
Chapter 2
Matrices and Linear Equations

Matrices play a pivotal role in mathematics, and in turn, in all branches of science,
social science, and engineering. This chapter is devoted to the interplay between
matrices and systems of linear equations.

2.1 Matrices and Their Algebra

By definition, a m × n matrix A with entries in a field F is an arrangement

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·
· · · · · ·

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦

of m rows and n columns of elements of F. In short A is denoted by [aij], where aij
is the entry in the ith row and jth column of A. The ith row

(ai1, ai2, . . . , ain)

of the matrix A is a vector in Fn, called the ith row vector of A, and it will be denoted
by Ri(A). Thus, the matrix A can also be expressed as a column
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32 2 Matrices and Linear Equations

⎡
⎢⎢⎢⎢⎢⎢⎣

R1(A)

R2(A)

·
·
·

Rm(A)

⎤
⎥⎥⎥⎥⎥⎥⎦

of m rows with entries in Fn.
Similarly, if we treat the members of Fm as column vectors, then the jth column

⎡
⎢⎢⎢⎢⎢⎢⎣

a1j
a2j
·
·
·
amj

⎤
⎥⎥⎥⎥⎥⎥⎦

of the matrix A is a column vector in Fm, called the jth column vector of A, and it
will be denoted by Cj(A). As such, the matrix A can also be expressed as a row

A = [C1(A), C2(A), . . . , Cm(A)].

Thus,

A =

⎡
⎢⎢⎣
2 0 1 + i 1 − i 3
4 1 + 2i 0 1 i
0 8 1 2 i
1 2 3 4 5

⎤
⎥⎥⎦

is a 4 × 5 matrix with entries in the field C of complex numbers.
A matrix A is called a square matrix if the number of rows and columns are same.

The matrix

A =
⎡
⎣
2 0 1
4 1 0
0 8 1

⎤
⎦

is a square 3 × 3 matrix with entries in the field R of real numbers.
The set of all m × n matrices with entries in a field F is denoted byMmn(F). The set
of all square n × n matrices is denoted by Mn(F). We have a binary operation + on
Mmn(F), called the matrix addition, and which is defined by

[aij] + [bij] = [cij],

where cij = aij + bij.
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For example, ⎡
⎣
2 0 1
4 1 0
0 8 1

⎤
⎦ +

⎡
⎣
0 1 2
3 1 0
5 8 1

⎤
⎦ =

⎡
⎣
2 1 3
7 2 0
5 16 2

⎤
⎦

The m × n matrix 0m×n all of whose entries are 0 is called the zero m × n matrix.
Clearly, the matrix 0m×n is described by the property that for any m × n matrix
A, A + 0m×n = A = 0m×n + A. Further, if A = [aij] is a m × n matrix, then
the matrix −A = [−aij] all of whose entries are the negatives of the corresponding
entries of A is called the negative of A, and it is described by the property that
A + (−A) = 0m×n = (−A) + A. The proof of the following proposition is an
immediate consequence of the corresponding properties of the addition + in F.

Proposition 2.1.1 The set Mmn(F) of m × n matrices with entries in F is an abelian
group with respect to the matrix addition in the sense that it satisfies the following
properties:
(i) The matrix addition + is associative in the sense that
(A + B) + C = A + (B + C)

for all A, B and C in Mmn(F).
(ii) The matrix addition + is commutative in the sense that
(A + B) = (B + A)

for all A, B in Mmn(F).
(iii) There is a uniquematrix0m×n inMmn(F) such that A + 0m×n = A = 0m×n + A
for all A in Mmn(F).
(iv) For each matrix A in Mmn(F), there is a unique matrix −A in Mmn(F) such that
A + (−A) = 0mn = (−A) + A. �

We have an external multiplication · on Mmn(F) by scalars in F defined by a ·
[aij] = [bij], where bij = a · aij. Thus, for example,

2 ·
⎡
⎣
2 0 1
4 1 0
0 8 1

⎤
⎦ =

⎡
⎣
4 0 2
8 2 0
0 16 2

⎤
⎦

It can be further observed that the triple (Mmn(F), +, ·) is a vector space over F.
Indeed, (Mmn(F), +, ·) can be identified with the triple (Fmn, +, ·) under the corre-
spondence A ←→ (R1(A), R2(A), . . . , Rm(A)) which respects all the operations.
Let eij denote the matrix in which ith row jth column entry is 1 and the rest of the
entries are 0. For example, the 3 × 3 matrix e23 is given by

e23 =
⎡
⎣
0 0 0
0 0 1
0 0 0

⎤
⎦ .

It follows that the set {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} corresponds to the standard basis
of Fmn under the above correspondence. Clearly,
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[aij] = �i,jaijeij,

and
�i,jaijeij = 0mn

if and only if aij = 0 for all i, j. Thus, {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis, called
the standard basis, of the vector space Mmn(F). Thus, the dimension of Mmn(F) is
m · n. In particular, Mn(F) is of dimension n2.

Apart from the above operations, we have an external operation · fromMmn(F) ×
Mnp(F) to Mmp(F), called the matrix multiplication, defined as follows: Let A =
[aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n, and B = [bjk], 1 ≤ j ≤ n, 1 ≤ k ≤ p. Then A · B =
[cik], where cik = �jaijbjk . Thus, for example,

⎡
⎣
2 0 1
4 1 0
0 8 1

⎤
⎦ ·

⎡
⎣
0 1 2
3 1 0
5 8 1

⎤
⎦ =

⎡
⎣

5 10 5
3 5 8
29 16 1

⎤
⎦

It can be observed easily that the matrix multiplication is distributive over addition
from left as well as from right in the sense that (A + B) · C = A · C + B · C
and A · (B + C) = A · B + A · C. Evidently, A · 0n×p = 0m×p, and 0p×m · A =
0p×n. Again, since �k(�jaijbjk)ckl = �jaij(�kbjkckl), it follows that the matrix
multiplication is associative in the sense that (A · B) · C = A · (B · C) whenever the
products are defined. In particular, we have a multiplication · in Mn(F). Note that
matrix multiplication is not commutative, for example,

[
0 1
0 0

]
·

[
0 0
1 0

]
=

[
1 0
0 0

]
,

where as [
0 0
1 0

]
·

[
0 1
0 0

]
=

[
0 0
0 1

]

Thus, the set Mn(F) of n × n matrices with entries in F together with matrix
addition+, the multiplication by scalars, and the matrix multiplication · is an algebra
in the sense of the following definition.

Definition 2.1.2 A vector space V over a field F together with an internal multipli-
cation · on V is called an algebra over F if the following conditions hold:

1. The internal multiplication · is associative, i.e., (x · y) · z = x · (y · z) for all
x, y, z ∈ V .

2. · distributes over addition +, i.e., (x + y) · z = x · z + y · z, and also x · (y +
z) = x · y + x · z for all x, y, z ∈ V .

3. α(x · y) = (αx) · y = x · (αy) for all α ∈ F, and x, y ∈ V .

Let A be a n × mmatrix. Them × nmatrix At obtained by interchanging rows and
columns of A is called the transpose of A. More precisely, if A = [aij] is a n × m
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matrix, then them × nmatrix At = [bji], where bji = aij is called the transpose of
A. Let A = [aij] be a n × m matrix with entries in the field C of complex numbers.
The matrix A = [bij], where bij = aij (the complex conjugate of aij) is called the

conjugate of the matrix A. The matrix A� = A
t
is called the tranjugate, also called

the hermitian conjugate of A
Thus, for example ⎡

⎣
2 0 1
4 1 0
0 8 1

⎤
⎦

t

=
⎡
⎣
2 4 0
0 1 8
1 0 1

⎤
⎦

⎡
⎣
2 + i i 1 + i
4 + i i 0
1 − i 8 1 + i

⎤
⎦

�

=
⎡
⎣
2 − i 4 − i 1 + i
−i −i 8
1 − i 0 1 − i

⎤
⎦

Proposition 2.1.3 Let A, B be matrices with entries in a field F. Then

(i) (A + B)t = At + Bt

(ii) (At)t = A.
(iii) (a · A)t = a · At

(iv) (A · B)t = Bt · At

provided the relevant sums and the products are defined.
Further, if A, B are matrices with entries in the field C of complex numbers, then

(v) (A + B)� = A� + B�

(vi) (A�)� = A.
(vii) (a · A)� = a · A�

(viii) (A · B)� = B� · A�

provided the relevant sums and the products are defined.

Proof The identities (i), (ii), and (iii) are evident from the definition. We prove the
(iv). Suppose thatA = [aij] is a n × mmatrix, andB = [bjk] is am × pmatrix. Then,
by the definition, A · B = [cik], where cik = �jaijbjk = �jvkjuji where vkj = bjk
and uji = aij. By the definition Bt = [vkj], At = [uji], and (A · B)t = [wki], where
wki = cik . This shows that the kth row jth column entry of both sides are same. This
proves the result. The proofs of the rest of the identities are similar. �

2.2 Types of Matrices

1. Identity matrix. The n × n matrix all of whose diagonal entries are 1 and off
diagonal entries are 0 is called the identitymatrix of order n, and it is denoted by In.
For example,
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I3 =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

It can be checked that In · A = A = A · Im for every n × m matrix A. Indeed, if C
is a n × m matrix such that C · A = A for every n × m matrix A, then C = In.
2.Diagonalmatrix. AmatrixA = [aij] is called a diagonalmatrix if all off diagonal
entries are 0. Thus, [aij] is a diagonal matrix if aij = 0 for all i �= j. The diagonal
matrix whose ith row ith column entry is αi is denoted byDiag(α1,α2, . . . ,αn). For
example,

Diag(1, 2, 3) =
⎡
⎣
1 0 0
0 2 0
0 0 3

⎤
⎦

The effect ofmultiplying the diagonal matrix diag(α1,α2, . . . ,αn) to a n × mmatrix
A from left is to multiply the ith row by αi. Thus diag(α1,α2, . . . ,αn) · [aij] =
[bij], where bij = αiaij. Similarly, the effect of multiplying this matrix to a m × n
matrix A from right is the same as multiplying the ith column by αi. In particular,
diag(α1,α2, . . . ,αn) · diag(β1,β2, . . . βn) = diag(α1β1,α2β2, . . . ,αnβn).
3. Scalar matrix. A n × n diagonal matrix all of whose diagonal entries are same
is called a scalar matrix. Thus, a scalar matrix is of the form αIn, and effect of
multiplying this matrix to a matrix A is αA.
4. Symmetric matrix. A matrix A is called a symmetric matrix if At = A. Thus,
a diagonal matrix is a symmetric matrix. The matrix

⎡
⎣
1 3 2
3 2 0
2 0 3

⎤
⎦

is a symmetricmatrix. It follows from theProposition 2.1.3 that sumof two symmetric
matrices are symmetric, scalar multiple of a symmetric matrix is a symmetric matrix.
Thus, the set Sn(F) of all n × n symmetric matrices forms a subspace ofMn(F). For
all matrices A, AAt is a symmetric matrix. For a square matrix A, A + At is a
symmetric matrix. Product of two symmetric matrices is symmetric if and only if
they commute.
5. Skew symmetric matrix. A matrix A is called a skew symmetric matrix if
At = −A. For example, the matrix

⎡
⎣

0 3 2
−3 0 0
−2 0 0

⎤
⎦

is a skew symmetric matrix. It follows from the Proposition 2.1.3 that sum of two
skew symmetric matrices are skew symmetric, scalar multiple of a skew symmetric
matrix is a skew symmetric matrix. Thus, the set SSn(F) of all n × n skew symmetric
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matrices forms a subspace of Mn(F). A − At is skew symmetric for all square
matrices A. Product of two skew symmetric matrices is skew symmetric if and only
if they anti commute in the sense thatA · B = −B · A. Also observe that the diagonal
entries of a skew symmetric matrices are 0.

