
Chapter 2
Artifacts Correction in MRI Images

2.1 Existing Methods

1. Ultra-echo time imaging (UTE).
2. Sweep imaging with Fourier transform.
3. Water- and fat-suppressed proton projection MRI.
4. ZTE imaging without including the excitation profile.

2.1.1 Disadvantages of Ultra-echo Time Imaging (UTE)

1. Compared to UTE, ZTE traverses k-space faster, resulting in higher
signal-to-noise ratio (SNR) and reduced blurring due to less T2 decay within the
data acquisition window.

2. The image distortion artifact associated with ramp sampling in UTE imaging is
avoided.

2.1.2 Disadvantages of Sweep Imaging with Fourier
Transform

1. Sweep imaging with Fourier transform uses the Fourier transforms.
2. It is a time-consuming process.
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2.1.3 Disadvantages of Water- and Fat-suppressed
Proton Projection MRI

1. Acquisition of additional radial projections with lower gradient strength is
required.

2.1.4 Disadvantages of ZTE Imaging Without
Excitation Profile

1. Problems can arise in ZTE due to the imaging gradient being on during hard
pulse excitation.

2. Inverse problem arises.
3. ZTE imaging does not include the excitation profile.

2.2 Implemented Method

In this work, we model the ZTE sequence signal to include the excitation profile
effect, and formulate a correction algorithm as a solution to an inverse problem. In
order to eliminate the zero crossings in the sinc excitation profile and to condition
the inverse problem, we propose to modulate the hard RF pulse with quadratic
phase, which produces a flatter excitation profile. The RF pulse excitation profile
can be measured using a simple pulse sequence. Without loss of generality, we
apply our method to one variant of ZTE imaging sequences, namely PETRA. By
combining phase-modulated RF excitation and iteratively solving the inverse
problem, results from simulations, phantom, and in vivo studies demonstrate the
effectiveness of our method for correcting image artifacts caused by inhomoge-
neous excitation, even when the extent of the imaged object exceeds the main lobe
of the sinc function (Fig. 2.1).

2.3 Process Diagram

In proposed system, firstly, the uncorrected ZTE image which is obtained from MRI
Scanner is converted to system matrix by applying the spatial transformation and
then performed the non-uniform FFT to obtain the radial trajectories of the original
image. The NUFFT operator maps the image to k-space radial spokes, with one
spoke for each radial trajectory, and another spoke for each Cartesian point. Each
spoke is separated by zero-padding with a factor of two, multiplied with the
excitation profile, and finally restoring the original vector length. Dirichlet inter-
polation in the Cartesian portion is performed for mapping the Cartesian
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coordinates of the single points to coincide with those in the radial spokes. Finally,
the corrected ZTE image is obtained by perform sampling (PETRA).

System matrix composed of three sequential operators: The NUFFT operator,
the excitation profile modulation operator, and the sampling operator. The solid
dots represent the acquired samples in-space, and the hollow circles denote the
locations which are interpolated by NUFFT but not acquired by the sequence.

The proposed algorithm has three main parts:

(A) Model as an inverse problem
(B) Quadratic phase-modulated hard RF pulse
(C) Excitation profile measurement

2.4 Model as an Inverse Problem

The fundamental problem in medical imaging is to reconstruct an image of
something inside the human body from minimally invasive and nondestructive
measurements. The measurements are related to the quantities of interest by a
mathematical model, which usually describes how the unknown system would
produce the measured values. The basic inverse problem is to determine the system
from sufficiently many measurements. The analysis of the inverse problem is made
by the following parameters.

Fig. 2.1 Proposed process diagram
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1. Uniqueness: Decide which measurements Y suffice, in principle, to determine
the value X.

2. Reconstruction: From an exact inversion algorithm B to find exact data Y. This
sometimes involves characterizing the range of A that the set of possible
measurements.

3. Practical implementation: A stable, accurate approximation to B that can be
applied to a finite, noisy set of measurements.

The corrected image with hard RF pulse excitation profile fits within the main
lobe of the sinc-shaped excitation profile, if not then the amplified noise causes
inversion of the ill-conditioned matrix rooted from the zero crossings of the sinc
function which corrupts the resulting image. Generally, the residual artifacts are
appeared in outside of the spherical region defined by the main lobe of the
sinc-shaped profile. This is because the null points in the excitation profile cause the
system matrix to be singular and make the inverse problem. The best case scenario
is represented by MRI. The inverse problem is simply inversion of the Fourier
transform measurements.

