
Chapter 2
Context-Aware Discovery of Visual
Co-occurrence Patterns

Abstract Once images are decomposed into a number of visual primitives, it is of
great interests to cluster these primitives into mid-level visual patterns. However,
conventional clustering of visual primitives, e.g., bag-of-words, usually ignores the
spatial context and multi-feature information among the visual primitives and thus
cannot discover mid-level visual patterns of complex structure. To overcome this
problem, we propose to consider both spatial and feature contexts among visual
primitives for visual pattern discovery in this chapter. We formulate the pattern dis-
covery task as a multi-context-aware clustering problem and propose a self-learning
procedure to iteratively refine the result until it converges. By discovering both spatial
co-occurrence patterns among visual primitives and feature co-occurrence patterns
among different types of features, the proposed method can better address the ambi-
guities of visual primitives.

Keywords Co-occurrence pattern discovery ·Visual disambiguity ·Multi-context-
aware clustering · k-means regularization · Self-learning optimization

2.1 Introduction

It has been a common practice to build a visual vocabulary for image analysis
by visual primitive clustering. However, most existing clustering methods ignore
the spatial structure among the visual primitives [7], thus bringing unsatisfac-
tory results. For example, the popular k-means clustering of visual primitives can
lead to synonymous visual words that overrepresent visual primitives, as well
as polysemous visual words that bring large uncertainties and ambiguities in the
representation [5, 6].

Since visual primitives are not independent to each other, to better address the
visual polysemous and synonymous phenomena, the ambiguities and uncertainties
of visual primitives can be partially resolved through analyzing their spatial contexts
[12, 13], i.e., other primitives in the spatial neighborhood. Two visual primitives,
although exhibit dissimilar visual features, may belong to the same pattern if they
have the same spatial contexts. Even though they share similar features, they may not
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16 2 Context-Aware Discovery of Visual Co-occurrence Patterns

belong to the same visual pattern if their spatial contexts are completely different.
Besides the spatial dependencies among visual primitives, a visual pattern can exhibit
certain feature dependencies among multiple types of features or attributes as well.
Therefore, it is equally interesting in discovering spatial and feature co-occurrence
patterns in image data so thatwe can leverage visual patterns to improve the clustering
of visual primitives.

To address the above problem, we propose to consider spatial and feature contexts
among visual primitives for pattern discovery. By discovering spatial co-occurrence
patterns among visual primitives and feature co-occurrence patterns among different
types of features, our method can effectively reduce the ambiguities of visual primi-
tive clustering. We formulate the pattern discovery problem as multi-context-aware
clustering, where spatial and feature contexts are served as constraints of k-means
clustering to improve the pattern discovery results. A novel self-learning procedure
is proposed to integrate visual pattern discovery into the process of visual primi-
tive clustering. The proposed self-learning procedure is guaranteed to converge, and
experiments on real images validate the effectiveness of our method.

2.2 Multi-context-aware Clustering

In multi-context-aware clustering, each visual primitive xn ∈ X is characterized
by V types of features: {f (v)

n }Vv=1, where f
(v)
n ∈ R

dv . These features of xn correspond
to a feature context group G (f)

n . Meanwhile, collocating with a visual primitive in
a local spatial neighborhood, the inclusive visual primitives constitute the spatial
contexts of the central one. For each visual primitive xn ∈ X , we denote by G (s)

n =
{xn, xn1 , xn2 , . . . , xnK } its spatial context group, which can be built by K -nearest
neighbors (K -NN) or ε-nearest neighbors (ε-NN).

2.2.1 Regularized k-means Formulation with Multiple
Contexts

Each type of features {f (v)
n }Nn=1 can produce a feature word lexicon Ωv (|Ωv| = Mv)

by k-means clustering with the objective function (2.1) minimized.

Qv =
Mv∑

m=1

N∑

n=1

r (v)
mndv(u

(v)
m , f (v)

n ) = tr(RvDv), (2.1)

where

• {u(v)
m }Mv

m=1 denote Mv quantized feature words after clustering, and they together
form a feature word matrix Uv ∈ R

dv×Mv ;
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• Rv ∈ R
Mv×N is a binary label indicator matrix, and the entry r (v)

mn = 1 only if f (v)
n

is labeled with the mth discovered feature word u(v)
m via clustering;

• Dv ∈ R
Mv×N denotes a distortion matrix, and the entry of its mth row and nth

column is given by dv(u(v)
m , f (v)

n ), i.e., the distortion between u(v)
m and f (v)

n .

