Chapter 2
Matrices and Linear Equations

Matrices play a pivotal role in mathematics, and in turn, in all branches of science,
social science, and engineering. This chapter is devoted to the interplay between
matrices and systems of linear equations.

2.1 Matrices and Their Algebra

By definition, a m x n matrix A with entries in a field F is an arrangement

ayp apa - - A

azp dzp - - Ay,
A =

Aaml Am2 * * * Amn

of m rows and n columns of elements of F'. In short A is denoted by [a;;], where a;;
is the entry in the ith row and jth column of A. The ith row

(air, aip, . . ., Gin)

of the matrix A is a vector in F", called the ith row vector of A, and it will be denoted
by R;(A). Thus, the matrix A can also be expressed as a column
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R (A)
Ry(A)

R (A)

of m rows with entries in F".
Similarly, if we treat the members of F* as column vectors, then the jth column

aj;
azj

Apmj

of the matrix A is a column vector in F'™, called the jth column vector of A, and it
will be denoted by C;j(A). As such, the matrix A can also be expressed as a row

A = [CiA), GA), ..., CuA]

Thus,

is a4 x 5 matrix with entries in the field C of complex numbers.
A matrix A is called a square matrix if the number of rows and columns are same.

The matrix
201

A=1410
081

is a square 3 x 3 matrix with entries in the field R of real numbers.
The set of all m x n matrices with entries in a field F' is denoted by M,,,,(F). The set

of all square n x n matrices is denoted by M,,(F'). We have a binary operation + on
M., (F), called the matrix addition, and which is defined by

la;] + [b;] = [cyl,

Where C,'j = Clij —+ bij-
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For example,

201 012 213
410 4+ |310| =720
081 581 5162

The m x n matrix 0,,, all of whose entries are O is called the zero m x n matrix.
Clearly, the matrix 0, is described by the property that for any m x n matrix
A, A+ Opyp = A = Opxn + A.Further, if A = [ay] is a m x n matrix, then
the matrix —A = [—a;] all of whose entries are the negatives of the corresponding
entries of A is called the negative of A, and it is described by the property that
A + (=A) = Opxn = (—A) + A. The proof of the following proposition is an
immediate consequence of the corresponding properties of the addition + in F.

Proposition 2.1.1 The set M,,,(F) of m x n matrices with entries in F is an abelian
group with respect to the matrix addition in the sense that it satisfies the following
properties:

(i) The matrix addition + is associative in the sense that

A+B +C=A+ @B+ 0

forall A, B and C in M,,,,(F).

(ii) The matrix addition + is commutative in the sense that

A+ B)= (B + 4

forall A, BinM,,,(F).

(iii) There is a unique matrix 0,5, in M, (F) suchthatA 4+ Opxp = A = Opxn + A
forall A in M,,,(F).

(iv) For each matrix A in M,,,,(F), there is a unique matrix —A in M,,,,(F) such that

A+ (-A) = O = (FA) + A i
We have an external multiplication - on M,,,(F) by scalars in F defined by a -
la;j] = [b;l, where b = a - a;. Thus, for example,
201 402
2-1410| =1(820
081 0162

It can be further observed that the triple (M,,,(F), +, -) is a vector space over F.
Indeed, (M,,,(F), +, -) can be identified with the triple (", +, -) under the corre-
spondence A <— (R(A), R»(A), ..., R,(A)) which respects all the operations.
Let e;; denote the matrix in which ith row jth column entry is 1 and the rest of the
entries are 0. For example, the 3 x 3 matrix ep3 is given by

000
€3 = 001
000

It follows that the set {e;; | 1 <i <m, 1 <j < n} corresponds to the standard basis
of F"™" under the above correspondence. Clearly,
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laj] = Xijajey,

and
Xijajej = Omn

ifand only if a; = Oforalli,j. Thus, {e; | 1 <i <m, 1 <j < n}isabasis, called
the standard basis, of the vector space M,,,(F). Thus, the dimension of M,,,(F) is
m - n. In particular, M, (F) is of dimension n2.

Apart from the above operations, we have an external operation - from M,,,, (F) X
M., (F) to M,,,(F), called the matrix multiplication, defined as follows: Let A =
[aj],1<i<m,1<j<n and B = [bgl,1<j<n,1<k=<p. ThenA-B =
[cik], where ¢ix = Xja;;bj. Thus, for example,

201 012 5105
410 (310 =13 58
081 581 29161

It can be observed easily that the matrix multiplication is distributive over addition
from left as well as from right in the sense that (A + B)-C = A-C + B-C
andA-(B + C) = A-B + A-C.Evidently, A-0,,, = 0pxp,and 0y, -A =
Opxn. Again, since Z(Zjabi)cy = Xja;(Zibjeci), it follows that the matrix
multiplication is associative in the sense that (A - B) - C = A - (B - C) whenever the
products are defined. In particular, we have a multiplication - in M,,(F). Note that
matrix multiplication is not commutative, for example,

[0o] [10] = [00):
Vo] [o0] = [o1]

Thus, the set M,(F) of n x n matrices with entries in F together with matrix

addition +, the multiplication by scalars, and the matrix multiplication - is an algebra
in the sense of the following definition.

where as

Definition 2.1.2 A vector space V over a field F together with an internal multipli-
cation - on V is called an algebra over F if the following conditions hold:

1. The internal multiplication - is associative, i.e., (x-y)-z = x- (y-z) for all
x,y,z€V.

2. - distributes over addition +, i.e., x +y)-z = x-z + y-z,and alsox - (y +
z) = x-y + x-zforallx,y,ze V.

3. ax-y) = (ax) -y = x-(ay) forallao € F,and x,y € V.

LetAbean x m matrix. The m x n matrix A’ obtained by interchanging rows and
columns of A is called the transpose of A. More precisely, if A = [a;]isan xm
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matrix, then the m x n matrix A” = [b;;], where b;; = aj; is called the transpose of
A.LetA = [a;] be an x m matrix with entries in the field C of complex numbers.
The matrix A = [b;], where b; = a;; (the complex conjugate of a;;) is called the
conjugate of the matrix A. The matrix A* = A'is called the tranjugate, also called
the hermitian conjugate of A

Thus, for example
t

201 240
410 =1(018
081 101
24iil+i " 2—id—il+i
44ii 0 = | —i —-i 8
1—i81+i 1—i 0 1—i

Proposition 2.1.3 Let A, B be matrices with entries in a field F. Then

(i) A+ B =A" + B
(ii) (A" = A.

(iii) (a-A) = a-A'

(iv) (A-B)' = B'-A’

provided the relevant sums and the products are defined.
Further, if A, B are matrices with entries in the field C of complex numbers, then

(v) A+ B)* = A" + B*
(vi) (AD* = A.

(vii) (a-A)* = a-A*
(viii) (A-B)* = B*.A*

provided the relevant sums and the products are defined.

Proof The identities (i), (ii), and (iii) are evident from the definition. We prove the
(iv). Suppose thatA = [a;]isan x mmatrix,and B = [bj]isam x p matrix. Then,
by the deﬁnition, A-B = [Cik]a where Cik = Ejaijbjk = Zjvkjuji where Vi = Djk
and uj; = ay. By the definition B’ = [vy],A" = [u;], and (A - B)" = [wy], where
wy; = ci. This shows that the &, row j,, column entry of both sides are same. This
proves the result. The proofs of the rest of the identities are similar. i

2.2 Types of Matrices

1. Identity matrix. The n x n matrix all of whose diagonal entries are 1 and off
diagonal entries are O is called the identity matrix of order n, and it is denoted by 1,,.
For example,
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100
L =010
001

It can be checked that [, -A = A = A - I, for every n x m matrix A. Indeed, if C
is an x m matrix such that C -A = A for every n x m matrix A, then C = I,.

2. Diagonal matrix. AmatrixA = [a;]is called a diagonal matrix if all off diagonal
entries are 0. Thus, [a;] is a diagonal matrix if a; = 0 for all i # j. The diagonal

matrix whose ith row ith column entry is «; is denoted by Diag (o, oo, . .., ). For
example,
100
Diag(1, 2, 3) = | 020
003
The effect of multiplying the diagonal matrix diag (o, o, . . ., ayy) toan X m matrix
A from left is to multiply the ith row by «;. Thus diag(ay, oz, ..., ap) - [a;] =

[b;], where b; = «,ay;. Similarly, the effect of multiplying this matrix to a m x n
matrix A from right is the same as multiplying the ith column by «;. In particular,
diag(ay, oy, ..., ) - diag(By, B2, ... By) = diag(a1B1, s, ..., anf).

3. Scalar matrix. A n x n diagonal matrix all of whose diagonal entries are same
is called a scalar matrix. Thus, a scalar matrix is of the form al,, and effect of
multiplying this matrix to a matrix A is cA.

