Chapter 2
Literature Review

Abstract This chapter discusses some of the key issues in breath analysis and
reviews some previous research work in the areas which are particularly relevant
to the present study. Following a brief introductory overview of the field, the chapter
first presents the development of breath analysis. Traditional approaches like GC
which have been used to analyze the compounds of breath and identify several dis-
eases are then described. This is followed by a detailed introduction of current major
approaches, e-noses, for breath analysis. The final section gives a short summary of
the chapter.

Keywords Breath analysis * Electronic olfaction * Therapy monitoring + Chemical
sensor * Disease identification

2.1 Introduction

Breath analysis is the examination of breath for the presence of certain compounds
to determine the presence of some diseases and conditions in the human body. The
breath is largely composed of oxygen, carbon dioxide, water vapor, nitric oxide, and
numerous VOCs (Cao and Duan 2007). The type and quantity of the VOCs in the
breath of any particular individual will vary but there is nonetheless a comparatively
small common core of breath which is present in all humans (Phillips et al. 1999b).
The molecules in an individual’s breath may be exogenous or endogenous depend-
ing on their origin (Miekisch and Schubert 2006). Exogenous molecules are those
that have been inhaled or ingested from the environment or other sources such as air
or food and are hence of no diagnostic value (Risby and Solga 2006). Endogenous
molecules are produced by metabolic processes. They pass from the blood through
the alveolar pulmonary membrane and enter the alveolar air. As a result, the mole-
cules in the breath have a direct relationship with their types, concentrations, volatil-
ities, lipid solubility, and rates of diffusion when they circulate in the blood and cross
the alveolar membrane (Sehnert et al. 2002). Table 2.1 summarizes the typical com-
positions from the breath of healthy persons and their concentrations (Phillips et al.
1999b, Risby and Solga 2006). Changes in the concentration of these molecules can
suggest various diseases or at least changes in the metabolism.
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Table 2.1 Typical compositions from the breath of healthy persons and their concentrations

Concentration (v/v)

Percentage

Oxygen, water, carbon dioxide

Parts-per-million

Acetone, carbon monoxide, methane, hydrogen, isoprene,
benzenemethanol

Parts-per-billion

Formaldehyde, acetaldehyde, 1-pentane, ethane, ethylene, other
hydrocarbons, nitric oxide, carbon disulfide, methanol, carbonyl sulfide,
methanethiol, ammonia, methylamine, dimethyl sulfide, benzene,
naphthalene, benzothiazole, ethane, acetic acid

Table 2.2 Physiological origins of some endogenous breath molecules

Breath molecules

Physiological origins

Acetaldehyde Ethanol metabolism

Acetone Decarboxylation of acetoacetate
Ammonia Protein metabolism

Carbon disulfide Gut bacteria

Carbon monoxide Production catalyzed by heme oxygenase
Carbonyl sulfide Gut bacteria

Ethane Lipid peroxidation

Ethanol Gut bacteria

Ethylene Lipid peroxidation
Hydrocarbons Lipid peroxidation/metabolism
Hydrogen Gut bacteria

Isoprene Cholesterol biosynthesis
Methane Gut bacteria

Methanethiol Methionine metabolism
Methanol Metabolism of fruit
Methylamine Protein metabolism

Nitric oxide

Production catalyzed by nitric oxide synthase

Pentane

Lipid peroxidation

By studying the components of the breath, much can be learnt about the over-
all state of an individual’s metabolism or physical condition. Table2.2 presents
some physiological origins of endogenous breath molecules (Risby and Solga 2006).
These molecules are considered as biomarkers of the presence of diseases and clin-
ical conditions. For instance, nitric oxide in breath can be measured as an indicator
of asthma or other conditions characterized by airway inflammation (Deykin et al.
2002). Breath isoprene is significantly lower in cystic fibrosis patients with acute res-
piratory exacerbation (McGrath et al. 2000). Increased pentane and carbon disulfide
have been observed in the breath of patients with schizophrenia (Phillips et al. 1993).
Acetone has been found to be more abundant in the breath of diabetics (Deng et al.
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2004; Fleischer et al. 2002), and breath ammonia is significantly elevated in patients
with renal diseases (Davies et al. 1997). By detecting these molecules in breath, one
can identify the diseases in an early stage and monitor their development.

