
Chapter 2
Black Hole Solutions

In 4-dimensional general relativity and in the absence of exotic fields, black holes are
completely described by three parameters: the mass M , the spin angular momentum
J , and the electric charge Q. This is the conclusion of the no-hair theorem, which
holds under specific assumptions. Violations of the no-hair theorem are possible. For
instance, hairy black holes naturally emerge in the presence of non-Abelian gauge
fields or of fields non-minimally coupled to gravity.

Starting from the Oppenheimer-Snyder model, which describes the gravitational
collapse of a homogeneous ball of dust, we know how the complete collapse of a
body forms a black hole with a central spacetime singularity. In extensions of general
relativity, the picture of the collapse of a massive body may be somewhat different.
It is possible that, strictly speaking, black holes cannot form, but only temporary
apparent horizons can be created. The latter can however be interpreted as event
horizons if the observation time is much shorter than the lifetime of the apparent
horizon.

2.1 Definition of Black Hole

Roughly speaking, a black hole is a region of the spacetime in which gravity is so
strong that it is impossible to escape or send information to the exterior region. A
more technical definition is the following:

A black hole in an asymptotically flat spacetimeM is the set of events that do
not belong to the causal past of the future null infinity J−(I +), namely

B = M − J−(I +) �= ∅ . (2.1)

The event horizon is the boundary of the region B.
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14 2 Black Hole Solutions

This definition of black hole uses the concepts developed by Penrose for study-
ing causality and asymptotic properties of asymptotically flat spacetimes [49]. See
also [42].I + indicates the future null infinity,1 namely the region toward which out-
going null lines extend. Heuristically, in spherical-like coordinates, it is the region
t + r → ∞ at finite t − r . J−(P) is called the causal past of the region P and
is the set of all events that causally precede P; that is, there exists at least one
smooth future-directed time-like curve extending from any element in J−(P) to
P . All future-directed curves (either time-like or null) starting from the region B
fail to reach null infinity I +. A black hole is thus an actual one-way membrane: if
something crosses the event horizon it can no longer send any signal to the exterior
region.

The event horizon is a global property of an entire spacetime and it can be only
determined if we know the whole spacetime, including the faraway future. It has
thus no direct observational implications and, for this reason, it is often not a very
useful concept in many studies. The apparent horizon is instead a local property of
the spacetime and is slicing-dependent. Here we do not discuss all the details, which
can be found, for instance, in [7, 42, 50, 60].

Let us consider a 3 + 1 foliation of the spacetime. A trapped surface is a smooth
closed 2-dimensional surface in a 3-dimensional space-like slice such that all null
geodesics emanating from this surface are pointing inwards. The trapped region is
the union of all the trapped surfaces of the slice. The apparent horizon is the outer
boundary of the trapped region. Figure2.1 shows a simple sketch illustrating these
concepts. Outward-pointing light rays behind an apparent horizon thusmove inwards
and therefore they cannot cross the apparent horizon. In the case of an event horizon,
the light raysmay initiallymove outwards and then inwards at some later time. Under
certain conditions, the existence of an apparent horizon implies that the slice contains
an event horizon; however, the converse may not be true [61].

As it will be discussed in Sect. 2.5, it is possible that black holes cannot form
in the Universe, but only apparent horizons can be created. Nevertheless, human
observations may be completely unable to check the actual nature of the horizon of
astrophysical black holes because any real observation only lasts for a finite time,
which may be much shorter than the timescale necessary to distinguish the two
scenarios.

An event horizon is a null surface in spacetime. Let us introduce a scalar function
f such that at the event horizon f = 0. The normal to the event horizon is nν = ∂μ f
and is a null vector. The condition for the surface f = 0 to be null is [12, 55]

gμν
(
∂μ f

)
(∂ν f ) = 0 , (2.2)

where gμν is the metric of the spacetime. In general, one can find the event horizon
of a spacetime by integrating null geodesics backwards in time, see [12, 55] for the

1The symbol I is usually pronounced “scri”.
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Fig. 2.1 Sketch of a 3-dimensional space-like slice with a trapped region (hatched area). Inside the
trapped region, there are trapped surfaces. The outer boundary of the trapped region is the apparent
horizon (red closed curve). The green arrows represent null geodesics. All the null geodesics
emanating from the surfaces inside the trapped region move inwards. In the case of the surface
outside the trapped region (black closed curve outside the hatched area), we see that the arrows can
point either outwards or inwards. See the text for more details

details. In the case of a stationary and axisymmetric spacetime,2 the procedure can
significantly simplify. In a coordinate system adapted to the two Killing isometries
(stationarity and axisymmetry), and such that f is also compatible with the Killing
isometries, Eq. (2.2) reduces to

grr (∂r f )2 + 2grθ (∂r f ) (∂θ f ) + gθθ (∂θ f )2 = 0 (2.3)

in spherical-like coordinates (t, r, θ, φ). The surfacemust be closed and non-singular
(namely geodesically complete) in order to be an event horizon and not just a null
surface.

If we assume that there is a unique horizon radius for any angle θ (Strahlkörper
assumption), we can write f as f = r − H(θ), where H(θ) is a function of θ only
and the event horizon is rH = H(θ); see [12, 55] for the details and the limitations
of the Strahlkörper assumption. The problem is thus reduced to finding the solution
of the differential equation

grr + 2grθ

(
d H

dθ

)
+ gθθ

(
d H

dθ

)2

= 0 . (2.4)

2A space-time is stationary if it posses a time-like Killing vector field, and is static if it posses a
hypersurface-orthogonal time-like Killing vector field. It is always possible to choose coordinates
in which the time-like Killing vector field is ∂t . In this case, in a stationary spacetime the metric
is invariant under translations in t , namely the metric coefficients are independent of t . In a static
spacetime, the time-like Killing vector is orthogonal to the hypersurfaces of constant t , which
implies g0i = 0.
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Reference [30] argues that the event horizon equation grr = 0 (valid, for instance,
in the Kerr spacetime in Boyer–Lindquist coordinates) would hold whenever the
surfaces r = const. have a well-defined causal structure, in the sense that any surface
r = const. must be null, space-like, or time-like. In such a case, the surface r = H
would be null and would correspond to the event horizon, the surfaces r = const.
at larger radii would be all space-like, and the surfaces r = const. at smaller radii
would be all time-like.