In order to eliminate image artifacts, the effect of the non-uniform excitation
profile needs to be considered in image reconstruction.

The discretization yields to

SðkjÞ ¼
XN
i¼1

mðriÞpðGj;riÞe�i2pðkj;riÞ þ ej j ¼ 1; 2; . . .;M

where

N is the number of pixels of the reconstructed image, and
M is the number of space samples.

The image reconstruction algorithm was implemented in MATLAB with
NUFFT algorithm as a mex function written in C. The corrected image with hard
RF pulse excitation profile fits within the main lobe of the sinc-shaped excitation
profile. If these conditions are not met, the amplified noise causes inversion of the
ill-conditioned matrix rooted from the zero crossings of the sinc function would
corrupt the resulting image. Here, the residual artifact outside the spherical region is
defined by the main lobe of the sinc-shaped profile. This is because the null points
in the excitation profile cause the system matrix to be singular and make the inverse
problem ill-conditioned.

2.5 NUFFT Operator

NUFFT operator maps the (Cartesian) image onto space (full) radial spokes, with
one spoke for each radial trajectory, and additionally one spoke for each Cartesian
point. The operator acts on each projection separately by zero-padding (by a factor
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of two), 1D IFFT, multiplication with the excitation profile, 1D FFT, and finally
restoration of the original vector length. The sampling operator, denoted, masks out
the fraction of the radial signal that was not acquired (recall that less than half of
each radial spoke is acquired) and performs Dirichlet interpolation in the Cartesian
portion (since the coordinates of the single points may not coincide with those in
the radial spokes). Application of the operator is the most time-consuming process,
requiring computations. The adjoint operator is the reverse process of the above
steps. The image reconstruction algorithm was implemented in MATLAB
(Mathworks, Natick, MA, USA) with NUFFT algorithm as a mex function written
in C.

A good way to think of the NUDFT is in terms of interpolation. In general,
NUDFT is essentially the DFT without limitations to equally spaced frequency
nodes and useful for applications in which samples must be taken at irregular
intervals in frequency, time, or both (NNDFT), allows for more “selectively con-
centrated” frequency (or time) information.

Fast implementation: NUFFT::NUDFT::FFT:DFT
NUDFT—Non-uniformly spaced or non-equispaced discrete Fourier Transform.

The DFT and FFT are limited to obtaining frequency information at regular
intervals in the frequency domain when given samples were taken at regular
intervals in the time/space domain. In many applications, the data will be collected
on a non-uniform grid, or it is desirable to have the frequency information for
non-uniformly spaced points in the frequency domain. In these cases, we can use a
generalization of the DFT known as the non-uniform DFT. The non-uniform DFT
will assume equispacing in time/space but will allow spacing in the frequency
domain to be variable. A further generalization of the NUDFT is the NNDFT,
which does not assume equispacing in either domain. The mathematics is a little
tricker, but essentially the problem is exactly the same. The fast version of the
NUDFT is the NUFFT, as you might expect.

Interpolation can be thought of as two sequential processes. Firstly, FFT was
taken to get frequency information at uniformly spaced nodes, and secondly results
are used to interpolate into desired nodes. Approximation interpolation only pro-
duces approximation of values at desired nodes. Quality of approximation depends
on node spacing and nature of function.

In 1D, frequency information for certain frequencies is required. First, find a
linear combination of 1-periodic shifted window functions to approximate the
NUDFT. To simplify the development, we can just look at how the NUFFT is done
in one dimension. Our goal is to find weights for a linear combination of 1-periodic
shifted window functions that we can use to approximate the NUDFT well. We
want to select the window function and the window function weights in such a way
that we can get our approximated signal as close as possible to the NUDFT. In the
equation on the slide, little n = sigma * N. This is just meant to indicate that we
have oversampled the function by a factor sigma, but it is important because it will
be used in our approximations.

Above method is essentially used as method of frequency interpolation. Started
with a standard window function, can extend to 1-periodic version. The window
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functions essentially serve as methods of frequency interpolation. By coming up
with a general expression for the transform of our data, we can evaluate it at specific
frequencies, as we said before. The shifted window functions, then, are linearly
combined to give us a continuous function we can evaluate at certain points. If we
start with some window function phi, we can extend it to a 1-periodic version and
then express it as a Fourier Series with coefficients as on the slide.