Breath analysis has many advantages compared with other traditional methods
such as blood and urine tests, including the following major ones. First, breath analy-
sis is a noninvasive method, and it causes the least harm to both the subjects and the
personnel who collect the samples. Second, its result can be obtained immediately,
and third, the only requirement to collect a breath sample is that the subject must be
breathing (Van Berkel et al. 2008). Therefore, increasing interest has been expressed
about the applications of breath analysis in medicine and clinical pathology, both as
a diagnostic tool and as a way to monitor the progress of therapies (Di Francesco
et al. 2005; Dweik and Amann 2008).

2.2 Development of Breath Analysis

The breath analysis for the purpose of diagnosis has a long history. The ancient Greek
physicians already knew that human breath could provide clues to diagnosis (Phillips
1992). For example, doctors in ancient Greece knew the existence of sweet breath
was a dangerous sign and modern clinicians know that exhaled air from patients with
diabetic ketoacidosis smells sweet like rotting apples. Ancient Greek physicians also
recognized musty and fishy odors indicated a problem with liver, a urine-like smell
indicated failing kidneys, and a putrid stench indicated a lung abscess. Olfaction
diagnosis is also one of the basic diagnostic methods of Chinese Traditional Medi-
cine, which has a history of 5000 years. The ancient Chinese doctors stated that the
aroma of human breath could indicate the condition of the human body (Zhufan
2000). They found that foul breath is due to pathogenic heat in the stomach or indi-
gestion and sour breath indicates food accumulation in the stomach.

Modern breath analysis started in the 1970s when Pauling et al. (1971) pioneered
the analytical assessment of breath components by the GC analysis of exhaled air
and identified more than 200 compounds in human breath exhaled after passing the
blood/air interface within the lungs. Some of these compounds were associated with
different pathological conditions.

With the technical progress of various analytical methods such as GC and the
sensor system during the past few decades, breath measurement by GC and e-nose
have become two common approaches. GC is a chemical analysis instrument for
separating chemicals in a complex sample. By coupling with a detector, like Mass
Spectrometry (MS) or Flame Ionization Detection (FID), it can positively identify
the actual presence of a particular substance in a given sample. Despite its excellent
sensitivity, GC usually requires the preprocessing of breath samples and separation
for addressing target analytes, which renders this method less suitable for analyzing
samples in real time. Besides, GC is expensive and hard to move. It requires skilled
operators and qualified expert’s interpretation. Therefore, it is difficult to implement
GC as an online screening and quick diagnosis tool. For these reasons, e-nose might
provide an alternative means of breath analysis.
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E-nose utilizes chemical sensors to obtain ‘smell-prints’ of various gaseous
sources and distinguish them with the help of pattern recognition algorithms, pro-
viding discrimination of gas mixtures irrespective of the individual molecular com-
ponents. Compared with GC, e-nose measurement is regarded as a nonspecific test
which principally follows an empirical approach. Although largely qualitative or
semi-quantitative in nature, such approach is ideal for rapid screening for infectious
diseases because the results can be obtained in minutes, rather than the days taken
by traditional techniques (Turner and Magan 2004).

In the following sections, the current literatures about breath analysis by using
both GC and e-nose are reviewed in detail. The reviewed contents are categorized
according to the type of the diseases.

2.3 Breath Analysis by GC

In virtue of GC or GC linked with Mass Spectrometry (GC/MS), researchers can find
out which biomarkers indicate some diseases and explain the pathological mecha-
nisms associated with these diseases. The list of diseases reported below, is related
to a series of works found in literature. Each of diseases is associated with certain
biomarkers, which can be detected by GC or GC/MS.

2.3.1 Lung Cancer

In the past two decades, a noteworthy body of research about breath analysis has
been oriented toward the identification of some particular VOCs as markers of lung
cancer, one reason may be that the lung has a close connection with breath.

As early as 1985, by using a specially developed breath collection technique and
computer-assisted GC/MS, Gordon et al. (1985) identified 22 VOC:s, such as hexane,
methylpentane, and benzene derivatives, in the exhaled air of patients with lung can-
cer. The GC/MS profiles of 12 diseased samples and 17 controlled samples were ana-
lyzed to distinguish patients from controlled group with the accuracy of over 80%.