To consider multiple types of features, we let each xn ∈ X generate a feature
context transaction t(f)n ∈ R

∑V
v=1 Mv to represent G (f)

n .

Definition 2.1 (Feature context transaction) The feature context transaction of the
visual primitive xn , denoted by t(f)n , refers to the co-occurrences of multiple types of
feature words in the feature context group of xn .

Using label indicator matrices {Rv}Vv=1 obtained from k-means clustering on the V
types of features, we can represent the feature context transaction database as a binary
matrix

Tf =

⎡

⎢⎢⎢⎣

R1

R2
...

RV

⎤

⎥⎥⎥⎦ . (2.2)

Therefore, Tf ∈ R

∑V
v=1 Mv×N , and t(f)n is in the nth column of Tf . Similar to single

feature clustering, we propose to minimize the objective function (2.3) to obtain a
mid-level feature pattern lexicon Ψf (|Ψf | = Mf ), which actually provide a partition
to the given data inX using multiple features.

Qf =
Mf∑

m=1

N∑

n=1

r (f)
mndf(u

(f)
m , t(f)n ) = tr(RfDf), (2.3)

where

• {u(f)
m }Mf

m=1 denote Mf quantized feature patterns after clustering, and they form a

feature pattern matrix Uf ∈ R

∑V
j=1 Mj×Mf ;

• Rf ∈ R
Mf×N is a binary label indicator matrix, and the entry r (f)

mn = 1 only if vn is
included the mth discovered feature pattern u(f)

m via clustering;
• Df ∈ R

Mf×N denotes a distortion matrix, and the entry of its mth row and nth
column is given by df(u(f)

m , t(f)n ), i.e., the distortion between u(f)
m and t(f)n .

Besides multi-feature information, we further explore the spatial dependencies
among visual primitives and represent G (s)

n as a spatial context transaction.

Definition 2.2 (Spatial context transaction) The spatial context transaction of the
visual primitive xn , denoted by t(s)n , refers to the co-occurrences of different categories
of visual primitives appearing in the spatial context group of xn .

The spatial context transaction database can be represented as a sparse integer matrix
Ts ∈ R

Mf×N , where each column is a spatial context transaction t(s)n ∈ Z
Mf . The entry
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Fig. 2.1 Pattern discovery along the solid arrows and visual disambiguity along the dashed arrows

t (s)mn = c indicates that the nth transaction contains c visual primitives belonging to
the mth category. Similarly, we can find a higher level spatial pattern lexicon Ψs

(|Ψs| = Ms) by clustering on spatial context transactions. Theminimization objective
function is given by

Qs =
Ms∑

m=1

N∑

n=1

r (s)
mnds(u

(s)
m , t(s)n ) = tr(RsDs), (2.4)

where

• {u(s)
m }Ms

m=1 denote Ms quantized spatial patterns after clustering, and they form a
spatial pattern matrix Us ∈ R

Mf×Ms ;
• Rs ∈ R

Ms×N is a binary label indicator matrix, and the entry r (s)
mn = 1 only if vn is

included the mth discovered spatial pattern u(s)
m via clustering;

• Ds ∈ R
Ms×N denotes a distortion matrix, and the entry of its mth row and nth

column is given by ds(u(s)
m , t(s)n ), i.e., the distortion between u(s)

m and t(s)n .