A Killing horizon is a null hypersurface on which there is a null Killing vector
field. In a stationary and axisymmetric spacetime and employing a coordinate system
adapted to the two Killing isometries, the Killing horizon is given by the largest root
of

gtt gφφ − g2
tφ = 0 . (2.5)

In general relativity, the Hawking rigidity theorem shows that the event and the
Killing horizons coincide [22], so Eqs. (2.4) and (2.5) provide the same result. In
alternative theories of gravity, this is at least not guaranteed [30].

In general relativity, the event horizon must have S2 × R topology, and even this
property is regulated by certain theorems [22, 29]. For instance, toroidal horizons can
form, but they can only exist for a short time, in agreement with these theorems [27].

2.2 Black Holes in General Relativity

2.2.1 Schwarzschild Solution

In general relativity, the simplest black hole metric is the Schwarzschild solution,
which describes the spacetime of a non-rotating uncharged black hole in a vacuum
and asymptotically flat spacetime. In the Schwarzschild coordinates (t, r, θ, φ), the
line element is

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (2.6)

where M is themass of the black hole. TheSchwarzschildmetric is relatively straight-
forward to find and its derivation is presented in many textbooks.

As a consequence of Birkhoff’s theorem, the Schwarzschild metric is the only
spherically symmetric vacuum solution of the Einstein equations. This means it
describes the exterior region of any spherically symmetric body, independently of its
interior, which may also change in time (but maintaining its spherical symmetry).

The line element in Eq. (2.6) is singular at the surface r = 2M , in the sense that
gtt vanishes and grr diverges. This is the event horizon, as it can be seen from the
procedure explained in the previous section. Here H = 2M and is independent of θ .
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The singularity is due to the choice of the coordinates, but the spacetime is regular
there. For instance, the Kretschmann scalar K is

K = Rμνρσ Rμνρσ = 48M2

r6
. (2.7)

The Kretschmann scalar only diverges at r = 0, which is the real singularity of the
spacetime, both in the sense of curvature singularity (curvature invariants diverge)
and in the sense that the spacetime is geodetically incomplete (any geodesic reaching
r = 0 stops there).

The singularity at the event horizon can be removed by a change of coordinates.
For instance, the Lemaitre coordinates (T, R, θ, φ) are related to the Schwarzschild
coordinates by

dT = dt +
(
2M

r

)1/2 (
1 − 2M

r

)−1

dr ,

d R = dt +
( r

2M

)1/2
(
1 − 2M

r

)−1

dr , (2.8)

and the line element of the Schwarzschild solution becomes

ds2 = −dT 2 + 2M

r
d R2 + r2dθ2 + r2 sin2 θdφ2 , (2.9)

where

r = (2M)1/3
[
3

2
(R − T )

]2/3

. (2.10)

The metric is now regular at the event horizon r = 2M , corresponding to the points
4M = 3(R − T ), and it is still singular at r = 0, R = T , which is indeed the true
singularity in this spacetime.

Other common coordinates to write the Schwarzschild solution are the
Kruskal–Szekeres coordinates, the Eddington–Finkelstein coordinates, and the
Gullstrand–Painlevé coordinates. The Kruskal–Szekeres coordinates are employed
to write the maximal analytic extension of the Schwarzschild solution. In this case,
the line element reads

ds2 = −32M3

r
e−r/(2M)dV dU + r2dθ2 + r2 sin2 θdφ2 , (2.11)

where U = τ − ρ and V = τ + ρ are light-cone coordinates and
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τ =
{ (

r
2M − 1

)1/2
er/(4M) sinh

(
t

4M

)
if r > 2M ,(

1 − r
2M

)1/2
er/(4M) cosh

(
t

4M

)
if 0 < r < 2M .

ρ =
{(

r
2M − 1

)1/2
er/(4M) cosh

(
t

4M

)
if r > 2M ,(

1 − r
2M

)1/2
er/(4M) sinh

(
t

4M

)
if 0 < r < 2M .

(2.12)

As briefly discussed in Sect. 2.6, themaximal extension of the Schwarzschild solution
includes also a white hole and a parallel universe, which are not present in the
Schwarzschild spacetime in Schwarzschild coordinates.

2.2.2 Reissner–Nordström Solution

If a non-rotating black hole has a non-vanishing electric charge, the metric is
described by the Reissner–Nordström solution. As a useful recipe to remember, the
Reissner–Nordström line element can be obtained from the Schwarzschild one in
Eq. (2.6) with the substitution M → M − Q2/(2r), where Q is the electric charge
of the black hole. The result is3

ds2 = −
(
1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2 + r2dθ2

+r2 sin2 θdφ2 . (2.14)

The solution of grr = 0 is

r± = M ±
√

M2 − Q2 , (2.15)

where the larger root, r+, is the event horizon, while the smaller root, r−, is the inner
horizon. The latter is a Cauchy horizon and is unstable [13, 51]. The horizons only
exist for |Q| ≤ M . For |Q| > M , there is no horizon, the singularity at r = 0
is naked, and the Reissner–Nordström solution describes the spacetime of a naked
singularity rather than that of a black hole.

3In international system units, the line element reads (reintroducing also GN and c)

ds2 = −
(
1 − 2GNM

c2r
+ GNQ2

4πε0c4r2

)
dt2 +

(
1 − 2GNM

c2r
+ GNQ2

4πε0c4r2

)−1

dr2 + r2dθ2

+ r2 sin2 θdφ2 ,

(2.13)

where 1/(4πε0) is the Coulomb force constant.
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2.2.3 Kerr Solution

A rotating uncharged black hole in 4-dimensional general relativity is described by
the Kerr solution. In Boyer–Lindquist coordinates, the line element is

ds2 = −
(
1 − 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ + Σ

Δ
dr2 + Σdθ2

+
(

r2 + a2 + 2a2Mr sin2 θ

Σ

)
sin2 θdφ2 , (2.16)

whereΣ = r2 +a2 cos2 θ ,Δ = r2 −2Mr +a2, a = J/M , and J is the spin angular
momentum of the black hole. It is often convenient to introduce the dimensionless
spin parameter a∗ = a/M = J/M2.