Three years later, in 1988, O’Neill et al. (1988) also analyzed the compounds
of exhaled breath from both lung cancer patients and healthy subjects, in virtue of
GC/MS, and classified the compounds into 16 chemical classes, and then sorted all
compounds into these chemical classes and classified the compounds at the >75%
and >90% occurrence levels. Both the occurrence-rate components were then eval-
uated as diagnostic markers in a discriminant function model.

About a decade later, in 1999, Phillips et al. (1999a) collected breath samples from
108 patients with an abnormal chest radiograph and analyzed them by GC. The inves-
tigation found that a combination of 22 breath VOCs, predominantly alkane, alkane
derivatives, and benzene derivatives, could discriminate between patients with and
without lung cancer with 100% sensitivity and 81.3% specificity.
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Table 2.3 The definition of sensitivity and specificity
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Test outcome . e
— - Sensitivity Specificity
Positive Negative
Actual Positive tp fn p m
condition Negative fr tn tp+ fn m+fp

It is necessary to introduce the definition of sensitivity and specificity. In medi-
cine, the reliability of a diagnosis is measured in terms of sensitivity and speci-
ficity, with the outcome being either positive (unhealthy) or negative (healthy). In
the classification, the number of genuine sick subjects is denoted #p; misidentified
healthy subjects is fp; genuine healthy subjects is #n; the misdiagnosed sick subjects
is denoted as fi (Blatt et al. 2007). Sensitivity and specificity are thus defined as in
Table2.3.

And then, in 2003, to evaluate VOCs in the breath as tumor markers in lung can-
cer, Phillips et al. investigated the breath compounds of 178 bronchoscopy patients
and 41 healthy volunteers by using GC (Phillips et al. 2003a). In this study, the num-
ber of biomarkers of lung cancer was reduced to nine in comparison with the report
issued in 1999 (Phillips et al. 1999a). The results showed that a predictive model
employing the nine VOCs could identify the primary lung cancer with a sensitivity
of 89.6% and a specificity of 82.9%.

In these studies, it turned out that some specific compounds occur in anomalous
concentration in the breath of lung cancer patients.

2.3.2 Lipid Peroxidation

Alkanes (principally ethane and pentane) in the breath result from cellular injuries
which cause an intracellular accumulation of oxygen-free radicals and accelerated
peroxidation of polyunsaturated fatty acids (Van Gossum and Decuyper 1989). The
peroxidation of lipids may result in membrane injury, with the dysfunction and death
of the affected cells. From 1991, several research groups started to find the connec-
tion between the breath pentane and diseases related to lipid peroxidation.

Weitz et al. (1991) first measured pentane in the breath of 10 healthy control
subjects and 20 consecutive patients with suspected acute myocardial infarction. The
results showed the breath pentane concentration was higher in the acute myocardial
infarction group than in the patient control and healthy control groups.

Then, by using a GC, Sobotka et al. (1993a) measured compounds in the breath
of patients with chronic heart failure (CHF) and age matched controls in 1993, and
found out that the patients with CHF excreted high concentrations of pentane.
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In the same year, to determine the concentrations of pentane and other VOCs in
the breath of patients with schizophrenia, Phillips et al. (1993) measured the exhaled
breath in 25 patients with acute schizophrenic psychosis, 26 patients with psychiatric
disorders other than schizophrenia, and 37 normal volunteers by GC/MS. The results
demonstrated that the mean alveolar gradients of pentane and carbon disulfide were
significantly higher in the patients with schizophrenia than in the control groups. As
a result, schizophrenia could be detected by measuring the concentration of pentane
and carbon disulfide in breath.

Next year, in 1994, Sobotka et al. (1993b) studied 37 consecutive outpatients with
stable cardiac allograft function. Breath pentane levels were measured with GC. The
investigation found out that breath pentane could be measured as a potential marker
of acute cardiac allograft rejection.

In 1995, Phillips et al. (1995) first combined GC with a self-designed Breath Col-
lecting Apparatus (BCA) to analyze the breath samples. The composition of the sub-
ject database was the same as Ref. Phillips et al. (1993). Pattern recognition models
using 11 VOCs, such as 2-methylbatane, pentane, and dichloromethane, identified
the patients with schizophrenia with a sensitivity of 80% and a specificity of 61.9%.
The paper also indicated that the VOCs in breath were not significantly affected by
drug therapy, age, sex, smoking, diet, or race.