While the NUDFT computes the Fourier coefficients in one fell swoop, it is
instructive to think of it as two processes that occur in serial. First, the input data is
used to perform a standard FFT and get Fourier coefficients on a regularly spaced
grid. Using these, the frequency representation of the signal can be interpolated to
find the values at the desired frequency nodes. Because this process uses interpo-
lation, it only produces an approximation of the coefficients at these nodes. The
quality of that approximation will depend on the specific behavior of the function
being transformed and the spacing of the nodes

2.5.1 Features of NUFFT

1. It is computationally fast.
2. Full calculation of A does not required.
3. It is not a real representation of the transform because here approximations in

both time/space and frequency.
4. It uses the window operations and FFT techniques.

The NUFFT is similar to the FFT in the sense that it is a fast algorithm for the
NUDFT transform, but there is a key difference to it—it does not give a perfect
representation of the NUDFT. Just as with the DFT, it is impractical and compu-
tationally expensive to construct the entire NUDFT matrix.

2.5.2 Non-uniform FFT Algorithm

By making use of simple FFT algorithms, the system matrix cannot be generated, as
when the data is sampled by using the non-uniform grid with spiral sampling
trajectories projections. In order to perform for the non-uniform grid, a number of
FFT algorithms came into existence to get frequency information at uniformly
spaced nodes in which the results are used to interpolate into desired nodes.
Moreover, several algorithms have been proposed; the easiest and simple NUFFT
algorithm is as follows:

1. For k € IN, compute Wk = gk/lNlck(ɕ)
2. For q € IN, compute by use of the d-variate FFT Wq ¼

P
k€IN Wke�2pikðn�1HqÞ
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3. For j = 0, …, M − 1, Compute g f j
� � ¼ P

q€IN;mðxjÞ
Wqðfj � n�1HqÞ

Using these approximations, if we are given the number of Fourier coefficients
M, the vector N of data points in each dimension, the frequency locations, and the
data values themselves, we can compute the NUFFT.

First, we determine the time/space weights by dividing them by the known
Fourier coefficients for our chosen window function and by the cardinality of the set
IN.

We only do this for k in IN; we set the time/space weights for k in IN but not N to
0.

Then, for each vector in IN, we determine the frequency weight by performing a
d-variate FFT on the weights wk that we computed.

Finally, we can write our approximation as a linear sum of the shifted window
functions and evaluate this at the frequency nodes fj to get our Fourier coefficients at
the desired locations.

2.6 Quadratic Phase-Modulated RF Pulse Excitation

A quadratic phase-modulated rectangular (chirped) pulse was designed for excita-
tion instead. As shown in both simulations and experiments, the corrected image
with hard RF pulse excitation shows residual artifact outside the spherical region
defined by the main lobe of the sinc-shaped profile. This is because the null points
in the excitation profile cause the system matrix to be singular and make the inverse
problem ill-conditioned.

In order to eliminate the zero crossings of the rectangular pulse excitation profile,
a quadratic phase is modulated to the RF pulse waveform

B1ðtÞ ¼ b1; e�i2pkðs2Þ if tj j � s
2

0; elsewhere

�

which controls the amount of quadratic phase applied to the RF pulse. In all of the
following applications, K is set to 1. The corresponding excitation profile can be
computed by numerical Bloch equation simulation. The quadratic phase-modulated
pulse has a flatter excitation profile than does a simple hard pulse. More impor-
tantly, no zero-crossing point occurs in the profile even when the pulse duration is
four times that of the dwell time.

When a quadratic phase modulation is applied to the RF pulse, the excitation
profile becomes flatter and lacks a null point, as shown in the Bloch equation
simulation results. This improved excitation profile can be understood as a type of
regularization to physically reduce the condition number of the inverse problem.
The sinc-shaped hard pulse excitation profile is pure real. As a way to remove the
null point, an imaginary part is added into the profile to make it complex. Hence,
the magnitude of the profile is no longer singular. The improvement in the

2.5 NUFFT Operator 15



reconstructed images is evident. The amount of phase modulation applied to the RF
pulse constitutes a trade-off between the flip angle and the minimum value of the
absolute magnetization profile within the field of view. Application of too much
phase yields low flip angle for a given peak B1 amplitude and pulse duration.