As in the Reissner–Nordström metric, there are two solutions for the equation
grr = 0; that is

r± = M ±
√

M2 − a2 . (2.17)

r+ is the radius of the event horizon, which requires |a| ≤ M . For |a| > M there
is no horizon and the spacetime has a naked singularity at r = 0. It is worth noting
that the topology of the spacetime singularity in the Kerr solution is different from
that in the Schwarzschild and Reissner–Nordström spacetimes. It is still a curvature
singularity and a singularity in the sense of geodesics incompleteness, but this is true
only in the equatorial plane. In particular, geodesics outside the equatorial plane can
reach the singularity and extend to another universe. The Kretschmann scalarK is

K = 48M2

Σ6

(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
, (2.18)

and we can see that K diverges at r = 0 only for θ = π/2.
Let us consider the Kerr–Schild coordinates (t ′, x, y, z), which are related to the

Boyer–Lindquist ones by

x + iy = (r + ia) sin θ exp

[
i
∫

dφ + i
∫

a

Δ
dr

]
,

z = r cos θ ,

t ′ =
∫

dt −
∫

r2 + a2

Δ
dr − r , (2.19)

where i is the imaginary unit, namely i2 = −1. r is implicitly given by

r4 − (
x2 + y2 + z2 − a2

)
r2 − a2z2 = 0 . (2.20)
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The singularity at r = 0 and θ = π/2 corresponds to z = 0 and x2 + y2 = a2,
namely it is a ring. It is possible to extend the spacetime to negative r , and the ring
connects two universes. However, the region r < 0 posses closed time-like curves,
which means it is possible to go backward in time. More details can be found, for
instance, in [9].

As in the Reissner–Nordström case, the inner horizon r− is likely unstable, but in
the Kerr metric there is not a definitive proof. This would make the Kerr solution for
r < r− physically not relevant.

2.2.4 No-Hair Theorem

The most general case of a rotating and electrically charged black hole is described
by theKerr-Newman solution. In analogywith the Reissner–Nordströmmetric, it can
be obtained from the line element (2.16) with the substitution M → M − Q2/(2r).
The horizon is located at

r+ = M +
√

M2 − Q2 − a2 , (2.21)

and exists for
√

Q2 + a2 ≤ M .
The no-hair theorem asserts that black holes have only three asymptotic charges

(themass M , the spin angular momentum J , and the electric charge Q of the compact
object) and no more. There are a number of assumptions behind this assertion. The
spacetimemust be stationary, asymptotically flat, and have 4 dimensions; the exterior
regionmust be regular (no naked singularities and/or closed time-like curves); matter
is described by the energy-momentum tensor of the electromagnetic field (but the
theorem still holds in the presence of many other fields). For more details, see,
e.g., [11]. The no-hair theorem was pioneered in the late 1960s and early 1970s by
Israel [28], Carter [8], and Robinson [53], and its final form is still a work in progress.
The name no-hair is to indicate that black holes have no features (hairs), although, to
be precise, black holes can have three hairs (M , J , and Q). The fact that there is only
the Kerr-Newman solution is the result of the uniqueness theorem. In the context
of tests of the Kerr metric and of general relativity, both theorems are relevant. For
instance, as a matter of principle, one may have different classes of black holes
(each with characteristic M , J , and Q hairs), thus violating the uniqueness theorem,
without any violation of the no-hair theorem.

2.3 Beyond the No-Hair Theorem

The no-hair theorem holds under specific assumptions. For instance, if the spacetime
has more than 4 dimensions, there are also other kinds of black holes, e.g. theMyers-
Perry black holes [44], as well as other “black objects” [16, 17]; see, for instance,
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the review article [18]. In an n-dimensional spacetime, a Myers-Perry black hole
is characterized by the mass M and other (n − 1)/2 parameters if n is odd, n/2
parameters if n is even, associated to the independent components of the angular
momentum. So the number of hairs increases with n. “Hairy” black holes naturally
arise also in the presence of non-Abelian gauge fields [58, 59].

In some alternative theories of gravity, the theoremmay still holds, and an example
is a simple scalar-tensor theory, in which the black hole solutions are the same as in
general relativity [54]. Roughly speaking, this is because the Kerr metric is solution
of the field equations

Rμν = 0 , (2.22)

and even the field equations of other theories of gravity may reduce to this simple
form in the vacuum [52].

In other frameworks, the black hole solutions of general relativity may still be
solutions of the new field equations, but their uniqueness is not guaranteed. A rel-
evant example of violation of the no-hair theorem is presented in [25], where the
authors discovered a family of hairy black holes in 4-dimensional Einstein’s grav-
ity minimally coupled to a complex, massive scalar field. Here hairy black holes
are possible by introducing a specific harmonic time-dependence in the scalar field,
while the spacetime metric and the energy-momentum tensor of the scalar field are
still stationary. There are also cases, like dynamical Chern–Simons gravity, in which
non-rotating black holes are described by the Schwarzschild solution, but rotating
black holes are not those of Kerr [65].

In general, we can distinguish two kinds of hairs, called, respectively, primary
and secondary hairs. Primary hairs are real hairs of the black hole: if such hairs
were to exist, then M , J , and Q would not completely characterize the compact
object, and one or more additional parameters would be necessary. An example is
a 5-dimensional Myers-Perry black hole: it is the 5-dimensional generalization of
Kerr black holes and it has two angular momenta, so one more hair: J ′ [44].

Secondary hairs are instead related to some new charge that is common to all
black holes. For instance, in Einstein-dilaton-Gauss-Bonnet gravity, a black hole has
a scalar charge proportional to the volume integral of theGauss–Bonnet invariant [33,
40]; that is, the scalar charge is determined by the black hole mass and it is not an
additional degree of freedom.

In alternative theories of gravity, there may be further complications and the
phenomenology can be much richer. For instance, some theories may not have black
hole solutions.An example is themodel ofmassive gravity discussed in [1]. The static
and spherically symmetric vacuum solution of the corresponding field equations does
not describe a black hole but a naked singularity.

In some theories even the definition of black hole may be problematic. For
instance, in models with violation of the Lorentz symmetry, null geodesics may
depend on the energy of the massless particle. In this case, there are different “event
horizons” for photons with different energies, and it is possible that some high energy
photons can always escape to infinity, so that there is no real black hole.
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It is also possible that some frameworks have black hole solutions, but there is no
mechanism to create black holes. In general relativity, black holes emerge as exact
solutions of the Einstein equations. However, this is not enough to say that such
solutions are physically relevant. In general relativity, we know that black holes can
form fromgravitational collapse andwe have also some simple analyticalmodels that
showhow this is possible (see Sect. 2.4). In some alternative theories, the gravitational
collapse may simply be unable to create a black hole. For instance, black holes may
be unstable solutions or would require a set-up impossible to realize. A possible
example is represented by the model discussed in [67].