In 1997, to determine if exhaled pentane levels were increased in acute asthma,
Olopade et al. (1997) collected 12 acute asthma patients, 11 stable asthma patients,
and 17 normal control subjects and analyzed them using a GC. The result showed
exhaled pentane levels were similar in patients with stable asthma and in normal
control subjects, while the levels were increased in patients with acute asthma.

In 2003, by using GC, Phillips et al. (2003c) analyzed breath VOCs in 30 patients
with unstable angina confirmed by coronary angiography and in 38 age-matched
healthy volunteers. They selected 8 VOCs, like pentane and hexane as biomarkers to
construct a predictive model that correctly classified unstable angina patients with a
sensitivity of 90% and a specificity of 73.7%.

2.3.3 Renal Diseases

This kind of disease is due to the inability of kidneys to filter blood substances,
resulting in the accumulation of nitrogen-bearing waste products (urea), which are
usually excreted in urine and blood. It then eventually causes ammoniacal breath of
patients.

In 1997, Davies et al. (1997) used selected ion flow tube(SIFT) technique to quan-
tify ammonia on the breath of 23 patients with end-stage renal failure. The study
showed several compounds were present in patients’ breath samples, including amine
and alcohol, and in quantitative terms ammonia was by far the most significant abnor-
mality. The study also monitored the reduction of breath ammonia during hemodial-
ysis. Accordingly, ammonia can be regarded as a critical biomarker to detect renal
failure and monitor the medical treatment of this disease.
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2.3.4 Liver Diseases

Liver diseases were first investigated by Sehnert et al. (2002), based on abnormal
concentrations of metabolic products in exhaled breath. Exhaled breath collected
from 86 liver diseases patients and 109 healthy subjects were analyzed by GC. The
experiments showed that subjects with chronic liver diseases could be differentiated
from those with normal liver function by comparing the levels of breath carbonyl
sulphide, carbon disulphide, and isoprene. These differences were confirmed and
correlated by comparing the levels with standard clinical blood markers of liver dis-
eases.

2.3.5 Breast Cancer

Breast cancer is accompanied by increased oxidative stress and induction of poly-
morphic cytochrome P-450 mixed oxidase enzymes (CYP) (Phillips et al. 2003b).
Both processes affect the abundance of VOCs in the breath because oxidative stress
causes lipid peroxidation of polyunsaturated fatty acids in membranes, producing
alkanes and methylalkanes which are catabolized by CYP (Phillips et al. 2003b).

In 2003, Phillips, et al. (2003b) collected 201 breath samples from women with
breast cancer and analyzed them by GC/MS in order to determine the volatile mark-
ers of breast cancer. Eight breath VOCs, like nonane and tridecane, 5-methylused
were used to identify this disease. The breath test distinguished between women with
breast cancer and healthy volunteers with a sensitivity of 94.1% and a specificity of
73.8% (Phillips et al. 2003b).

2.3.6 Diabetes

It has long been known that the blood of diabetics contains acetone. Diabetes occurs
when the glucose produced by the body cannot enter the bloodstream to provide
energy to cells. Glucose enters the cells of body with the help of insulin. If the body
is not producing insulin (type 1 diabetes), or the body becomes less responsive to
insulin (type 2 diabetes), glucose cannot get into the cells. As a result, the cells have
to use fat as an energy source. In the process of metabolizing fat for energy, one of the
by-products is ketones. When ketones are accumulated in the blood, it first causes
ketosis, and then progresses to ketoacidosis, a form of metabolic acidosis (Laffel
1999). There are three ketone bodies—acetoacetate, acetone, and f-hydroxybutyrate
in the blood. Among them, f-hydroxybutyrate is the predominant ketone present in
severe diabetic ketoacidosis (Umpierrez et al. 1995).

As early as 1969, Tassopoulos et al. (1969) measured the breath acetone of 251
diabetics after overnight fasting, by using GC. At the same time, the authors also
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measured the patients’ venous f-hydroxybutyrate and blood glucose values, and
showed that the concentration of breath acetone has quite a high correlation with
both venous f-hydroxybutyrate and blood glucose values.

