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Abstract. In this paper, we present a method for generating fast conceptual
urban design prototypes. We synthesize spatial configurations for street net-
works, parcels and building volumes. Therefore, we address the problem of
implementing custom data structures for these configurations and how the
generation process can be controlled and parameterized. We exemplify our
method by the development of new components for Grasshopper/Rhino3D and
their application in the scope of selected case studies. By means of these
components, we show use case applications of the synthesis algorithms. In the
conclusion, we reflect on the advantages of being able to generate fast urban
design prototypes, but we also discuss the disadvantages of the concept and the
usage of Grasshopper as a user interface.
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1 Introduction and Aims

Modern cities exhibit growing complexities and dynamics where traditional urban
design methods, which still rely on static and sectorial approaches, reach their limits for
fast adaptation. At the same time, with the advent of big data and the improvement of
our abilities to process large amounts of data as well as advances in artificial intelli-
gence such as cognitive computing, new opportunities emerge for future-oriented
computational design. Inspired by IBM’s Watson, cognitive computing provides a
productive combination of human cognition and computing power to support auto-
mated problem solving [1].
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The integration of cognitive computing in computational design assistance systems
could revolutionize the urban design and planning process by allowing to model urban
complexities and changing urban dynamics and thus helping to address and respond to
these challenges in the urban design and planning processes. A framework for this
approach called ‘cognitive design computing’ has been proposed by Koenig and
Schmitt [2]. The framework rests on four pillars: data analysis, user interaction and
learning, geometry synthesis, and evolutionary multi-criterion optimization (EMO).

Following this research track, we present in this paper a computational method for
the third pillar, a fast synthesis of urban planning prototypes. The main idea of the
method is that the designer can define certain restrictions and the corresponding spatial
configurations are generated automatically. To allow a systematic design space
exploration, the designer needs to interact with the generative procedure by changing
the design framework as well as manipulating the initial geometric elements that are
used as the starting point for the urban synthesis process. In this paper we focus on i)
the technical description of the methods used for the generation of urban fabric, ii) the
presentation of first exemplary case studies, and iii) the long-term idea of our approach
concerning the data structure used.

2 State of the Art

For the integration of optimization techniques in design or planning processes, we build
on the methodology described by Radford and Gero [3], which describes a concept of
how problem representation, generative methods, simulation methods, and
decision-making can be combined to form a design-oriented optimization method.
Similar concepts have been presented in other research fields, for example the concept
of Design Synthesis in engineering [4].

Current commercial solutions for generative or procedural modeling, for example
CityEngine, exemplify the difficulties of integrating them in the early stages of plan-
ning processes: the results of generative or procedural algorithms are based on a set of
rules, which are very technical, abstract and not related to a planning problem. As a
result, planners don’t understand the control mechanism of the system and its possible
benefit. In other words, “we have a model that can generate designs but has no means
of establishing whether those designs are any good” [3]. With the methods and
components we present in this paper we want to improve this situation.

According to Weber, Miiller, Wonka, and Gross [5] the modeling of urban struc-
tures consists of a sequence of several processes: the creation of a road network, the
definition of land use areas, parceling and building placement. In this context, additive
processes are relevant for the generation of road networks and the placement of
buildings. Systems have been developed, for example, for procedural creation of road
networks based on L-systems [6] and tensor fields [7]. In particular, the system
CityEngine facilitates the planning and three-dimensional, rule-based modelling of
cities and urban structures to the level of building details [5, 8].

Some components of CityEngine use subdivision methods, for example, for the
creation of plots. Using subdivision methods, spatial configurations are generated from
the division of a predetermined shape outline in smaller parts. Early work using
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so-called subdivision trees as subdivision method originates from Mitchell, Steadman,
and Liggett [9] as well as Stiny and Mitchell [10]. A more recent application of this
procedure can be found in the work of Duarte et al, who used it to generate floor plan
layouts [11] and urban structures [12]. In these examples, both constraints and rules for
the creation of a solution have to be specified a priori in detail. The combination of
subdivision trees with genetic programming [13] results in promising formal options
[14]. The Kaisersrot project [15] employs a different approach creating plots and road
network using Voronoi diagrams.