After having spatial patterns, we aim to refine visual primitive clustering of uncer-
tainty. Such a refinement should enable spatial patterns to help improve feature pat-
tern constructions. Afterward, each type of feature words will also be adjusted due
to the tuned feature patterns. Then, the multiple types of updated feature words can
learn more accurate feature patterns and spatial patterns from bottom up again. We
show the idea in Fig. 2.1. To achieve this objective, we propose to minimize (2.1)
regularized by (2.3) and (2.4). The objective function thus becomes

Q =
V∑

v=1

tr(RT
vDv) + λf tr(RT

f Df) + λs tr(RT
s Ds)

= tr(RTD)︸ ︷︷ ︸
Qα

+ λf tr(RT
f Df)︸ ︷︷ ︸

Qβ

+ λstr(RT
s Ds)︸ ︷︷ ︸

Qγ

, (2.5)

where

• λf > 0 and λs > 0 are constants for regularization;
• Qα , Qβ , and Qγ are the total quantization distortions of multiple types of features,
the quantization distortion of feature context transactions, and the quantization
distortion of spatial context transactions, respectively.

• R and D are block diagonal matrices from {Ri }Vv=1 and {Dv}Vv=1.
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As Qα , Qβ , and Qγ are correlated among each other, it is intractable to minimize
Q by minimizing the three terms separately, which makes the objective function of
(2.5) a challenge. We will in Sect. 2.2.2 show how to decouple the dependencies
among them and propose our algorithm to solve this optimization function.

2.2.2 Self-learning Optimization

We initialize feature words, feature patterns, and spatial patterns gradually by k-
means clustering by minimizing (2.1), (2.3), and (2.4). During k-means clustering,
we use squared Euclidean distance to measure dv(·, ·) in each feature space. Since
feature context transactions are binary, we use Hamming distance to measure df(·, ·),
which leads to

Df = −2UT
f Tf + 1TfTf + UT

f 1Uf

= −2UT
f RZf + 1TfRZf + UT

f 1Uf , (2.6)

where 1Tf is an M × ∑V
i=1 Mv all 1 matrix; 1Uf is a

∑V
i=1 Mv × N all 1 matrix; and

Zf ∈ R
V N×N is the concatenation of V identity matrices of N × N . Following (2.6),

we can have a similar distortion matrix to spatial context transactions

Ds = −2UT
s Ts + 1TsTs + UT

s 1Us

= −2UT
s RfZs + 1TsRfZs + UT

s 1Us , (2.7)

where 1Ts is an Ms × M all 1 matrix; 1Us is an M × N all 1 matrix; and Zs is an
N × N matrix, whose entry qi j = 1 only if xi and x j are local spatial neighbors. It
is worth noting that the matrix (2.7) no longer indicates pairwise distances but only
distortion penalties, unless spatial context transactions are all binary.

To decouple the dependencies among the terms of (2.5), we take each of Rf , R,
and Rs as the common factor for extraction and derive (2.5) as:

Q(R,Rf ,Rs,D,Df ,Ds)

= tr(RT
f Hf) + tr(RTD) + λstr(RT

s U
T
s 1Us) (2.8)

= tr(RTH) + λstr(RT
s Ds) + λf tr(RT

f U
T
f 1Uf ) (2.9)

= tr(RT
s Hs) + tr(RTD) + λf tr(RT

f Df), (2.10)

in which

Hf = λfDf − λs(2UT
s − 1Ts)

TRsZT
s , (2.11)

H = D − λf(2UT
f − 1Tf )

TRfZT
f , (2.12)

Hs = λsDs, (2.13)
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Algorithm 1: Visual Pattern Discovery with Multi-Context-Aware Clustering
(MCAC)

Input: X = {xn}Nn=1; Zf ; Zs; parameters: {Mv}Vi=1, Mf , Ms, λf , λs
Output: feature word lexicons: {Ωv}Vv=1 ({Uv}Vv=1); feature pattern lexicon: Ψf (Uf ); spatial

pattern lexicon: Ψs (Us); clustering results {Rv}Vv=1, Rf , Rs
/ / Initialization

1: perform k-means clustering from bottom up to obtain {Ui }Vi=1, Uf , Us
/ / Main loop

2: repeat
3: repeat
4: R-step: fix {Ui }Vi=1, Uf , Us, successively top-down/bottom-up update {Ri }Vi=1, Rf , Rs
5: until Q is not decreasing
6: D-step: fix {Rv}Vv=1, Rf , Rs, update {Ui }Vi=1, Uf , Us
7: until Q is converged

/ / Solution
8: return {Ui }Vi=1, Uf , Us, {Ri }Vi=1, Rf , Rs

where the size of Hf , H, and Hs are M × N ,
∑V

v=1 Mv × V N and Ms × N , and H
contains V diagonal blocks {Hv}Vv=1.

