
Chapter 2
Fuzzy Logic Systems

2.1 Introduction

The human mind has always shown a remarkable capability of coordinating a wide
variety of physical and mental tasks without using any explicit measurements and
computations. Considerable efforts were made since the early 1950s towards the
development of a scientific theory of intelligence and the development of an artificial
model of the brain capable to mimic our perception, cognition and behavioral systems
[1, 2]. Despite the accomplishments of system’s theory and artificial intelligence,
that are increasingly present in our daily activities, in practice computational systems
still present several limitations that keep them behind human capabilities. The high
dimensionality of information structures stored in computational systems resulting
from the use of crisp measurements is one of the major burdens that the development
of an intelligence framework must overcome. Uncertainties and imprecisions on
information can at first instance be seen as a disadvantage for a decision process
but they are important information compression mechanisms that let people make
choices in a quick way. Without such tools, taking a decision would be a never
ending process, requiring every infinitesimal part of information and its respective
combinations to be considered. Therefore, the development of intelligent systems has
to focus on the human capability of manipulating imprecise, uncertain and sometimes
incomplete information.

Zadeh was challenged by this problem in 1965 and, in his seminal paper [3],
he lays the foundation-stone of a methodology known as FL, where the objects
of computation are words and propositions drawn from natural language. While
Boolean logic results are restricted to values “0 and 1”, FL defines for the first time
a computational framework to efficiently manipulate intermediate results between
the values of absolute true and absolute false. The fuzzy information representation
is based on Fuzzy Sets, which are no more than a simple way to translate a crisp
measurement into a degree of belonging in a linguistic label. This means that fuzzy
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sets can handle some concepts that we commonly deal with in daily life, like “very
cold”, “cold”, “hot”, “very hot”, without having to know the specific temperature
ranges each concept refers to. Therefore, Fuzzy Logic is more like human thinking
because of its reliance on degrees of truth and the use of linguistic variables.

Initially, FL theory was not well-received by the peer community in engineering
domains due to its unusual vagueness. Nonetheless, since 1970, it has been widely ap-
plied in control applications, establishing successive milestones. Its principles were
used to control a laboratory-built steam engine by Mamdani at the University of
London in 1974 [4] and the first industrial application was a cement kiln controller
built in Denmark in 1979 [5]. Despite born in the USA and theoretically validated in
Europe, it was in Japan that FL gained broad notoriety when several Japanese com-
panies pioneered successful practical applications with high impact in the society.
One of the most renowned projects was presented in 1987, when Hitachi turned over
control of a subway in Sendai, Japan, to a fuzzy system (Fig. 2.1). Fuzzy control
techniques were used in all the critical operations of the train’s control system, such
as accelerating, breaking, and stopping operations [6] but also in traffic planning and
predicting customer’s usage of subway facilities. In 1987, Yamakawa successfully
developed a fuzzy controller applied to a inverted pendulum experiment—a classic
control problem [7]. A few years later, NASA took fuzzy logic beyond our planet
aboard the Endeavour space shuttle, transporting a Commercial Refrigerator Incu-
bator Module as an experimental payload, which successfully allowed the control of
a test chamber’s air temperature according to a pre-programmed profile [8]. Since
then, several companies have been using fuzzy logic to control hundreds of house-
hold appliances, implement decision making systems and improve the performance
of many other electronic devices present in our daily life such as air conditioners,
video cameras, televisions, washing machines, bus time tables, medical diagnoses
or anti-lock braking systems.

Fig. 2.1 Sendai subway 1000 Series—The first subway coach using a fuzzy control system
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Fuzzy Logic Systems are typically developed around two main types of inference
frameworks: the Mamdani [9] and the Takagi-Sugeno [10] methods. Despite the
differences between the two methods, when non-linear Fuzzy Sets are used to model
linguistic labels, FLSs become non-linear structures with universal approximation
capabilities [11], a property of major importance when they are used as support for
modeling and control techniques. Since both inference mechanisms share several
theoretical principles, this chapter will firstly introduce FL’s fundamentals based on
the Mamdani inference.

2.2 Type-1 Fuzzy Sets

With the development of FL, the Type-1 FSs were defined for the first time. Type-1
FSs are a computational formalism that mimics our tendency to group crisp mea-
surements displayed under a numeric scale using the same linguistic term when a
more specific distinction is not required for a good understanding. For example, we
describe temperatures using a linguistic terms that go from “Very Cold” to “Very
Hot”, speed using terms from “Very Slow” to “Very Fast” or the visible colors from
“Violet” to “Red”. With these descriptions, we are capable of abstain ourselves from
the crispness of numeric scales expressed in ◦C, km/h or nm. Each Type-1 Fs is syn-
tactically represented by a label Fi characterized by a Membership Function (MF),
a two-dimensional function that defines the degree of association of a numeric value
under the respective linguistic label using a crisp number in the range [0–1]. Different
shapes of MFs can be considered, namely triangular, trapezoidal or gaussian shaped
functions. Figure 2.2 depicts an example of a generic input domain partitioned using
gaussian shaped MFs.
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Fig. 2.2 Generic input domain partition using Type-1 Fuzzy Sets
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2.3 Type-1 Fuzzy Logic Systems

One of the most appreciated methods of manipulating linguistic information is to use
FLSs based on If-Then rules, a method that can be easily used to develop models and
control algorithms in a way closer to human perception and thinking. There exist also
alternatives to the use of rule based systems [12] involving arithmetic approaches
using the Extension Principle [13]. To enunciate the required logic statements, this
principle redefines common algebraic operations such as addition, multiplication,
among many others to the domain of Fuzzy Sets. Sometimes it is hard to define
If-Then rules using compact algebraic operations. Nevertheless, this approach is
particularly useful in situations where the problem has a high dimensionality, i.e. the
number of existing rules used to describe the system is so high that it may result in
a computationally inefficient process.