In general, black hole solutions in alternative theories of gravity are known in the
non-rotating limit, either in analytic or numerical form, because static and spherically
symmetric solutions are relatively easy to find. In some cases, analytic slow-rotating
solutions have been found, see e.g. [38, 48, 64, 65]. Exact rotating black hole solu-
tions, especially in analytic form, are more difficult to obtain [34]. This is actually
true even in general relativity, and it is proved by the fact that the Kerr metric was
discovered more than 45 years after the Schwarzschild solution.

2.4 Gravitational Collapse

When a star exhausts all its nuclear fuel, the gas pressure cannot balance the star own
weight, and the body shrinks to find a new equilibrium configuration. For most stars,
the pressure of degenerate electrons stops the collapse and the star becomes a white
dwarf. However, if the collapsing part of the star is too heavy, the mechanism does
not work, matter reaches higher densities, and protons and electrons transform into
neutrons. If the pressure of degenerate neutrons stops the collapse, the star becomes a
neutron star. If the collapsing core is still too massive and even the neutron pressure
cannot stop the process, there is no known mechanism capable of finding a new
equilibrium configuration, and the body should undergo a complete collapse. In this
case, the final product is a black hole.

The aim of this section is to present the simplest and the next-to-simplest grav-
itational collapse models. These solutions are analytic and nicely show how the
gravitational collapse of a spherically symmetric cloud of dust creates a spacetime
singularity and an event horizon. For a review, see e.g. [32]. Numerical simulations
can treat more realistic models, where the final product is still a black hole [2, 3].

We want to consider a spherically symmetric collapse, so the spacetime must be
spherically symmetric. This means the metric is invariant under the group of spatial
rotations SO(3) and we can define the 2-dimensional metric induced on the unit
2-sphere as

dΩ2 = dθ2 + sin2 θdφ2 . (2.23)

We introduce the function R such that 4π R2 represents the area of each 2-sphere in
the spacetime. The 4-dimensional line element reads
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ds2 = gabdxadxb + R2dΩ , (2.24)

where a, b = 0, 1 and R is a function of x0 and x1. Choosing x0 = t and x1 = r
and diagonalizing gab, we find that the most general line element of a spherically
symmetric spacetime can be written as

ds2 = −e2λdt2 + e2ψdr2 + R2dΩ2 , (2.25)

where λ, ψ , and R are functions of t and r only.
Let us assume that the collapsing body can be described by a perfect fluid. The

coordinate system of the line element in Eq. (2.25) is called comoving because the
coordinates t and r are “attached” to every collapsing particle. This is the rest-frame
of the collapsing fluid and therefore the fluid 4-velocity is uμ = (e−λ, 0, 0, 0). The
energy momentum tensor is

T μ
ν = diag (ρ, P, P, P) , (2.26)

where ρ and P are, respectively, the energy density and the pressure of the fluid.
With the line element in Eq. (2.25), the Einstein tensor reads

Gt
t = − F ′

R2R′ + 2Ṙe−2λ

R R′
(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.27)

Gr
r = − Ḟ

R2 Ṙ
− 2R′e−2ψ

R Ṙ

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.28)

Gt
r = −e2ψ−2λGr

t = 2e−2λ

R

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.29)

Gθ
θ = Gφ

φ = e−2ψ

R

[(
λ′′ + λ′2 − λ′ψ ′) R + R′′ + R′λ′ − R′ψ ′] + (2.30)

−e−2λ

R

[(
ψ̈ + ψ̇2 − λ̇ψ̇

)
R + R̈ + Ṙψ̇ − Ṙλ̇

]
. (2.31)

From the Einstein equations, we can get the following equations

Gt
t = 8πT t

t ⇒ F ′

R2R′ = 8πρ , (2.32)

Gr
r = 8πT r

r ⇒ Ḟ

R2 Ṙ
= −8π P , (2.33)

Gt
r = 0 ⇒ Ṙ′ − Ṙλ′ − ψ̇ R′ = 0 , (2.34)

where the prime ′ and the dot ˙denote, respectively, the derivative with respect to r
and t . F is the Misner-Sharp mass [41]

F = R
(
1 − e−2ψ R′2 + e−2λ Ṙ2) , (2.35)
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which is defined by the relation

1 − F

R
= gμν (∂μ R) (∂ν R) . (2.36)

From Eq. (2.32), we can see that the Misner-Sharp mass is proportional to the grav-
itational mass within the radius r at the time t

F(r) =
∫ r

0
F ′dr̃ = 8π

∫ r

0
ρR2R′dr̃ = 2M(r) . (2.37)

It is worth noting that nμ = ∂μ R is the normal to the surface R = const. Therefore,
as seen in Sect. 2.1, when 1 − F/R = 0, the surface R = const. is a null surface
(and defines the location of the apparent horizon in the dust collapse models in the
next subsections).

A fourth relation can be obtained from the covariant conservation of the matter
energy-momentum tensor

∇μT μ
ν = 0 ⇒ λ′ = − P ′

ρ + P
. (2.38)

2.4.1 Dust Collapse

For dust, P = 0, and Eqs. (2.32)–(2.34), and (2.38) become

F ′

R2R′ = 8πρ , (2.39)

Ḟ

R2 Ṙ
= 0 , (2.40)

Ṙ′ − Ṙλ′ − ψ̇ R′ = 0 , (2.41)

λ′ = 0 . (2.42)

Equation (2.40) shows that, in the case of dust, F is independent of t , namely there
is no inflowor outflow through any spherically symmetric shell with radial coordinate
r . This means that the exterior spacetime is described by the Schwarzschild solution.
In the general case with P �= 0, this may not be true, and the interior region must be
matchedwith a non-vacuumVaidya spacetime. If rb is the comoving radial coordinate
of the boundary of the cloud of dust, F(rb) = 2M , where M is the Schwarzschild
mass of the vacuum exterior.

Equation (2.42) implies that λ = λ(t) and permits one to choose the time gauge
in such a way that λ = 0. It is indeed always possible to define a new time coordinate
t̃ such that dt̃ = eλdt and therefore gt̃ t̃ = −1.