We then successively update the three label indicator matrices Rf , R, and Rs

when fixing the cluster centroid matricesUf , {Uv}Vv=1, andUs. To minimize (2.5), the
following label indicator matrices update criteria will be adopted, ∀n = 1, 2, . . . , N ,

r (f)
mn =

{
1 m = argmink h

(f)
kn

0 otherwise
, (2.14)

r (v)
mn =

{
1 m = argmink h

(v)
kn

0 otherwise
, (2.15)

r (s)
mn =

{
1 m = argmink h

(s)
kn

0 otherwise
, (2.16)

where h(f)
kn , r

(f)
mn , h

(v)
kn , r

(v)
mn , h

(s)
kn , and r

(s)
mn are the entries of Hf , Rf , Hv, Rv, Hs and Rs,

respectively. As long as the objective function of (2.5) is decreasing, Rv and R can
be continually refined, followed by the bottom-up updates of Rf and Rs.

Furthermore, provided the label indicator matricesRf ,R, andRs, the correspond-
ing centroidmatricesUf , {Uv}Vv=1, andUs can be updated, and so as the corresponding
distortion matrices Df , {Dv}Vv=1, and Ds, which will also make the objective function
of (2.5) decrease.

Eventually, we propose a visual pattern discovery method with multi-context-
aware clustering (MCAC) in Algorithm 1. This algorithm is convergent since the
solution spaces of R, Rf , and Rs are discrete and finite, and the objective function
(2.5) is monotonically decreasing at each step. Clearly, the proposed MCAC will
be degenerated to the visual pattern discovery method with spatial context-aware
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clustering (SCAC) [11] if there is only one type of features and we set λf = 0 in
(2.5) to remove the Qβ term. The complexity of the proposed algorithm is similar to
k-means clustering, since our method only needs a finite run of k-means clustering.

2.3 Experiments

In the experiments, we set Mv = Mf ,∀ i = 1, 2, . . . , V for the proposed MCAC.
Besides, to help parameter tuning, we let λf = τf |Q0

α/Q0
β | and λs = τs|Q0

α/Q0
γ |,

where Q0
X (X = 1, 2, α, β, γ ) is the initial value of QX defined by (2.5), and the

nonnegative constants τf and τs are the auxiliary parameters to balance the influences
from feature co-occurrences and spatial co-occurrences, respectively.

2.3.1 Spatial Visual Pattern Discovery

Given a single image, we detect visual primitives X = {xn}Nn=1 and use one or
more (e.g., V types of) features to depict each of them. Next, we apply spatial K -
NN groups to build spatial context group database {G (s)

n }Nn=1. After that, we conduct
spatial pattern discovery using SCACand the proposedMCAC.The results are shown
in Figs. 2.2 and 2.3.

As shown in Fig. 2.2, the test image is amono-coloredLVmonogram fabric image.
Because of clothwarping, themonogrampatterns are deformed, whichmakes pattern
discovery more challenging. We detect 2604 image patches as visual primitives and
use SIFT features to describe them [3]. To build spatial context groups, K -NN with
K = 8 is applied. Other parameters are set as M1 = 20, Ms = 4, τs = 1 for SCAC.
In Fig. 2.2, we use different colors to indicate different (4 in total) discovered spatial
patterns. It is interesting to notice that SCAC can locate the monogram patterns of
different spatial structures. In comparison, without considering spatial contexts of
visual primitives, k-means clustering cannot obtain satisfactory results.