A FLS based on Type-1 FSs consists of four main elements, as depicted in Fig. 2.3
and briefly described as follows.

• The Fuzzifier, which is an interface which maps a crisp number into a fuzzy domain
defined by a Fuzzy Set. The most widely method is the singleton fuzzifier, in which
measurements are considered perfect and therefore modeled as crisp values, i.e.,
as singletons.

• The Rule-Base, which is the heart of a FLS and is composed by information given
by experts or extracted from numerical data, is often organized as several If-Then
statements, where the If part of a rule is its antecedent, and the Then part of the
rule is its consequent.

• The Inference Engine, which is the mechanism that implements the algebras re-
quired to manipulate Fuzzy Sets. In the same way humans use many inferential
procedures, there exist several methods to do so based on FL. The Mamdani and
the Takagi-Sugeno inference mechanisms are the two most popular ones [14].

• The Output Processor, which is the final stage of the FLS and implements the
defuzzification procedures to aggregate the output fuzzy set into a single crisp value
adequate to the FLS application scenario (usually a process’s output prediction in
modeling applications or the actuation value of a control system).

Fuzzifier Rule Base

Inference Output Processor

Crisp
Input

Type-1
Fuzzy Sets

Type-1
Fuzzy Sets

Crisp
Output

Fig. 2.3 Type-1 fuzzy Logic System structure
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2.3.1 Fuzzifier

As pointed out previously, the singleton fuzzifier is the most used method to im-
plement the Fuzzifier stage of a FLS due to its conceptual simplicity and easy data
manipulation in the subsequent stages of the FLS. Other functions could be used
to perform this operation, as gaussian or triangular functions, but then calculating
the firing levels of each antecedent membership function would become a far more
complex process [13]. For this reason, singletons are considered in this work, and
defined as:

μAx (x) =
{

1, x = x ′
0, otherwise

, (2.1)

where x ′ is the input value. This concept is depicted in Fig. 2.4.

2.3.2 Rule-Base

Rules play a central role in the structure of a FLS and are a simple way to gather
the knowledge that define the behavior of a fuzzy system in a specific application.
These rules are developed using different types of FSs, that are associated with the
linguistic terms that appear in the rule’s antecedent and consequent parts and are
interconnected by operators that establish the relationship dependencies between
fuzzy terms.

The most used rule structure is presented in Eq. (2.2)

Ri : I f x1 is F
i
1 and · · · and x j is F

i
j , Then yi is Gi , (2.2)

where Ri represents the i th fuzzy rule, Fl
j and Gi are linguistic terms characterized

by Type-1 Fuzzy Sets, i = {1, · · · , M} where M is the number of fuzzy rules,
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Fig. 2.4 Depiction of a singleton input
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j = {1, · · · , N } where N is the number of antecedents, x j are the fuzzy system
inputs and yi is the rule output.

The linguistic terms F and G can assume several different shapes such as tri-
angular, trapezoidal or gaussian. The latter form was employed in this work, being
defined as presented in Eq. (2.3).

g(c, σ, x) = exp

[
−1

2

(
x − c

σ

)2
]

(2.3)

The rule structure (2.2) is just one example of many prospective ways to embed
knowledge in a FLS. Similarly to our natural language, one can employ other com-
binations of FSs using for example or relationships, consider the negation of fuzzy
sets, or even using non-obvious connectives like unless or comparative terms [13].
Though, in most scenarios, such logical statements can be represented using the more
regular structure of Eq. (2.2).

2.3.3 Inference Engine

The manipulation of fuzzy sets can be performed according to several different
algebraic operations depending on the possible combinations of operators used for
implementing the rule’s connective terms, implication methods and rule aggregation.
Let us consider two Type-1 FS F1 and F2 characterized by the MFs μF1(x) and μF2(x)

F1 =
∫
x∈ R

μF1(x)dx , F2 =
∫
x∈ R

μF2(x)dx . (2.4)

The basic logic operations (union, (s-norm), intersection (t-norm) and comple-
ment (c-norm)) that provide the support for FS’s manipulation can be defined as
follows:

μF1∪F2(x) = max
[
μF1(x), μF2(x)

]
, f or x ∈ R

μF1∩F2(x) = min
[
μF1(x), μF2(x)

]
,

μF (x) = 1 − μF (x) .