3 Methods

In contrast to other more experimental [16, 17] or established [6] urban procedural
methods, we introduce a new data structure, which makes it possible to realize com-
putational design that is based on the Backcasting approach [2]. Backcasting allows to
define what performance a design solution should achieve and to automatically syn-
thesize a set of best possible solutions.

Our urban synthesis method is composed of three procedural steps, as described by
Weber et al. [5]. Firstly, street networks are initialized and extended. Secondly, blocks
are defined and extracted from the street networks. Lastly, blocks are sliced into
parcels, onto which buildings are placed on.

For the implementation, the urban synthesis is realized in CPlan, an open source
library for computational urban design proposed by Koenig and colleges [18, 19],
whereas interaction functionalities are provided by the built-in functions of Rhino3D.
Based on CPlan, we developed new components for the visual programming interface
Grasshopper to connect CPlan to Rhino3D.

For the generation of street networks, instruction trees are proposed (Fig. 1) to
represent instructions of how a street network should grow from initial nodes by
defining three key characteristic parameters: the deviation angles of street segments o;,
the lengths of street segments [/, and the possible arms at a crossroad x [20]. The
advantage of this data structure is that it can easily parameterize both the geometric and
topological structures of the street networks into tree structures, which provide con-
venience for the mutation and crossover in evolutionary algorithms.
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Fig. 1. Mapping process from an instruction tree to a street network. Figure adapted from
Koenig et al. [20].
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For the extraction of the blocks, street networks are converted into their dual
directed graphs. In this graph representation, edge rings are searched and labeled for
transformation into their geometric representation as polygons.

For the generation of parcels and buildings, the blocks are subdivided based on
parameters specified by the planners. For their representation, a slicing tree structure is
adopted given the resulting parcels possess the desired sizes (geometry) and neigh-
borhood relationships (topology) [21, 22]. As is illustrated in Fig. 2, the slicing tree on
the left is an abstract representation of the parcels on the right. After the generation of
the parcels, buildings are placed inside each parcel according to the characteristics of
different building typologies. In our program, we provide four typologies, namely,
‘row’, ‘column’, ‘freestanding’, and ‘block’.

Fig. 2. The slicing tree representation of the parcels. The tree on the left is the abstract
representation of the sliced parcels on the right. ‘H’ and ‘V’ represent horizontal slicing and
vertical slicing respectively. The leaves are indexed identical to their geometric counterpart as
parcel on the right. Indices also reflect the branch generating order in the program [22].

The slicing procedure, which generates the parcel layout, is limited to ensure that
all the parcels have a direct connection to a street. This is illustrated exemplary in
Fig. 2, in which parcel 5 is longer than the others but not sliced further because there is
only one edge on the street, whose length is not long enough for further slicing.
However, in reality the shapes of street blocks are not always as regular as represented
in Fig. 2. To deal with this, we use a rectangular bounding box for the polygon as

Fig. 3. Slicing based on the boundary box of irregular shapes. On the left, the slicing uses the
edges of a normal bounding box whereas on the right, the slicing is oriented on the minimum
bounding box [23].
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shown on the left in Fig. 3 [23]. This strategy keeps the slicing process working
consistently. However, it often generates parcels with irregular shape, which are not
suitable for urban design purposes. To improve this, we use a minimum bounding box
as base shape for slicing as shown on the right side of Fig. 3.

4 New Grasshopper Components

For the development of the components in Grasshopper for Rhino 3D, each step in the
generative process is implemented as one component (Fig. 4) including the generation
of street networks, extracting street blocks from the street network, slicing the blocks
into parcels and generating buildings inside the parcels. Grasshopper is currently a
compromise interface for the CPlan framework given its popularity among designers
and architects and the existing abundant and versatile add-ons. Its drawback are its
limitations in allowing direct user interaction with generated urban configurations.