4. Symmetric matrix. A matrix A is called a symmetric matrix if A’ = A. Thus,
a diagonal matrix is a symmetric matrix. The matrix

132
320
203

is asymmetric matrix. It follows from the Proposition 2.1.3 that sum of two symmetric
matrices are symmetric, scalar multiple of a symmetric matrix is a symmetric matrix.
Thus, the set S,,(F) of all n x n symmetric matrices forms a subspace of M,,(F). For
all matrices A, AA" is a symmetric matrix. For a square matrix A, A + A’ is a
symmetric matrix. Product of two symmetric matrices is symmetric if and only if
they commute.

5. Skew symmetric matrix. A matrix A is called a skew symmetric matrix if
A" = —A. For example, the matrix

032
=300
-200

is a skew symmetric matrix. It follows from the Proposition 2.1.3 that sum of two
skew symmetric matrices are skew symmetric, scalar multiple of a skew symmetric
matrix is a skew symmetric matrix. Thus, the set SS,,(F) of all n x n skew symmetric
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matrices forms a subspace of M,(F). A — A’ is skew symmetric for all square
matrices A. Product of two skew symmetric matrices is skew symmetric if and only
if they anti commute in the sense that A - B = —B - A. Also observe that the diagonal
entries of a skew symmetric matrices are 0.

Every square matrix A with entries in a field F' can be uniquely represented as

t At . . t . .

sumA = A4 4 44 of 3 symmetric matrix 224 and a skew symmetric matrix
—Al . .

% (prove the uniqueness of the representation).

6. Hermitian matrix. A matrix A with entries in the field C of complex numbers is
called a hermitian matrix (also termed as self adjoint) if A* = A. Thus, a matrix
A with real entries is Hermitian if and only if it is symmetric. The matrix

1 3+i2
3—1 2 i
2 =i 3

is a Hermitian matrix. Evidently, all diagonal entries of Hermitian matrices are real. It
follows from the Proposition 2.1.3 that sum of two Hermitian matrices are Hermitian.
However, only real scalar multiple of a Hermitian matrix is a Hermitian matrix. For
all matrices A, AA* is a Hermitian matrix. For a square matrix A, A + A* is also a
Hermitian matrix. Product of two Hermitian matrices is Hermitian if and only if they
commute.

7. Skew-Hermitian matrix. A matrix A with entries in the field C of complex
numbers is called a skew-Hermitian matrix if A* = —A. Thus, a matrix A with
real entries is skew-Hermitian if and only if it is skew symmetric. The matrix

i 3i—1 2
3i+1 2 -1
2 I 3

is a skew-Hermitian matrix. Evidently, all diagonal entries of skew-Hermitian matri-
ces are purely imaginary. It follows from the Proposition 2.1.3 that sums of two
skew-Hermitian matrices are skew-Hermitian. However, only real scalar multiple
of a skew-Hermitian matrix is a skew-Hermitian matrix. Observe that a matrix A is
skew-Hermitian if and only if iA is a Hermitian matrix. For all matrices A, iAA* is
a skew-Hermitian matrix. For a square matrix A, A — A* is also a skew-Hermitian
matrix. Product of two skew-Hermitian matrices is skew-Hermitian if and only if
they anticommute in the sense that AB = —BA.

Every square matrix A with entries in the field C of complex numbers can be

uniquely represented as sumA = f% + f% of a Hermitian matrix *%, and a
skew-Hermitian matrix ‘% (prove the uniqueness of the representation). In turn, it

follows that every square matrix A with entries in the field C of complex numbers can
be uniquely represented asA = B + iC, where B and C are Hermitian matrices.

8. Nonsingular matrices. A n x n matrix A is called a nonsingular matrix (also
called an invertible matrix) if thereisan x nmatrix BsuchthatA-B = I, = B - A.
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Note that such a B, if exists, will be unique, for if B; and B, are such matrices, then
B] = Bl In = Bl . (A B2) = (Bl A) ~Bz = In -Bz = B2IfAIS an invertible
matrix, then the unique B such that A- B = [, = B - A s called the Inverse of A,
and it is denoted by A~'. Following are some simple observations:

(i) The identity matrix /, is invertible and ;! = 1,

(ii) Consider a diagonal matrix diag(ay, oo, ..., a,). As already observed in 2,
diag(oy, an, ..., ay) - la;]l = [b;l, where b = «;a;. Thus, diag(ay, o, ...,
ay) - [a;] = I, if and only if o;a; = 1 forj = i, and O other wise. This is so if
andonlyif o; # 0, a; = ai_l foreach i, and a; = O foralli # j. This shows that
Diag(ay, ay, ..., o) is invertible if and only if each a; # 0, and then its inverse is
Diag(afl, a;l, R a;l).

(iii) Let A and B be invertible n x n matrices. Then, (AB)(B~'A™") = I, =
(B~'A~")(AB). This shows that AB is also invertible and (AB)~! = B~ 1A~
In due course, we shall describe an algorithms to check if a matrix is invertible,

and then to find its inverse.
9. Triangular matrices. A square matrix A is said to be an upper (lower) triangular
matrix if all its below (above) diagonal entries are 0. More precisely, a n x n matrix
A = [ay]is called an upper (lower) triangular matrix if a; = O foralli > j(i <
J). Itis called strictly upper (lower) triangular if in addition to that all the diagonal
entries are also 0. For example,

146

020

003

is an upper triangular matrix.

Clearly, the sum of any two upper (lower) triangular matrices is an upper
(lower) triangular matrix. Also a scalar multiple of an upper (lower) triangular
matrix is a upper (lower) triangular matrix. Thus, the set T, (n, F)(T_(n, F)) of
upper (lower) triangular matrices forms a subspace of M,,(F).

Further, T (n, F)(T_(n, F)) is closed under matrix multiplication: For, let A =
[a;j] and B = [bj] be upper triangular matrices. Then a; = 0 = by for all i >
J > k.LetA-B = [ci]. Then cyp = Zja;;by = Oforalli > k.

Next, let A = [a;] € T4 (n, F) be a nonsingular matrix. Then there is a matrix
B = [b;j]suchthat B-A = I,. Equating the first row first column entry from both
side we get byja;; = 1.Butthena;; # 0and by, = a]_,1 . Equating second row first
column entry, we obtain that b;a;; = 0.Hence by; = 0. Similarly, equating ith row
1, column entry we obtain that b;;a;; = 0,andsob;; = Oforalli > 1.Equating
the 1 row 2,5 column entry, we get that byja;, + bppazy = 0, and equating the
2,4 TOW 2,4 column entry, we get byparx = 1. Thus a»p #0, by = az_zl, and
b, = az_zlal_llalz. Proceeding in this way we obtain that all the diagonal entries a;;
of A are nonzero, and then we can solve bj; to get the inverse of A. We also observe
that the inverse of A is also a member of T (n, F'). For example, consider the upper
triangular matrix



2.2 Types of Matrices

246
020
003

all of whose diagonal entries are nonzero. We find its inverse. Suppose that

apg agp ags 246 100
ayapay | -1 020 =1010
asy as ass 003 001

Then we have the following equations:
2a1; = 1, 4a;; + 2a, = 0, 6ay; + 3a;3 = 0,
2a31 = 0, 4az; + 2ax»n = 1, 6ay + 3ax = 0,

2a3;1 = 0, 4az; + 2a3 = 0, 3as; 1
Solving, we get thata;; = % ap = —1 = a3, ayy = a3 = ap = 0, axn
0, an = %, a3 = %.Thus, the inverse of the said matrix is

1

3 —11 —1

05 O

1
00 3

Block multiplication

39

We can multiply two matrices by using suitable blocks of their submatrices. More
explicitly, let A be a m x n matrix, and B a n X p matrix. Suppose that m = m; +
my+---4+m, n = n+n+---n;,andp = py+pr+---+p;, where m;, n;

and p; are positive integers. Then A and B can be expressed uniquely as

A A - - Agg
Agy Ay - - - Agg
A SRR
Arl Ar2 t Ars
where A;; is a m; x n; matrix and
By Bz - - - By,
By By - - - By
5 _ . e
le Bs2 e Bsr

where Bjy is n; x py matrix. Further, then
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Ciy Cpp---Cyy

CppCp -+ Cy
A B - SRR

Crl Cr2"'Crt

where Cik = E;=1Aiijk~

2.3 System of Linear Equations

A system of m linear equations in n unknowns x|, x, ..., x, over a field F is given
by
ayx) + apxy + - - -+ X = by
azxy + apxy + - - - + dopXm = b
, (2.1)
an Xy + apxy + - - -+ QupXm = bn

where a;; € F.

Example 2.3.1 Following is a system of two linear equations in three unknowns over
the field of real numbers:
3x; + 2% + x3 = 1.

X1+ x4+ x3 = 2.

We say thatan-tuple (a,, az, . . . , a,) in F"* is a solution of the system (2.1) of linear
equations if x; = aj,x; = ap, ..., x, = a, satisfies all the equations in the system
(2.1). Thus, (=2, 3, 1) is a solution of the system of linear equations in the above
example. (—3, 5, 0) is also a solution to the above system. Indeed, there are infinitely

many solutions which can be parametrized in terms of x3 as (x3 — 3,5 — 2x,, x3).
Clearly, this represents a line.