(2.5)

The intersection operator can also be implemented based on the algebraic product
and is defined as:

μF1∩F2(x) = μF1(x) ∗ μF2(x), x ∈ R . (2.6)

Since the usual way of constructing a rule is to use the and connectives, the t-norm
operators are the most used ones. Regardless the implementation followed, since
the membership grades μF1(x) and μF2(x) are crisp numbers, any of the operations
presented in Eqs. (2.5) and (2.6) yields a crisp number. More particularly, when these
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Fig. 2.5 Operation between singleton input and the antecedents of a Type-1 FLS using a t-norm
operator (minimum or product)

operators are used to aggregate several fired FSs from the antecedent part of the rule,
the obtained result is typically referred to as the i th rule firing level f i . Figure 2.5
depicts the use of the t-norm in a two antecedent operation.

When both rule’s antecedents and consequent are expressed using Type-1 FS, the
implication of the rule’s firing level over the consequent FS is typically obtained
using one of the Mamdani implication methods, namely the Mamdani minimum or
the Mamdani product. These methods are based on the t-norm operators previously
described and are applied between the rule’s firing level f i and its consequent FS,
Gi (x)

f i → Gi (y) = min{ f i , μGi (y)}, f or y ∈ R

f i → Gi (y) = f iμGi (y) .
(2.7)

Depending whether the minimum or the product t-norm is used, one obtains a
clipped or a scaled version of the consequent MF, as depicted in Fig. 2.6.

The inference process ends up by obtaining a fuzzy set determined by the aggre-
gation of the output of all the fired FLSs rules. One of the most used methods to do
so is to use a t-conorm—the fuzzy union, which is no more than a method for finding
the maximum value of the overlapped FSs. This is depicted in Fig. 2.7.
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Fig. 2.6 Mamdani inference operations using Type-1 FSs
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Fig. 2.7 Type-1 Fuzzy Set fired consequents’ aggregation procedure, after using the mamdani
minimum implication

Still, this final step is not consensual among authors, existing some that give
preference to aggregate the output of every rule before defuzzification while others
perform the aggregation as part of the defuzzification procedure. Given this fact there
exist several different methods to implement FLS defuzzification stage, as will be
following discussed.
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2.3.4 Output Processor

The Output Processor is employed to obtain a crisp output from the FS resulting
from the inference procedure, a process known as defuzzification. The literature is
rich in defuzzifiers methods but, considering applications in modeling and control
domains, their computational efficiency is often the main exclusion criterion. From
the available methods, the Centroid and the Center-of-Sets defuzzifiers are the most
frequently used ones [13], and represent good examples of the two different aggre-
gation/defuzzification approaches.

The Centroid defuzzifier obtains a crisp value by finding the centroid of a Type-1
FS resulting from the union of the consequent fuzzy sets. By sampling the resulting
Gout FS into K points, as depicted in Fig. 2.8, its centroid is given by:

yC =

K∑
i=1

yiμGout (yi )

K∑
i=1

μGout (yi )

. (2.8)

Alternatively, the Center-of-Sets defuzzifier does not rely on prior aggregation of
every fired consequent FS. Instead, it replaces every rule’s consequent Type-1 FS by
a singleton placed at its centroid which amplitude is given by the respective rule’s
firing level. The defuzzifier output value is then obtained by calculating the centroid
of the Type-1 FS comprised of these singletons, and is given by:

yCOS =

M∑
i=1

ci f i

M∑
i=1

f i
, (2.9)
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Fig. 2.8 Defuzzification procedure based on the centroid method applied to the Gout fuzzy set
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Fig. 2.9 Defuzzification procedure based on the Center-of-Sets method, using the centroid of each
fired consequent fuzzy sets separately

where ci is the centroid of the i t h consequent FS, M is the number of rules of the
FLS and fi is each rule’s firing level. This procedure is depicted in Fig. 2.9.

The latter approach is usually preferred when implemented in computationally
constrained systems since the centroid of each consequent’s FS can be calculated a
priori and stored in the system, before the fuzzy system is deployed. After performing
this step, the FLS’s output is obtained as a weighted average of the pre-calculated
centroids.

2.3.5 Considerations About Type-1 Fuzzy Logic Systems

The importance of the additive structure that a Fuzzy Logic System presents goes
far beyond its rules’ intelligibility. By using several rules, one is in fact defining
several fuzzy patches and average the ones that overlap, ultimately performing a
multi-variable function approximation. Such procedure’s accuracy improves as the
fuzzy patches grow in number and shrink in size.

The Type-1 FSs have been found to provide good results in uncertainty modeling,
but there are several opinions referring that using them as a model for a linguistic
label is an incorrect scientific theory [15]. As is pointed out in Jerry Mendel’s line
of reasoning [15], it is easy to understand the reasons for this refutation:

• A Type-1 FS representation for a word is well-defined by its Membership Function
that is totally certain once all of its parameters are specified.

• Words mean different things to different people and so are uncertain.
• Therefore, it is a contradiction to say that something that is certain can model

something that is uncertain.
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The same way the variance provides a measure of dispersion about the mean,
the uncertainty of a linguistic term also needs to be captured, and is not possible to
represent such when a single static MF is used. In Fuzzy Set’s theory, this second
order uncertainty can be modeled by Type-2 Fuzzy Sets.