Every square matrix A with entries in a field F can be uniquely represented as
sum A = A+At

2 + A−At

2 of a symmetric matrix A+At

2 and a skew symmetric matrix
A−At

2 (prove the uniqueness of the representation).
6. Hermitian matrix. A matrix A with entries in the field C of complex numbers is
called a hermitian matrix (also termed as self adjoint) if A� = A. Thus, a matrix
A with real entries is Hermitian if and only if it is symmetric. The matrix

⎡
⎣

1 3 + i 2
3 − i 2 i
2 −i 3

⎤
⎦

is a Hermitianmatrix. Evidently, all diagonal entries of Hermitianmatrices are real. It
follows from the Proposition 2.1.3 that sum of twoHermitianmatrices are Hermitian.
However, only real scalar multiple of a Hermitian matrix is a Hermitian matrix. For
all matrices A, AA� is a Hermitian matrix. For a square matrix A, A + A� is also a
Hermitian matrix. Product of two Hermitian matrices is Hermitian if and only if they
commute.
7. Skew-Hermitian matrix. A matrix A with entries in the field C of complex
numbers is called a skew-Hermitian matrix if A� = −A. Thus, a matrix A with
real entries is skew-Hermitian if and only if it is skew symmetric. The matrix

⎡
⎣

i 3i − 1 2
3i + 1 2i −1

2 1 3i

⎤
⎦

is a skew-Hermitian matrix. Evidently, all diagonal entries of skew-Hermitian matri-
ces are purely imaginary. It follows from the Proposition 2.1.3 that sums of two
skew-Hermitian matrices are skew-Hermitian. However, only real scalar multiple
of a skew-Hermitian matrix is a skew-Hermitian matrix. Observe that a matrix A is
skew-Hermitian if and only if iA is a Hermitian matrix. For all matrices A, iAA� is
a skew-Hermitian matrix. For a square matrix A, A − A� is also a skew-Hermitian
matrix. Product of two skew-Hermitian matrices is skew-Hermitian if and only if
they anticommute in the sense that AB = −BA.

Every square matrix A with entries in the field C of complex numbers can be
uniquely represented as sum A = A+A�

2 + A−A�

2 of a Hermitian matrix A+A�

2 , and a
skew-Hermitian matrix A−A�

2 (prove the uniqueness of the representation). In turn, it
follows that every square matrix Awith entries in the fieldC of complex numbers can
be uniquely represented as A = B + iC, where B and C are Hermitian matrices.
8. Nonsingular matrices. A n × n matrix A is called a nonsingular matrix (also
called an invertiblematrix) if there is a n × nmatrixB such thatA · B = In = B · A.
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Note that such a B, if exists, will be unique, for if B1 and B2 are such matrices, then
B1 = B1 · In = B1 · (A · B2) = (B1 · A) · B2 = In · B2 = B2. If A is an invertible
matrix, then the unique B such that A · B = In = B · A is called the Inverse of A,
and it is denoted by A−1. Following are some simple observations:
(i) The identity matrix In is invertible and I−1

n = In.
(ii) Consider a diagonal matrix diag(α1, α2, . . . , αn). As already observed in 2,
diag(α1, α2, . . . , αn) · [aij] = [bij], where bij = αiaij. Thus, diag(α1, α2, . . . ,

αn) · [aij] = In if and only if αiaij = 1 for j = i, and 0 other wise. This is so if
and only if αi �= 0, aii = α−1

i for each i, and aij = 0 for all i �= j. This shows that
Diag(α1,α2, . . . ,αn) is invertible if and only if each αi �= 0, and then its inverse is
Diag(α−1

1 , α−1
2 , . . . ,α−1

n ).
(iii) Let A and B be invertible n × n matrices. Then, (AB)(B−1A−1) = In =
(B−1A−1)(AB). This shows that AB is also invertible and (AB)−1 = B−1A−1.

In due course, we shall describe an algorithms to check if a matrix is invertible,
and then to find its inverse.
9.Triangularmatrices. A squarematrixA is said to be an upper (lower) triangular
matrix if all its below (above) diagonal entries are 0. More precisely, a n × n matrix
A = [aij] is called an upper (lower) triangularmatrix if aij = 0 for all i > j(i <

j). It is called strictly upper (lower) triangular if in addition to that all the diagonal
entries are also 0. For example, ⎡

⎣
1 4 6
0 2 0
0 0 3

⎤
⎦

is an upper triangular matrix.
Clearly, the sum of any two upper (lower) triangular matrices is an upper

(lower) triangular matrix. Also a scalar multiple of an upper (lower) triangular
matrix is a upper (lower) triangular matrix. Thus, the set T+(n,F)(T−(n,F)) of
upper (lower) triangular matrices forms a subspace of Mn(F).

Further, T+(n,F)(T−(n,F)) is closed under matrix multiplication: For, let A =
[aij] and B = [bjk] be upper triangular matrices. Then aij = 0 = bjk for all i >

j > k. Let A · B = [cik]. Then cik = �jaijbjk = 0 for all i > k.
Next, let A = [aij] ∈ T+(n,F) be a nonsingular matrix. Then there is a matrix

B = [bij] such that B · A = In. Equating the first row first column entry from both
side we get b11a11 = 1. But then a11 �= 0 and b11 = a−1

11 . Equating second row first
column entry, we obtain that b21a11 = 0.Hence b21 = 0. Similarly, equating ith row
1st column entry we obtain that bi1a11 = 0, and so bi1 = 0 for all i > 1. Equating
the 1st row 2nd column entry, we get that b11a12 + b12a22 = 0, and equating the
2nd row 2nd column entry, we get b22a22 = 1. Thus a22 �= 0, b22 = a−1

22 , and
b12 = a−1

22 a
−1
11 a12. Proceeding in this way we obtain that all the diagonal entries aii

of A are nonzero, and then we can solve bij to get the inverse of A. We also observe
that the inverse of A is also a member of T+(n,F). For example, consider the upper
triangular matrix
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⎡
⎣
2 4 6
0 2 0
0 0 3

⎤
⎦

all of whose diagonal entries are nonzero. We find its inverse. Suppose that

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ ·

⎡
⎣
2 4 6
0 2 0
0 0 3

⎤
⎦ =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

Then we have the following equations:
2a11 = 1, 4a11 + 2a12 = 0, 6a11 + 3a13 = 0,
2a21 = 0, 4a21 + 2a22 = 1, 6a21 + 3a23 = 0,
2a31 = 0, 4a31 + 2a32 = 0, 3a33 = 1
Solving, we get that a11 = 1

2 , a12 = −1 = a13, a21 = a31 = a32 = 0, a23 =
0, a22 = 1

2 , a33 = 1
3 . Thus, the inverse of the said matrix is

⎡
⎣

1
2 −1 −1
0 1

2 0
0 0 1

3

⎤
⎦

Block multiplication
We can multiply two matrices by using suitable blocks of their submatrices. More
explicitly, let A be a m × n matrix, and B a n × p matrix. Suppose that m = m1 +
m2 + · · · + mr, n = n1 + n2 + · · · ns, and p = p1 + p2 + · · · + pt , where mi, nj
and pk are positive integers. Then A and B can be expressed uniquely as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 · · · A1s

A21 A22 · · · A2s

· · · · · ·
· · · · · ·
· · · · · ·

Ar1 Ar2 · · · Ars

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Aij is a mi × nj matrix and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 · · · B1t

B21 B22 · · · B2t

· · · · · ·
· · · · · ·
· · · · · ·

Bs1 Bs2 · · · Bst

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Bjk is nj × pk matrix. Further, then
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A · B =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 · · · C1t

C12 C22 · · · C2t

· · · · · ·
· · · · · ·
· · · · · ·

Cr1 Cr2 · · · Crt

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Cik = �s
j=1AijBjk .

2.3 System of Linear Equations

A system of m linear equations in n unknowns x1, x2, . . . , xn over a field F is given
by ⎛

⎜⎜⎜⎜⎜⎜⎝

a11x1 + a12x2 + · · · + a1mxm = b1
a21x1 + a22x2 + · · · + a2mxm = b2

· · · · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·

an1x1 + an2x2 + · · · + anmxm = bn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.1)

where aij ∈ F.

Example 2.3.1 Following is a system of two linear equations in three unknowns over
the field of real numbers:

3x1 + 2x2 + x3 = 1.

x1 + x2 + x3 = 2.

Wesay that an-tuple (a1, a2, . . . , an) inFn is a solution of the system (2.1) of linear
equations if x1 = a1, x2 = a2, . . . , xn = an satisfies all the equations in the system
(2.1). Thus, (−2, 3, 1) is a solution of the system of linear equations in the above
example. (−3, 5, 0) is also a solution to the above system. Indeed, there are infinitely
many solutions which can be parametrized in terms of x3 as (x3 − 3, 5 − 2x2, x3).
Clearly, this represents a line.

Example 2.3.2 The system

x1 + 2x2 + 3x3 = 1.

x1 + x2 + 3x3 = 2.