Example 2.3.2 The system
X1 + 2x 4+ 3x3 = 1.
X1 + x + 3x3 = 2.
dx; + 6xp + 12x3 = 5.

of linear equations has no solution (why?).
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where as

Example 2.3.3 The system
x|, + 2x, = 1.

2x1 + 2x = a.

has a unique solution for all a (why?).

Definition 2.3.4 A system of linear equations is said to be consistent if it has a
solution. It is said to be inconsistent otherwise.

The Example 2.3.1 is consistent having infinitely many solutions, the Example
2.3.2 is inconsistent, whereas Example 2.3.3 is consistent with unique solution.

Most of the problems in real life, in engineering, in industries, in social life,
and in medical science can be modeled in terms of systems of linear equations.
As such, describing and interpreting the solutions of a system of linear equations
is one of the main themes of linear algebra. In the following few sections we shall
concentrate on this.

The system (2.1) of m linear equations in n unknowns can be expressed in a single
matrix equation

t

AX = b (2.2)
where A = [a;] is the m x n matrix whose iy, row jy, column entry is g;, X =
[x1,x2,...,x,] € F"isthe 1 x nrow matrix of unknowns,andb = [by, ba, ..., b,]

€ F™is the 1 x m matrix.
Thus, the system of linear equations in Example 2.3.1 can be expressed as

3217 | Tt
1] |2 7|2
X3
The matrix A in (2.2) is called the coefficient matrix of the system (2.1) of linear

equations, and the m x (n + 1) matrix AT = [A Et] whose first n columns are those

of A, and the last (n 4+ 1), column is Et, is called the augmented matrix of the
system of linear equations.
Thus, the coefficient matrix of the Example 2.3.2 is

123
113 ],
4612

and the augmented matrix of the example is
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2461
0202
0035

Definition 2.3.5 A system of linear equations given by the matrix equation

=t

AX =0 .... (2.3)

is called a homogeneous system of linear equations. It is also called the homoge-
neous part of the system of linear equations given by

—t

AX = b.

Proposition 2.3.6 A homogeneous system of linear equations given by the matrix
equation
I~

A = 0.

is always consistent, and the set of solutions of the homogeneous system is a subspace
of F".

Proof Let N(A) denote the set of all solutions of A¥ = 0. Since A0’ = 0,
it follows that 0 € N(A). Let @, € N(A), and a, b € F. Then A(au + bv)' =
aAiW + bAY = 0. This shows that ai + bv € N(A). It follows that N(A) is a
subspace of F". it

Definition 2.3.7 The subspace N(A) described in the above proposition is called
the solution space of the system (2.3) of linear equations, and it is also called the
null space of the matrix A. The dimension of the null space N(A) is called the
nullity of A, and it is denoted by n(A). If {u7, uz, ..., Uy} is a basis of N(A), then
any solution of (2.3) is uniquely expressed as cju; + coUz + - - - + Cp(a)Un(a), Where
C1,C2, ..., Cpa) are constants in F. As such cjuy 4 colty + - - - 4 Cn(a)Unqa) is called
a general solution of the homogeneous system (2.3).

A little later, we shall give an algorithm to find N(A), indeed a basis of N(A), and
so also a general solution of the system (2.3) of linear equations.

Proposition 2.3.8 Suppose that the system of linear equations given by the matrix

equation
—t

AX' = b.
is consistent, and a = lay, as, ..., a,] is a solution of the above equation. Then
the coseta + N(A) = {a + u | u € N(A)} is the complete set of all solutions
of the system of linear equations. In turn, if {uy, Uz, ..., Uy} is a basis of N(A),

thena + ciuy + coliz + - - - + Cpa)lina) is a general solution of the system of linear
equations, where cy, ca, ..., Cyay are arbitrary constants.
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Proof Since @ is a solution of A¥ = b,Ad = b.Ifu € N(A), then Aw = 0.
But, then A(@ + @) = (A@ + A@') = (b + 0') = b. This shows thata + &

is also a solution of AX' = Et. Conversely, let ¢ be a solution of AX' = Et. Then
Ac = Et.HenceA(E — a) = (A¢ — A@") = 0.Itfollows that (¢ — a) € N(A).
This shows thatc € a + N(A). The rest is an immediate observation. it

Definition 2.3.9 The subspace R(A) of F" generated by the set {R(A), Ry(A), ...,
R,,(A)} of the rows of A is called the row space of A, and the dimension of R(A) is
called the row rank of A. Thus, the maximum number of linearly independent rows
of a matrix is the row rank of A. Similarly, the subspace C(A) of F'™ (the elements
of F™ treated as columns) is called the column space of A, and the dimension of
C(A) is called the column rank of A. Again, it follows that the maximum number
of linearly independent columns of A is the column rank of A. We shall see, in due
course, that row rank is same as column rank, and it is called the rankof A. The rank
of A is denoted by r(A).

Proposition 2.3.10 The system of linear equations given by the matrix equation

—t

AX = b.

is consistent if and only if the column rank of A is same as that of the augmented
matrix AT

. . . . . - -t
Proof The system of linear equations given by the matrix equation AX’ = b is also
expressible as

x1C1(Q) + xC(A) + --- + x,C(A) = E”

wherex = [x1, x2, ..., x,], and C;(A) denotes the i;; column of A. Thus, the equation
has a solution if and only if b is a linear combination of the columns of A. This is
equivalent to say that the column space C(A) of A is same as the column space C(A™)
of the augmented matrix A*. Since C(A) € C(A"), this is equivalent to the fact that
column rank of A is same as that of A™. it

We shall look at an algorithm to find the rank of a matrix, and also an algorithm
to find a general solution of AX' = b provided it is consistent.

2.4 Gauss Elimination, Elementary Operations, Rank,
and Nullity

Definition 2.4.1 Two systems of m linear equations in n unknowns are said to be
equivalent if they have same set of solutions.
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Example 2.4.2 The system
x; + 2x =1

2x1 + 2x = a
of two linear equations in two unknowns is equivalent to the system
X1+ 2x =1
3x) + 4, = a+1,
for they have same set of solutions, whereas the system is not equivalent to
X1+ 2x =1
2x1 + 3x = a

In what follows, we shall introduce an algorithm called the Gaussian elimination
to reduce a system of linear equations into an equivalent system of linear equations
from which the solution will become apparent.

Definition 2.4.3 Following operations on a system of linear equations are called the
elementary operations on the system of linear equations, and the corresponding
operations on coefficient and augmented matrices are called the Elementary row
operations on the matrices:

1. Interchange any two equations in the system.

2. Multiply an equation in the system by a nonzero member of the field.

3. Add a nonzero multiple of an equation in the system to another equation in the
system.

In turn, the corresponding elementary row operations on matrices are:

1. Interchange any two row of the matrix.
2. Multiply a row of the matrix by a nonzero element of the field.
3. Add a nonzero multiple of a row of the matrix to another row.

The following proposition is an immediate observation.

Proposition 2.4.4 Any two system of linear equations which differ by a finite
sequence of elementary operations are equivalent. it

We shall first discuss an algorithm to find the space of solutions of a homogeneous
system of linear equations given by the matrix equation AX' = 0'. More precisely,
we derive an algorithm to find a basis of the null space N(A) of A so that every
solution of the system is unique linear combination of the basis members.

Proposition 2.4.5 The null space N (A), and so also the nullity n(A) of a matrix A
remain invariant under the elementary row operations.
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Proof Follows from the Proposition 2.4.4. i

Proposition 2.4.6 The row space R(A) and so also the row rank of a matrix A remain
invariant under the elementary row operations.

Proof Interchange of any two rows of a matrix will not change the row space as
the set of rows will not change. Since the subspace of F” generated by the set
{R1(A), R2(A), ..., R,(A)} of rows of A is the same as the subspace of F" generated
by {Ri(A), Ry(A), ..., aR;(A), ..., R,(A)} for each nonzero a € F and j < m, it
follows that the row space of a matrix remains the same if we multiply a row of the
matrix by a nonzero member of the field. Finally, since the subspace of F* generated
by the set {R;(A), R2(A), ..., R, (A)} of rows of A is the same as the subspace of
F" generated by {R;(A), Ry(A), ..., Ry (A) + aR;(A), ..., R,(A)} for each nonzero
a € F and j # k, it follows that the row space of a matrix remains the same if we
add a nonzero multiple of a row to another row. it

The column space of a matrix, in general, is not invariant under elementary row
operations. However,

Proposition 2.4.7 The column rank of a matrix remains invariant under elementary
row operations.