2.4 Type-2 Fuzzy Sets

The concept of Type-2 FSs was developed by Zadeh in 1975 as an extension of
Type-1 FSs [16], but it only gained broader audience much more recently with the
several developments proposed by Mendel and Karnik [17]. Type-1 FSs introduced
an important degree of fuzziness to create a linguistic partition of a crisp domain.
Nonetheless, the MFs used to do so are themselves crisp since they are totally defined
without considering any uncertainty on their parameters. Type-2 FS overcome this
limitation by defining a secondary degree of fuzziness. In this case, the membership
value for each input of a FS is itself defined as a FS in the [0, 1] domain [13]. To
better understand this new dimensionality, suppose the process of defining a concept
as a Type-1 FS by polling a group of experts. After gathering all the responses, cer-
tainly it will be noticed that the endpoints of the membership function will vary from
person to person. The union of all embedded Type-1 FSs eventually will end up in a
blurred area, known as FOU, that is bounded by two MFs, namely the Upper Mem-
bership Function (UMF) and the Lower Membership Function (LMF). Furthermore,
each membership function given by a person can be assigned with a variable weight
according to the amount of confidence associated to its opinion, defining this way
the secondary degree of fuzziness. For this reason, a Type-2 FS representation em-
beds additional degrees of freedom which can better handle uncertainties caused by
noisy data and changing environments as is required for example when developing a
process’s model. Figure 2.10 gives a better overview of the new concepts introduced
by Type-2 FSs, which can be generically represented by:

F̃ =
∫
u∈X

μ(u)du =
∫
u∈X

∫
x∈Jx

g(x)dxdu Jx ⊆ 
, X ⊆ [0, 1] , (2.10)

where the g(x) is one of the possible primary MFs, x is the FS input value and u is
the primary membership degree.

Until the late nineties, research work on Type-2 FSs was of highly mathematical
and theoretical nature, having few publications dedicated to it [18]. The main inves-
tigation line was focused on the development of logical operators, with important
works from Mizumoto and Tanaka [19], Dubois and Prade [20] and more recently
Karnik and Mendel [17]. Another important topic that has received little attention
in the literature is the process of acquisition of the Type-2 FSs’ membership func-
tions. From the few works published about this topic, Turksen [21] proposes that a
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(a) FOU of a Type-2 Fuzzy Set, evincing several embedded Fuzzy Sets.

(b) Vertical slice over the FOU, evincing the variable secondary
membership value of each embedded Fuzzy Set.

Fig. 2.10 Representation of a Type-2 Fuzzy Set

Type-2 FS representation can be constructed with the mean and standard deviations
of scatter points obtained from surveys. More recently Wagner and Hagras [22] pro-
posed a recursive algorithm to define an optimal approximation of the second degree
membership function based on the collected data histogram for the cases of linguis-
tic variables and noisy sensor measurements. The representation and manipulation
algebras of Type-2 FSs are also non-closed problems, existing some recent propos-
als such as [23–25] that introduce simplifications in the Type-2 FSs’s representation
while maintaining the uncertainty in information representation over the inference
stages.
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2.5 Type-2 Fuzzy Logic Systems

The success of Type-1 FLSs naturally led to the development of FLSs based on
Type-2 FSs. The structure of a Type-2 FLSs shares the same core components of its
Type-1 counterpart, namely: a Fuzzifier, a Rule-Base, an Inference Engine and an
Output Processor. While in Type-1 FLSs the final stage resumes to a defuzzification
procedure, in the Type-2 case the Output Processor embraces an additional stage so
that Type-2 FS is firstly converted into an equivalent Type-1 FS. This procedure is
implemented by a Type-Reduction (TR) algorithm, which will be presented further
in this document. The interdependency of the referred blocks is depicted in Fig. 2.11.

Type-2 FSs can be used either on antecedent, consequent or both levels of the
Type-2 FLS, depending on whether is advantageous to account for uncertainties at
the referred parts of the rule. As a consequence of its additional degrees of freedom, it
has been argued that Type-2 FLSs have a great potential to produce better performing
systems. The main reasons for this statement are the following:

• Given the fact that a Type-2 FS embeds itself a large number of Type-1 FS under
the same label, it is possible to cover the same range of operation of a Type-1 FS
with a smaller number of labels and rules, reducing the complexity of modeling,
tuning and understanding a rule-base system comparatively to a similar performing
Type-1 FS. This rule reduction capability is particularly advantageous in situations
when the number of system inputs tend to increase, as it reduces the number of
possible combinations of the linguistic labels that describe each input.

• In a Type-2 FLS, since each input and output is indirectly represented by a large
number of Type-1 FSs, more complex input/output relationships that could not be
obtained with in a Type-1 FLS can now be modeled without necessarily increase
the number of rules [26].