4x1 + 6x2 + 12x3 = 5.

of linear equations has no solution (why?).
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where as

Example 2.3.3 The system
x1 + 2x2 = 1.

2x1 + 2x2 = a.

has a unique solution for all a (why?).

Definition 2.3.4 A system of linear equations is said to be consistent if it has a
solution. It is said to be inconsistent otherwise.

The Example 2.3.1 is consistent having infinitely many solutions, the Example
2.3.2 is inconsistent, whereas Example 2.3.3 is consistent with unique solution.

Most of the problems in real life, in engineering, in industries, in social life,
and in medical science can be modeled in terms of systems of linear equations.
As such, describing and interpreting the solutions of a systemof linear equations
is one of themain themes of linear algebra. In the following few sections we shall
concentrate on this.

The system (2.1) ofm linear equations in n unknowns can be expressed in a single
matrix equation

Axt = b
t

(2.2)

where A = [aij] is the m × n matrix whose ith row jth column entry is aij, x =
[x1, x2, . . . , xn] ∈ Fn is the 1 × n rowmatrix of unknowns, and b = [b1, b2, . . . , bm]
∈ Fm is the 1 × m matrix.

Thus, the system of linear equations in Example 2.3.1 can be expressed as

[
3 2 1
1 1 1

] ⎡
⎣
x1
x2
x3

⎤
⎦ =

[
1
2

]

The matrix A in (2.2) is called the coefficient matrix of the system (2.1) of linear
equations, and the m × (n + 1) matrix A+ = [A b

t] whose first n columns are those
of A, and the last (n + 1)th column is b

t
, is called the augmented matrix of the

system of linear equations.
Thus, the coefficient matrix of the Example 2.3.2 is

⎡
⎣
1 2 3
1 1 3
4 6 12

⎤
⎦ ,

and the augmented matrix of the example is
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⎡
⎣
2 4 6 1
0 2 0 2
0 0 3 5

⎤
⎦

Definition 2.3.5 A system of linear equations given by the matrix equation

Axt = 0
t

. . . . (2.3)

is called a homogeneous system of linear equations. It is also called the homoge-
neous part of the system of linear equations given by

Axt = b
t
.

Proposition 2.3.6 A homogeneous system of linear equations given by the matrix
equation

Axt = 0
t
.

is always consistent, and the set of solutions of the homogeneous system is a subspace
of Fn.

Proof Let N(A) denote the set of all solutions of Axt = 0
t
. Since A0

t = 0
t
,

it follows that 0 ∈ N(A). Let u, v ∈ N(A), and a, b ∈ F. Then A(au + bv)t =
aAut + bAvt = 0

t
. This shows that au + bv ∈ N(A). It follows that N(A) is a

subspace of Fn. �

Definition 2.3.7 The subspace N(A) described in the above proposition is called
the solution space of the system (2.3) of linear equations, and it is also called the
null space of the matrix A. The dimension of the null space N(A) is called the
nullity of A, and it is denoted by n(A). If {u1, u2, . . . , un(A)} is a basis of N(A), then
any solution of (2.3) is uniquely expressed as c1u1 + c2u2 + · · · + cn(A)un(A), where
c1, c2, . . . , cn(A) are constants in F. As such c1u1 + c2u2 + · · · + cn(A)un(A) is called
a general solution of the homogeneous system (2.3).

A little later, we shall give an algorithm to find N(A), indeed a basis of N(A), and
so also a general solution of the system (2.3) of linear equations.

Proposition 2.3.8 Suppose that the system of linear equations given by the matrix
equation

Axt = b
t
.

is consistent, and a = [a1, a2, . . . , an] is a solution of the above equation. Then
the coset a + N(A) = {a + u | u ∈ N(A)} is the complete set of all solutions
of the system of linear equations. In turn, if {u1, u2, . . . , un(A)} is a basis of N(A),
then a + c1u1 + c2u2 + · · · + cn(A)un(A) is a general solution of the system of linear
equations, where c1, c2, . . . , cn(A) are arbitrary constants.
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Proof Since a is a solution of Axt = b
t
, Aat = b

t
. If u ∈ N(A), then Aut = 0

t
.

But, then A(a + u)t = (Aat + Aut) = (b
t + 0

t
) = b

t
. This shows that a + u

is also a solution of Axt = b
t
. Conversely, let c be a solution of Axt = b

t
. Then

Act = b
t
. Hence A(c − a)t = (Act − Aat) = 0. It follows that (c − a) ∈ N(A).

This shows that c ∈ a + N(A). The rest is an immediate observation. �

Definition 2.3.9 The subspace R(A) of Fn generated by the set {R1(A),R2(A), . . . ,

Rm(A)} of the rows of A is called the row space of A, and the dimension of R(A) is
called the row rank of A. Thus, the maximum number of linearly independent rows
of a matrix is the row rank of A. Similarly, the subspace C(A) of Fm (the elements
of Fm treated as columns) is called the column space of A, and the dimension of
C(A) is called the column rank of A. Again, it follows that the maximum number
of linearly independent columns of A is the column rank of A. We shall see, in due
course, that row rank is same as column rank, and it is called the rankof A. The rank
of A is denoted by r(A).

Proposition 2.3.10 The system of linear equations given by the matrix equation

Axt = b
t
.

is consistent if and only if the column rank of A is same as that of the augmented
matrix A+.

Proof The system of linear equations given by the matrix equation Axt = b
t
is also

expressible as

x1C1(A) + x2C2(A) + · · · + xnCn(A) = b
t
,

where x = [x1, x2, . . . , xn], andCi(A) denotes the ith column ofA. Thus, the equation
has a solution if and only if b

t
is a linear combination of the columns of A. This is

equivalent to say that the column spaceC(A) of A is same as the column spaceC(A+)

of the augmented matrix A+. Since C(A) ⊆ C(A+), this is equivalent to the fact that
column rank of A is same as that of A+. �

We shall look at an algorithm to find the rank of a matrix, and also an algorithm
to find a general solution of Axt = b

t
provided it is consistent.

2.4 Gauss Elimination, Elementary Operations, Rank,
and Nullity

Definition 2.4.1 Two systems of m linear equations in n unknowns are said to be
equivalent if they have same set of solutions.
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Example 2.4.2 The system
x1 + 2x2 = 1

2x1 + 2x2 = a

of two linear equations in two unknowns is equivalent to the system

x1 + 2x2 = 1

3x1 + 4x2 = a + 1,

for they have same set of solutions, whereas the system is not equivalent to

x1 + 2x2 = 1

2x1 + 3x2 = a

In what follows, we shall introduce an algorithm called theGaussian elimination
to reduce a system of linear equations into an equivalent system of linear equations
from which the solution will become apparent.

Definition 2.4.3 Following operations on a system of linear equations are called the
elementary operations on the system of linear equations, and the corresponding
operations on coefficient and augmented matrices are called the Elementary row
operations on the matrices:

1. Interchange any two equations in the system.
2. Multiply an equation in the system by a nonzero member of the field.
3. Add a nonzero multiple of an equation in the system to another equation in the

system.

In turn, the corresponding elementary row operations on matrices are:

1. Interchange any two row of the matrix.
2. Multiply a row of the matrix by a nonzero element of the field.
3. Add a nonzero multiple of a row of the matrix to another row.

The following proposition is an immediate observation.

Proposition 2.4.4 Any two system of linear equations which differ by a finite
sequence of elementary operations are equivalent. �

We shall first discuss an algorithm to find the space of solutions of a homogeneous
system of linear equations given by the matrix equation Axt = 0

t
. More precisely,

we derive an algorithm to find a basis of the null space N(A) of A so that every
solution of the system is unique linear combination of the basis members.

Proposition 2.4.5 The null space N(A), and so also the nullity n(A) of a matrix A
remain invariant under the elementary row operations.
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Proof Follows from the Proposition 2.4.4. �

Proposition 2.4.6 The row space R(A) and so also the row rank of amatrix A remain
invariant under the elementary row operations.

Proof Interchange of any two rows of a matrix will not change the row space as
the set of rows will not change. Since the subspace of Fn generated by the set
{R1(A),R2(A), . . . ,Rm(A)} of rows of A is the same as the subspace of Fn generated
by {R1(A),R2(A), . . . , aRj(A), . . . ,Rm(A)} for each nonzero a ∈ F and j ≤ m, it
follows that the row space of a matrix remains the same if we multiply a row of the
matrix by a nonzero member of the field. Finally, since the subspace of Fn generated
by the set {R1(A),R2(A), . . . ,Rm(A)} of rows of A is the same as the subspace of
Fn generated by {R1(A),R2(A), . . . ,Rk(A) + aRj(A), . . . ,Rm(A)} for each nonzero
a ∈ F and j �= k, it follows that the row space of a matrix remains the same if we
add a nonzero multiple of a row to another row. �

The column space of a matrix, in general, is not invariant under elementary row
operations. However,

Proposition 2.4.7 The column rank of a matrix remains invariant under elementary
row operations.

Proof Let A be a matrix, and A′ a matrix obtained by applying any of the elementary
row operations on A. Then evidently,

x1Ci1(A) + x2Ci2(A) + · · · + xrCir (A) = 0
t

if and only if

x1Ci1(A
′) + x2Ci2(A

′) + · · · + xrCir (A
′) = 0

t

This means that the maximum number of linearly independent columns of A is same
as that of A′. Thus, the column rank of A is same as that of A′. �

We shall describe an algorithm to transform a matrix in to a special form, called a
reduced row echelon form, of the matrix by using elementary row operations, and
from which a basis for the null space of the matrix, and also a basis of the row space
of the matrix can be easily obtained.

Definition 2.4.8 A m × n matrix A = [aij] is said to be a matrix in reduced row
(column) echelon form, or it is said to be a reduced row echelon matrix if the
following hold:

(i) The first nonzero entry in each row (column) is 1. This entry is called a pivot
entry, and the corresponding columns (rows) are called pivot column (row) of
the matrix. The columns (rows) which are not pivot columns (rows) are called
the free columns (rows). The unknown variable corresponding to pivot columns
are called pivot variables, and those corresponding to free columns are called
free Variables.



46 2 Matrices and Linear Equations

(ii) The pivot entry in any row (column) is towards right (bottom) side to the pivot
entry in the previous row (column).

(iii) All of the rest of the entries in a pivot column (row) are 0.
(iv) All the zero rows (columns) are towards bottom (right).