Proof Let A be a matrix, and A’ a matrix obtained by applying any of the elementary
row operations on A. Then evidently,

X1Ci(A) + 2CyA) + - + x,C(A) = 0
if and only if
X1Cy(A) + 1Cy@A) + - + x,CA) =0

This means that the maximum number of linearly independent columns of A is same
as that of A’. Thus, the column rank of A is same as that of A’. it

We shall describe an algorithm to transform a matrix in to a special form, called a
reduced row echelon form, of the matrix by using elementary row operations, and
from which a basis for the null space of the matrix, and also a basis of the row space
of the matrix can be easily obtained.

Definition 2.4.8 A m x n matrix A = [ay] is said to be a matrix in reduced row
(column) echelon form, or it is said to be a reduced row echelon matrix if the
following hold:

(i) The first nonzero entry in each row (column) is 1. This entry is called a pivot
entry, and the corresponding columns (rows) are called pivot column (row) of
the matrix. The columns (rows) which are not pivot columns (rows) are called
the free columns (rows). The unknown variable corresponding to pivot columns
are called pivot variables, and those corresponding to free columns are called
free Variables.
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(i) The pivot entry in any row (column) is towards right (bottom) side to the pivot
entry in the previous row (column).
(iii) All of the rest of the entries in a pivot column (row) are 0.
(iv) All the zero rows (columns) are towards bottom (right).

Example 2.4.9 The matrix
12002
00101
00012
00000

is in reduced row echelon form. The 1st row 1st column, the 2nd row 3rd column,
and the 3rd row 4th column entries are pivot entries, 2nd and 5th columns are free
columns. x|, x3 and x4 are pivot variables. x, and x5 are free variables.

Proposition 2.4.10 Let A be a m x n matrix with entries in a field F and which is in
reduced row echelon form. Suppose that the columns C;, (A), Ci,(A), . .., C; (A) with
i <ip<---<1i, are pivot columns and the columns C;j(A),C;
A),...,C (A withj| <j, <--- < s are free columns. Then,

(i) the first r rows Ri(A), Ry(A), ..., R.(A) are nonzero rows, and they form a
basis of the row space R(A) of A,
(ii) the number of pivots is the row rank of A,
(iii) the pivot columns form a basis of the column space of A,
(iv) row rank of A is the same as the column rank of A. Indeed, it is the number of
pivots.

Proof (i) Since each nonzero row contains a unique pivot entry, and the zero rows
are towards the bottom, it follows that R;(A), Rx(A), ..., R.(A) are precisely the
nonzero rows of the matrix. Since the pivot entries 1 in Ri(A), R2(A), ..., R, (A)
appear in different columns i, iy, . .., i,, it follows that the set {R;(A), R»(A), ...,
R,(A)} of nonzero row of A is linearly independent. As such, it forms a basis of the
row space R(A) of A.

(i1) Follows from (i).

(iii) Clearly, the set {C;, (A4), C;,(A), ..., C;,(A)} of pivot columns form a linearly
independent set, for the k;, row entry in the pivot column C;, (A) is 1 and the rest of
the entries in this column are 0. It is also evident that all the free columns are linear
linear combinations of the pivot columns. Indeed,

le(A) = (llj,Cil(A) + (lszC,‘Z(A) + -+ arj,C,‘,_(A).

(iv) Follows from (iii). it

Proposition 2.4.11 Consider the homogeneous system of linear equations given by
the matrix equation
AX = 0,
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where A is a reduced row echelon m x n matrix with entries in a field F. Sup-
pose that the columns C; (A), Ci,(A), ..., C; (A) with i} < iy <--- < i, are pivot
columns, and the columns Cj, (A), Cj,(A), ..., Cj (A) withj < j, < --- < jsarefree
columns. Then the pivot variables x;, , xi,, . . ., xi, in the homogeneous system of linear
equations are uniquely expressible in terms of free variables x;,, x;,, . . ., xj_as

K
‘xit = _: ,afjk'xjk'
k=1

The set {J, W, ..., w*} is a basis for the space N (A) of solutions of the homogeneous
system, where uk¥ = (u’,‘, u’ﬁ e, u],‘l) is the unique solution of the homogeneous

system corresponding to the choice x;, = 0, | # k, and x;, = 1 of the free variables.
Indeed, u]kl = 0forl # k, u]kk =1, and uf = —ayj,. The nullity n(A) = s, the number
of free variables.

Proof Under the assumption, for all t <r, a;, = 1and a; = 0 for [ #t. The
corresponding homogeneous system of linear equations is given by

an X, + @y, + ayx, + oo+ agx = 0.
@i Xi, + X, + ap X, + o0+ agx;, = 0.
ariyXiy + ay X, + apx, + -0+ asx; = 0.

the rest of the equations, if any, are the identities
Ox; + Oxp + --- + Ox, = 0.

Evidently, each pivot variable is uniquely expressible in terms of free variable as
described in the proposition. Further, the set S = {u!, u2,..., u’} of solutions is
a basis of the space N(A) of solutions, for any solution with values «y, as, ..., a;
to the free variables x; , x;,, ..., x; is uniquely expressible as linear combination

aju' + opu? + ---, auu’. The rest is evident. i

Proposition 2.4.12 Consider the system of linear equations given by the matrix
equation
-t

AX = b,

where A is a reduced row echelon m x n matrix with entries in a field F. Suppose that
the columns C;, (A), Ci,(A), ..., Ci,(A)withi; < iy < --- < i, are pivot columns and
the columns
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Ci,(A), Cj,(A), ..., Ci(A) with j1 <j, < -+ < Js are free columns. Then the sys-

tem of linear equations is consistent if and only if by = 0 for all k> r+1,
or equivalently, rank(A) = rank(A™). Further, then v = (vi, vy, ..., v,), where
v, = —a; + b, 1<t=<r, v, = landv;, = 0,2 <[<s, is a particular

solution of the above nonhomogeneous system. Finally, a general solution X of the
system of linear equation is given by

X =70+ cu' + cu® + - + ¢,
where c1, ca, ..., cs are arbitrary constants.

Proof From the previous proposition, a general solution of the homogeneous part of
the above nonhomogeneous system of linear equations is given by

cul + cu? + - + .

Further, the system of linear equations is given by

aiXip + ayX;, + @y, + oo+ ayx, = b
@i Xi, + @y Xj, + @y, Xj, + o0+ ayx;, = by
ariXiy + ayx, + agx, + --- + ajx; = b

The rest of the equations, if any, are the identities
Ox; +Oxp + --- 4+ Ox,, = by, k>r—+1.

Clearly, the system is inconsistent if by 7% O for any k > r 4 1. Now, suppose that

by = 0 for all k > r + 1. Putting the free variable x; = 1, and x;, = 0 for
2 < k < s, we geta particular solutionv = (vy, v2, ..., v,), wherev;, = —ay; +
b, 1 <t=<r,v;, = l,andv;, = 0,2 <[ < s of the system. From the Proposition

2.3.8, we get a general solution

X=70+ cu + cu® + - + i’
of the system, where cy, ¢, ..., ¢y are arbitrary constants. f

Example 2.4.13 Consider the system of linear equations given by the matrix equation

1

AX = b,
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where A is the matrix given by

10102
01101
00011
00000

The corresponding system of linear equations is given by
x1 + Oxp + x3 + Oxq4 + 2x5 = by.
Ox; + x2 + x3 + Oxq4 + x5 = by.
Ox; + Oxp + Ox3 + x4 + x5 = bs.
Ox; + Oxp + Oxz + Oxg + Oxs = by.

The matrix A is in reduced row echelon form with the pivot columns Ci, C, Cy4,
and the free columns C3 and Cs. The nonzero rows Ry, R, R; form a basis of row
space, and the pivot columns Cj, C;, C4 of A form a basis of the column space of
A. Row rank = 3 = Column rank of A. For the system to be consistent by = 0.
Assuming that by = 0, we find a general solution of the system. We first find a
basis of the solution space N(A) of the homogeneous part AX' = 0’ of the given
system of linear equations. x3 and xs are free variables. Puttingx; = 1andx; = 0,
we get a solution u! = (—1,—1,1,0,0) of the homogeneous part of the system.
Further putting x3 = Oand x5 = 1, we get a solution u? = (=2,-1,0,—1,1) of
the homogeneous part of the system. The set {u!, u?} is a basis of the space N (A) of
solutions of the homogeneous part. Nullity of A is 2. Finally, putting x3 = 1 and
x4 = 0, we get a particular solutionv = (—1 4 by, —1 + by, 1, b3, 0) of the given
nonhomogeneous system of linear equations. In turn, a general solution of the given
nonhomogeneous system of linear equations is 7 + cju! + cou?.