Equation (2.41) becomes Ṙ′ − ψ̇ R′ = 0 and we can write
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R′ = eg(r)+ψ . (2.43)

We introduce the function f (r) = e2g(r) − 1 and Eq. (2.35) becomes

Ṙ2 = F

R
+ f . (2.44)

The line element can now be written as

ds2 = −dt2 + R′2

1 + f
dr2 + R2dΩ2 . (2.45)

This is the Lemaitre–Tolman-Bondi, or LTB, metric [6, 36, 56].
The Kretschmann scalar of the line element in (2.45) is

K = 12
F ′2

R4R′2 − 32
F F ′

R5R′ + 48
F2

R6
, (2.46)

and diverges if R = 0. The system has a gauge degree of freedom that can be fixed
by setting the scale at a certain time. It is common to set the area radius R(t, r) to
the comoving radius r at the initial time ti = 0, namely R(0, r) = r , and introduce
the scale factor a

R(t, r) = ra(t, r) . (2.47)

We have thus a = 1 at t = ti and a = 0 at the time of the formation of the
singularity. The condition for collapse is ȧ < 0. From Eq. (2.39), the regularity of
the energy density at the initial time ti requires to write the Misner-Sharp mass as
F(r) = r3m(r), where m(r) is a sufficiently regular function of r in the interval
[0, rb]. Equation (2.39) becomes

ρ = 3m + rm ′

a2 (a + ra′)
. (2.48)

The function m(r) is usually written as a polynomial expansion around r = 0

m(r) =
∞∑

k=0

mkrk , (2.49)

where {mk} are constants. Requiring that the energy density ρ has no cusps at r = 0,
m1 = 0.

From Eq. (2.46), we see that the Kretschmann scalar diverges even when R′ = 0
if m ′ �= 0. However, the nature of these singularities is different: they arise from
the overlapping of radial shells and are called shell crossing singularities [24]. Here
the radial geodesic distance between shells with radial coordinates r and r + dr
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vanishes, but the spacetime may be extended through the singularity by a suitable
redefinition of the coordinates. To avoid any problem, it is common to impose that the
collapse model has no shell crossing singularities, for instance requiring that R′ �= 0
or that m ′/R′ does not diverge.

At the initial time ti, Eq. (2.44) becomes

ȧ(ti, r) = −
√

m + f

r2
, (2.50)

and we can see that the choice of f corresponds to the choice of the initial velocity
profile of the particles in the cloud. In order to have a finite velocity at all radii, it
is necessary to impose some conditions on f . It is common to write f (r) = r2b(r)

and b(r) as a polynomial expansion around r = 0:

b(r) =
∞∑

k=0

bkrk . (2.51)

2.4.2 Homogeneous Dust Collapse

The simplest model of gravitational collapse is the Oppenheimer-Snyder model [46].
It describes the collapse of a homogeneous and spherically symmetric cloud of dust.
In this case, ρ = ρ(t) is independent of r , so m = m0 and b = b0. The interior
metric is the time reversal of the Friedmann–Robertson–Walker solution

ds2 = −dt2 + a2

(
dr2

1 + b0r2
+ r2dΩ2

)
. (2.52)

b0 = 0 is the counterpart of a flat universe and corresponds to a marginally bound
collapse, namely the scenario in which the falling particles have vanishing velocity
at infinity. Equation (2.44) becomes

ȧ = −
√

m0

a
+ b0 . (2.53)

For b0 = 0, the solution is

a(t) =
(
1 − 3

√
m0

2
t

)2/3

. (2.54)

The formation of the singularity occurs at the time

ts = 2

3
√

m0
. (2.55)
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The curve tah(r) describing the time at which the shell r crosses the apparent
horizon can be obtained from

1 − F

R
= 1 − r2m0

a
= 0 . (2.56)

For b0 = 0, the solution is

tah(r) = ts − 2

3
F = 2

3
√

m0
− 2

3
r3m0 . (2.57)

TheFinkelstein diagramof the gravitational collapse of a homogeneous and spher-
ically symmetric cloud of dust is sketched in Fig. 2.2. At the time t = t0, the radius
of the surface of the cloud crosses the Schwarzschild radius. We have the forma-
tion of both the event horizon in the exterior region and the apparent horizon at the
boundary r = rb, i.e. t0 = tah(rb). As shown in Fig. 2.2, the exterior region is now
settled down to the static Schwarzschild spacetime, while the radius of the apparent
horizon propagates to smaller radii and reaches r = 0 at the time of the formation
of the singularity ts.

t

Interior

Exterior

Rb(t)

t = t0

t = ts

2M

Fig. 2.2 Finkelstein diagram for the gravitational collapse of a homogeneous and spherically sym-
metric cloud of dust. Rb(t) is the radius of the cloud (in the Schwarzschild coordinates of the exterior
region) and separates the interior from the vacuum exterior. The cloud collapses as t increases and
at the time t = t0 the horizon forms at the boundary when Rb(t0) = 2M . In the interior, the apparent
horizon propagates inwards and reaches the center of symmetry at the time of the formation of the
singularity t = ts. For t > ts, the spacetime has settled down to the usual Schwarzschild solution.
Figure courtesy of Daniele Malafarina
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2.4.3 Inhomogeneous Dust Collapse

In the inhomogeneous dust collapse scenario, ρ depends on both t and r , so we have
m = m(r), b = b(r), and a = a(t, r). While the Hawking-Penrose singularity theo-
rems assure that, under certain conditions, the formation of a singularity is inevitable
after the formation of an apparent horizon [23], the picture of the collapse may be
different from the simpleOppenheimer-Snydermodel. In particular, it is possible that
the singularity is naked for an infinitesimal time, namely there may be null geodesics
that start from the singularity and go to null infinity, see e.g. [10, 31, 45, 63].

If we want to impose that the energy density has no cusps at the center, m1 = 0
and the simplest form of the function m is

m(r) = m0 + m2r
2 . (2.58)

Now the density profile is described by two parameters, m0 and m2. Imposing the
condition that ρ must be a decreasing function of r (the density of the cloud is higher
at the center and lower at larger radii), m2 < 0.