Example 2.4.9 The matrix

A =

⎡
⎢⎢⎣
1 2 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0

⎤
⎥⎥⎦

is in reduced row echelon form. The 1st row 1st column, the 2nd row 3rd column,
and the 3rd row 4th column entries are pivot entries, 2nd and 5th columns are free
columns. x1, x3 and x4 are pivot variables. x2 and x5 are free variables.

Proposition 2.4.10 Let A be a m × n matrix with entries in a field F and which is in
reduced row echelon form. Suppose that the columns Ci1(A),Ci2(A), . . . ,Cir (A)with
i1 < i2 < · · · < ir are pivot columns and the columns Cj1(A),Cj2
(A), . . . ,Cjs(A) with j1 < j2 < · · · < js are free columns. Then,

(i) the first r rows R1(A),R2(A), . . . ,Rr(A) are nonzero rows, and they form a
basis of the row space R(A) of A,

(ii) the number of pivots is the row rank of A,
(iii) the pivot columns form a basis of the column space of A,
(iv) row rank of A is the same as the column rank of A. Indeed, it is the number of

pivots.

Proof (i) Since each nonzero row contains a unique pivot entry, and the zero rows
are towards the bottom, it follows that R1(A),R2(A), . . . ,Rr(A) are precisely the
nonzero rows of the matrix. Since the pivot entries 1 in R1(A),R2(A), . . . ,Rr(A)

appear in different columns i1, i2, . . . , ir , it follows that the set {R1(A),R2(A), . . . ,

Rr(A)} of nonzero row of A is linearly independent. As such, it forms a basis of the
row space R(A) of A.
(ii) Follows from (i).
(iii) Clearly, the set {Ci1(A),Ci2(A), . . . ,Cir (A)} of pivot columns form a linearly
independent set, for the kth row entry in the pivot column Cik (A) is 1 and the rest of
the entries in this column are 0. It is also evident that all the free columns are linear
linear combinations of the pivot columns. Indeed,

Cjl (A) = a1jlCi1(A) + a2jlCi2(A) + · · · + arjlCir (A).

(iv) Follows from (iii). �

Proposition 2.4.11 Consider the homogeneous system of linear equations given by
the matrix equation

Axt = ot,
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where A is a reduced row echelon m × n matrix with entries in a field F. Sup-
pose that the columns Ci1(A),Ci2(A), . . . ,Cir (A) with i1 < i2 < · · · < ir are pivot
columns, and the columns Cj1(A),Cj2(A), . . . ,Cjs(A)with j1 < j2 < · · · < js are free
columns. Then the pivot variables xi1 , xi2 , . . . , xir in the homogeneous systemof linear
equations are uniquely expressible in terms of free variables xj1 , xj2 , . . . , xjs as

xit = −
s∑

k=1

atjk xjk .

The set {u1, u2, . . . , us} is a basis for the space N(A) of solutions of the homogeneous
system, where uk = (uk1, u

k
2, . . . , u

k
n) is the unique solution of the homogeneous

system corresponding to the choice xjl = 0, l �= k, and xjk = 1 of the free variables.
Indeed, ukjl = 0 for l �= k, ukjk = 1, and ukit = −atjk . The nullity n(A) = s, the number
of free variables.

Proof Under the assumption, for all t ≤ r, atit = 1 and alit = 0 for l �= t. The
corresponding homogeneous system of linear equations is given by

a1i1xi1 + a1j1xj1 + a1j2xj2 + · · · + a1js xjs = 0.

a2i2xi2 + a2j1xj1 + a2j2xj2 + · · · + a2js xjs = 0.

.........................................................................

.........................................................................

ari1xi1 + arj1xj1 + arj2xj2 + · · · + arjs xjs = 0.

the rest of the equations, if any, are the identities

0x1 + 0x2 + · · · + 0xn = 0.

Evidently, each pivot variable is uniquely expressible in terms of free variable as
described in the proposition. Further, the set S = {u1, u2, . . . , us} of solutions is
a basis of the space N(A) of solutions, for any solution with values α1,α2, . . . ,αs

to the free variables xj1 , xj2 , . . . , xjs is uniquely expressible as linear combination
α1u1 + α2u2 + · · · , αsus. The rest is evident. �

Proposition 2.4.12 Consider the system of linear equations given by the matrix
equation

Axt = b
t
,

where A is a reduced row echelon m × n matrix with entries in a field F. Suppose that
the columnsCi1(A),Ci2(A), . . . ,Cir (A)with i1 < i2 < · · · < ir are pivot columns and
the columns
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Cj1(A),Cj2(A), . . . ,Cjs(A) with j1 < j2 < · · · < js are free columns. Then the sys-
tem of linear equations is consistent if and only if bk = 0 for all k ≥ r + 1,
or equivalently, rank(A) = rank(A+). Further, then v = (v1, v2, . . . , vn), where
vit = −atj1 + bt, 1 ≤ t ≤ r, vj1 = 1 and vjl = 0, 2 ≤ l ≤ s, is a particular
solution of the above nonhomogeneous system. Finally, a general solution x of the
system of linear equation is given by

x = v + c1u1 + c2u2 + · · · + csus,

where c1, c2, . . . , cs are arbitrary constants.

Proof From the previous proposition, a general solution of the homogeneous part of
the above nonhomogeneous system of linear equations is given by

c1u1 + c2u2 + · · · + csus.

Further, the system of linear equations is given by

a1i1xi1 + a1j1xj1 + a1j2xj2 + · · · + a1js xjs = b1.

a2i2xi2 + a2j1xj1 + a2j2xj2 + · · · + a2js xjs = b2.

..........................................................................

..........................................................................

ari1xi1 + arj1xj1 + arj2xj2 + · · · + arjs xjs = br .

The rest of the equations, if any, are the identities

0x1 + 0x2 + · · · + 0xn = bk, k ≥ r + 1.

Clearly, the system is inconsistent if bk �= 0 for any k ≥ r + 1. Now, suppose that
bk = 0 for all k ≥ r + 1. Putting the free variable xj1 = 1, and xjk = 0 for
2 ≤ k ≤ s, we get a particular solution v = (v1, v2, . . . , vn), where vit = −atj1 +
bt, 1 ≤ t ≤ r, vj1 = 1, and vjl = 0, 2 ≤ l ≤ s of the system. From the Proposition
2.3.8, we get a general solution

x = v + c1u1 + c2u2 + · · · + csus

of the system, where c1, c2, . . . , cs are arbitrary constants. �

Example 2.4.13 Consider the systemof linear equations givenby thematrix equation

Axt = b
t
,
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where A is the matrix given by

A =

⎡
⎢⎢⎣
1 0 1 0 2
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0

⎤
⎥⎥⎦

The corresponding system of linear equations is given by

x1 + 0x2 + x3 + 0x4 + 2x5 = b1.

0x1 + x2 + x3 + 0x4 + x5 = b2.

0x1 + 0x2 + 0x3 + x4 + x5 = b3.

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = b4.

The matrix A is in reduced row echelon form with the pivot columns C1,C2,C4,
and the free columns C3 and C5. The nonzero rows R1,R2,R3 form a basis of row
space, and the pivot columns C1,C2,C4 of A form a basis of the column space of
A. Row rank = 3 = Column rank of A. For the system to be consistent b4 = 0.
Assuming that b4 = 0, we find a general solution of the system. We first find a
basis of the solution space N(A) of the homogeneous part Axt = 0

t
of the given

system of linear equations. x3 and x5 are free variables. Putting x3 = 1 and x4 = 0,
we get a solution u1 = (−1,−1, 1, 0, 0) of the homogeneous part of the system.
Further putting x3 = 0 and x5 = 1, we get a solution u2 = (−2,−1, 0,−1, 1) of
the homogeneous part of the system. The set {u1, u2} is a basis of the space N(A) of
solutions of the homogeneous part. Nullity of A is 2. Finally, putting x3 = 1 and
x4 = 0, we get a particular solution v = (−1 + b1,−1 + b2, 1, b3, 0) of the given
nonhomogeneous system of linear equations. In turn, a general solution of the given
nonhomogeneous system of linear equations is v + c1u1 + c2u2.

Observe that a square matrix in reduced row echelon form has no zero rows if
and only if all the rows, and so also all columns have pivots, or equivalently, it is the
identity matrix. Since a matrix with a zero row is singular, we have the following:

Proposition 2.4.14 A square matrix in reduced row echelon form is nonsingular if
and only if it is the identity matrix. �

Elementary operations on a system of linear equations, or equivalently, ele-
mentary row operations on the coefficient and augmented matrices, transform
the system into equivalent system of linear equations. Further, if the coefficient
matrix of the system of linear equations is in reduced row echelon form, then as
observed above, a general solution of the system is easily obtained. As such, it is
prompting to discover, if possible, an algorithm to reduce an arbitrary matrix
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in to amatrix in reduced row echelon form by using elementary row operations.
The following theorem gives an algorithm.

Theorem 2.4.15 Using elementary row operations, every matrix can be reduced to
a matrix in reduced row echelon form.

Proof Let A be a m × n matrix. If A is the zero matrix, then it is already in reduced
row echelon form. Suppose that A is nonzero matrix. Let j1 be the least number such
that the column Cj1(A) is a nonzero column. Further, let i1 be the smallest number
such that ai1j1 �= 0. Interchanging the i1th row and the first row, we may assume that
a1j1 �= 0, and aik = 0 for all k < j1. Multiplying the first row by a−1

1j1 , we may
assume that a1j1 = 1, and aik = 0 for all k < j1. Next, adding −aij1 times the first
row to the ith row for each i ≥ 2, we reduce A to a matrix [aij], where a1j1 = 1,
aij1 = 0 for all i ≥ 2, and aik = 0 for all k ≤ j1 − 1. If in this reduced matrix
aij = 0 for all i ≥ 2, then it is already in reduced row echelon form. If not, let j2 be
the smallest number such that aij2 �= 0 for some i ≥ 2. Further, let i2 be the smallest
number greater than 2 such that ai2j2 �= 0. Note that j2 > j1. Interchanging the i2th
row and the second row, we may assume that a2j2 �= 0. Then multiplying the second
row by a−1

2j2 , we may assume that a2j2 = 1. In turn, adding −aij2 times the second
row to the ith row for each i �= 2, A may have been reduced to a matrix in reduced
row echelon form. If not, proceed as before. This process reduces A in to reduced
row echelon form after finitely many steps (if worst comes, at the nth step). �

Corollary 2.4.16 Row rank of a matrix is the same as the column rank of the matrix.