Observe that a square matrix in reduced row echelon form has no zero rows if
and only if all the rows, and so also all columns have pivots, or equivalently, it is the
identity matrix. Since a matrix with a zero row is singular, we have the following:

Proposition 2.4.14 A square matrix in reduced row echelon form is nonsingular if
and only if it is the identity matrix. it

Elementary operations on a system of linear equations, or equivalently, ele-
mentary row operations on the coefficient and augmented matrices, transform
the system into equivalent system of linear equations. Further, if the coefficient
matrix of the system of linear equations is in reduced row echelon form, then as
observed above, a general solution of the system is easily obtained. As such, it is
prompting to discover, if possible, an algorithm to reduce an arbitrary matrix
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in to a matrix in reduced row echelon form by using elementary row operations.
The following theorem gives an algorithm.

Theorem 2.4.15 Using elementary row operations, every matrix can be reduced to
a matrix in reduced row echelon form.

Proof Let A be am x n matrix. If A is the zero matrix, then it is already in reduced
row echelon form. Suppose that A is nonzero matrix. Let j; be the least number such
that the column Cj, (A) is a nonzero column. Further, let i; be the smallest number
such that g;;, # 0. Interchanging the i;th row and the first row, we may assume that
ajj, #0, and ag = O for all k < j;. Multiplying the first row by afjll, we may

assume thatay;, = 1,anday = Oforall k < j;. Next, adding —a;;, times the first
row to the ith row for each i > 2, we reduce A to a matrix [a;], where aj;, = 1,
aj, = Oforalli>2, and ag = O for all kK <j; — 1. If in this reduced matrix

a; = Oforalli > 2, then it is already in reduced row echelon form. If not, let j, be
the smallest number such that a;;, # 0 for some i > 2. Further, let i, be the smallest
number greater than 2 such that a;,;, # 0. Note that j, > j;. Interchanging the i;th
row and the second row, we may assume that ay;, # 0. Then multiplying the second
row by az_jzl, we may assume that ap;, = 1. In turn, adding —a;;, times the second
row to the ith row for each i # 2, A may have been reduced to a matrix in reduced
row echelon form. If not, proceed as before. This process reduces A in to reduced
row echelon form after finitely many steps (if worst comes, at the ny;, step). it

Corollary 2.4.16 Row rank of a matrix is the same as the column rank of the matrix.

Proof From the Proposition 2.4.6, and the Proposition 2.4.7, row rank and column
rank of a matrix are invariant under elementary row operations. From the Proposition
2.4.10(iv), row rank of a matrix in reduced row echelon form is same as its column
rank (equal to the number of pivots). Combining this with the Theorem 2.4.15, the
result follows. it

Definition 2.4.17 Row rank of a matrix A, or equivalently, the column rank of a
matrix is called the rank of the matrix. The rank of a matrix A is denoted by r(A).

Corollary 2.4.18 Let A be a m x n matrix. Then r(A) + n(A) = n.

Proof Since the rank and the nullity remain invariant under elementary row opera-
tions, using Theorem 2.4.15, it is sufficient to prove the result for matrices in reduced
row echelon form. For a matrix A in reduced row echelon form, r(A) is the number
of pivot columns and n(A) is the number of free columns. Clearly, a column is either
a pivot column or a free column. i

Example 2.4.19 Consider the system of linear equations
2x3 + 3x4 + 8x5 = 1.

2X1 + 4)(2 —I— X3 + 5X5 = O
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X1+ 2% + x3 + x4 + S5x5 = 2.
S5x; + 10xy + 6x3 + 6x4 + 28x5 = a.

The corresponding coefficient matrix A is

00238

24105
A=l12115 |

5106628

and the augmented matrix A™ is

002381
4 _ 241050

121152

5106628 a

We discuss the consistency of the above system of linear equations, and if consistent,
we determine a general solution. For the purpose, we reduce the coefficient matrix A,
and also the augmented matrix A" to reduced row echelon forms simultaneously by
using the algorithm described in the above theorem. The 1st column of A is nonzero,
and the smallest number i for which a;; # 0 is 2. Thus, interchanging the 1st and the
2nd rows of A, and of AT, A is transformed to

4
0
2

Dn— O

—_

A= WO
L 0 W

O\ = DN
[\°)
e}

0

and A7 is transformed to

N — O N
oSN O A
A\ =N =
AN~ WO
.}

R W o W
QD= O

Now, multiplying the 1st row by %, the matrices are transformed to

N = O =
N O N
AN = oW
AN = WO
L oo

—_
o
[\
o]

and to
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N —_= O =
—_

oo
AN — NwI—=
AN = WO
[\

OOUIOONIUI
S O~ O

Further, adding —1 times the 1st row to the 3rd row, and adding —5 times the Ist
row to the 4th row, the matrices are transformed to

12503
00238
ool12 |’
00%6ﬁ
2 2
and to
12030
002381
001132
00§6éa
2 2

Here, in this transformed matrix, a, = 0foralli > 2. Thus, the 2nd column is a free
column. We look at the 3rd column. The 2nd row 3rd column entry a3 = 2 # 0.
We divide the 2nd row by 2 to get the pivot entry 1in 2nd row 3rd column. The
matrices, thus, reduce to
12
00
00
003

A= = —
A\ =W O
e Y[V NN

|

and to
12

00
00

[STEN ST N ST
A\ =W O
[N YT NG
Q NwI=O

)
)

In turn, to make all other entries in this pivot column 0, we add —% times the 2nd
row to the 1st row, —% times the 2nd row to the 3rd row, and —% times the 2nd row
to the 4th row. The matrices reduce to

120-31
001% 4
0005 %’
000 3 3

and to
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31 1
120-335 —3
001% 4 %
000 4 % :

3 7

The 3rd row 4th column entry azs = }T # 0. We multiply the 3rd row by 4 to get
the pivot entry 1in 3rd row 4th column. Thus, the matrices further reduce to

1203
001
000

1
2
4
2 b
3
000 3 3

B0 =W

and to
120-3

4
001

000
000

EST

B0 =W
[SI[P I NS I NS TE
~ =

;
a—y

In turn, we add % times the 3rd row to the 1st row, —% times the 3rd row to the 2nd
row, and the _73 times the 3rd row to the 4th row to make the rest of the entries in
this pivot column 0. The coefficient matrix A reduces to the following matrix

12002
00101
00012
00000

which is in reduced row echelon form, and the augmented matrix A" gets transformed
to

12002 5
00101 —10
00012 7
00000a—-7

Thus, the given system of linear equations is equivalent to a system of linear equations

whose coefficient matrix is
12002

00101
00012}’
00000

and the augmented matrix is
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12002 5
00101 —10
0oo12 7
00000a—-7

In turn, using the discussions and the results above, we have the following: (i) A
basis of the row space of A is {(1, 2, 0, 0, 2), (0,0, 1,0, 1), (0,0, 0, 1, 2)}. The rank
r(A) = 3.

(ii) Putting the free variable x, = 1, and the free variable xs = 0, we get a
solution (—2, 1,0, 0, 0) of the homogeneous part of the system. Further, putting
the free variable x, = 0, and the free variable x5 = 1, we get another solution
(—=2,0, —1, =2, 1) of the homogeneous part of the system. The set {(—2, 1, 0, 0, 0),
(—=2,0, —1, =2, 1)} is a basis of the solution space N(A) of the homogeneous part.
A general solution of the homogeneous part of the system is

Cl(_zv 1a Ov 01 0) + C2(_21 07 _19 _23 1)1

where ¢y, ¢, are arbitrary constants.

(iii) The nonhomogeneous system is consistentif and only if 3 = r(A) = r(A"), or
equivalently,a = 7.Then, giving the valuex, = 1,andxs = 0 ofthe free variables,
in the nonhomogeneous system, we get a particular solution (3, 1, —10, 7, 0). Thus,
a general solution of the nonhomogeneous part is

(37 17 _107 75 O) + Cl(_za 15 07 07 O) + C2(_25 0’ _17 _27 1)’

where ¢y, ¢; are arbitrary constants.

Definition 2.4.20 A square matrix E obtained by applying elementary row opera-
tions on identity matrix is called an elementary matrix.

Example 2.4.21 The matrix
1000
0100
0030
0001

is an elementary matrix which is obtained by multiplying the 3rd row of the identity
matrix I, by 3. The matrix

0010

0100

1000

0001

is an elementary matrix which is obtained by interchanging the 1st row and the 3rd
row of the identity matrix /4. Again, the matrix
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1030
0100
0010
0001

is also an elementary matrix which is obtained by adding 3 times the 3rd row of the
identity matrix I4 to its Ist row.

7;; denotes the elementary matrix which is obtained by interchanging the iy, row
and the j,, row of identity matrix. Thus,

0010
0100
1000
0001

= T13.

The elementary matrix which is obtained by adding the A times the j;, row of the
identity matrix to its i, row is denoted by El? Indeed, Elj is the matrix all of whose
diagonal entries are 1, the i;, row j,, column entry is A, and the rest of entries are 0.
Thus,
1030
0100
0010
0001

_ 3
- E13

The matrices E 3 are called the transvections.