Equation (2.44) is now

ȧ = −
√

m

a
+ b . (2.59)

In the marginally bound case b = 0, the solution is

a(t, r) =
(
1 − 3

√
m(r)

2
t

)2/3

, (2.60)

and we see that each shell collapses with a different scale factor and a different
velocity. The singularity and the apparent horizon are now described by the curves

ts(r) = 2

3
√

m
(2.61)

tah(r) = 2

3
√

m
− 2

3
r3m . (2.62)

If m = m0 + m2r2, we find

ts(r) = 2

3
√

m0 + m2r2
(2.63)

tah(r) = 2

3
√

m0 + m2r2
− 2

3
r3

(
m0 + m2r

2
)

. (2.64)



2.4 Gravitational Collapse 29

t

Interior

Exterior

Rb(t)
t = t0

t = t1

2M

Fig. 2.3 Finkelstein diagram for the gravitational collapse of an inhomogeneous and spherically
symmetric cloud of dust. Rb(t) is the radius of the cloud (in the Schwarzschild coordinates of
the exterior region) and separates the interior from the vacuum exterior. The cloud collapses as t
increases. At the time t = t0, a singularity and a horizon form at the center of the cloud at the same
time. Null geodesics from the singularity can reach distant observers and therefore the singularity
is temporarily naked. In the interior, the apparent horizon propagates outwards and reaches the
boundary at the time t1 > t0. The exterior spacetime settles down to the usual Schwarzschild
solution when the whole star is inside the event horizon. Figure courtesy of Daniele Malafarina

In the dust case, the boundary of the cloud rb is arbitrary and, for m2 < 0, it is
possible to find null geodesics that begin at r = 0 at the time of the formation of
the singularity and reach observers at infinity [10, 31, 45, 63]. The actual picture
depends on the parametersm0,m2, and rb. Figure2.3 shows the case in which a naked
singularity forms at the time t = t0 at r = 0 together with the apparent horizon.
The singularity is immediately covered by the apparent horizon, which propagates
to larger radii. When it reaches the boundary r = rb, the exterior spacetime settles
down to the Schwarzschild solution.

2.4.4 Gravitational Collapse for a Distant Observer

In the previous subsections, we adopted comoving coordinates. With such a choice,
the black hole and the central singularity are created in a finite time. As already
pointed out in the seminal paper by Oppenheimer and Snyder [46], an external
observer sees the surface of the collapsing body asymptotically shrinking to the
radius of the event horizon of the black hole, without really seeing the formation of
the black hole due to the asymptotically increasing gravitational redshift.
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Fig. 2.4 Evolution of the radial coordinates of the inner and of the outer boundaries of shell 1 and
shell 2 (solid lines) with respect to the time t of a distant observer. The three horizontal dashed lines
indicate the coordinate of the horizon before the collapse of shell 1 (r ′

0 = 2M , lower line), after the
collapse of shell 1 and before the collapse of shell 2 (r ′′

0 = 2M + 2M1, central line), and after the
collapse of shell 2 (r0 = 2M +2M1 +2M2, upper line). M , M1, and M2 are, respectively, the mass
of the pre-existing black hole, of shell 1, and of shell 2. See the text for more details. From [37]
under the terms of the Creative Commons Attribution License

The picture of gravitational collapse as seen by a distant observer can be under-
stood within the toy-models discussed in [37, 66]. Let us consider a pre-existing
black hole of mass M and two spherically symmetric shells of matter collapsing
onto the black hole and with the mass, respectively, M1 and M2. The two shells have
a finite thickness, so each shell has inner and outer boundaries. The evolution of such
a system is shown in Fig. 2.4.

At the beginning, we have the pre-existing black hole and the two shells at large
radii. The event horizon of the black hole is at r ′

0 = 2M . After the collapse of shell 1,
the horizon of the new black hole is at r ′′

0 = 2M +2M1. However, the distant observer
does not see (for the moment) the outer boundary of shell 1 crossing the horizon r ′′

0 .
The radius of the outer boundary of shell 1 seems to asymptotically approach r ′′

0 , due
to the infinite gravitational redshift. Then we have the collapse of shell 2. Now the
horizon of the black hole is at r0 = 2M + 2M1 + 2M2 and the distant observer does
not see the outer boundary of shell 2 crossing the surface at the radial coordinate r0.

Let us notice that the radiation emitted by the most outer boundary of any collaps-
ing configuration is more andmore redshifted, so that any distant observer eventually
sees a black hole for any practical purpose (even if the analytical formula predicts a
non-zero emission of radiation at any time). The calculations of the radiation emit-
ted by a collapsing body within some simple toy-models are presented in [35]. The
light curves for a homogeneous and inhomogeneous, spherically symmetric, col-
lapsing balls of dust are shown in Fig. 2.5. At late times, the emission of radiation is
exponentially suppressed.
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Fig. 2.5 Light curves of a
homogeneous (red solid
curve) and inhomogeneous
(blue dashed curve),
spherically symmetric,
collapsing balls of dust
assuming a simple model of
emission. Time T in units
2M = 1; luminosity in
arbitrary units. From [35]
under the terms of the
Creative Commons
Attribution License

2.5 Beyond the Standard Picture

It is natural to expect that the singularity at the center of black holes is due to the
breakdown of the classical theory and that it should be removed when unknown
quantum gravity effects are taken into account. If we believe that the energy scale of
quantum gravity is the Planck mass MPl, we may expect that the Kretschmann scalar
is bounded by

K � 1

M4
Pl

. (2.65)

From Eq. (2.7), we see that new physics should show up at the radius

r ≈ (
M M2

Pl

)1/3
. (2.66)

However, as already mentioned in Sect. 2.2, charged or rotating black holes have
the inner horizon at r = r−, which is unstable. This means that deviations from these
metrics should be at least at r−. In the case of extremal or almost extremal objects,
r− approaches r+, and therefore new physics may be not far from the event horizon.

There are also arguments suggesting that black holes may be macroscopic quan-
tum objects. Roughly speaking, the identification of the Planck scale as the funda-
mental energy scale of quantum gravity arises when we quantize general relativity
and find the problems of unitarity and renormalizability. The theory looks like a good
effective theory at low energies, namely for energies E 
 MPl, but it breaks down
when E approaches MPl. However, this conclusion is obtained by considering the
scattering of two particles. In a system made of many components, it is possible that
the actual scale of quantum gravity is given by the gravitational radius ∼ M , where
M is the mass/energy of the system, see e.g. [14, 15, 21, 39]. In these scenarios, the
metric description typically breaks down inside the black hole.