The relationship between breath acetone and plasma acetone was confirmed by
Sulway et al. (1970) in 1970, who tested the plasma and breath acetone of 27 diabet-
ics and discovered that the concentration of breath acetone and plasma acetone was
linearly correlated with some scatter at the higher concentration.

Additionally, Crofford et al. (1977) proved that the concentration of acetone in the
head space of the sealed container containing whole blood was approximately equal
to the alveolar air acetone concentration. And then, in 1982, Owen et al. (1982) stud-
ied acetone metabolism in nine diabetic patients in moderate to severe ketoacidosis
and observed that there was a positive linear relationship between the breath acetone
production rate and the plasma acetone concentration. In 2004, Deng et al. (2004)
analyzed the breath of healthy persons and patients with diabetes by using GC/MS.
The results proved that the increased concentration of acetone in diabetics’ breath
could be used as a marker for diagnosis of diabetes.

2.3.7 Pulmonary Tuberculosis

Pulmonary tuberculosis may alter the VOCs in breath because both mycobacteria and
oxidative stress resulting from mycobacterial infection generate distinctive VOCs in
human body (Phillips et al. 2007).

Phillips et al. (2007) studied the breath of patients with pulmonary tuberculosis
to determine if the breath contains biomarkers of this kind of disease in 2007. 130
different VOCs were consistently detected. The most abundant were naphthalene,
1-methyl-, 3-heptanone, etc. These VOCs were assayed by GC/MS in the breath
of 42 patients hospitalized for suspicion of pulmonary tuberculosis and 59 healthy
controls. Pattern recognition methods distinguished the healthy controls from the
hospitalized patients with 100% sensitivity and 100% specificity.

2.3.8 Summary

Table 2.4 summarizes the key breath compounds associated with different disease
types analyzed by both GC and pathological mechanism. Even though the clinical
application of GC might be hampered by the need for expensive analytical equip-
ment, the degree of expertise required to operate such instruments, and the length
of time required to obtain results (Turner and Magan 2004), GC plays a critical role
in confirming these compounds associated with certain diseases. These compounds
not only help explain the pathological mechanism of these diseases, but also are of
benefit to selecting proper sensors when designing the specific breath analysis sys-
tem.
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Table 2.4 Summary of key breath compounds associated with different disease types

Breath compounds Associated conditions
Acetone Diabetes (Deng et al. 2004)
Carbonyl sulphide, carbon disulphide, isoprene | Liver diseases (Sehnert et al. 2002)

Naphthalene, 1-methyl-, 3-heptanone, Pulmonary tuberculosis (Phillips et al. 2007)
methylcyclododecane, etc.

Nonane, tridecane, 5-methyl, undecane, Breast cancer (Phillips et al. 2003b)
3-methyl, etc.

Benzene,1,1-oxybis-, 1,1-biphenyl, 2,2-diethyl, | Lung cancer (Phillips et al. 2003a)
furan, 2,5-dimethyl-, etc.

Ammonia Renal disease (Davies et al. 1997)

Octane, 4-methyl, decane, 4-methyl, hexane, Unstable angina (Salazar 2003)
etc.

Propane, 2-methyl, octadecane, octane, Heart transplant rejection (Phillips et al. 2004)

5-methyl, etc.

Pentane, carbon disulfide Schizophrenia (Phillips et al. 1993)

Pentane Acute myocardial infarction (Weitz et al. 1991)

Pentane Acute asthma (Olopade et al. 1997)

Pentane Rheumatoid arthritis (Humad et al. 1988)

Ethane Active ulcerative colitis (Sedghi et al. 1994)

Nitric oxide Asthmatic inflammation (Baraldi and Carraro
2006)

Nitric oxide, carbon monoxide Bronchiectasis (Kharitonov et al. 1995),
(Horvath et al. 1998)

Nitric oxide COPD (Maziak et al. 1998)

Ethane, propane, pentane, etc. Cystic fibrosis (Barker et al. 2006)