The street network component (Fig. 4A) has the following input parameters, which
control the morphology of the resulting network. The algorithm works iteratively so
that one segment is added after the others in an additive process. The input parameters
for the component (Fig. 4A) are:

m
Boundary
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Fig. 4. The new grasshopper components. From left to right the components are used for
creating A) a street network, B) street blocks, and C) parcels and buildings.

e B: A border polygon, which defines the border for the street network to be
generated.

e IS: The initial street segment, from which the network starts to grow.

e MinL: The minimum length of a new street segment /,,,;,,.

e MaxL: The maximum length of a new street segment /.
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MDist: The minimum distance between two nodes of the network (between start
and end points of the street segments).

RA: Random value that is added to a regular angle to define the direction angle «; of
a new street segment.

MA: Maximum number of arms (streets) at crossroads k.

TD: Tree depth defines the size of the resulting street network. This means it defines
the branch-levels for adding control-nodes as described in Fig. 1, on the left side.
TP: Topography points represent the points of a topography surface. This input data
may be used for custom functions how new street segments shall react to a given
topography.

MSlo: Maximum slope for a street segment (using topography information).

Fct: A list of custom functions to define rules of how new street segments are
added.

The output L of the street network component (Fig. 4A) returns a list of line

segments that represent the network. The second output N is the raw data of the street
network, which is useful for later optimization purposes. Figure 5 shows two exem-
plary resulting networks as output of the street network component.

10

Fig. 5. Two street networks generated with the street network component A shown in Fig. 4.
The network on the left side is generated using default parameters. For the network on the right
side the parameter RA is set to 0. This setting results in a network in which the segments are
primarily rectangular to each other.

The line segments from output L can now been used as an input for the street blocks

component (Fig. 4B), which allows the generation of street blocks based on the street
network. The other parameters of the street blocks component are:

N: Raw data of the street network generation process.
O: Offset of the street blocks from the street segments.

e MBS: Minimum block size. If the area of a polygon representing the block is smaller

than this value, the block is not created.
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The output P is a list of polygons, which represent the street blocks. To visualize
the street blocks, we extrude the street blocks by using a boundary surface component
that returns the green colored polygons on the right in Fig. 6.

Fig. 6. From a generated street network (component A shown in Fig. 4) with a custom border
input B and three custom initial street segments IS, the street blocks are generated on the right
side using the component B shown in Fig. 4

To show the possible effect of the topography input parameter TP of the street
network component (Fig. 4A), we import data from the EarthExplorer website (http://
earthexplorer.usgs.gov), and import the GeoTIFF with the help of the Grasshopper
component Elk2. Based on the topography we can now restrict the network by adding
new street segments only if the slope between start and end point is less than the
MSlope parameter values (20 degrees by default). An exemplary street network
reacting to a topography is illustrated in Fig. 7.
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Fig. 7. Street network generated with a topographicsl input, a custom border B, and initial street
segments IS. New street segments are only added if the slop of the segment is below the threshold
value MSlope of 20°.
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Finally, the third component generates parcels and buildings (Fig. 4C). It takes the
street block polygons as input and subdivides them following the procedure illustrated
in Figs. 2 and 3. The input parameters of the parcel and building component are:

P: A list of polygons, which represent the street blocks.

MPA: Max parcel area defines the maximum area of a parcel. This means the block

is subdivided until all resulting parcels are smaller than this value.

e (CD: If the distance between two parcel corner points is smaller than this value, they

are merged.

SO: Offset from the block border.

D: Density, which defines the ratio between building footprint and plot area.

MinBD: Minimum depth of buildings.

MaxBD: Maximum depth of buildings.

BF: Building front-line.

BRL: Building restriction line, which defines the distance to the backside parcel

border edge.

e BT: Building type - so far four types have been implemented: rows, columns,
blocks, and freestanding houses [24].

e MinPSL: Minimum length of a side of a parcel.

e MaxPSL: Maximum length of a side of a parcel.