If the metric description holds at the center of black holes, we can imagine two
ways to solve the central singularity, in the sense that geodesics do not stop at r = 0
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and predictability is not lost. One of these possibilities is a wormhole-like solution. In
this scenario, the singularity is replace by a “throat” connecting two universes. For a
static/stationary black hole solution, we can have awormhole, namely a topologically
non-trivial structure connecting two asymptotically flat universes. In the case of a
black hole formed from gravitational collapse, the throat can connect the original
universe to a baby universe generated by the gravitational collapse inside the black
hole. The alternative possibility to solve the singularity is to have a spacetime in
which the center r = 0 can never be reached in a finite time (with a finite value of the
affine parameter in the case of null geodesics). These are the two natural scenarios
to solve the central singularity, and there are not more, because one has to preserve
the property that, roughly speaking, inside a black hole everything must fall to its
center. The problem of a geodesically incomplete spacetime can thus be fixed either
postulating the extension of the spacetime beyond r = 0 or the impossibility of
reaching r = 0 in a finite time. Other solutions seem at least to require more exotic
physics.

The quantum gravity inspired models studied in [4, 5, 20, 67] are characterized
by the fact that gravity becomes repulsive at very high densities. The result is that
the singularity is replaced by a bounce, after which the collapsing matter starts
expanding. In principle, we may have two scenarios: (i) there is a bounce and the
creation of a baby universe inside the black hole, or (i i) there is no black hole, in the
sense that the collapse only creates an apparent horizon, which can be interpreted as
a black hole for a while by the exterior observer if the observational time is shorter
than the time scale of the evolution of the process.

In general, both scenarios may be possible, and it depends on the specific model.
The scenario (i) is not easy to realize. A similar spacetime can be obtained with
a cut-and-paste procedure, in which a singular manifold is extended beyond the
singularity by removing the singularity and sewing the spacetime to a new non-
singular manifold describing an expanding baby universe. However, this is possible
only in very simple examples. Matching of the twomanifolds involves the continuity
of the first and second fundamental forms across some hypersurface, which is not
possible in general due to the lack of a sufficient number of free parameters.

In the case of the scenario (i i) and under certain conditions, the lifetime of the
apparent horizon might exactly scale as the Hawking evaporation time. It is thus
possible to argue a link between instability of this kind of objects and Hawking
radiation [5].

2.6 Penrose Diagrams

Penrose diagrams are 2-dimensional spacetime diagrams used to figure out the global
properties and the causal structure of asymptotically flat spacetimes. Since they are
2-dimensional diagrams, everypoint represents a 2-dimensional sphere of the original
4-dimensional spacetime. Penrose diagrams are obtained by a conformal transfor-
mation of the original coordinates such that the entire spacetime is transformed into
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a compact region. Since the transformation is conformal, angles are preserved, and
null geodesics remain lines at 45◦. Time-like geodesics are inside the light-cone,
space-like geodesics are outside. A more detailed discussion on the topic can be
found, for instance, in [57, 62].

It is probably easier to start from the simplest example, namely the Penrose dia-
gram for the Minkowski spacetime. In spherical coordinates (t, r, θ, φ), the line
elements is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.67)

We perform the following conformal transformation

t = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

r = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (2.68)

where the use of the tangent function tan is to bring points at infinity to points at a
finite value in the new coordinates. The line element now reads

ds2 =
(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + d R2
)

+ r2dθ2 + r2 sin2 θdφ2 . (2.69)

The Penrose diagram for theMinkowski spacetime is shown in Fig. 2.6. The semi-
infinite (t, r) plane is now a triangle. The dashed vertical line is the origin r = 0.
Every point corresponds to the 2-sphere (θ, φ). There are five different asymptotic
regions. Without a rigorous treatment, they can be defined as follows:

Fig. 2.6 Penrose diagram
for the Minkowski
spacetime. See the text for
the details

i0

i+

i−

I +

I −

r = 0

T

R
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Future time-like infinity i+: the region toward which time-like geodesics
extend. It corresponds to the points at t → ∞ with finite r .

Past time-like infinity i−: the region from which time-like geodesics come.
It corresponds to the points at t → −∞ with finite r .

Spatial infinity i0: the region toward which space-like slices extend. It cor-
responds to the points at r → ∞ with finite t .

Future null infinity I +: the region toward which outgoing null geodesics
extend. It corresponds to the points at t + r → ∞ with finite t − r .

Past null infinity I −: the region from which ingoing null geodesics come.
It corresponds to the points at t − r → −∞ with finite t + r .

Such asymptotic regions are points or segments in the Penrose diagram and their
T and R coordinates are:

i+ T = π , R = 0 .

i− T = −π , R = 0 .

i0 T = 0 , R = π , (2.70)

and

I + T + R = π , T − R ∈ (−π;π) .

I − T − R = −π , T + R ∈ (−π;π) . (2.71)

Penrose diagrams become a powerful tool to explore the global properties and the
causal structure of more complicated spacetimes. The simplest non-trivial example
is the Schwarzschild spacetime. If we consider its maximal extension in Kruskal–
Szekeres coordinates and we perform the following coordinate transformation

V = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

U = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (2.72)

the line element becomes

ds2 = 32M3

r
e−r/(2M)

(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + d R2
)

+ r2dθ2 + r2 sin2 θdφ2 . (2.73)
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Fig. 2.7 Penrose diagram for the maximal extension of the Schwarzschild spacetime. See the text
for the details

The Penrose diagram of the maximal extension of the Schwarzschild spacetime
is shown in Fig. 2.7. The asymptotic regions i+, i−, i0, I +, and I − are those
already found in the Minkowski case. We can distinguish four regions, indicated,
respectively, by I, II, II, and IV in the figure.

The region I corresponds to our universe, namely the exterior region of the
Schwarzschild spacetime in Schwarzschild coordinates. The region II is the black
hole, so the Schwarzschild spacetime in Schwarzschild coordinates has only the
regions I and II. The central singularity of the black hole at r = 0 is represented
by the line with wiggles above the region II and the diagram clearly shows it is a
space-like singularity.4 The event horizon of the black hole at r = 2M is the red line
at 45◦ (it is indeed a null surface) separating the regions I and II. Any ingoing light
ray in the region I is captured by the black hole, while any outgoing light ray in the
region I reaches future null infinity I +. Null and time-like geodesics in the region
II cannot exit the black hole and they necessarily fall to the singularity at r = 0.