While the additional degrees of freedom of Type-2 FSs revealed a considerable
potential of supplanting conventional methodologies [23, 25], especially in complex
non-linear modeling tasks, generally their use calls for a greater computational effort.
Since Type-2 FS membership degrees are given as a function of a Type-1 FS, the
formalisms of elementary fuzzy computations such as the union, intersection and
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Output Processor
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Input
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Fuzzy Sets

Type-2
Fuzzy Sets

Type-1
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Fig. 2.11 Type-2 Fuzzy Logic System structure



20 2 Fuzzy Logic Systems

complement are performed in a three-dimensional space, requiring far more com-
plex procedures based on Zadeh’s Extension Principle to implement such algebras.
Moreover, the accuracy of the TR procedure depends on the number of discretiza-
tion points of the FS input domain, which naturally is as better as many evaluation
points are used - but the computational complexity also increases likewise. For that
reason, a great amount of research in Type-2 Fuzzy Logic domains has been put to-
wards developing more efficient representations in order to overcome this bottleneck
and further extend its applicability to scenarios where the available computational
resources are insufficient to cope with the time constants of the application scenarios.

In the past decade, Type-2 FSs’ theory publication rate increased significantly,
putting stronger efforts towards the reduction of its theoretical complexity and inher-
ent computational effort - the two main problems that kept this uncertainty modeling
tool away from real world applications until recent years. Shortly after its first publi-
cations, most of the authors focused on a simplified representation known as Interval
Type-2 Fuzzy Sets (IT2FSs). In a IT2FS, the MFs uncertainty is restricted to the
FOU and considers the third dimension of the Fuzzy Set as uniformly distributed
with a membership value “1” [18]. As so, each primary membership is associated
with the same third dimension, and each fuzzy set is characterized solely by its LMF
and UMF. This concept is depicted in Fig. 2.12.

The Interval Type-2 FS can also be represented based on triangular, gaussian,
trapezoidal or sigmoidal MFs. However, while one can define an arbitrary FOU as
a piecewise function, the use of the referred classical shapes simplify further model
adjustments in training procedures. For this reason, the literature mostly uses gaussian
MFs since their FOU can be modeled by varying their mean and standard deviation,
as follows:

F̃i (ci , σi , x) = exp

[
−1

2

(
x − ci

σi

)2
]

= G(ci , σi , x), σ i
j ∈ [σ1i , σ2i ] and ci ∈ [c1i , c2i ] .

(2.11)

Figure 2.13 illustrates the resulting Type-2 FS by varying each one of the referred
parameters individually.

The use of an interval based representation significantly reduced the complexity
of all the calculations required in the FLSs and, for that reason, turned Interval
Type-2 Fuzzy Logic Systems (IT2FLSs) feasible in practical scenarios. Despite the
changes in the nature of the MFs, the basic principles of fuzzy logic remain valid
and, consequently, IT2FSs’ manipulation procedures are very similar to the ones
already presented regarding its Type-1 counterpart. Following, a brief analysis of the
Type-2 FLS based on the Mamdani inference will be performed assuming that both
antecedent and consequent FSs are of Type-2 nature.
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(a) FOU of an Interval Type-2 Fuzzy Set, evincing several embedded
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Fig. 2.12 Representation of an interval Type-2 Fuzzy Set
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Fig. 2.13 Two possible representations of an interval Type-2 Fuzzy Set based on gaussian mem-
bership functions
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2.5.1 Fuzzifier

Similarly to the Type-1 FLS, the simplest way of implementing the fuzzifier of a
Type-2 FLS is to map a crisp input into a Singleton FS, as defined in Eq. (2.12).
While information uncertainty is not explicitly considered in the fuzzification stage,
it is indirectly accounted for in the rule’s FSs representation

μ Ãx
(x) =

{
1, x = x ′
0, otherwise

(2.12)

where x ′ is the system’s input value.

2.5.2 Rule-Base

As a natural extension of Type-1 FLS, the Type-2 FLSs also synthesize their Rule-
Base in a set of If-Then rules, establishing the relations between the system’s input
and output. Regardless the Fuzzy Sets nature, the procedure how rules are created
remains the same. Therefore, a Type-2 FLS rule is represented as follows:

Ri : I f x1 is F̃
i
1 and · · · and x j is F̃

i
j , Then yi is G̃i , (2.13)

where Ri represents the i th fuzzy rule, F̃ i
j and G̃i are linguistic terms characterized

by Interval Type-2 FSs, i = {1, · · · , M} where M is the number of rules, j =
{1, · · · , N } where N is the number of antecedents, x j are the FLS inputs and yi is
the rule output.

2.5.3 Inference Engine

The main difference between a Type-1 FLS and a Type-2 FLS lies in their inference
engine. In Sect. 2.2, it was concluded that the result of the j th input and corresponding
antecedent operations in the i th rule yields a crisp number (μi

j ) referred as member-
ship degree. In an IT2FS the result of this operation is an interval given by μ̃i

j as
follows:

μ̃Fi
j
(x j ) =

[
μ

F̃ i
j
(x j ), μF̃ i

j
(x j )

]
(2.14)

where x j is the j th FLS system input.