A comparison between SCAC and MCAC is shown in Fig. 2.3, where 422 image
patches [3] are extracted. In SCAC, SIFT features [3] are used to describe these
patches. While in MCAC, the patches are represented by SIFT features [3] and color
histograms (CHs) [2]. Both methods construct spatial context groups by K -NN with
K = 12 and aim to detect three categories of spatial patterns: human faces, text
logos, and background edges. We highlight the instances of each discovered spatial
pattern. The 1st column shows the results of SCAC, and the used parameters are
as follows: M1 = 10, Ms = 3, τs = 0.8. The results of the 2nd column is based on
MCAC, and the used parameters are as follows: Mv = 10, ∀ i = 1, 2, Mf = 10,
Ms = 3, τf = 1.5, τs = 0.8. The results show that the discovered patterns are more
accurate when using MCAC. Particularly, there are more confusions between face
patterns and edge patterns using SCAC than those using MCAC.
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Fig. 2.2 Pattern discovery from amono-colored LVmonogram picture. © [2014] IEEE. Reprinted,
with permission, from Ref. [8]
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Fig. 2.3 Pattern discovery from a colored group photograph. © [2014] IEEE. Reprinted, with
permission, from Ref. [8]

2.3.2 Image Region Clustering Using Multiple Contexts

Toevaluate howmuch feature contexts and spatial contexts can improve the clustering
performance, we perform image region clustering on MSRC-V2 dataset [10]. The
ground-truth labeling of MSRC-V2 is provided by [4]. As shown in Fig. 2.4, we
collect five region compositions for experiments. To distinguish different region
segmentations, multiple features have to be fused. Taking Fig. 2.5 as an example,
while color feature can distinguish sheep and cow, it cannot distinguish aeroplane,
boat, or bicycle. Therefore, we describe each region segmentation with the following
three features: color histogram (CH), texton histogram (TH) [2], and pyramid of
HOG (pHOG) [1]. The feature dimensions of CH, TH, and pHOG are 69, 400, and
680, respectively. Given an image region, all other regions in the same image are
considered as in its spatial context group. Each scene category has its own region
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Fig. 2.4 Sample images of five region compositions: “sheep+grass,” “cow+grass,” “aero-
plane+grass+sky,” “boat+water,” and “bicycle+road”

Fig. 2.5 Illustration of different features used to distinguish different region segmentations. ©
[2013] IEEE. Reprinted, with permission, from Ref. [9]

Fig. 2.6 Class disambiguation by using spatial contexts. © [2014] IEEE. Reprinted, with permis-
sion, from Ref. [8]

compositions and our goal is to cluster image regions by leveraging the spatial co-
occurrence patterns. For example, visual features may suffer from the confusion
between “sheep” class and “road” class as shown in Fig. 2.6, where the “sheep”
regions are mislabeled as the “road” class. However, by exploring spatial contexts
of image regions, the proposed MCAC are expected to better distinguish the two
classes. Specifically, “grass” regions are in favor of labeling their co-occurring image
regions as the “sheep” class, and similarly, the “bicycle” regions with correct labels
can support the co-occurring “road” regions.
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Fig. 2.7 Confusion matrices of clustering on four categories of regions. © [2014] IEEE. Reprinted,
with permission, from Ref. [8]

For evaluation, we first experiment on a subset of images with two region pairs
that often appear together: “sheep+grass” and “bicycle+road.” Sample images are
shown in the leftmost and rightmost columns of Fig. 2.4. Each region pair has 27
image instances. There are in total 31 sheep regions, 32 grass regions, 27 bicycle
regions, and 32 road regions. Because the spatial contexts of a region are the regions
occurring in the same image, the spatial contextual relations only appear between
regions of “sheep” and “grass” or regions of “bicycle” and “road.” We show the
confusion matrices of k-means clustering and our multi-context-aware clustering in
Fig. 2.7. The parameters used are as follows: k = 4 for k-means clustering; andMv =
4, ∀ v = 1, 2, 3, Mf = 4, Ms = 2, τf = 3.5, τs = 1 for MCAC. We observe that k-
means clustering easily mislabeled “bicycle” as “sheep” when using TH features.
This is because these TH features encode the texture of regions, and “sheep” regions
have similar texture to “bicycle” regions. When using CH features, it is easy to
mislabel “sheep” regions as “road” regions because of their similar colors. Also, with
similar shape features, quite a lot of “sheep” regions aremislabeled as “bicycle” class
when using pHOG features. Besides the limited description ability of a single type of
feature, as k-means does not consider the spatial dependencies among regions, it also
causes confusions amongdifferent classes.By considering the feature co-occurrences
of CH, TH and pHOG, and the spatial co-occurrences of “sheep” and “grass” regions,
as well as “bicycle” and “road” regions, the proposed MCAC can well improve the
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Table 2.1 Results of image region clustering on the MSRC-V2 subset, sample images of which
are shown in Fig. 2.4. Based on Ref. [8]