Proof From the Proposition 2.4.6, and the Proposition 2.4.7, row rank and column
rank of a matrix are invariant under elementary row operations. From the Proposition
2.4.10(iv), row rank of a matrix in reduced row echelon form is same as its column
rank (equal to the number of pivots). Combining this with the Theorem 2.4.15, the
result follows. �

Definition 2.4.17 Row rank of a matrix A, or equivalently, the column rank of a
matrix is called the rank of the matrix. The rank of a matrix A is denoted by r(A).

Corollary 2.4.18 Let A be a m × n matrix. Then r(A) + n(A) = n.

Proof Since the rank and the nullity remain invariant under elementary row opera-
tions, using Theorem 2.4.15, it is sufficient to prove the result for matrices in reduced
row echelon form. For a matrix A in reduced row echelon form, r(A) is the number
of pivot columns and n(A) is the number of free columns. Clearly, a column is either
a pivot column or a free column. �

Example 2.4.19 Consider the system of linear equations

2x3 + 3x4 + 8x5 = 1.

2x1 + 4x2 + x3 + 5x5 = 0.
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x1 + 2x2 + x3 + x4 + 5x5 = 2.

5x1 + 10x2 + 6x3 + 6x4 + 28x5 = a.

The corresponding coefficient matrix A is

A =

⎡
⎢⎢⎣
0 0 2 3 8
2 4 1 0 5
1 2 1 1 5
5 10 6 6 28

⎤
⎥⎥⎦ ,

and the augmented matrix A+ is

A+ =

⎡
⎢⎢⎣
0 0 2 3 8 1
2 4 1 0 5 0
1 2 1 1 5 2
5 10 6 6 28 a

⎤
⎥⎥⎦ .

We discuss the consistency of the above system of linear equations, and if consistent,
we determine a general solution. For the purpose, we reduce the coefficient matrix A,
and also the augmented matrix A+ to reduced row echelon forms simultaneously by
using the algorithm described in the above theorem. The 1st column of A is nonzero,
and the smallest number i for which ai1 �= 0 is 2. Thus, interchanging the 1st and the
2nd rows of A, and of A+, A is transformed to

⎡
⎢⎢⎣
2 4 1 0 5
0 0 2 3 8
1 2 1 1 5
5 10 6 6 28

⎤
⎥⎥⎦ ,

and A+ is transformed to ⎡
⎢⎢⎣
2 4 1 0 5 0
0 0 2 3 8 1
1 2 1 1 5 2
5 10 6 6 28 a

⎤
⎥⎥⎦ .

Now, multiplying the 1st row by 1
2 , the matrices are transformed to

⎡
⎢⎢⎣
1 2 1

2 0 5
2

0 0 2 3 8
1 2 1 1 5
5 10 6 6 28

⎤
⎥⎥⎦ ,

and to
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⎡
⎢⎢⎣
1 2 1

2 0 5
2 0

0 0 2 3 8 1
1 2 1 1 5 2
5 10 6 6 28 a

⎤
⎥⎥⎦ .

Further, adding −1 times the 1st row to the 3rd row, and adding −5 times the 1st
row to the 4th row, the matrices are transformed to

⎡
⎢⎢⎣
1 2 1

2 0 5
2

0 0 2 3 8
0 0 1

2 1 5
2

0 0 7
2 6 31

2

⎤
⎥⎥⎦ ,

and to ⎡
⎢⎢⎣
1 2 1

2 0 5
2 0

0 0 2 3 8 1
0 0 1

2 1 5
2 2

0 0 7
2 6 31

2 a

⎤
⎥⎥⎦ .

Here, in this transformedmatrix, ai2 = 0 for all i ≥ 2. Thus, the 2nd column is a free
column. We look at the 3rd column. The 2nd row 3rd column entry a23 = 2 �= 0.
We divide the 2nd row by 2 to get the pivot entry 1 in 2nd row 3rd column. The
matrices, thus, reduce to ⎡

⎢⎢⎣
1 2 1

2 0 5
2

0 0 1 3
2 4

0 0 1
2 1 5

2
0 0 7

2 6 31
2

⎤
⎥⎥⎦ ,

and to ⎡
⎢⎢⎣
1 2 1

2 0 5
2 0

0 0 1 3
2 4 1

2
0 0 1

2 1 5
2 2

0 0 7
2 6 31

2 a

⎤
⎥⎥⎦ .

In turn, to make all other entries in this pivot column 0, we add − 1
2 times the 2nd

row to the 1st row, − 1
2 times the 2nd row to the 3rd row, and − 7

2 times the 2nd row
to the 4th row. The matrices reduce to

⎡
⎢⎢⎣
1 2 0 − 3

4
1
2

0 0 1 3
2 4

0 0 0 1
4

1
2

0 0 0 3
4

3
2

⎤
⎥⎥⎦ ,

and to
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⎡
⎢⎢⎣
1 2 0 − 3

4
1
2 − 1

4
0 0 1 3

2 4 1
2

0 0 0 1
4

1
2

7
4

0 0 0 3
4

3
2 a − 7

4

⎤
⎥⎥⎦ .

The 3rd row 4th column entry a34 = 1
4 �= 0. We multiply the 3rd row by 4 to get

the pivot entry 1 in 3rd row 4th column. Thus, the matrices further reduce to

⎡
⎢⎢⎣
1 2 0 − 3

4
1
2

0 0 1 3
2 4

0 0 0 1 2
0 0 0 3

4
3
2

⎤
⎥⎥⎦ ,

and to ⎡
⎢⎢⎣
1 2 0 − 3

4
1
2 − 1

4
0 0 1 3

2 4 1
2

0 0 0 1 2 7
0 0 0 3

4
3
2 a − 7

4

⎤
⎥⎥⎦ .

In turn, we add 3
4 times the 3rd row to the 1st row, − 3

2 times the 3rd row to the 2nd
row, and the −3

4 times the 3rd row to the 4th row to make the rest of the entries in
this pivot column 0. The coefficient matrix A reduces to the following matrix

⎡
⎢⎢⎣
1 2 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0

⎤
⎥⎥⎦

which is in reduced row echelon form, and the augmentedmatrixA+ gets transformed
to ⎡

⎢⎢⎣
1 2 0 0 2 5
0 0 1 0 1 −10
0 0 0 1 2 7
0 0 0 0 0 a − 7

⎤
⎥⎥⎦ .

Thus, the given systemof linear equations is equivalent to a systemof linear equations
whose coefficient matrix is ⎡

⎢⎢⎣
1 2 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0

⎤
⎥⎥⎦ ,

and the augmented matrix is



54 2 Matrices and Linear Equations

⎡
⎢⎢⎣
1 2 0 0 2 5
0 0 1 0 1 −10
0 0 0 1 2 7
0 0 0 0 0 a − 7

⎤
⎥⎥⎦ .

In turn, using the discussions and the results above, we have the following: (i) A
basis of the row space of A is {(1, 2, 0, 0, 2), (0, 0, 1, 0, 1), (0, 0, 0, 1, 2)}. The rank
r(A) = 3.
(ii) Putting the free variable x2 = 1, and the free variable x5 = 0, we get a
solution (−2, 1, 0, 0, 0) of the homogeneous part of the system. Further, putting
the free variable x2 = 0, and the free variable x5 = 1, we get another solution
(−2, 0,−1,−2, 1) of the homogeneous part of the system. The set {(−2, 1, 0, 0, 0),
(−2, 0,−1,−2, 1)} is a basis of the solution space N(A) of the homogeneous part.
A general solution of the homogeneous part of the system is

c1(−2, 1, 0, 0, 0) + c2(−2, 0,−1,−2, 1),

where c1, c2 are arbitrary constants.
(iii) The nonhomogeneous system is consistent if and only if 3 = r(A) = r(A+), or
equivalently, a = 7. Then, giving the value x2 = 1, and x5 = 0 of the free variables,
in the nonhomogeneous system, we get a particular solution (3, 1,−10, 7, 0). Thus,
a general solution of the nonhomogeneous part is

(3, 1,−10, 7, 0) + c1(−2, 1, 0, 0, 0) + c2(−2, 0,−1,−2, 1),

where c1, c2 are arbitrary constants.

Definition 2.4.20 A square matrix E obtained by applying elementary row opera-
tions on identity matrix is called an elementary matrix.

Example 2.4.21 The matrix ⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

⎤
⎥⎥⎦

is an elementary matrix which is obtained by multiplying the 3rd row of the identity
matrix I4 by 3. The matrix ⎡

⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

is an elementary matrix which is obtained by interchanging the 1st row and the 3rd
row of the identity matrix I4. Again, the matrix
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⎡
⎢⎢⎣
1 0 3 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

is also an elementary matrix which is obtained by adding 3 times the 3rd row of the
identity matrix I4 to its 1st row.

τij denotes the elementary matrix which is obtained by interchanging the ith row
and the jth row of identity matrix. Thus,

⎡
⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦ = τ13.

The elementary matrix which is obtained by adding the λ times the jth row of the
identity matrix to its ith row is denoted by Eλ

ij . Indeed, E
λ
ij is the matrix all of whose

diagonal entries are 1, the ith row jth column entry is λ, and the rest of entries are 0.
Thus, ⎡

⎢⎢⎣
1 0 3 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ = E3

13

The matrices Eλ
ij are called the transvections.

It can be easily observed that the effect of multiplying an elementary matrix E
from left (right) to a matrix A is applying the elementary row (column) operation
on A which was used to get the matrix E from the identity matrix. Thus, τijA is the
matrix obtained by interchanging ith row and jth row of A, and Eλ

ij A is the matrix
obtained by adding λ times the jth row of A to its ith row. It is straightforward, in
particular, to verify the following relations, called the Steinberg relations, among
the transvections inMn(F).

(i) Eλ
ij · Eμ

ij = Eλ+μ
ij , i �= j. In particular, Eλ

ij · E−λ
ij = E0

ij = In. Thus, Eλ
ij is

invertible, and its inverse is E−λ
ij .

(ii) For i �= l, j �= k, Eλ
ij and Eμ

kl commute.

(iii) For i �= l, (Eλ
ij E

μ
jl E

−λ
ij E−μ

jl ) = Eλμ
il .

(iv) For j �= k, (Eλ
ij E

μ
kiE

−λ
ij E−μ

ki ) = E−μλ
jk .