Despite the apparent complexity of this result, an interval based representation
allows the direct use of the basic fuzzy logic operations (union (s-norm), intersection
(t-norm) and complement (c-norm)) as previously defined in Eqs. (2.5) and (2.6) by
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Fig. 2.14 Representation of the operation between singleton input and the antecedents of a Type-2
FLS using a t-norm operator (minimum or product)

considering the upper and lower bounds of the IT2FS separately. As so, the t-norm
operator, which is used to perform the intersection of the antecedent FS is defined
as:

f i = T N
j=1μF̃ i

j
(x j ) f

i = T N
j=1μF̃ i

j
(x j ) (2.15)

where T is a t-norm (product or minimum). The result of input and antecedent
operations (for the minimum and product t-norm) is depicted in Fig. 2.14.

Similarly, the Mamdani implication methods (the Mamdani’s minimum and prod-
uct) can be directly used with IT2FS by applying the t-norm operator to the rule’s
firing level f̃ i and the consequent G̃i . This procedure is performed by considering
the upper and lower bounds of f̃ i and G̃i separately, as presented in Fig. 2.15 for the
minimum and product t-norms.

The inference process yields a FS determined by the aggregation of the output
of all the fired fuzzy sets. Similarly to the Type-1 FLS case, one can merge the
contribution of each rule by finding the maximum value of the overlapped FSs, as
depicted in Fig. 2.16. To obtain a crisp output after this procedure, one will have to
apply a TR algorithm firstly, as will be discussed in the following subsection.
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Fig. 2.15 Mamdani inference operations using Type-2 FSs
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Fig. 2.16 Type-2 Fuzzy Sets fired consequents’ aggregation procedure, after using the Mamdani
minimum implication
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2.5.4 Type-Reduction

In order to develop practical applications based on the Type-2 FL, it becomes nec-
essary to obtain a crisp value from the combination of all fired FS. To accomplish
this goal, it is a prerequisit to obtain the centroid of a Type-2 FS, represented as
an interval often referred to as type-reduced set. The Karnik-Mendel (KM) algo-
rithm [27], which can be seen as an extension of Type-1 defuzzification procedure,
is currently the most accurate TR method found in literature. Though, given its iter-
ative nature, it is the most complex stage of the fuzzy inference process, requiring
extensive calculations even when the simpler IT2FSs are used.

2.5.4.1 Karnik-Mendel Type-Reduction

The KM algorithm is an iterative process which allows one to obtain an interval of
uncertainty given by [yl , yr ] for the centroid of an Interval Type-2 FS. Similarly to
the Type-1 FSs defuzzification case, Karnik and Mendel [13] also proposed several
methods to perform the Type-2 FSs’ TR based on approaches of the Type-1 FLS
defuzzification procedures, namely: Height and Modified Height TR, Centroid TR
and Center-of-Sets TR. The choice of the defuzzification method has significant
implications in the result’s quality. The Height and Modified Height are the less
complex ones to implement. However, it is known that when a single rule is triggered,
these methods may return inconsistent results [13]. The Centroid one requires a large
amount of calculations because, for each new system input, it has firstly to merge the
consequent part FS of every rule and only then obtain the centroid of the resulting
FS. Finally, the Center-of-Sets TR is usually the employed method since it performs
a smaller amount of operations when compared with the Centroid one. Its efficiency
is due to the a priori computation of each consequent FS’s centroid. Since the FS’s
centroid value is independent from the system’s input variables, this result can be
used as a constant in the Center-of-Sets TR. Therefore, the only procedure that has to
be performed after each new input into the system is a weighted average of the stored
centroids according to a combination of the upper and lower firing levels of each rule.
Since the Center-of-Sets TR inevitably requires one to compute the centroid of each
consequent Type-2 FS once, the Centroid TR will be hereby presented.

Similarly to the Centroid defuzzification procedure, the Centroid TR starts by
obtaining K samples from a Type-2 FS. Since the FOU of a Type-2 FS embeds
several Type-1 FS, to perform the TR one has firstly to obtain two Type-1 FS whose
centroid best approximates the upper and lower bounds of the Type-2 FS centroid.
Considering for example the G̃out FS, the procedure starts by using its sampled
upper and lower bounds to find the optimal values for the switching points [L, R], as
depicted in Fig. 2.17.
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Fig. 2.17 Switching points in computing yl and yr

The candidate points are obtained as follows in Eqs. (2.16) and (2.17).

yl(k) =

k∑
i=1

yiμi
G̃out

+
K∑

i=k+1
yiμi

G̃out

k∑
i=1

μi
G̃out

+
K∑

i=k+1
μi

G̃out

, (2.16)

yr (k) =

k∑
i=1

yiμi
G̃out

+
K∑

i=k+1
yiμi

G̃out

k∑
i=1

μi
G̃out

+
K∑

i=k+1
μi
G̃out

, (2.17)
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where k is an integer in [1, K − 1] interval, and K represents the number of dis-
cretization points. Then, the optimal interval bounds can be obtained by yl and yr ,
as follows:

yl = min
k∈[1,M−1] yl(k) ≡ y(L) ≡

L∑
i=1

yiμi
G̃out

+
K∑

i=L+1
yiμi

G̃out

L∑
i=1

μi
G̃out

+
K∑

i=L+1
μi

G̃out

, (2.18)

yr = max
k∈[1,M−1] yr (k) ≡ y(R) ≡

R∑
i=1

yiμi
G̃out

+
K∑

i=R+1
yiμi

G̃out

R∑
i=1

μi
G̃out

+
K∑

i=R+1
μi
G̃out

, (2.19)

where L and R are switch points satisfying

yL ≤ yl < yL+1 , (2.20)

yR ≤ yr < yR+1 . (2.21)