2.4 Breath Analysis by E-Nose

The idea of e-nose was inspired by the mechanisms of human olfaction. In general,
basic elements of an e-nose system include an ‘odor’ sensor array, a data preproces-
sor, and a pattern recognition engine (Craven et al. 1996). Among them, the sen-
sor array, like signal receptors, is the key part of e-nose. The application of sensor
array on odor recognition was demonstrated firstly by Persaud and Dodd (1982).
Currently, e-nose has undergone much development and been used to fulfill a large
number of industrial needs, such as food, chemistry, fragrances, security, and envi-
ronment (Rock et al. 2008). In addition to its contributions to analytical chemistry
and biotechnology, artificial olfaction also has a significant impact on the field of
medicine since the compounds listed in Table 2.4 may be detected by chemical sen-
sors (Dickinson et al. 1998). Recently, the feasibility of using e-noses for monitoring
the health of human and diagnosing diseases in an early stage has been demonstrated
(Lin et al. 2001; Yu et al. 2005; Blatt et al. 2007; Dragonieri et al. 2007).
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As early as 1997, Wang et al. (1997) designed an e-nose with one SnO, thin film
sensor for diabetes diagnosis. The authors tested their device by using the breath
samples collected from 18 patients and 14 healthy persons. The concentration of
blood sugar of the subjects was used as reference. The results showed that the e-nose
was able to diagnose diabetes with a sensitivity of 77.8% and a specificity of 35.7%.

In 2001, Lin et al. (2001) reported a study about the application of e-nose with
six quartz crystal sensors to detect renal diseases. Discriminant Analysis (DA) was
carried out to analyze the sensor signals. The clinical test result showed that the
e-nose could discriminate the breath samples from 30 normal subjects, 83 uremia
patients, and 61 chronic renal disease patients with a total correct classification of
86.78%.

In 2003, Yu et al. (2004) developed an e-nose with two SAW sensors for lung
cancer detection. The breath samples of four patients with lung cancer and four nor-
mal subjects were collected by using Tedlar bags and then pre-concentrated by solid
phase micro extraction (SPME) to increase the sensitivity. The e-nose was calibrated
by 9 VOCs identified as the markers of lung cancer. An Artificial Neural Network
(ANN) was used to recognize the lung cancer patients. The result showed that in four
healthy samples, three of them were recognized correctly and one of them was recog-
nized as suspected patient; in four patients, three of them were diagnosed correctly
and one of them was diagnosed as suspected.

In 2003, Di Natale et al. (2003) used an e-nose composed by eight quartz microbal-
ance (QMB) gas sensors to analyze the breath samples, which were collected from
60 individuals, 35 of them were affected by lung cancer, 18 individuals were mea-
sured as healthy, and 9 were measured after the surgical therapy. The application of
a Partial Least Squares Discriminant Analysis (PLS-DA) found out that 100% lung
cancer-affected patients were classified correctly, 94% healthy individuals were clas-
sified correctly, and 44% of post-surgery patients were classified correctly.

In 2005, Yu et al. (2005) developed a gas analyzing system using four conducting
polymer sensors to analyze the breath samples from three diabetics and three normal
people. The discrimination between patients and normal persons were interpreted by
the PCA plus Euclidean distances with 100% sensitivity and 100% specificity.

In 2005, Machado et al. (2005) investigated exhaled breath of people by using a
commercial e-nose, the Cyrano Sciences’ Cyranose 320, comprising an array of 32
polymer carbon black composite sensors. PCA and Canonical Discriminant Analysis
(CDA) sensor data were used to determine whether exhaled gases could discriminate
between cancer and non-cancer. Support Vector Machine (SVM) analysis was used
to create a cancer prediction model prospectively in a separate group of 76 individu-
als, 14 with cancer, and 62 without cancer. The results showed a sensitivity of 71.4%
and a specificity of 91.9% of lung cancer detection.

In 2007, Dragonieri et al. also used Cyranose 320 to obtain the responses of
exhaled air of patients with asthma and healthy controls. The responses were ana-
lyzed by LDA. Cross-validation values plus Mahalanobis distance were calculated
for classification. The accuracy to classify the mild asthma and young controls is
100%, to classify severe asthma and old controls is 90%, to classify mild and severe
asthma is 65%, and to classify two controlled groups is 50%.
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In 2007, Blatt et al. (2007) reported their work about lung cancer detection by
using an e-nose with 6 MOS sensors. They analyzed the breath of 101 persons, of
which 58 as controls and 43 suffering from different types of lung cancer (primary
and not) at different stages. Nonparametric LDA was used to extract the features of
the sensors’ responses. The features were classified by several supervised pattern
classification techniques, based on different K-nearest neighbor (KNN) approaches,
linear and quadratic discriminant classifiers, and on a feed forward ANN. The
observed results showed an accuracy of 92.6%, a sensitivity of 95.3%, and a speci-
ficity of 90.5% for lung cancer diagnosis.

