,≤α) which is order isomorphic to (X,≤X).

Proof The uniqueness part is evident from the Proposition 2.6.12. We show the
existence of an ordinal which is order isomorphic to (X,≤X). Let a be an element
of X such that for each x ∈ ηa, there is, of course, unique ordinal αx which is order
isomorphic to ηx. Clearly, the least element of X is such an element. It is also clear
that ηa is order isomorphic to the ordinal β, whereβ is the l.u.b of the set {αx | x ∈ ηa}
of ordinals. This shows that if each strict initial segment of ηa is order isomorphic to
an ordinal number, then ηa is also order isomorphic to an ordinal number.

Let

� = {a ∈ X | ∀x ∈ ηa, ηx is order isomorphic to an ordinal number αx}.

Clearly, the least element of X belongs to �. We first show that � = X. Suppose
not. Then, X − � is a nonempty subset of X. Since (X,≤X) is a well-ordered set, it
has the least element a (say). Then, for all x <X a, x ∈ �. This means that for all
y ∈ ηx, ηy is order isomorphic to an ordinal αy. From what we have already proved,
it follows that ηx is also order isomorphic to an ordinal number αx. We arrive at a
contradiction that a ∈ �. Thus, � = X. Repeating again the previous arguments,
we see that X is order isomorphic to an ordinal. �

Remark 2.6.18 The above propositionmayprompt us to introduce an ordinal number
as an equivalence class of well-ordered sets. But the equivalence classes are not sets.
As such, one needs to select unique members from each equivalence classes. Indeed,
this is what we have done in our approach.
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Arithmetic of Ordinal Numbers

Let (A,≤A) and (B,≤B) be two well-ordered sets. We have an order ≤AB on A ×
{0} ⋃

B × {1} defined as follows: (i) (a, 0) ≤AB (a′, 0) if and only if a ≤A a′,
(ii) (b, 1) ≤AB (b′, 1) if and only if b ≤B b′, and (iii) (a, 0) ≤AB (b, 1) for all a ∈ A
and b ∈ B. Clearly,≤AB is a well-order. If (A,≤A) is order isomorphic to (C,≤C) and
(B,≤B) is order isomorphic to (D,≤D), then it is clear that (A×{0}⋃

B×{1},≤AB) is
order isomorphic (C×{0} ⋃

D×{1},≤CD). Thus, we can define, unambiguously, the
sum α+β of two ordinal numbers as follows: Suppose that α is order isomorphic to
(A,≤A) and β is order isomorphic to (B,≤B). Define α + β to be the unique ordinal
number which is order isomorphic to (A × {0}⋃

B × {1},≤AB). The following
properties addition of ordinal numbers can be easily observed:

(i) α + 0 = α = 0 + α, and
(ii) (α + β) + γ = α + (β + γ)

for all ordinals α,β, and γ.

The addition of ordinal number is not commutative. Indeed, 1 + ω = ω is limit
ordinal, where as ω + 1 = ω+ is not limit ordinal.

Next, suppose that (A,≤A) and (B,≤B) are two well-ordered sets. We have the
lexicographic ordering ≤A×B on A × B defined as follows: (a, b) ≤A×B (c, d) if
b <B d or b = d and a ≤A c. It can be checked that this order is a well-order.
Further, if (A,≤A) is order isomorphic to (C,≤C) and (B,≤B) is order isomorphic
to (D,≤D), then (A×B,≤A×B) is order isomorphic to (C×D,≤C×D). This prompts
us to define the multiplication · on ordinals as follows: Suppose that the ordinal α is
order isomorphic to thewell-ordered set (A,≤A) and the ordinalβ is order isomorphic
to (B,≤B). Define α · β to be the unique ordinal which is order isomorphic to the
well-ordered set (A×B,≤A×B). The following properties of · can be easily observed.
(i) α · 0 = 0 = 0 · α,
(ii) α · 1 = α = 1 · α,
(iii) (α · β) · γ = α · (β · γ), and
(iv) α · (β + γ) = α · β + α · γ

for all ordinal numbers α,β, and γ. Note that the left distributivity of · over +
need not hold.

For further arithmetical properties of ordinals, refer toNaive set theory byHalmos,
or to the set theory by Vipul Kakkar.