Method Error(%)

k-means clustering using TH 44.31

k-means clustering using CH 55.21

k-means clustering using pHOG 47.63

k-means clustering using TH+CH+pHOG 38.39

MCAC using all features 29.86

clustering results on individual features and finally reduce the confusion among the
region classes. Specifically, our method can leverage the “grass” regions to correct
the confused “sheep” regions and vice versa. A similar improvement can be observed
for “bicycle” and “road.”

In the above experiment, we show the advantage of the proposed MCAC in deal-
ing with image regions of clear spatial contexts. However, Fig. 2.4 shows image
regions may have ambiguous spatial contexts, which will also be used to evaluate
the proposed method. Specifically, we collect 30 “sheep+grass,” 29 “cow+grass,” 30
“aeroplane+grass+sky,” 31 “boat+water,” and 30 “bicycle+road.” The numbers of
“sheep,” “grass,” “cow,” “sky,” “aeroplane,” “boat,” “water,” “bicycle,” and “road”
are 34, 104, 34, 53, 30, 47, 39, 30, and 51, respectively. Notice that in this chal-
lenging dataset, different image regions may share the same spatial context. For
example, “grass” occurs in three different scenes: “sheep+grass,” “cow+grass,” and
“aeroplane+grass+sky.”

The results of k-means clustering and MCAC are shown in Table2.1, where the
same 10% seeds per category from ground truth are randomly chosen for initializa-
tion. The clustering error rate of the proposed MCAC is 29.86%. It brings a consid-
erable improvement than the best one (i.e., 33.65%) obtained by k-means clustering
on the individual features or the concatenated multiple features. We can obtain sim-
ilar observation in terms of average of precision and average of recall. In k-means
clustering, we set k = 9 as there are 9 different types of image regions. Parameters
used in MCAC are Mv = 9, ∀ i = 1, 2, 3, Mf = 9, Ms = 5, τf = 3.5, τs = 1.

Some representative clustering results of the proposed MCAC are shown in
Fig. 2.8. Despite large intra-class variations, our method can still obtain a satisfactory
clustering result by using both spatial and feature contexts. For example, the “cow”
regions are with different colors and perspectives. We also note that there may con-
tain “water” regions in some “sheep+grass” and “cow+grass” region compositions.
These small amounts of “water” regions are mislabeled as “grass” class because of
its preference of “cow”/“sheep” contexts. Moreover, because the feature appearance
and spatial contexts are similar, there still exist confusions between a few regions
of “sheep” and “cow,” “bicycle” and “sheep,” “boat” and “aeroplane,” “water” and
“sky,” “boat” and “bicycle,” and “water” and “road.” Nevertheless, the mislabeling
results are only among the minority.
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Fig. 2.8 Exemplar clustering results of MCAC. © [2014] IEEE. Reprinted, with permission, from
Ref. [8]

2.4 Summary of this Chapter

Because of the structure and content variations of complex visual patterns, they
greatly challenge most existing methods to discover meaningful visual patterns in
images. We propose a novel pattern discovery method to construct low-level visual
primitives, e.g., local image patches or regions, into high-level visual patterns of spa-
tial structures. Instead of ignoring the spatial dependencies among visual primitives
and simply performing k-means clustering to obtain the visual vocabulary,we explore
spatial contexts and discover the co-occurrence patterns to resolve the ambiguities
among visual primitives. To solve the regularized k-means clustering, an iterative
top-down/bottom-up procedure is developed. Our proposed self-learning procedure
can iteratively refine the pattern discovery results and guarantee to converge. Fur-
thermore, we explore feature contexts and utilize the co-occurrence patterns among
multiple types of features to handle the content variations of visual patterns. By
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doing so, our method can leverage multiple types of features to further improve the
performance of clustering and pattern discovery. The experiments on spatial visual
pattern discovery and image region clustering validate the advantages of the proposed
method.
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