In 2009, Ogorodnik et al. (2008) analyzed VOCs from a breath sample of a patient
with different lung diseases by using an e-nose with ten MOSFET sensors and four
SnO, sensors. In total, 66 individuals—23 with asthma, 3 with chronic obstructive
pulmonary disease (COPD), 12 with pneumonia, 13 with lung cancer, 4 in the past
operation state (removed lung cancer), and 11 healthy volunteers were tested at two
different times and ANN analysis was employed to classify the samples of cancer
and other lung diseases. The results showed that the e-nose could identify lung can-
cer with 100% accuracy, identify healthy subjects with 100% accuracy, and identify
asthma with 82.6% accuracy.

In 2009, using Cyranose 320, Dragonieri et al. (2009) analyzed the exhaled breath
samples to discriminate patients with lung cancer from COPD patients and healthy
controls. The breath samples were collected from 30 subjects, 10 patients with
non-small cell lung cancer, 10 patients with COPD, and 10 healthy controls. The
responses were analyzed by onboard statistical software. The method could distin-
guish non-small cell lung cancer from COPD and from normal people with 85% and
90% accuracy, respectively.

In 2010, Guo et al. (2010b) designed a breath analysis system, which includes 12
chemical sensors that are specially sensitive to the biomarkers and compositions in
human breath. 108 healthy breath samples, 117 samples from diabetics, 110 sam-
ples from patients with renal diseases, and 110 samples from patients with airway
inflammation were collected. PCA + KNN were used to evaluate the performance.
The results showed that the system was not only able to diagnose these diseases with
quite high accuracy, but in the case of renal failure was also helpful in evaluating the
efficacy of hemodialysis (treatment for renal failure).

In 2010, by using the same system and the same diabetes breath samples, Guo et
al. (2010c) proposed a method of monitoring the blood glucose levels of diabetics
via measuring the concentration of breath acetone. A SVM classifier was used to
evaluate the accuracy of classifying the samples into the groups with different blood
glucose levels. The results indicated that the system was not only able to distinguish
between breath samples from patients with diabetes and healthy subjects, but also
to represent the fluctuation of blood glucose of diabetics. In the same year, Guo
et al. (2010a) improved accuracy of diabetes condition monitoring by using a SRC
method. Coupling with SRC, the system was able to classify these levels with a much
better accuracy than the accuracy reported in Guo et al. 2010c.

In 2013, Saraolu et al. (2013) tried to develop an e-nose with 9 quartz crystal
microbalance (QCM) sensors. The e-nose was used to measure the breath of 30
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diabetes patients. Signals from 6 sensors were normalized then fed into a radial basis
function neural network (RBFNN). The final average accuracy rate was 83.03 and
74.76% for HbA1c parameter predictions and glucose parameter predictions, respec-
tively.

In 2014, an e-nose with 6 MOS sensors, 3 temperature modulated MOS sensors, a

carbon dioxide sensor, and a temperature-humidity sensor was proposed by Yan et al.
(2014). It was optimized for diabetes screening and blood glucose level prediction.
Several optimization strategies, such as sensor selection, humidity and alveolar air
ratio compensation, and inter-subject variance reduction, were implemented. The
sensitivity and specificity of diabetes screening were 91.51% and 90.77%, respec-
tively. The mean relative absolute error for BGL prediction was 21.7%. Experiments
showed that the system was effective and that the strategies adopted in the system
could improve its accuracy.

The same e-nose was further applied to collect breath samples from 5 kinds of
patients, see Table 2.5. They have been proved to be related to certain breath bio-
markers. The paper (Yan and Zhang 2016) proposed drift correction autoencoder
(DCAE) to deal with instrumental variation and complex time-varying drift of e-
noses. Experiments in the paper exhibited the potential of breath analysis systems as
adjunct tools for disease screening.

To sum up, Table 2.5 concludes the current reports about the medical applications
of e-noses.