The choice of whether we start from the upper or lower firing levels when finding
the left and right bounds of each switching point has a very simple explanation.
Take yl as an example: yl has to be the minimum value of the FLS output. Since yi

is ordered ascendantly along the horizontal axis of Fig. 2.12, a large weight (upper
bound of the firing interval) should be chosen in the left of the switch point and a
small weight (lower bound of the firing interval) for its right side. As finding all the
centroid [yl , yr ] candidates is a computationally inefficient approach, an iterative
procedure to find the optimal switching points is presented in Table 2.1.

Despite the improvements brought by Interval Type-2 FS representations, the KM
algorithm still requires a large number of iterations to find the optimal type-reduced
FS. Therefore, several enhancements and simplifications were proposed in the recent
years for the sake of reducing its computational footprint.

2.5.4.2 Optimized Type-Reduction Algorithms

With the development of simpler and alternative algorithms, Type-2 FL definitely
gathered the attention of a broader number of researchers, having a direct impact
in an increasing number of applications in domains such as modeling, control and
classification and pattern recognition observed in recent years.
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Table 2.1 Iterative Karnik-Mendel algorithm

Step For computing yl For computing yr

1. Initialize

μi
G̃out

=
μi
G̃out

+ μi
G̃out

2
and compute

y =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

Initialize

μi
G̃out

=
μi
G̃out

+ μi
G̃out

2
and compute

y =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

2. Find l ∈ [1, M − 1] such that
yl < y < yl+1

Find r ∈ [1, M − 1] such that
yr < y < yr+1

3. Set

μi
G̃out

=

⎧⎪⎪⎨
⎪⎪⎩

μi
G̃out

, n ≤ l

μi
G̃out

, n > l

and compute

y′ =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

Set

μi
G̃out

=

⎧⎪⎪⎨
⎪⎪⎩

μi
G̃out

, n ≤ r

μi
G̃out

, n > r

and compute

y′ =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

4. If y′ = y, stop and
set yl = y and L = l;

otherwise, set y = y′;
and go to step 2

If y′ = y, stop and
set yr = y and R = r ;
otherwise, set y = y′;
and go to step 2

The Type-Reduction methods found in literature can be grouped into two main
categories:

• Enhancements to the KM algorithm, that improve directly the original formulation
of the KM by choosing a better initialization and termination conditions, to reduce
the number of iterations and to optimize the computing technique speeding up
each iteration of the TR process.

• Alternative TR algorithms, which unlike the iterative KM algorithms, are mostly
presented in a closed-form representation and provide faster results than the KM
method.

In [28] a thorough analysis about the current TR algorithms’ state-of-the-art is
done and it was observed that enhanced versions of the KM algorithm are, in general,
faster than its original formulation. Yet, the gains may vary with the size of the
FLS rule base. From the presented approaches, the Enhanced Opposite Direction
Searching Algorithm (EODS) [29] shown itself as the fastest one achieving gains
up to 70% (relative to the original KM) when the FLS has less than 100 rules—as
is used in most part of non-linear processes’ modeling applications. It is important
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to highlight that, despite their algorithmic differences, enhanced versions of the KM
algorithms give exactly the same outputs as its original formulation.

While KM algorithms have been widely adopted, some closed-form methods that
bypass this TR procedure have been proposed. However, since their methodologies
may be significantly different than the original KM algorithms their outputs may
also be quite different. Therefore, a compromise between accuracy and complexity
of the method may be necessary. For example, Wu and Tan [30] introduced a method
which eliminates TR by defining a collection of Type-1 FS embedded by the footprint
of uncertainty. Alternatively, Wu-Mendel Uncertainty Bound method [31] directly
uses the uncertainty bounds of the FS and was shown to be the closed-form method
giving the closest approximation to the KM and presented an execution turnaround
time very close to a similar sized Type-1 FLS. Despite their good performance, a
closed-form approach is not adopted in this work since the best performing ones
hinder the decomposition of the model output as sum of locally linear models. The
capability of decomposing the system in such way is of great advantage to the present
work as it allows an efficient implementation of the online training procedures and
the synthesis of the control law based on the Generalized Predictive Control theory.