Proposition 2.4.22 Let A be am × nmatrix. Then, we can find a nonsingularm × m
matrix P such that PA is a matrix in reduced row echelon form. In particular, a square
matrix A is nonsingular if and only if its reduced row echelon form PA is the identity
matrix.
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Proof Applying an elementary row operation on A is equivalent to multiply A from
left by an elementary matrix. Since every matrix can be reduced to a matrix in
reduced row echelon form (Theorem 2.4.15), multiplying A successively by ele-
mentary matrices from left we arrive at matrix in reduced row echelon form. Since
elementarymatrices are nonsingular, and product of nonsingularmatrices are nonsin-
gular, we get a nonsingular matrix P such that PA is a matrix in reduced row echelon
form. Since P is nonsingular, A is nonsingular if and only if PA is nonsingular. From
the Proposition 2.4.14, A is nonsingular if and only if PA is the identity matrix. �

The above discussion and the results give an algorithm to determine a nonsingular
matrix P such that PA is a reduced row echelon matrix. In particular, it gives an
algorithm to check if a square matrix A is invertible, and if so, to find the inverse of
A. We further illustrate the algorithm by means of examples.

Example 2.4.23 Consider the matrix

A =

⎡
⎢⎢⎣
0 0 3 1 2
0 1 2 0 0
0 2 1 −1 1
0 1 1 − 1

3 0

⎤
⎥⎥⎦ .

Using the elementary row operations, we transform the matrix A in to a matrix in
reduced row echelon form, and simultaneously find a nonsingular matrix P such that
PA is a matrix in reduced row echelon form. We start with the pair

⎡
⎢⎢⎣ I4 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣
0 0 3 1 2
0 1 2 0 0
0 2 1 −1 1
0 1 1 − 1

3 0

⎤
⎥⎥⎦

⎤
⎥⎥⎦ .

There is no nonzero entry in the first column of A, and so no pivot will appear in the
first column. We leave and move to the second column. The first nonzero entry in
the second column of A is 1, and it is in the second row. We interchange the first row
R1 and the second row R2 in the pair of matrices. The pair, thus, gets transformed to
the pair (E1, A1) given by

⎡
⎢⎢⎣E1 =

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣
0 1 2 0 0
0 0 3 1 2
0 2 1 −1 1
0 1 1 − 1

3 0

⎤
⎥⎥⎦

⎤
⎥⎥⎦

(note that E1A = A1). The entry 1 in the first row and second column of A1 is the
pivot entry. To make the rest of the entries in this pivot column 0, we replace R3 by
R3 − 2R1, and then R4 by R4 − R1. In turn, the pair (E1, A1) gets transformed to the
pair (E2, A2) given by
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⎡
⎢⎢⎣E2 =

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 −2 1 0
0 −1 0 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣
0 1 2 0 0
0 0 3 1 2
0 0 −3 −1 1
0 0 −1 − 1

3 0

⎤
⎥⎥⎦

⎤
⎥⎥⎦

(Again note that E2A1 = E2E1A = A2). The second row third column entry is 3
which is nonzero. We replace R2 by

R2
3 to make it a pivot entry 1, and in turn, we

replace R1 by R1 − 2R2, R3 by R3 + 3R2, and R4 by R4 + R2 to make all the rest of
the entries in this pivot column 0. Thus, the pair (E2, A2) is transformed to the pair
(E3, A3) given by

⎡
⎢⎢⎣E3 =

⎡
⎢⎢⎣

− 2
3 1 0 0

1
3 0 0 0
1 −2 1 0
1
3 −1 0 1

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣
0 1 0 − 2

3 − 4
3

0 0 1 1
3

2
3

0 0 0 0 3
0 0 0 0 2

3

⎤
⎥⎥⎦

⎤
⎥⎥⎦

(Again, note thatE3A2 = A3). Since the 3rd row 4th column, and 4th row 4th column
entries are 0, there is no pivot in the 4th column, it is a free column. We go to the 5th
column. The 3rd row 5th column entry is 3 which is nonzero.We replaceR3 by 1

3R3 to
make the 3rd row 5th column entry a pivot entry 1, and then replace R1 by R1 + 4

3R3,
R2 by R2 − 2

3R3, and R4 by R4 − 2
3R3. Thus, the pair (E3, A3) is transformed to the

pair (E4, A4) given by

⎡
⎢⎢⎣E4 =

⎡
⎢⎢⎣

− 2
9

1
9

4
9 0

1
9

4
9 − 2

9 0
1
3 − 2

3
1
3 0

1
9

5
9 − 2

9 1

⎤
⎥⎥⎦ , A4 =

⎡
⎢⎢⎣
0 1 0 − 2

3 0
0 0 1 1

3 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎦

⎤
⎥⎥⎦ ,

where A4 is in reduced row echelon form, and P = E4 is an invertible matrix such
that PA = A4 is in reduced row echelon form.

Example 2.4.24 Consider the matrix A given by

⎡
⎢⎢⎣
0 1 3
1 0 2
0 2 1
1 1 1

⎤
⎥⎥⎦ .

We apply the following elementary row operations in succession.
(i) Interchange R1 and R2,
(ii) replace R4 by R4 − R1, R3 by R3 − 2R2 and R4 by R4 − R2,
(iii) replace R3 by− 1

3R3, R1 by R1 − 2R3, R2 by R2 − 2R3 and R4 by R4 + 3R3.
on A, and also on I4. Then, A reduces to the reduced row echelon form
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⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ ,

and I4 reduces to

P =

⎡
⎢⎢⎣

− 4
3 1 2

3 0
− 1

3 0 2
3 0

2
3 0 − 1

3 0
1 −1 −1 1

⎤
⎥⎥⎦ .

Thus, PA is in the row echelon form given above.

Example 2.4.25 Consider the 3 × 3 matrix A given by

A =
⎡
⎣
1 1 1
1 2 3
1 4 9

⎤
⎦

If we use the method of the above example, then A reduces to the identity matrix I3,
and I3 reduces to

P =
⎡
⎣

3 − 5
2

1
2−3 4 −1

1 − 3
2

1
2

⎤
⎦

Thus, A is invertible, and PA = I3. Hence P is the inverse of A.

2.5 LU Factorization

If the coefficient matrix of a system of linear equations is upper triangular square
matrix U with nonzero diagonal entries, then the solution is easily obtained by
inspection. For example, if a systemof linear equations is givenby thematrix equation
Uxt = b

t
, where

U =
⎡
⎣
1 1 1
0 2 3
0 0 9

⎤
⎦ ,

and b = (b1, b2, b3), then, evidently, the solution is (18b1 − b2
2 + 4b3

9 , 3b2−b3
2 , b3

9 ).
Similarly, it is also easy to solve a system of linear equationswhose coefficient matrix
is lower triangular square matrix with nonzero diagonal entries. Further, suppose the
coefficient matrix A is invertible, and it is expressed as A = LU , where L is a lower
triangular matrix, andU is an upper triangular matrix. Then, we first find the solution
v of Uyt = b

t
, and then the solution u of Uxt = vt . Clearly, u is the solution of

Axt = b
t
.
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The above discussion prompts us to look at the problem of factorizing an invertible
matrix A as a product LU of a lower triangular matrix L and an upper triangular
matrix U . This, in general, is not possible.

Example 2.5.1 Suppose that

[
0 1
1 0

]
=

[
a 0
b c

]
·
[
u v

0 w

]
.

Then au = 0, av = 1, bu = 1. This, however, is impossible. This shows that
the invertible matrix [

0 1
1 0

]

cannot be expressed as product of a lower triangular and an upper triangular matrix.
Observe that the matrix ⎡

⎣
1 1 1
0 0 3
0 2 9

⎤
⎦

is also not expressible as product of a lower triangular and an upper triangular matrix.

The reason behind the impossibility of expressing the above matrices as product
of lower and upper triangular matrices is while reducing these matrices in to reduced
row echelon forms, we are forced either to interchange rows, or to add a nonzero
multiple of a kth row to lth row for some k > l. Equivalently, we need to multiply
from left by a corresponding elementary matrix τij, or by a corresponding matrix
Eλ
kl. Obviously, these matrices are not lower triangular matrices. Indeed, if, while

reducing A in to reduced row echelon form, elementary row operations of the above
type are not needed, then we can find a lower triangular matrix P with diagonal
entries 1 so that PA is upper triangular. In turn, A = LU , where L = P−1. We
illustrate it by means of examples.

Example 2.5.2 Consider the matrix A given by

A =
⎡
⎣
1 1 1
1 2 3
1 4 9

⎤
⎦ ,

and the system of linear equations given by the matrix equation

Axt = [1, 2, 3]t .

Adding −1 times the 1st row of A to the 2nd row, and then adding −1 times the 1st
row to the 3rd row, or equivalently, multiplying the matrix E−1

13 E
−1
12 to A from left,

we obtain that
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E−1
13 E

−1
12 A =

⎡
⎣
1 1 1
0 1 2
0 3 8

⎤
⎦ .

Again, adding−3 times the 2nd row of the abovematrix to its 3rd row, or equivalently,
multiplying E−3

23 to E−1
13 E

−1
12 A from left, we obtain that E−3

23 E
−1
13 E

−1
12 A is the upper

triangular matrix U given by

U =
⎡
⎣
1 1 1
0 1 2
0 0 2

⎤
⎦ .

Thus, A = LU , where L = E1
12E

1
13E

3
23 is the lower triangular matrix given by

L =
⎡
⎣
1 0 0
1 1 0
1 3 1

⎤
⎦

Now, to find solution ofAxt = [1, 2, 3]t , we first find the solution ofLyt = [1, 2, 3]t .
Equating the corresponding entries of both sides, y1 = 1, y1 + y2 = 2, and y1 +
3y2 + y3 = 3. This gives the solution [1, 1,−1]t of Lyt = [1, 2, 3]t . Finally, we find
the solution ofUxt = [1, 1,−1]t to get the solution of the original equation Axt =
[1, 2, 3]t . Equating the entries of both sides in the equationUxt = [1, 1,−1]t , we get
that 2x3 = −1, x2 + 2x3 = 1, and x1 + x2 + x3 = 1. Evidently, x3 = −1

2 , x2 =
2, and x1 = −1

2 .

2.6 Equivalence of Matrices, Normal Form

Definition 2.6.1 Two m × n matrices A and B with entries in a field F are said to
be equivalent if there exists a nonsingular m × m matrix P, and a nonsingular n × n
matrix Q such that A = PBQ.

Clearly, the relation of being equivalent to is an equivalence relation onMmn(F).
We determine a unique representative of each equivalence class of equivalent matri-
ces.