It can be easily observed that the effect of multiplying an elementary matrix E
from left (right) to a matrix A is applying the elementary row (column) operation
on A which was used to get the matrix £ from the identity matrix. Thus, 7;A is the
matrix obtained by interchanging iy, row and j; row of A, and EZ?A is the matrix
obtained by adding A times the j; row of A to its iy, row. It is straightforward, in
particular, to verify the following relations, called the Steinberg relations, among
the transvections in M,,(F).

(i) El? El’; = E;V”, i #j. In particular, El? El/_’\ = ES = [,. Thus, El’]\ is

invertible, and its inverse is El; A,
(i) Fori #1,j #k, E’\ and E;; commute.
A\EHE /\ —h A

(iii) Fori # 1, (EIJE/l E ) = Ej".

(iv) Forj #k, (E’\EZE;AE "y = Ejk’“\.
Proposition 2.4.22 Let A be am x nmatrix. Then, we can find a nonsingularm x m
matrix P such that PA is a matrix in reduced row echelon form. In particular, a square
matrix A is nonsingular if and only if its reduced row echelon form PA is the identity
matrix.
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Proof Applying an elementary row operation on A is equivalent to multiply A from
left by an elementary matrix. Since every matrix can be reduced to a matrix in
reduced row echelon form (Theorem 2.4.15), multiplying A successively by ele-
mentary matrices from left we arrive at matrix in reduced row echelon form. Since
elementary matrices are nonsingular, and product of nonsingular matrices are nonsin-
gular, we get a nonsingular matrix P such that PA is a matrix in reduced row echelon
form. Since P is nonsingular, A is nonsingular if and only if PA is nonsingular. From
the Proposition 2.4.14, A is nonsingular if and only if PA is the identity matrix.

The above discussion and the results give an algorithm to determine a nonsingular
matrix P such that PA is a reduced row echelon matrix. In particular, it gives an
algorithm to check if a square matrix A is invertible, and if so, to find the inverse of
A. We further illustrate the algorithm by means of examples.

Example 2.4.23 Consider the matrix

003 12
01200
021-11
011-10

Using the elementary row operations, we transform the matrix A in to a matrix in
reduced row echelon form, and simultaneously find a nonsingular matrix P such that
PA is a matrix in reduced row echelon form. We start with the pair

1000 003 1 2
0100 012 0 0
L="10010]"4=|021-11
0001 o11-L1o

3

There is no nonzero entry in the first column of A, and so no pivot will appear in the
first column. We leave and move to the second column. The first nonzero entry in
the second column of A is 1, and it is in the second row. We interchange the first row
R, and the second row R, in the pair of matrices. The pair, thus, gets transformed to
the pair (E;, A;) given by

0100 012 00
1000 003 1 2
Ev=1o010]" 4= 021-11
0001 011-40

3

(note that EYyA = Aj). The entry 1 in the first row and second column of A; is the
pivot entry. To make the rest of the entries in this pivot column 0, we replace R3 by
R3; — 2Ry, and then R4 by Ry — R;. In turn, the pair (£, A) gets transformed to the
pair (E,, Ay) given by
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0100 012 00
1000 003 12
E=1o0210|"%= |00-3-11
0-101 00-1-30

(Again note that E,A; = E>E|A = Aj;). The second row third column entry is 3
which is nonzero. We replace R, by % to make it a pivot entry 1, and in turn, we
replace R; by Ry — 2R, R; by R + 3R2, and R4 by R4 + R, to make all the rest of
the entries in this pivot column 0. Thus, the pair (E,, A;) is transformed to the pair
(E5, A3) given by

—2100 010-2%—3%
000 001 1 2

_ 3 — 3 3
E=11 210" 1]0000 3
1 -101 000 0 3

(Again, note that E3A, = Aj3). Since the 3rd row 4th column, and 4th row 4th column
entries are 0, there is no pivot in the 4th column, it is a free column. We go to the 5th
column. The 3rd row 5th column entry is 3 which is nonzero. We replace R3 by %R3 to
make the 3rd row 5th column entry a pivot entry 1, and then replace R; by R; + §R3,
Ry by Ry — 2R3, and Ry by Ry — 3R3. Thus, the pair (E3, A3) is transformed to the
pair (E4, A4) given by

2 1 4 2
FE T
— | 9 9 7d _ 3
Es %_ggo A 0000 1]
5 2
I3 -2 000 0 0

where A4 is in reduced row echelon form, and P = E, is an invertible matrix such
that PA = A4 is in reduced row echelon form.

Example 2.4.24 Consider the matrix A given by

013
102
021
111

We apply the following elementary row operations in succession.

(i) Interchange R; and R»,

(ii) replace R4 by R4 — R;, R3by R; — 2Ry and R4 by Ry — Ry,

(iii) replace R3 by —%R3, RibyR; — 2R3,R, by R, — 2R3 and Ry by Ry + 3Rs.
on A, and also on /4. Then, A reduces to the reduced row echelon form
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and I, reduces to

Thus, PA is in the row echelon form given above.

Example 2.4.25 Consider the 3 x 3 matrix A given by

111
A=1123
149

If we use the method of the above example, then A reduces to the identity matrix /3,
and /5 reduces to

Thus, A is invertible, and PA = I5. Hence P is the inverse of A.

2.5 LU Factorization

If the coefficient matrix of a system of linear equations is upper triangular square
matrix U with nonzero diagonal entries, then the solution is easily obtained by
inspection. For example, if a system of linear equations is given by the matrix equation
Ux = Er, where
111
U=1023{,
009

and b = (by, by, b3), then, evidently, the solution is (18b; — 2 + % 32=bs bs)
Similarly, itis also easy to solve a system of linear equations whose coefficient matrix
is lower triangular square matrix with nonzero diagonal entries. Further, suppose the
coefficient matrix A is invertible, and it is expressed asA = LU, where L is a lower
triangular matrix, and Uis an upper triangular matrix. Then, we first find the solution
vof Uy = Et, and then the solution z of Ux" = v'. Clearly, u is the solution of
AY = b,
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The above discussion prompts us to look at the problem of factorizing an invertible
matrix A as a product LU of a lower triangular matrix L and an upper triangular
matrix U. This, in general, is not possible.

Example 2.5.1 Suppose that

01| a0 u v
[10} - |:bc:|'|:0wi|'
Then au = 0, av = 1, bu = 1. This, however, is impossible. This shows that
the invertible matrix
01
Vo]

cannot be expressed as product of a lower triangular and an upper triangular matrix.

Observe that the matrix
111

003
029

is also not expressible as product of a lower triangular and an upper triangular matrix.

The reason behind the impossibility of expressing the above matrices as product
of lower and upper triangular matrices is while reducing these matrices in to reduced
row echelon forms, we are forced either to interchange rows, or to add a nonzero
multiple of a ky, row to I, row for some k > [. Equivalently, we need to multiply
from left by a corresponding elementary matrix 7, or by a corresponding matrix
E,?, Obviously, these matrices are not lower triangular matrices. Indeed, if, while
reducing A in to reduced row echelon form, elementary row operations of the above
type are not needed, then we can find a lower triangular matrix P with diagonal
entries 1 so that PA is upper triangular. In turn, A = LU, where L = P~'. We
illustrate it by means of examples.

Example 2.5.2 Consider the matrix A given by

111
A=|123],
149

and the system of linear equations given by the matrix equation
AX = [1,2,3].
Adding —1 times the 1st row of A to the 2nd row, and then adding —1 times the 1st

row to the 3rd row, or equivalently, multiplying the matrix £ 1_31E 1_21 to A from left,
we obtain that
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111
EFELNA = {012
0338

Again, adding —3 times the 2,,; row of the above matrix to its 3,; row, or equivalently,
multiplying E,; to E;3'E;}'A from left, we obtain that E;; E;3'E;'A is the upper
triangular matrix U given by
111
U=1]012
002

Thus,A = LU, where L = E},E},E3, is the lower triangular matrix given by

100
L=|[110
131

Now, to find solution of AX = [1, 2, 3], we first find the solution of Ly’ = [1, 2, 3]'.

Equating the corresponding entries of both sides, y; = 1,y; +y» = 2, and y; +

3y, +y3 = 3.This gives the solution [1, 1, —1] of Ly" = [1, 2, 3]'. Finally, we find

the solution of Ux" = [1, 1, —1]’ to get the solution of the original equation AX' =

[1, 2, 3]". Equating the entries of both sides in the equation UX' = [1, 1, —1]’, we get

that 2x3 = —1,x + 2x3 = 1, and x; +x, +x3 = 1. Evidently, x3 = %l,xz =
1

2, and x; = -

2.6 Equivalence of Matrices, Normal Form

Definition 2.6.1 Two m x n matrices A and B with entries in a field F are said to
be equivalent if there exists a nonsingular m x m matrix P, and a nonsingular n x n
matrix Q such that A = PBQ.

Clearly, the relation of being equivalent to is an equivalence relation on M, (F).
We determine a unique representative of each equivalence class of equivalent matri-
ces.