2.5.5 Defuzzifier

After applying one of the possible TR methods, the obtained Interval Fuzzy Set still
has to be converted into a crisp number so it becomes suited to the most part of the
FLS application scenarios. Anyway, this procedure is fairly straightforward, and the
defuzzified value obtained by simply computing the average of the interval’s left and
right endpoints as:

yout = yr + yl
2

. (2.22)

2.6 Comparative Analysis

The noise reduction properties of Type-2 Fuzzy MFs have been several times pointed
in literature as one of its main advantages when compared to its Type-1 counterparts.
To study the influence of the antecedent part membership functions’ FOU width in
the rule activation level when the FLS’s inputs are corrupted by a disturbance, a
comparative analysis will be performed by probing its input domain with different
magnitude noise levels. This comparison will be based on Gaussian-shaped FS with
uncertain mean (as presented in Fig. 2.13, where its FOU is bounded by the upper
and lower MFs as defined by the equations:



30 2 Fuzzy Logic Systems

μ
F̃
(x) =

⎧⎪⎨
⎪⎩
G(c2, σ, x), x < c1+c2

2

G(c1, σ, x), x ≥ c1+c2
2

, (2.23)

μF̃ (x) =

⎧⎪⎨
⎪⎩
G(c1, σ, x), x < c1

1, c1 ≤ x ≤ c2

G(c2, σ, x), x > c2

. (2.24)

In a similar approach as presented in [32], this procedure will be based on a simple
FLS comprising a single input and two rules defined by two overlapping MFs (F̃1

and F̃2 ) such that, for a certain input value x , the following conditions are satisfied:

μ2 = 1 − μ
1

, (2.25a)

μ
2

= 1 − μ1 , (2.25b)

where μi and μ
i

are the upper and lower firing levels of F̃i (x), respectively.
To simplify this evaluation, it is considered that the output is given by Nie Tan

closed form Type-Reduction [33],

y =

M∑
i=1

( f i + f
i
)yi

M∑
i=1

( f i + f
i
)

(2.26)

where yi is the output of each rule and f i and f
i

are equivalent to μi and μ
i
, respec-

tively, since the system solely has one antecedent. Therefore, based on Eqs. (2.25)
and (2.26), the contribution of each rule to the model output is weighted by

ri (x) = f i + f
i

M∑
k=1

( f k + f
k
)

= μi (x) + μi (x)

2
.

(2.27)

If the system’s input is corrupted by a gaussian noise of magnitude n, then the
firing strength becomes:

ri (x + n) = μ
i
(x + n) + μi (x + n)

2
. (2.28)
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Fig. 2.18 Surface of the NSE of the evaluated system depending on the input noise level and the
antecedent parameter’s FOU width

Based on Eqs. (2.27) and (2.28), one can evaluate the relationship between the
firing level distortion caused by the input noise and the FOU width for a single rule
by obtaining the Normalized Squared Error (NSE) as

NSE =
n1∫

n=−n1

x2∫
x=x1

[
ri (x) − ri (x + n)

ri (x)

]2

dxdn, f or n ∈ R x ∈ R . (2.29)

The solution of Eq. (2.29) is obtained numerically by varying in the same pro-
portion the values c1 and c2 relatively to a Type-1 FS initially centred in c and then
corrupting the input variable with a noise signal with different Signal-to-Noise Ratios
(SNRs), defined relatively to the maximum input value of the fuzzy set’s domain.
The maximum uncertainty percentage relatively to the FS upper and lower MF’s
center is limited to 10%, as with higher values a great portion of the input space
a large portion of the upper and lower membership degrees become closer to one
and zero respectively, thus not providing a desirable input space partition for a TS
system. Figure 2.18 presents the dependency of the NSE on the noise level and the
uncertainty ratio, and the results obtained by averaging 50 trials for every parameters’
combination.
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Table 2.2 Distortion level for different SNR considering 10% uncertainty over the membership
function’s center.

SNR 18 19 20 21 22 23 24 25 27 32

NSE 13.11 10.64 8.98 7.35 6.13 5.09 4.21 3.13 1.88 0.70

σ 0.98 0.81 0.72 0.47 0.46 0.39 0.38 0.24 0.13 0.05

For a better comparison between the different scenarios, a bi-dimensional pro-
jection perspective of the previous surface is presented in Fig. 2.19 and the results
relative to the 10% uncertainty level summarized in Table 2.2.

From the presented results two main conclusions can be obtained regarding the
noise properties of Type-2 FSs:

• For a given SNR, increasing its FOU reduces the distortion observed at each rule
firing level when comparing to the Type-1 counterpart which served as starting
point (when a 0% uncertainty factor is considered in the MF’s center);

• For reduced noise levels, the use of Type-2 FS at the antecedent part of the rule
base does not bring significant improvements comparing to its Type-1 counterpart,
as is evinced by the flatter region observed in Fig. 2.19 as SNR is increased.
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2.7 Conclusions

This chapter presented the fundamental theory of Type-1 Fuzzy Logic Systems and
how its extension to the Type-2 Fuzzy Logic formalisms can be performed. In the
recent years, Type-2 Fuzzy Logic has been acclaimed as a significant improvement
over the fundamental Fuzzy Logic theory. Despite the lack of an irrefutable theoreti-
cal proof of it, the fact is that most recent publications present practical applications
where the use of Type-2 Fuzzy Logic is shown to be advantageous, mostly in sce-
narios where uncertain information representations are manipulated. The evaluative
scenario concluding this chapter points also in that direction. Therefore, the concepts
here introduced will be further developed in the succeeding chapters, by integrating
them with more flexible structures in terms of learning capabilities.
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