On the other hand, inadequate quadratic phase causes the magnetization profile
to approach a sinc profile, and the noise will be amplified due to a close-to-singular
system matrix. Here, we chose a relatively small amount of quadratic phase in order
to achieve minimal flip angle loss while maintaining a relatively flat excitation
profile.

2.6.1 Hard RF Phase Modulation

The quadratic-phase pulses can be appreciated by matching up to linear-phase
pulses. Mostly, the magnetization in the selected bands is turn around simultane-
ously with a linear-phase pulse. The short main lobe is considered, as its width is
inversely proportional to the bandwidth.

W11=B

If quadratic phase modulation is applied to the RF pulse, the excitation profile
becomes flatter and lacks a null point. The hard pulse sinc-shaped excitation profile
is pure real; to remove the null point, an imaginary part is added into the profile to
make it complex. So, the magnitude of the profile is no longer singular. The
improvement in the reconstructed images is evident. The total of phase modulation
is applied to the RF pulse where it constitutes a trade-off between the flip angle and
the minimum value of the absolute profile. To eliminate the zero crossings of the
rectangular pulse excitation profile, a quadratic phase is modulated to the RF pulse
waveform.

2.7 Excitation Profile Measurement

A pulse sequence was proposed to measure the excitation profile, which can be
inserted as a prescan into the ZTE sequence. Firstly, the profile was obtained by
measuring the actual pulse shape with an oscilloscope and then by taking the
Fourier transform of the pulse shape. In this method one does not require additional
hardware and is an optional component into the ZTE pulse sequence. The spectral
profile measured by the new sequence shows good agreement with that obtained
from the Bloch equation simulation. Therefore, we conclude that the profile from
the numerical simulation is sufficiently accurate as an input for the correction
algorithm.
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In order to confirm that we indeed achieve the theoretical excitation profile, we
propose a simple pulse sequence for its measurement, which can be inserted as a
prescan into the ZTE sequence. The improved excitation profile can be understood
as a type of regularization to physically reduce the condition number of the inverse
problem. The sinc-shaped hard pulse excitation profile is pure real. As a way to
remove the null point in excitation profile, an imaginary part is added into the
profile to make it complex (Fig. 2.2).

Suppose the signals acquired by the first and second acquisitions are S1 and S2,
respectively. The excitation profile p(f) is calculated as

P ¼ FT � 1ðS1Þ
FT � 1ðS2Þ

A sketch of this pulse sequence is shown in Fig. 2.4a, b. Suppose the signals
acquired by the first and second acquisitions are S1 and S2, respectively, we
calculated the excitation profile.

2.8 Pointwise Encoding Time Reduction
with Radial Acquisition (PETRA)

Some of the parameters limit the minimum encoding time for each k-space point.
They are scanner’s gradient performance, pulse length, and hardware switching
times. One of the features in PETRA pointwise encoding time reduction with radial
acquisition is the radial half-projections is present in outer k-space whereas center
portion is filled with Cartesian trajectory.

It is three-dimensional method which offers shorter encoding times over the
whole k-space which enables higher resolution for tissue with very short T2. It has
very low demands on gradient switching times and is not disturbed by gradient
imperfections such as eddy currents and time delays which lead to a problem for

Fig. 2.2 Signals acquired by
the first and second
acquisitions
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UTE imaging. PETRA in ZTE gives good signal-to-noise ratio (SNR) for tissue
with short T2 and good image quality overall (Fig. 2.3).

The features of radial projection imaging are combines with single point imaging
using this hybrid sequence. Hardware changes are not required. Three-dimensional
isotropic resolution images can be acquired within three minutes of 1 mm by
implementing this method. We obtain the comparison between the ultrashort echo
time and the pointwise encoding time reduction with radial acquisition can be
observed by simulation and phantom measurements. As it requires T2 tissue with
less than 1 ms, it is the advantage of pointwise encoding time reduction with radial
acquisition. Some of the limitations of this method can be seen by using the
Contrast-to-noise ratio performance and SNR. The phantom and vivo studies of
knee, ankle, head, and wrist examples give the sequences of more feasibility.
PETRA is helpful in routine clinical applications using the ultrashort echo time
sequences and also in fast imaging with ultrashort echo time.