Definition 2.6.2 A m x n matrix A is said to be in normal form if there is r <

min(m, n) such that
Ir Or n—r
A= |:Omr r Omfr nri| ’

where O,, , denote the zero m x n matrix.

Theorem 2.6.3 Everym X nmatrix is equivalent to a unique matrix in normal form.
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Proof Applying an elementary row operation on a matrix A is equivalent to multiply
A from left by an elementary matrix, and applying an elementary column operation is
equivalent to multiply matrix A from right by an elementary matrix. Since all elemen-
tary matrices are nonsingular, and product of nonsingular matrices are nonsingular,
it is sufficient to show that every matrix can be reduced to a matrix in normal form
with the help of elementary row, and elementary column operations. The proof of
this fact is by the induction on max(m, n), where m is the number of rows and n the
number of columns. If max(m,n) = 1,thenm = 1 = n,andA = [a;;]is1 x 1
matrix. f A = [0], then it is already in normal form. If a;; # 0, then multiplying
the row by a;;', we reduce it to the normal form [1]. Assume that the result is true
for all r x s matrices with max(r,s) < max(m,n). LetA = [a;] be am x n times
matrix. fA = O,, ,, then it is already in normal form, and there is nothing to do.
Suppose that A # O,, ,. Suppose that a; # 0. Interchanging 15, row and kth row,
and then interchanging 1,, column and the /th column, we may suppose that a;; # 0,
and then multiplying the 1, row by al]l, we may further suppose thata;; = 1. After
this we add —a;; times the first column to the jth column, and then —a;; times the
first row to the ith row for all i # 1 # j. This reduces the matrix A into the form

11 01 n—1
0,,,71 1 B ’

where Bis m — 1 x n — 1 matrix. This also gives us a nonsingular m x m matrix C,
and a n x n nonsingular matrix D such that

_ 11 01 n—1
cAD = [om“ ; ]

By the induction hypothesis there is a m — 1 x m — 1 nonsingular matrix C’, and
there is a nonsingular n — 1 x n — 1 matrix D’ such that

e =0 o]
Take - 0
¢ = _Omil 1 lCn'_l ] ’
and - o

Then C” and D" are nonsingular. In fact,

1 O -
C// -1 — 1 1 n—1
) [om_l (€
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(Use block multiplication to show this). Again, using block multiplication, we find
that

c.| h Orn-1 | pyr _ L Oipar | _ I, Opuy
0,,,71 1 B N Omfl 1 C'BD' N Omfr r Omfr n—r

Take P = C-C”,and Q = D - D". Then P is nonsingular m x m matrix, and Q a
nonsingular n x n matrix such that

PAQ — |:01r Orn—r :|

m-—rr Omfr n—r

Ir Or n—r
Om—r r Om—r n—r
Is Os n—s
Om—s s Om—s n—s

if and only if r = s, for one can be obtained from the other using elementary opera-
tions if and only if r = s. i

is in normal form. Finally,

is equivalent to

Corollary 2.6.4 There are min(m, n) + 1 equivalence classes of equivalent matri-
ces in M, (F).

Proof There are min(m, n) + 1 matrices in M,,,,(F)) which are in normal form. f

Corollary 2.6.5 Two matrices A and B are equivalent if and only if they have same
rank.

Proof Since under elementary operations rank of the matrices do not change and

rank of the matrix
Ir Or n—r
Omfr r Omfr n—r

is r, the result follows. it

Corollary 2.6.6 All nonsingular matrices in M,,(F) are equivalent to I,,. The group
GL(n, F) is a single complete equivalence class of equivalent matrices. it

Proof Let A be a n x n matrix which is nonsingular. Then there are nonsingular
matrices P and Q such that PAQ is in normal form. Clearly, then PAQ is also nonsin-
gular. The result follows if we observe that a matrix in normal form is nonsingular
if and only if it is the identity matrix. i

Corollary 2.6.7 The group GL(n, F) is generated by elementary matrices. Indeed,
every element of GL(n, F) is product of elementary matrices.
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Proof All elementary matrices are nonsingular, and so they belong to GL(n, F).
Further, given any matrix A € GL(n, F), there are nonsingular matrices P and Q
which are product of elementary matrices such that PAQ = I,. But, then A =
P~'Q~!. Since inverse of an elementary matrix is an elementary matrix, P~' and
Q! are product of elementary matrices. This shows that A is product of elementary
matrices. it

Remark 2.6.8 The matrices {Eg | i #j, A € F*} do not generate GL(n, F)
(verify).

Remark 2.6.9 The proof of the Theorem 2.6.3 gives us a method by which

(i) we can reduce a matrix A into normal form,
(i1) we can find nonsingular matrices P and Q such that PAQ is in normal form, and
(iii) we can determine whether A is nonsingular, and then we can find its inverse
also.

Following two examples illustrates the algorithm.

Example 2.6.10 Let A be a m x n matrix. To find nonsingular matrices P and Q
such that PAQ is in normal form, we proceed as follows: We start with a row with
three columns. The first column 7, the second A, and the third column /,,. Then
we try to reduce the matrix A in to normal form by successive elementary row and
elementary column operations. Whenever we perform a row operation on A, apply
the same operation to the matrix in the first column, and keep the matrix in the third
column as it is, and if we perform a column operation on A, then we perform the
same operation on the matrix in the third column, and keep the matrix in the first
column as it is. Then as the matrix A reduces to a matrix in normal form, the matrix in
the first column reduces to the required matrix P, and the matrix in the third column
reduces to the required matrix Q. Consider, for example, the matrix

111
201
110
012

Let R; denote the ith row, and C; denote the jth column. We start with a row

1000 111

0100 201 (1)(1)8
0010 110 001

0001 012

Replacing R, by R, — 2Ry, and R3 by R3 — R;, we transform the above row to the
row
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10007
2100
~1010

0001
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11 1 100
0-2-1

010
00 -1 001
01 2

Next, replacing C; by C; — Cj, and C3 by C3 — Cj, we get the transformed row

as _
1 000

-2100
—-1010

10 0
0-2-1
00 -1

| 0001

(01 2

Interchanging R, and R4, and then replacing R4 by Ry + 2R,, it reduces to

1 000
0001
—-1010
—-2102

100
01 2
00 -1
00 3

-1 -1
1 0
0 1

Replacing C3 by C3 — 2C,, we transform it to

1 000
0001
—-1010
-2102

100
010
00 -1
00 3

-1 1
-2
1

S O =
S =

Finally, replacing R3 by —R3, and then R4 by R4 — 3R3, we transform it to

Thus, A reduces to the normal form

I;
013

o]

Further, the required nonsingular matrices P and Q are given by

o o
N O = O

1
0
1

—_ o O O
—

w |

-5
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and
1-11
0=1]01 =2
00 1

2.7 Congruent Reduction of Symmetric Matrices

Definition 2.7.1 A square matrix A is said to be congruent to a matrix B if there is
an invertible matrix P such that PAP' = B.

Observe that if A is symmetric, then PAP' is also symmetric.

Theorem 2.7.2 Every symmetric matrix A with entries in a field F of characteristic
different from 2 is congruent to a diagonal matrix.

Proof The proof is algorithmic. Let us recall that applying an elementary row oper-
ation on A is equivalent to multiply from left the corresponding elementary matrix
E, and applying the same type of elementary column operation on A is equivalent to
multiply the matrix A from right by the elementary matrix E (note that if we apply an
elementary row operation on the identity matrix and take its transpose, then it is the
same as apply the same elementary column operation on the identity matrix). Thus,
it is sufficient to show that a symmetric matrix with entries in a field F' of character-
istic different from 2 can be reduced to a diagonal matrix by applying successively
elementary row followed by the same type of elementary column operations. Let A
be a symmetric matrix with entries in F, where characteristic of F' if different from
2.If A = 0, then there is nothing to do. Suppose that A # 0. We may suppose that
ayy # 0, for if not, suppose that a; = a;; # 0, then adding the ith row to the first
row, and then adding the ith column to the first column the first row first column entry
becomes 2a;; # 0 (note that the characteristic ' # 2). Then, for each i # 1, adding
—ailal_ll times the first row to the ith row, and —ailal_ll times the first column to the
ith column, we reduce the matrix to a symmetric matrix matrix in which all entries in
the first row (and so also in the first column) except a;; is 0. Now, if a;; = 0 for all
i,j > 2, we have reduced it to a diagonal matrix. If not, using the previous argument,
we may take axy # 0, and then for i # 2 reduce all the entries ap = ap = 0.
Proceeding inductively we reduce the matrix A to a diagonal matrix. it

Taking Q = P!, we get the following corollary.

Corollary 2.7.3 Every symmetric matrix A with entries in a field of characteristic
different from 2 can be decomposed as A = QDQ', where Q is an invertible matrix,
and D is a diagonal matrix. it

Remark 2.7.4 The theorem does not hold over a field of characteristic 2. Consider

the matrix
01
10]°
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ab 01 ac| |pO

cd LO| [bd|  |0gq|"
Equating the corresponding entries p = ba +ab, ¢ = dc+cd, da+cb = 0 =
bc + ad. Since the field is of the characteristic 2, p = 0 = g. In turn,

o] (Vo] [34] = [50)
<]

We illustrate the algorithm of congruent reduction by means of an example.