The regions III and IV emerge from the extension of the Schwarzschild spacetime.
The region III corresponds to another universe. The red line at 45◦ separating the
regions II and III is the event horizon of the black hole at r = 2M . Like in the region
I, any light ray in the region III can either cross the event horizon or escape to infinity.
No future-oriented null or time-like geodesics can escape from the region II. Our
universe in the region I and the other universe in the region III cannot communicate:
no null or time-like geodesic can go from one region to another.

4Singularities, like trajectories, can be space-like, null, or time-like, depending on their causal
properties. Space-like singularities are represented by lines with an inclination lower than 45◦
(like space-like trajectories). Time-like singularities are represented by lines with an inclination
higher than 45◦ (like time-like trajectories). The singularity at r = 0 in the Penrose diagram of the
Schwarzschild solution is represented by a horizontal line and is thus space-like. For more details,
see e.g. [19] and references therein.
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Fig. 2.8 Penrose diagram
for the complete collapse of
a homogeneous cloud of
dust, corresponding to the
situation in Fig. 2.2. The
letter S indicates the interior
region of the collapsing star
and the black arc extending
from i− to r = 0 is its
boundary. See the text for the
details
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I +
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Fig. 2.9 Penrose diagram
for the complete collapse of
an inhomogeneous cloud of
dust with a temporary naked
singularity, namely the
situation in Fig. 2.3. The
letter S indicates the interior
region of the collapsing star
and the black arc extending
from i− to r = 0 is its
boundary. See the text
and [43, 47] for the details.
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The region IV is a white hole. If a black hole is a region of the spacetime where
null and time-like geodesics can only enter and never exit, a white hole is a region
where null and time-like geodesics can only exit and never enter. The red lines at
45◦ separating the region IV from the regions I and III are the horizons at r = 2M
of the white hole.

Figure2.7 is the Penrose diagram for the maximal extension of the Schwarzschild
solution, which is static. However, black holes in the Universe should be created
from gravitational collapse of massive bodies. The corresponding Penrose diagrams
are shown in Figs. 2.8 and 2.9 and are substantially different from the diagram in
Fig. 2.7. Figure2.8 is for the case of the collapse of a homogeneous cloud of dust (the
Penrose diagramcorresponding to the Finkelstein diagram in Fig. 2.2): the singularity
is created at the same time t = ts for all shells. Figure2.9 shows the collapse of an
inhomogeneous cloud of dust with the formation of a temporary naked singularity



2.6 Penrose Diagrams 37

(the counterpart of the Finkelstein diagram in Fig. 2.3) [43, 47]: here the singularity
is created first at the center and, for an infinitesimal time, is naked.

The Penrose diagram for a static spacetime with a massive body would be equiv-
alent to that for the Minkowski spacetime in Fig. 2.6. In the case of a collapsing
body, the diagram changes when the radius of the body crosses the corresponding
Schwarzschild radius at r = 2M . At this point, we have the formation of the event
horizon, represented by the red line at 45◦ in Figs. 2.8 and 2.9. Now the exterior
region looks like the region I in the Penrose diagram of the Schwarzschild spacetime
with the future null infinity I +. In the interior region, the radius of the body goes
to the space-like singularity at r = 0. There is no white hole or parallel universe.

Figures2.8 and 2.9 show the Penrose diagrams of two examples of complete col-
lapse in classical general relativity. The picture changeswhenwe consider “quantum”
effects, broadly defined. The left diagram in Fig. 2.10 is the Penrose diagram for the
formation of a black hole from the collapse of a star and its “complete evaporation”
due to Hawking radiation. Even in this case, the event horizon is represented by a
red line at 45◦. While the evaporation process progressively reduces the radius of the
horizon and the object emits radiation moving along null geodesics, as an artifact of
the conformal transformation the horizon is still a line at 45◦ and it seems like all
Hawking radiation is emitted together at once. In the case of complete evaporation,
the upper part of the Penrose diagram is like that of the Minkowski spacetime.

The right diagram in Fig. 2.10 is one of the Penrose diagrams for the gravita-
tional collapse with bounce studied in [4, 20]. The diagram is slightly different if the
evaporation of the apparent horizon is associated to some Hawking-like process. In
these scenarios, there is neither formation of black hole nor formation of spacetime

i0

i+

i−

I +

I −

r = 0 S

i0

i+

i−

I +

I −
Sr = 0

r = 0
r = 0

Fig. 2.10 Penrose diagrams for the formation and the Hawking evaporation of a black hole (left)
and for the gravitational collapse with bounce and without formation of singularities (right). The
letter S indicates the interior region of the collapsing star and the black arc extending from i− is its
boundary. See the text for the details
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Fig. 2.11 Penrose diagram for the maximal extension of the Kerr spacetime. See the text for the
details

singularity. When the radius of the collapsing object crosses the corresponding
Schwarzschild radius, we have an apparent horizon and the object first looks like
a black hole for a finite time and then a white hole for a finite time. Eventually the
apparent horizon disappears.

More details on Penrose diagrams associated to scenarios of gravitational collapse
beyond classical general relativity can be found in [26].
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Fig. 2.12 Penrose diagram for the maximal extension of the Reissner–Nordström spacetime. See
the text for the details

Figure2.11 shows the Penrose diagram for the maximal extension of the Kerr
spacetime. The region I is our universe outside the black hole and the red line at
45◦ separating the regions I and II and labeled by r+ is the event horizon. As in the
Schwarzschild spacetime, the region III is another universe and the region IV is a
white hole. The region II is the black hole interior between the event horizon r+
and the inner horizon r−. The singularity at r = 0 is time-like (not space-like as in
Schwarzschild) and therefore it is a vertical line and can be avoided by a test-particle.
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A test-particle in the region I can cross the event horizon, cross the inner horizon,
and then enter the ring singularity outside the equatorial plane (green trajectory). The
latter is a “gate” to the region I, which is an anti-universe at r < 0. Alternatively,
the test-particle can cross the event horizon, cross the inner horizon, and then cross
again the inner horizon to reach the region IV’, which is a white hole, to eventually
enter the region I’ representing another universe (orange trajectory).

ThePenrose diagram for themaximal extension of theReissner–Nordström space-
time is shown in Fig. 2.12. It is very similar to the diagram in Fig. 2.11 for the Kerr
solution, with the remarkable difference that the singularity at r = 0 is not a ring
singularity and therefore the region I and III in Fig. 2.11 do not exist in the Reissner–
Nordström spacetime.
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