2.7 Cardinal Numbers

The abstraction of the counting process of finite sets leads to the concept of the
ordinal numbers. On a finite set X, any two well-order structure is order isomorphic.
Indeed, two finite well-ordered sets (X,≤X) and (Y ,≤Y ) define the same ordinal
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numbers if and only if their sizes are same in the sense that there is a bijective
map from X to Y . However, this is not the situation in infinite case. Indeed, on the
same infinite setX, we can have different well-order structures which define different
ordinal numbers. For example, the usual well-order≤ on the setN of natural numbers
determines the ordinal number ω. We have another order≤′ on N defined as follows:
If m �= 1 �= n, then m ≤′ n if and only if m ≤ n. Also, m ≤′ 1 for all m ∈ N.
Clearly, (N,≤′) is a well-ordered set, and the initial segment η1 in (N,≤′) isN−{1}.
Note that (N,≤) and (N,≤′) are not order isomorphic. (N,≤′) is order isomorphic
to the ordinal ω + 1. Similarly, we have another well-order on ≤′′ on N defined as
follows: Ifm, n ∈ N−{1, 2}, m ≤′ n if and only ifm ≤ n. Also, m ≤′′ 1 ≤′′ 2 for all
m, n ∈ N−{1, 2}. Then, (N,≤′′) is order isomorphic to ω+2, and so on. Thus, there
are infinitely many nonorder isomorphic well-order structures on N corresponding
to different ordinals. Thus, ordinals are good for counting, but it does not distinguish
the size of the infinite sets. This prompts us to look for an other concept, the concept
of cardinals which measures the size of sets.

Definition 2.7.1 Let X and Y be sets. We say that X dominates Y if there is an
injective map from Y to X. X and Y are said to be equipotent or equinumerous if
there is a bijective map from X to Y . We use the notation X ≈ Y to say that X is
equipotent to Y .

Theorem 2.7.2 (Schröder-Bernstein Theorem) If X dominates Y and Y also domi-
nates X, then X is equipotent to Y. More explicitly, if there is an injective map from
X to Y, and also there is an injective map from Y to X, then there is a bijective map
from X to Y.

Proof Let f be an injective map from X to Y and g be an injective map from Y
to X. We have to show that X and Y are equipotent. Put X − g(Y) = Z . Then,
X = g(Y)

⋃
Z , where g(Y) and Z are disjoint. Since Y and g(Y) are equipotent, it

is sufficient to show that g(Y) and X are equipotent. Let u ∈ (gof )r(Z)
⋂

(gof )s(Z),
where r < s. Then, there exist x, y ∈ Z such that u = (gof )r(x) = (gof )s(y). Since
gof is injective, x = (gof )s−r(y). This means that x ∈ Z

⋂
g(Y). This is impossible.

It follows that (gof )r(Z)
⋂

(gof )s(Z) = ∅ for all r �= s. Put U = ⋃
r∈N(gof )r(Z),

and V = ⋃
r∈N−{1}(gof )r(Z). Then, U = (gof )(Z)

⋃
V . From what we have

observed, it follows that (gof )(Z) and V are disjoint. Also, U and V are equipotent.
Indeed, gof is a bijective map from U to V . Also Z and (gof )(Z) are equipotent.
SinceU = (gof )(Z)

⋃
V , Z

⋃
U is equipotent toU(note that Z andU are disjoint).

Now, put g(Y) − U = W . Then, g(Y) = U
⋃

W . Hence, X = U
⋃

W
⋃

Z .
Since U

⋃
Z is equipotent to U, U

⋃
W is equipotent to X. This shows that g(Y) is

equipotent to X. �

Definition 2.7.3 An ordinal number α is said to be a cardinal number if whenever
an ordinal number β is equipotent to α, α ≤ β.

Thus, all natural numbers are cardinal numbers.ω is a cardinal number, whereasω+1
is not a cardinal number. The ordinal number ω considered as a cardinal number is
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denoted by ℵ0. Indeed, an infinite cardinal number is a limit ordinal. It follows from
the properties of ordinal numbers that a set of cardinal numbers is totally ordered.

Let X be a set. From the well-ordering principle, there is a well-order on X. The
set of all ordinal numbers which are order isomorphic to the different well-order
structures on X has the least element. This least element is clearly a cardinal number,
and it is called the cardinal number of X. The cardinal number of X is denoted by
| X |. Evidently, | X | = | Y | if and only if X is equipotent to Y . Further, if a = | X |
and b = | Y | are two cardinal numbers, then a ≤ b if and only if there is an injective
map from X to Y .

Definition 2.7.4 A set X is said to be a countable set if | X | is a natural number, or
it is ℵ0. It is said to be an infinite countable set if | X | = ℵ0. Thus, X is countably
infinite if and only if there is a bijective map from X to N. A set X is said to be
uncountable if it is not countable.