The outer k-space in pointwise encoding time reduction with radial acquisition is
filled with radial half-projections whereas the center is measured single point on a
Cartesian trajectory. The crossbreed sequence combines the features of single point
imaging with radial projection imaging. No hardware changes are required.

2.9 Iterative Partial K-Space Reconstruction

The methods of the previous section perform the reconstruction in one pass.
Problems arises from the interaction between phase correction and the conjugate
synthesis method, as was described above. Another approach is to estimate the
missing k-space data by iteratively applying phase correction and conjugate syn-
thesis. In the image domain, the image phase is constrained to be that of the
low-resolution estimate. In the frequency domain, the k-space data is constrained to

Fig. 2.3 Pulse sequence diagram of PETRA, consisting of a radial acquisition, b Cartesian
portion, and c corresponding space trajectory
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match the acquired data when available. Iterating produces an estimate that
approximately satisfies both sets of constraints. There are several variations on this
idea, depending on how the constraints are applied, and how the iteration is
performed.

Iterative reconstruction is a relatively new concept for the calculation of medical
images, which is based on formulating the reconstruction process mathematically as
an inverse problem and solving it with a numerical optimization method. Driven by
recent success for dose reduction in CT, iterative reconstruction is currently
receiving strong interest also in the MRI community. The first part of the iterative
reconstruction scheme talk will give a step-by-step introduction and tells how to use
it for the magnetic resonance imaging.

The second part will present four applications to illustrate that the concept can be
exploited either for significantly reducing the scan time or for improving the image
quality relative to a conventional reconstruction. The above advantages were taken
from two main components of the sampled data: Firstly, the incorporation of prior
knowledge about the solution and, second, the use of an extended modeling of the
MRI signal.

Quadratic phase modulation with iterative reconstruction is applied to the RF
pulse, the excitation profile becomes flatter and lacks a null point, as shown in the
Bloch equation simulation results. It is a new concept for the calculation of medical
images, based on formulating the reconstruction process mathematically as an
inverse problem and solving it with a numerical optimization method. Iterative
reconstruction is currently receiving strong interest in the MRI community. Iterating
produces an estimate that approximately satisfies both sets of constraints. There are
several variations on this idea, depending on how the constraints are applied, and
how the iteration is performed.

2.10 Processing of Project

Step 1: Transforming the Cartesian form of image into k-space by applying the
NUFFT.

Step 2: NUFFT operator maps the (Cartesian) image to k-space (full) radial
spokes, with one spoke for each radial trajectory and additionally one
spoke for each Cartesian point.

Step 3: The P operator acts on each projection separately by zero-padding (by a
factor of two), 1D IFFT, and multiplication with the excitation profile.

Step 4: By applying 1D FFT, original vector length is restored.
Step 5: The sampling operator masks out the fraction of the radial signal that

was not acquired (recall that less than half of each radial spoke is
acquired) and performs Dirichlet interpolation in the Cartesian portion.

Step 6: Applying of the NUFFT operator is the most time-consuming process,
requiring O(N Log N) computations. The adjoint operator is the reverse
process of the above steps.
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Step 7: The image reconstruction algorithm was implemented in MATLAB
(Mathworks, Natick, MA, USA) with NUFFT algorithm as a mex
function written in C (Fig. 2.4).

2.11 Flow Diagram

Simulation Results
The uncorrected ZTE image from MRI scanner is processed through RF phase
modulation; the corrected ZTE image is obtained for different iterations. The
maximum artifacts are reduced by processing the uncorrected image for number of
iterations.

Figure 2.5 shows the single uncorrected coronal view of Brain input image is
processed by QPM to correct the uncorrected ZTE image and enhanced recon-
structed image for 30 iterations.

Transformation  
(Cartisian to K-space) 

MAPPING 

ZERO PADDING 

1D IFFT 

QPM

1D FFT 

SAMPLING 

RECONSTRUCTION 

Fig. 2.4 Flow diagram of
implemented method
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Figure 2.6 shows the amount of artifacts correction for 30 iterations by com-
paring the initial image with enhanced reconstructed image.

Figure 2.7 shows the uncorrected coronal view of Brain input image is pro-
cessed by QPM to correct the uncorrected ZTE image and enhanced reconstructed
image for 100 iterations.