Definition 2.6.2 A m × n matrix A is said to be in normal form if there is r ≤
min(m, n) such that

A =
[

Ir Or n−r

Om−r r Om−r n−r

]
,

where Om n denote the zero m × n matrix.

Theorem 2.6.3 Everym × nmatrix is equivalent to a uniquematrix in normal form.
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Proof Applying an elementary row operation on a matrix A is equivalent to multiply
A from left by an elementary matrix, and applying an elementary column operation is
equivalent tomultiplymatrixA from right by an elementarymatrix. Since all elemen-
tary matrices are nonsingular, and product of nonsingular matrices are nonsingular,
it is sufficient to show that every matrix can be reduced to a matrix in normal form
with the help of elementary row, and elementary column operations. The proof of
this fact is by the induction on max(m, n), where m is the number of rows and n the
number of columns. If max(m, n) = 1, then m = 1 = n, and A = [a11] is 1 × 1
matrix. If A = [0], then it is already in normal form. If a11 �= 0, then multiplying
the row by a−1

11 , we reduce it to the normal form [1]. Assume that the result is true
for all r × s matrices with max(r, s) < max(m, n). Let A = [aij] be a m × n times
matrix. If A = Om n, then it is already in normal form, and there is nothing to do.
Suppose that A �= Om n. Suppose that akl �= 0. Interchanging 1st row and kth row,
and then interchanging 1st column and the lth column, we may suppose that a11 �= 0,
and then multiplying the 1st row by a−1

11 , we may further suppose that a11 = 1. After
this we add −a1j times the first column to the jth column, and then −ai1 times the
first row to the ith row for all i �= 1 �= j. This reduces the matrix A into the form

[
I1 O1 n−1

Om−1 1 B

]
,

where B is m − 1 × n − 1 matrix. This also gives us a nonsingular m × m matrix C,
and a n × n nonsingular matrix D such that

CAD =
[

I1 O1 n−1

Om−1 1 B

]
.

By the induction hypothesis there is a m − 1 × m − 1 nonsingular matrix C′, and
there is a nonsingular n − 1 × n − 1 matrix D′ such that

C′BD′ =
[

Ir−1 Or−1 n−r

Om−r r−1 Om−r n−r

]

Take

C′′ =
[

I1 O1 n−1

Om−1 1 C′

]
,

and

D′′ =
[

I1 O1 n−1

Om−1 1 D′

]
.

Then C′′ and D′′ are nonsingular. In fact,

(C′′)−1 =
[

I1 O1 n−1

Om−1 1 (C′)−1

]
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(Use block multiplication to show this). Again, using block multiplication, we find
that

C′′ ·
[

I1 O1 n−1

Om−1 1 B

]
· D′′ =

[
I1 O1 n−1

Om−1 1 C′BD′

]
=

[
Ir Or n−r

Om−r r Om−r n−r

]

Take P = C · C′′, and Q = D · D′′. Then P is nonsingular m × m matrix, and Q a
nonsingular n × n matrix such that

PAQ =
[

Ir Or n−r

Om−r r Om−r n−r

]

is in normal form. Finally, [
Ir Or n−r

Om−r r Om−r n−r

]

is equivalent to [
Is Os n−s

Om−s s Om−s n−s

]

if and only if r = s, for one can be obtained from the other using elementary opera-
tions if and only if r = s. �

Corollary 2.6.4 There are min(m, n) + 1 equivalence classes of equivalent matri-
ces in Mmn(F).

Proof There are min(m, n) + 1 matrices in Mmn(F) which are in normal form. �

Corollary 2.6.5 Two matrices A and B are equivalent if and only if they have same
rank.

Proof Since under elementary operations rank of the matrices do not change and
rank of the matrix [

Ir Or n−r

Om−r r Om−r n−r

]

is r, the result follows. �

Corollary 2.6.6 All nonsingular matrices in Mn(F) are equivalent to In. The group
GL(n,F) is a single complete equivalence class of equivalent matrices. �

Proof Let A be a n × n matrix which is nonsingular. Then there are nonsingular
matrices P and Q such that PAQ is in normal form. Clearly, then PAQ is also nonsin-
gular. The result follows if we observe that a matrix in normal form is nonsingular
if and only if it is the identity matrix. �

Corollary 2.6.7 The group GL(n,F) is generated by elementary matrices. Indeed,
every element of GL(n,F) is product of elementary matrices.
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Proof All elementary matrices are nonsingular, and so they belong to GL(n,F).
Further, given any matrix A ∈ GL(n,F), there are nonsingular matrices P and Q
which are product of elementary matrices such that PAQ = In. But, then A =
P−1Q−1. Since inverse of an elementary matrix is an elementary matrix, P−1 and
Q−1 are product of elementary matrices. This shows that A is product of elementary
matrices. �

Remark 2.6.8 The matrices {Eλ
ij | i �= j,λ ∈ F�} do not generate GL(n,F)

(verify).

Remark 2.6.9 The proof of the Theorem 2.6.3 gives us a method by which

(i) we can reduce a matrix A into normal form,
(ii) we can find nonsingular matrices P andQ such that PAQ is in normal form, and
(iii) we can determine whether A is nonsingular, and then we can find its inverse

also.

Following two examples illustrates the algorithm.

Example 2.6.10 Let A be a m × n matrix. To find nonsingular matrices P and Q
such that PAQ is in normal form, we proceed as follows: We start with a row with
three columns. The first column Im, the second A, and the third column In. Then
we try to reduce the matrix A in to normal form by successive elementary row and
elementary column operations. Whenever we perform a row operation on A, apply
the same operation to the matrix in the first column, and keep the matrix in the third
column as it is, and if we perform a column operation on A, then we perform the
same operation on the matrix in the third column, and keep the matrix in the first
column as it is. Then as the matrix A reduces to a matrix in normal form, the matrix in
the first column reduces to the required matrix P, and the matrix in the third column
reduces to the required matrix Q. Consider, for example, the matrix

A =

⎡
⎢⎢⎣
1 1 1
2 0 1
1 1 0
0 1 2

⎤
⎥⎥⎦ .

Let Ri denote the ith row, and Cj denote the jth column. We start with a row

⎡
⎢⎢⎣

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1
2 0 1
1 1 0
0 1 2

⎤
⎥⎥⎦

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Replacing R2 by R2 − 2R1, and R3 by R3 − R1, we transform the above row to the
row
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⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0
−1 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1
0 −2 −1
0 0 −1
0 1 2

⎤
⎥⎥⎦

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Next, replacing C2 by C2 − C1, and C3 by C3 − C1, we get the transformed row
as ⎡

⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0
−1 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0
0 −2 −1
0 0 −1
0 1 2

⎤
⎥⎥⎦

⎡
⎣
1 −1 −1
0 1 0
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Interchanging R2 and R4, and then replacing R4 by R4 + 2R2, it reduces to

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1

−1 0 1 0
−2 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0
0 1 2
0 0 −1
0 0 3

⎤
⎥⎥⎦

⎡
⎣
1 −1 −1
0 1 0
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Replacing C3 by C3 − 2C2, we transform it to

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1

−1 0 1 0
−2 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 −1
0 0 3

⎤
⎥⎥⎦

⎡
⎣
1 −1 1
0 1 −2
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Finally, replacing R3 by −R3, and then R4 by R4 − 3R3, we transform it to

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
1 0 −1 0

−5 1 3 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

⎡
⎣
1 −1 1
0 1 −2
0 0 1

⎤
⎦

⎤
⎥⎥⎦ .

Thus, A reduces to the normal form

[
I3
O1 3

]
.

Further, the required nonsingular matrices P and Q are given by

P =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
1 0 −1 0

−5 1 3 2

⎤
⎥⎥⎦ ,
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and

Q =
⎡
⎣
1 −1 1
0 1 −2
0 0 1

⎤
⎦ .

2.7 Congruent Reduction of Symmetric Matrices

Definition 2.7.1 A square matrix A is said to be congruent to a matrix B if there is
an invertible matrix P such that PAPt = B.

Observe that if A is symmetric, then PAPt is also symmetric.

Theorem 2.7.2 Every symmetric matrix A with entries in a field F of characteristic
different from 2 is congruent to a diagonal matrix.

Proof The proof is algorithmic. Let us recall that applying an elementary row oper-
ation on A is equivalent to multiply from left the corresponding elementary matrix
E, and applying the same type of elementary column operation on A is equivalent to
multiply the matrixA from right by the elementary matrixEt (note that if we apply an
elementary row operation on the identity matrix and take its transpose, then it is the
same as apply the same elementary column operation on the identity matrix). Thus,
it is sufficient to show that a symmetric matrix with entries in a field F of character-
istic different from 2 can be reduced to a diagonal matrix by applying successively
elementary row followed by the same type of elementary column operations. Let A
be a symmetric matrix with entries in F, where characteristic of F if different from
2. If A = 0, then there is nothing to do. Suppose that A �= 0. We may suppose that
a11 �= 0, for if not, suppose that aij = aji �= 0, then adding the ith row to the first
row, and then adding the ith column to the first column the first row first column entry
becomes 2aij �= 0 (note that the characteristic F �= 2). Then, for each i �= 1, adding
−ai1a

−1
11 times the first row to the ith row, and −ai1a

−1
11 times the first column to the

ith column, we reduce the matrix to a symmetric matrix matrix in which all entries in
the first row (and so also in the first column) except a11 is 0. Now, if aij = 0 for all
i, j ≥ 2, we have reduced it to a diagonal matrix. If not, using the previous argument,
we may take a22 �= 0, and then for i �= 2 reduce all the entries ai2 = a2i = 0.
Proceeding inductively we reduce the matrix A to a diagonal matrix. �

Taking Q = P−1, we get the following corollary.

Corollary 2.7.3 Every symmetric matrix A with entries in a field of characteristic
different from 2 can be decomposed as A = QDQt, where Q is an invertible matrix,
and D is a diagonal matrix. �

Remark 2.7.4 The theorem does not hold over a field of characteristic 2. Consider
the matrix [

0 1
1 0

]
.
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Suppose that [
a b
c d

] [
0 1
1 0

] [
a c
b d

]
=

[
p 0
0 q

]
.

Equating the corresponding entries p = ba + ab, q = dc + cd, da + cb = 0 =
bc + ad. Since the field is of the characteristic 2, p = 0 = q. In turn,

[
a b
c d

] [
0 1
1 0

] [
a c
b d

]
=

[
0 0
0 0

]
.