Since there is no surjective map from N to the power set ℘(N), ℘(N) is uncount-
able. Observe that℘(N) and 2N are equipotent, and so | ℘(N) | = | 2N |. The cardinal
number | 2N | is denoted by ℵ1. The cardinal number | 22N | is denoted by ℵ2, and so
on. Ifℵ is an cardinal number, then the cardinal number | 2ℵ | is denoted by 2ℵ. IfA is
equipotent to B, and C is equipotent toD, then AC is equipotent to BD. Thus, we can,
unambiguously, define the power ab as follows: Suppose that a = | A | and b = | B |.
Define ab = | AB |. In turn, for each cardinal number ℵ, we have the cardinal number
2ℵ, and we have a chain of infinite cardinal numbers ℵ0,ℵ1,ℵ2, . . . ,ℵα,ℵα+1, . . .,
whereℵα+1 = 2ℵα of infinite cardinal numbers, whereα runs over a chain of ordinal
numbers.

Continuum hypothesis. The continuum hypothesis (CH) asserts that there is no
cardinal number in between ℵ0 = | N | and ℵ1 = | 2N |. More precisely, it asserts
that if there is a set A such that there is an injective map from N to A, and there is an
injective map from A to 2N, then A is equipotent to N or it is equipotent to 2N.

K .Gödel in 1939 proved that if theZF axiomatic system is consistent, then adjunc-
tion of CH in ZF does not lead to any contradiction. In other words, CH is consistent
with the ZF axiomatic system. Further, in 1963, P. Cohen proved that ZF axiomatic
system does not lead to a proof of CH. Consequently, CH is independent of the ZF
axiomatic system.

Generalized continuum hypothesis. The generalized continuum hypothesis
(GCH) asserts that for each ordinal α, there is no cardinal number between ℵα and
ℵα+1 = 2ℵα . The topologist Sierpinski proved that GCH implies axiom of choice.
K .Gödel also showed that GCH is consistent with the ZF axiomatic system.

Arithmetic of Cardinal Numbers

Let (A,C) and (B,D) be pairs of equipotent sets. Suppose that A
⋂

B = ∅ =
C

⋂
D. It is evident that A

⋃
C is equipotent to B

⋃
D. Thus, we have the addition+

on a suitable set� of cardinal numbers defined by a+b = | (A×{0})⋃
(B×{1}) |,

where a = | A | and b = | B |. The following properties of + can be verified easily.
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(i) a + 0 = a = 0 + a,
(ii) (a + b) + c = a + (b + c),
(iii) a + b = b + a, and
(iii) a ≤ b and c ≤ d implies that a + c ≤ b + d

for all a, b, c, d ∈ �.

We can also define sum of an arbitrary family of cardinal numbers as follows: Let
{aα = | Aα | | α ∈ �} be a family of cardinal numbers. We define

�α∈�aα = |
⋃

α∈�

Aα × {α} | .

Recall that a set X is said to be a finite set if every injective map from X to itself
is a surjective map. It is easily observed that a set X is finite if and only if | X | is a
natural number.

Proposition 2.7.5 A set X is infinite if and only if there is an injective map from the
set N of natural numbers to X.

To prove this result, we need the following recursion theorem whose proof can
be found in the next chapter.

Recursion Theorem. Let X be a set and a ∈ X. Let f be a map from X to X.
Then, there is a unique map g from N to X such that g(1) = a and g(n+) = f (g(n))
for all n ∈ N.

Proof of the proposition 2.7.5: Let X be an infinite set. Let f be an injective map
from X to X which is not surjective. Let a ∈ X which is not in the image of f . By the
recursion theorem, there is a unique map g from N to X with g(1) = a and is such
that g(n+) = f (g(a)). Let

M = {m ∈ N | g(m) = g(n) implies that m = n}.

Since a is not in the image of f , 1 ∈ M. Suppose that m ∈ M. Then, g(m) = g(n)
implies that m = n. Suppose that g(m+) = g(n). Then, n �= 1. Hence, there is an
element r ∈ N such that n = r+. By the definition of g, f (g(m)) = f (g(r)). Since f
is injective, g(m) = g(r). This means that m = r, and so m+ = n. It follows that
m+ ∈ M. By P5,M = N. This shows that g is injective. �

Proposition 2.7.6 ℵ0 + ℵ0 = ℵ0.