Figure 2.8 shows the amount of artifacts correction for 100 iterations by com-
paring the initial image with enhanced reconstructed image (Table 2.1).

As the number of iterations increased, the artifacts gets minimized. From the
above table, the iterations increase from 30 to 100; the mean square error is
decreased from 2.7 to 2.2; and the peak SNR is increased from 13.66 to 14.62
which shows the artifacts gets reduced.

Figure 2.9 shows the one uncorrected coronal view of Brain and one uncorrected
sagittal view input image are processed by QPM to correct the uncorrected ZTE
image and enhanced reconstructed image for 30 iterations.

Figure 2.10 shows the amount of artifacts correction for 30 iterations by com-
paring the initial image with enhanced reconstructed image.

Fig. 2.5 ZTE corrected and enhanced image of 30 iterations
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Figure 2.11 shows the one uncorrected coronal view of Brain and one uncor-
rected sagittal view input image are processed by QPM to correct the uncorrected
ZTE image and enhanced reconstructed image for 100 iterations.

Figure 2.12 shows the amount of artifacts correction for 100 iterations by
comparing the initial image with enhanced reconstructed image (Table 2.2).

As the number of iterations increased, the artifacts get minimized. From the
above table, the iterations increase from 30 to 100; the mean square error is
decreased from 2.7 to 2.2; and the peak SNR is increased from 13.66 to 14.62
which shows the artifacts gets reduced.

Fig. 2.6 Artifacts correction for 30 iterations
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Discussions
MRI scanners use magnetic fields and radio waves to form images of the body.
The MRI is widely used in hospitals for staging of disease and medical diagnosis of
diseases and for follow-up without exposure to radiation. Nowadays, magnetic
resonance imaging (MRI) is a unique clinical and research imaging technology that
enables users to visualize different anatomical, metabolic, and physiological
properties of the human body. These work on the majority species in tendons,
ligaments, menisci, periosteum, cortical bone, and other related tissues.

Fig. 2.7 ZTE corrected and enhanced image of 100 iterations
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Fig. 2.8 Artifacts correction of single image for 100 iterations

Table 2.1 Statistical analysis values

S. No. Parameter Statistical value for
30 iterations

Statistical value for
100 iterations

1 Mean square error 2.7977e+003 2.2395e+003

2 Peak signal-to-noise ratio 13.6628 14.6293

3 Normalized cross-correlation 0.9448 0.9813

4 Average difference −6.4536 −4.4867

5 Structural content 0.9215 0.9655

6 Maximum difference 232 196
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In this method, a new technique is implemented for reducing the artifacts in MRI
images. In this work, the sequence of signals is used which include the flatter
excitation profile which is obtained by modulate the hard RF pulse with quadratic
phase and efficient algorithms. In this work, the iterative reconstruction is imple-
mented for reduction of artifacts and also performed the simulation results. If the
iterations is increased, the artifacts are reduced.

Fig. 2.9 ZTE corrected and enhanced of two images of 30 iterations
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Advantages

1. The ZTE sequence signal includes the excitation profile effect.
2. The inverse problem is reduced.
3. It produces the flatter excitation profile.
4. We can apply our method with PETRA sequence.

Fig. 2.10 Artifacts correction of two images for 30 iterations
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Disadvantages

1. This algorithm works under the condition that the object is inside the main lobe
of the sinc-shaped excitation profile of the rectangular pulse.

2. In ZTE imaging, the gradients are present during hard pulse excitation.

Fig. 2.11 ZTE corrected and enhanced of two images of 100 iterations
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Future Scope
The proposed method may be contributed toward establishing ZTE MRI as a
routine 3D pulse sequence for imaging protons and other nuclei with quasi
solid-state behavior on clinical scanners.

Fig. 2.12 Artifacts correction of two images for 100 iterations

Table 2.2 Statistical analysis

S. No. Parameter Statistical value for
30 iterations

Statistical value for
100 iterations

1 Mean square error 3.2515e+003 1.7224e+003

2 Peak signal-to-noise ratio 13.0100 15.7694

3 MN normalized cross-correlation 0.9270 0.9871

4 Average difference −5.3624 −2.4307

5 Structural content 0.9436 0.9926

6 Maximum difference 227 147
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