But, then [
a b
c d

]

is singular.

We illustrate the algorithm of congruent reduction by means of an example.

Example 2.7.5 Let A be a symmetric n × n matrix. To find a nonsingular matrix P
such that PtAP is a diagonal matrix, we proceed as follows: We start with a row
with 3 columns, the first column In, the second column A, and the third column In.
We reduce the matrix A in to a diagonal form by successive elementary row and
corresponding elementary column operations as described in the above theorem.
Whenever we apply an elementary row operation on A, we apply the same operation
on the matrix in the first column, and keep the matrix in third column as it is, and
whenever we apply elementary column operation we apply the same operation on
the matrix in the third column, and keep the first column as it is. In this process as
soon as A reduces to a diagonal matrix, the first column reduces to P, and the third
column, then will be Pt . Further, PAPt is a diagonal matrix. Consider, for example,
the matrix

A =
⎡
⎣
0 1 2
1 0 1
2 1 0

⎤
⎦

and the triple

[
I3 A I3

]

If we apply the following elementary operations
1. R1 −→ R1 + R2,
2. C1 −→ C1 + C2,
3. R2 −→ R2 − 1

2R1,
4. C2 −→ C2 − 1

2C1,
5. R3 −→ R3 − 3

2R1,
6. C3 −→ C3 − 3

2C1,
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7. R3 −→ R3 − R2,
8. C3 −→ C3 − C2,

successively, on the triple (
I3 A I3

)
,

then the triple of matrices reduce to the triple

⎡
⎣

⎡
⎣

1 1 0
− 1

2
1
2 0

−1 −2 −1

⎤
⎦

⎡
⎣
2 0 0
0 − 1

2 0
0 0 −4

⎤
⎦

⎡
⎣
1 − 1

2 −1
1 1

2 −2
0 0 1

⎤
⎦

⎤
⎦ .

Thus, A is congruent to diag(2,− 1
2 ,−4), and P is the matrix

⎡
⎣

1 1 −0
− 1

2
1
2 0

−1 −2 1

⎤
⎦ .

Further, take L = P−1 and D = diag(2,− 1
2 ,−4), then A = LDLt . Note that L is

not a lower triangular matrix. However, if we consider the matrix

A =
⎡
⎣
1 1 2
1 0 1
2 1 0

⎤
⎦

with the triple (
I3 A I3

)

of matrices and apply the following elementary operations on each member of the
triple to reduce A to a diagonal matrix.

1. R2 −→ R2 − R1 and R3 −→ R3 − 2R1,
2. C2 −→ C2 − C1 and C3 −→ C3 − 2C1,
3. R3 −→ R3 − R2,
4. C3 −→ C3 − C2.

Then the triple of matrices reduce to the triple

⎛
⎝

⎡
⎣

1 0 0
−1 1 0
−1 −1 1

⎤
⎦

⎡
⎣
1 0 0
0 −1 0
0 0 −3

⎤
⎦

⎡
⎣
1 −1 −1
0 1 −1
0 0 1

⎤
⎦

⎞
⎠

Thus, A is congruent to diag(1,−1,−3) and P is the matrix

⎡
⎣

1 0 −0
−1 1 0
−1 −1 1

⎤
⎦
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Further, take L = P−1 and D = diag(2,− 1
2 ,−4), then A = LDLt . Note that in

this case P and L are lower triangular matrices.

Example 2.7.6 Consider the symmetric matrix

A =
⎡
⎣

3 0 −1
0 1 0

−1 0 3

⎤
⎦

with the triple (
I3 A I3

)

of matrices and apply the following elementary operations on each member of the
triple to reduce A to a diagonal matrix.

1. R3 −→ R3 + 1
3R1 and

2. C3 −→ C3 + 1
3C1.

Then the triple of matrices reduce to the triple

⎛
⎝

⎡
⎣
1 0 0
0 1 0
1
3 0 1

⎤
⎦

⎡
⎣
3 0 0
0 1 0
0 0 8

3

⎤
⎦

⎡
⎣
1 0 1

3
0 1 0
0 0 1

⎤
⎦

⎞
⎠

Here again, P is a lower triangular matrix and the diagonal matrixD has all diagonal

entries positive. As such, if we take L = P−1
√
D, where

√
D = Diag(

√
3, 1,

√
8
3 ,

then A = LLt . Later we shall describe those symmetric matrices which can be
expressed as LLt , where L is a lower triangular matrix.

Exercises

2.7.1 Give two bases of the vector spaceMnm(F) of n × mmatrices with entries in
a field F over the field F.

2.7.2 Find a basis, and so also the dimension of the vector space Sn(F) of n × n
symmetric matrices with entries in a field F.

2.7.3 Let F be a field of characteristic different from 2. Find a basis, and so also
the dimension of the vector space SSn(F) of n × n skew symmetric matrices with
entries in a field F. Do the same for fields of characteristic 2. Are they same?

2.7.4 Let A be a n × mmatrix. Consider the subsetW = {B ∈ Mmp | AB = 0np}
of Mmp. Show that W is a subspace of Mmp. Further, show that the dimension of W
is pn(A), where n(A) denotes the nullity of A.

2.7.5 Show that every square matrix A with entries in a field F of characteristic
different from 2 is uniquely expressible as sum of a symmetric matrix, and a skew
symmetric matrix. Deduce that vector space Mn(F) is direct Sn(F) ⊕ SSn(F).
Hint. A = A+At

2 + A−At

2 .
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2.7.6 Find a basis, and so also the dimension of the vector space UTn(F) of upper
triangular matrices over F.

2.7.7 The sum of the diagonal entries of a square matrix A is called the Trace of
A, and it is denoted by Tr(A). Let sl(n,F) denote the set of n × n matrices with
trace 0. Show that sl(n,F) is a vector space with respect the addition of matrices and
multiplication by scalars. Find a basis of sl(n,F), and so also its dimension.

2.7.8 Let A and B be square n × nmatrices. Show that Tr(AB − BA) = 0. Deduce
that AB − BA is never identity matrix. Show by means of an example that it may be
a nonsingular diagonal matrix.

2.7.9 Show by means of an example that AAt need not be same as AtA.

2.7.10 Consider the co-diagonal n × nmatrix�n = [aij], where aij = 1 if i + j =
n + 1, and aij = 0, otherwise. Show that �n is symmetric and �2

n = In. What is
the matrix �nA�n.

2.7.11 Describe all 2 × 2 matrices A such that A2 = 02.

2.7.12 LetA be a strictly upper (lower) triangular n × nmatrix. Show thatAn = 0n.

2.7.13 Let A be a square n × nmatrix which is nilpotent in the sense that Am = 0n
for some m. Show that In + A is invertible. Show that

In + A + A2 + · · · + Am−1

is the inverse of A. Is the converse of this statement true? Support.

2.7.14 Let A = [aij] be a square n × n matrix which commutes with e12. Show
that a12 = 0 = a21, and a11 = a22. Show that a matrix commutes with all eij if
and only if it is a scalar matrix. Show also that the matrices which commute with all
transvections are precisely scalar matrices. Deduce that the center Z(GL(n,F)) is
precisely {aIn | a ∈ F�}.
2.7.15 Find a basis, and so also the dimension of the subspaces of R4 generated by
the following subsets:

(i) {(1, 0, 2, 1), (2, 1, 3, 2), (7, 4, 9, 5), (1, 5, 6, 1)},

(ii) {(1, 1, 1, 1), (1, 0, 2, 3), (1, 0, 4, 9), (1, 0, 8, 27)}.
2.7.16 Reduce the following matrices in to reduced row echelon form. Find the
bases of their row spaces, column spaces, and Null spaces. Find their rank, and the
nullities. Further, for each of the matrices A, find an invertible matrix P such that PA
is a reduced row echelon form of A.
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⎡
⎢⎢⎣
0 0 3 −3 −3
2 4 3 3 1
2 4 3 3 3
1 2 2 1 2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 1 1
0 1 2 3
1 0 −1 0

−5 1 3 2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎦

2.7.17 Check if the following systems of linear equations are consistent, and if so
find their general solutions.

1.
x1 + 3x2 + 4x3 = 1.
2x1 − x2 + x3 = 2.
4x1 + x2 − x3 = 0.
8x1 − 3x2 + x3 = 3.

2.
x1 + 2x2 + x3 + 2x4 + x5 = 2.
2x1 + 4x2 + 3x3 + 3x4 + x5 = 8.
2x1 + 4x2 + 4x3 + 2x4 + 2x5 = 8.
x1 + 2x2 + 2x3 + x4 + 2x5 = 2.

3.
4x1 − 15x2 − 2x3 − 32x4 = −40.

x1 − 2x2 − 3x4 = −4.
−3x1 + 16x2 + 3x3 + 38x4 = 46.
x1 − 6x2 − x3 − 14x4 = −17.

2.7.18 Find the value of a, if possible, for which the following system of linear
equations is consistent.

4x1 − 15x2 − 2x3 − 32x4 = −40.
x1 − 2x2 − 3x4 = −4.

−3x1 + 16x2 + 3x3 + 38x4 = 46.
x1 − 6x2 − x3 − 14x4 = a.

2.7.19 Check if the matrices in exercise 16 have LU decompositions and if so find
their LU decompositions.

2.7.20 Express each of the following symmetric matrices as PDPt , where P is a
nonsingular matrix, and D a diagonal matrix. Which of the matrices are expressible
as LDLt , where L is a lower triangular matrix. Also express them, if possible, as LLt ,
where L is a lower triangular matrix.
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⎡
⎣
1 0 1
0 1 1
1 1 3

⎤
⎦ ,

⎡
⎢⎢⎣
1 1 1 1
1 1 2 3
1 2 1 3
1 1 3 2

⎤
⎥⎥⎦ ,

⎡
⎣
0 1 2
1 0 1
2 1 0

⎤
⎦

⎡
⎢⎢⎣
1 2 3 4
2 6 7 8
3 7 11 12
4 8 12 16

⎤
⎥⎥⎦

2.7.21 Find themaximum number of arithmetic operations needed to reduce a 3 × 3
matrix into reduced row echelon form. Generalize it to n × n matrices.

2.7.22 Write a program in C-Language to check if a system of linear equations is
consistent, and if so to find a general solution.

2.7.23 Write a program in C-Language to check if a matrix A admits LU decom-
position, and if so to find it.

2.7.24 Write a program in C-Language to check if a symmetric matrix A admits LLt

decomposition, and if so to find it.
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