Proof It is sufficient to give a bijectivemap fromN×{0}⋃
N×{1} toN. LetX denote

the set {2n | n ∈ N} of even natural numbers and Y denote the set {2n + 1 | n ∈ N}
of odd natural numbers. Then, X and Y are disjoint. Further, n � 2n is a bijective
map from N to X, and n � 2n + 1 is a bijective map from N to Y . This shows that
N × {0} ⋃

N × {1} is equipotent to N. The result follows. �

Corollary 2.7.7 For every natural number n, ℵ0 + n = ℵ0.
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Proof (N × {0}⋃
n × {1}) ⊂ (N × {0} ⋃

N × {1}). From the above proposition,
it follows that (N × {0} ⋃

n × {1}) is equipotent to a subset of N. Also, the map
n � (n, 0) is an injective map from N to (N × {0}⋃

n × {1}). By the Schröder–
Berstein theorem, N is equipotent to (N × {0}⋃

n × {1}). The result follows. �

Proposition 2.7.8 If a is an infinite cardinal, then a + a = a.

Proof Let us suppose that a = | A |, where A is an infinite set. We need to show that
A × {0} ⋃

A × {1} is equipotent to A. Let

� = {(X, f ) | X ⊆ A, f is a bijective map from X to X × {0}
⋃

X × {1}}.

SinceA is infinite, by the Proposition 2.7.5, there is a subsetX ofAwhich is equipotent
to N. From the Proposition 2.7.6, X and X × {0} ⋃

X × {1} are equipotent. Hence,
� �= ∅. Define a partial order ≤ on � by putting (X, f ) ≤ (Y , g) if X ⊆ Y and
g/X = f . Clearly, (�,≤) is a nonempty partially ordered set. Let {(Xα, fα) | α ∈ �}
be a chain in (�,≤). Let X = ⋃

α∈� Xα and f be the map whose restriction to each
Xα is fα. It is an easy observation that f is a bijectivemap fromX toX×{0}⋃

X×{1}.
This shows that (X, f ) is an upper bound of the chain. By the Zorn’s lemma, (�,≤)

has a maximal element (X0, f0) (say). Now, we show that A − X0 is a finite set.
Suppose not. Again, by the Proposition 2.7.5, there is a subset Z of A− X0 which is
equipotent to N. But, then there is a bijective map h from Z to Z × {0}⋃

Z × {1}.
TakeU = X0

⋃
Z , and the map φ fromU toU×{0}⋃

U×{1}whose restriction to
X0 is f0, and whose restriction to Z is h. Clearly, (U,φ) ∈ �. This is a contradiction
to the maximality of (X0, f0). Thus, A − X0 is finite. From the Corollary 2.7.7,

a = | A | = | X0 | = | X0 × {0}
⋃

X0 × {1} = | X0 | + | X0 | = a + a.

�

Now, we define the product · of two cardinal numbers as follows: First observe that
| A | = | C | and | B | = | D | imply that | A × B | = | C × D |. Thus, we can,
unambiguously, define the product a · b of two cardinal numbers a = | A | and
b = | B | by a · b = | A × B |. The following properties of the multiplication · can
be easily observed:

(i) a · 0 = 0 = 0 · a,
(ii) (a · b) · c = a · (b · c),
(iii) a · b = b · a, and
(iv) a · (b + c) = a · b + a · c

for all ordinal numbers a, b, and c.

The proof of the following proposition uses Zorn’s lemma, and it is similar to the
proof of the Proposition 2.7.8.
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Proposition 2.7.9 If a is an infinite cardinal number, then a · a = a. �

As a corollary, we obtain the following:

Proposition 2.7.10 If a ≤ b, then a · b = b. �

Gödel–Bernays Axiomatic system

In 1920, John von Neumann attempted an other axiomatic system for set theory. His
axiomatic system significantly differed from the ZF axiomatic system. Indeed, for
him, the primitive term (concept) was that of a correspondence (a map) instead of a
set. Later, Gödel and Bernays modified it to make it more appealing and near to ZF
system. For them, the primitive term is class instead of set. A member of a class in
this axiomatic system is a set. Most of the axioms of the Gödel–Bernays system is
same as those of ZF axiomatic system with set replaced by class except the axiom of
replacement. Further, in this axiomatic system, a set may be a class, but then it does
contain all sets or all ordinal numbers. Sets are those classes which are adequate to
develop mathematics. The Gödel–Bernays axiomatic system is most suitable for the
categorical discussions.
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