Suppose that

But, then

is singular.

Example 2.7.5 Let A be a symmetric n X n matrix. To find a nonsingular matrix P
such that P'AP is a diagonal matrix, we proceed as follows: We start with a row
with 3 columns, the first column /,,, the second column A, and the third column /,.
We reduce the matrix A in to a diagonal form by successive elementary row and
corresponding elementary column operations as described in the above theorem.
Whenever we apply an elementary row operation on A, we apply the same operation
on the matrix in the first column, and keep the matrix in third column as it is, and
whenever we apply elementary column operation we apply the same operation on
the matrix in the third column, and keep the first column as it is. In this process as
soon as A reduces to a diagonal matrix, the first column reduces to P, and the third
column, then will be P'. Further, PAP' is a diagonal matrix. Consider, for example,
the matrix

012
A= |[101
210

and the triple
[AL]

If we apply the following elementary operations
1.R, — Ry + R»,

2. C1 —> C1 + Cz,

3.R, — Ry — iRy,

4. C2 —> C2 — %C],

5.R3 —> Ry — 3Ry,

6.C; — C3 —3Cy,
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7. R3 — R3 — Rz,
8. C3 i C3 — C2,
successively, on the triple
(LAL),

then the triple of matrices reduce to the triple

1

I= —

0
0
2 —1

—_ ol
XS

Thus, A is congruent to diag(2, —%, —4), and P is the matrix

1 1 -0
1 1

-3 3 0
121

Further, take L = P~'and D = diag(2, —%, —4),thenA = LDL'. Note that L is
not a lower triangular matrix. However, if we consider the matrix

112
A=|[101
210

with the triple
(KAL)

of matrices and apply the following elementary operations on each member of the
triple to reduce A to a diagonal matrix.

1.R2 —> R2 —R1 andR3 —> R3 — 2R1,

2. C2 —> C2 - C1 andC3 —> C3 — 2C1,

3. R3 — R3 — Rz,

4. C3 — C3 — Cz.
Then the triple of matrices reduce to the triple

1 00 10 0 1 -1-1
-1 10 0-10 01 —1
—-1-11 00 -3 00 1

Thus, A is congruent to diag(1, —1, —3) and P is the matrix

1 0 -0
—-11 0
—1-11
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Further, take L = P 'and D = diag(2, —%, —4),then A = LDL'. Note that in
this case P and L are lower triangular matrices.

Example 2.7.6 Consider the symmetric matrix

3 1
A = 0
—1

S = O

0
3

with the triple
(KAL)

of matrices and apply the following elementary operations on each member of the
triple to reduce A to a diagonal matrix.

1.R3 —> R3 + %Rl and

2. C3 — C3 + %C[
Then the triple of matrices reduce to the triple

100730071014
010|({010|]010
10100 ]]o01

Here again, P is a lower triangular matrix and the diagonal matrix D has all diagonal
entries positive. As such, if we take L = P~'+/D, where VD = Diag(+/3,1, \/g,

then A = LL'. Later we shall describe those symmetric matrices which can be
expressed as LL', where L is a lower triangular matrix.

Exercises

2.7.1 Give two bases of the vector space Mnm(F) of n x m matrices with entries in
a field F over the field F.

2.7.2 Find a basis, and so also the dimension of the vector space S, (F) of n x n
symmetric matrices with entries in a field F.

2.7.3 Let F be a field of characteristic different from 2. Find a basis, and so also
the dimension of the vector space SS, (F) of n x n skew symmetric matrices with
entries in a field F. Do the same for fields of characteristic 2. Are they same?

2.7.4 LetAbean x mmatrix. Consider the subset W = {B e M,,, | AB = 0,,}
of M,,,. Show that W is a subspace of M,,,. Further, show that the dimension of W
is pn(A), where n(A) denotes the nullity of A.

2.7.5 Show that every square matrix A with entries in a field F' of characteristic
different from 2 is uniquely expressible as sum of a symmetric matrix, and a skew
symmetric matrix. Deduce that vector space M,,(F) is direct S,,(F) & SS,,(F).

. _ AA A=A
Hint. A = - + =5
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2.7.6 Find a basis, and so also the dimension of the vector space UT,, (F) of upper
triangular matrices over F.

2.7.7 The sum of the diagonal entries of a square matrix A is called the Trace of
A, and it is denoted by Tr(A). Let si(n, F) denote the set of n x n matrices with
trace 0. Show that sl(n, F') is a vector space with respect the addition of matrices and
multiplication by scalars. Find a basis of sl(n, F)), and so also its dimension.

2.7.8 Let A and B be square n x n matrices. Show that 7r(AB — BA) = 0. Deduce
that AB — BA is never identity matrix. Show by means of an example that it may be
a nonsingular diagonal matrix.

2.7.9 Show by means of an example that AA” need not be same as A’A.

2.7.10 Consider the co-diagonal n x nmatrix I', = [a;], wherea; = 1ifi+j =
n+1,and a; = 0, otherwise. Show that I', is symmetric and 1",% = [,. What is
the matrix I',AT,.

2.7.11 Describe all 2 x 2 matrices A such that A2 = 0,.
2.7.12 LetA be astrictly upper (lower) triangular n x n matrix. Show that A" = 0,.

2.7.13 Let A be asquare n X n matrix which is nilpotent in the sense that A" = 0,
for some m. Show that I, + A is invertible. Show that

I” + A + A2 + V. + Am—l

is the inverse of A. Is the converse of this statement true? Support.

2.714 Let A = [a;] be a square n x n matrix which commutes with ej. Show
that aj; = 0 = asi, and a;; = ap. Show that a matrix commutes with all e;; if
and only if it is a scalar matrix. Show also that the matrices which commute with all
transvections are precisely scalar matrices. Deduce that the center Z(GL(n, F)) is
precisely {al,, | a € F*}.

2.7.15 Find a basis, and so also the dimension of the subspaces of R* generated by

the following subsets:

1 {(1,0,2,1),(2,1,3,2),(7,4,9,5), (1,5,6, 1)},

i) {(1,1,1,1),(1,0,2,3),(1,0,4,9), (1,0, 8,27)}.

2.7.16 Reduce the following matrices in to reduced row echelon form. Find the
bases of their row spaces, column spaces, and Null spaces. Find their rank, and the
nullities. Further, for each of the matrices A, find an invertible matrix P such that PA
is a reduced row echelon form of A.
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003-3-3 1111 123 4
243 3 1 0123 24 711
243 3 3 |’ 1 0-10{(" 1371425
1221 2 5132 4112550

123 4

56 78

9 1011 12

1314 15 16

2.7.17 Check if the following systems of linear equations are consistent, and if so
find their general solutions.

1.
X1 + 3x + 4x3 = 1.

2x1 — xp + x3 = 2.
4x; + x2 — x3 = 0.
8x1 — 3x + x3 = 3.

X1 + 2% + x3 + 2x4 + x5 = 2.
2x1 + 4xy + 3x3 + 3x4 + x5 = 8.
2x1 + 4xy + 4x3 + 2x4 + 2x5 = 8.
X1 + 2% 4+ 2x3 + x4 + 2x5 = 2.

dx; — 15x; — 2x3 — 32x4 = —40.
X1 — 2)62 — 3)64 = —4.
—3x; + 16x; + 3x3 + 38x4 = 46.
X1 — 6XQ — X3 — 14X4 = —17.

2.7.18 Find the value of a, if possible, for which the following system of linear
equations is consistent.

4x; — 15x — 2x3 — 32x4 = —40.

X1 — 2)62 — 3)64 = —4.
—3x; + 16x; + 3x3 + 38x4 = 46.
xp — 6x, — x3 — ldxy = a.

2.7.19 Check if the matrices in exercise 16 have LU decompositions and if so find
their LU decompositions.

2.7.20 Express each of the following symmetric matrices as PDP’, where P is a
nonsingular matrix, and D a diagonal matrix. Which of the matrices are expressible
as LDL', where L is a lower triangular matrix. Also express them, if possible, as LL',
where L is a lower triangular matrix.
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101 bt 012
1123

ort |, 1213 | 101

113 1132 210
123 4
267 8
371112
481216

2.7.21 Find the maximum number of arithmetic operations needed toreducea3 x 3
matrix into reduced row echelon form. Generalize it to n X n matrices.

2.7.22 Write a program in C-Language to check if a system of linear equations is
consistent, and if so to find a general solution.

2.7.23 Write a program in C-Language to check if a matrix A admits LU decom-
position, and if so to find it.

2.7.24 Write a program in C-Language to check if a symmetric matrix A admits LL'
decomposition, and if so to find it.
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