From Table 2.5, we can see some limitations about the current researches: (1)
Even though some works provided promising disease identification results, the sam-
ple number they used are not enough to provide a stronger statistical evidence to
support the claim. (2) Most of the relevant systems have fewer sensors. We agree
that it is not going to be very useful by simply adding more sensors. But it is nec-
essary to provide a sufficiently redundant amount of sensors thus we can pick up
the most sensitive ones in applications. Consequently, it therefore requires us to add
more sensors in our system and collect enough typical samples for analysis.

2.5 Summary

This chapter reviewed some previous researches about breath analysis. General
breath analysis approaches, like GC and e-nose, were introduced according to the
type of the diseases analyzed. And some summaries were made about the disease
biomarkers and current approaches. From these summaries, we can see that even
though all of these methods work satisfactorily in breath analysis, the results could
possibly be improved. The portable and low cost device is required to achieve a broad
application in breath analysis.
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Table 2.5 The application of e-noses in medicine
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et al. 2005) polymer 3 healthy persons | distances Specificity: 100%
Sensitivity:
Lung cancer 32 carbon black | 14 lung cancer 7?:(1%1\/1 y
(Machado et al. | and polymers SVM o
62 healthy Specificity:
2005) sensors
persons 91.9%
Mild asthma and
10 mild asthma young controls:
100%
Asthma 32 carbon black PCA+Mahala- | Severe asthma -
(Dragonieri et al. | and polymers 10 severe asthma | nobis distances an(;old controls:
2007) Sensors 90%
10 younger Mild and severe
controls asthma: 65%

10 older controls

Two controlled

groups: 50%

Lung cancer
(Blatt et al. 2007)

6 MOS sensors

43 lung cancer

58 controlled
patients

Fuzzy-KNN

Sensitivity:
95.3%

Specificity:

90.5%

(continued)
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Table 2.5 (continued)

Literature Review

Diseases Sensors Database Algorithm Results
6 MOSFET Lung cancer:
sensors 23 asthma 100%
Lung cancer 3 COPD ANN Healthy: 100%
(Ogorodnik et al. 12 pneumonia Others: 82.6%
2008) 4 MOS sensors | 13 lung cancer
4 post surgery
11 healthy
persons
Distinguish lung
10 lung cancer cancer from
Lung cancer 32 carbon black PCA + COPD: 85%
(Dragonieri et al. | and polymers Mabhalanobis "From healthy:
2009) Sensors 10 COPD distances rom heatthy:
90%
10 healthy
controls
Diabetes:
108 healthy sensitivity:
87.67%
ificity:
117 diabetes ggegc;;“y
Diabetes renal 12 MOS sensors PCA+KNN =rr
diseases airway Renz'il.d?seases:
inflammation 110 renal diseases sensitivity:
(Guo et al. 86.57%
2010b) Specificity:
83.47%
110 airway Airway
Inflammation inflammation:
sensitivity:
70.20%
Specificity:
75.07%
90 diabetes: Level 1: 50%
4 level 1 Level 2: 83.67%
Diabetes (Guo 12 MOS sensors | 49 level 2 PCA + SRC Level 3: 60%
et al. 2010a)
20 level 3 Level 4: 76.47%
17 level 4
Diabet HbAlc: 83.
panetes 9 QCM sensors | 30 patients RBFNN c: 83.03%

(Saraoglu et al.
2013)

BG: 74.76%

(continued)
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Diseases Sensors Database Algorithm Results
6 MOS sensors Diabetes: 82.16%
3 temperature
modulated MOS CKD: 84.27%
Blood glucose Sensors 295 healthy PCA + SVM
(BG) and HbA‘lC 1 carbon dioxide 279 diabetes Cardiopathy:
level for diabetics
sensor 89.94%

(Yan et al. 2014)

1 temperature-
humidity sensor

Lung cancer:

81.34%

Breast cancer:

82.92%

6 MOS sensors

125 healthy

Diabetes: 82.16%

Diabetes 3 temperature DCAE + logistic |
chronical kidney | modulated MOS | 431 diabetes regression CKD: 84.27%
disease (CKD) Sensors

cardiopathy lung |1 carbon dioxide W
cancer breast sensor 340 CKD 89.94%

cancer (Yan and

Lung cancer:

Zhang 2016 97 cardiopath
g ) 1 temperature- carciopaty %
humidity sensor | 156 lung cancer Breast cancer:
215 breast cancer 82.92%
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