Some of the input parameters may contradict each other or result in an over con-
straint configuration. At the current stage of the development of the algorithm, not all of
these issues are solved. Therefore, the output geometry generated by the component
may give unsatisfactory results. As output parameters the component delivers:

e P: A list of polygons representing the generated parcels.

e Bld: A list of polygons inside the generated parcel polygons that represent the
footprint of the generated buildings.

e PX: Data structure that may be used for a GeoJSON export.

The simplest way to use the parceling component (Fig. 4C) is by connecting it with
the polygon output of the street block component (Fig. 4B). Figure 8 shows an
example of a result obtained by connecting all tree components (Fig. 4A—C). For some
of the generated street blocks, the algorithm does not deliver the expected and intended
outcome. Problems, which can be seen in the example, include that parcels and
buildings cannot be created due to issues with the block geometry or that resulting
parcels possess undesirable geometric properties. These issues will be addressed in the
further development of the components.

Furthermore, over-constraint situations resulting in undesirable geometric config-
urations can be due to initially created street blocks, which are too large. To solve this
issue, we use the parceling component to generate a secondary street network and to
subdivide the blocks further (Fig. 9). This also allows a better control of the block sizes
and a better use of the available space for the generation of parcels and buildings.

Figure 10 shows an exemplary urban fabric that is generated using the nested
parceling component as shown in Fig. 9. The secondary streets generated by the
parceling component C’ in Fig. 9 produce street blocks with similar depth, which
results in a relatively regular parceling structure.
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Fig. 8. Urban fabric generated by combining the street network, street blocks, and parceling
components.

Geo

Fig. 9. A second parceling component is added to deal with large street blocks. Street blocks are
firstly partitioned into smaller ones with the component marked as C’ and then partitioned into
the final parcels by the green component. (Color figure online)

The generated urban fabric can be controlled by the input parameters of the
components shown in Figs. 4 and 9. In addition, the urban fabric can be controlled
more directly and interactively by changing its border geometry and the initial street
segments that are used as reference-inputs for the components. After moving or rotating
one of these elements, the fabric is re-computed immediately. The main drawback of
using Grasshopper and Rhino3D as a user interface is that it is not possible to directly
manipulate the geometry, which is generated by the components, and have an inter-
active feedback loop, which would then adapt the remaining elements. The generated
geometry can only be manipulated after finishing the algorithmic design process by
“baking” the geometry permanently.
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Fig. 10. Resulting urban fabric with more controlled street block sizes using a nested parceling
component (Fig. 9).

5 Case Studies

Our methods have been applied and tested in two case studies. The first case study is
the EmpowerShack project (http://u-tt.com/project/empower-shack/). An important aim
of the project was to develop a layout of streets and plots based on the design
framework developed by the Urban Think Tank team (http://u-tt.com/). The design
framework guides the development of a set of customizable functions, which limit the
maximum width and length of a plot to ensure that a predefined house type can be
placed on the plot.

The case study scenario for the EmpowerShack project includes the investigation of
a larger urban area, in particular, the informal settlements in Enkanini in Cape Town.
Three smaller selected neighborhoods were selected. Outline polygons representing the
borders of the neighborhoods were defined as initial empty shapes for a new urban
layout generation (first column in Fig. 11). According to the specific design require-
ments from the urban designers, each plot within the new urban block should be
defined by its precise dimensions. This was achieved by an extension of the basic street
network algorithm with new separate algorithms for the plot generation allowing for
the definition of precise plot dimensions and taking into account specific predefined
models of building prototypes. The plot generation approach combines the developed
street network components with standard Grasshopper components. The results, as can
be seen in Fig. 11, fulfill the requirements of the urban designers precisely in respect to
the accuracy of the plots dimensions. The algorithm provides the necessary flexibility
to incorporate other building prototypes and typologies.

In addition, the urban layout generation and building placement algorithm was
enriched with a clustering feature (Fig. 12). The building units were assigned to certain
households taking into account their preferences for a unit size, a specific location, and


http://u-tt.com/project/empower-shack/
http://u-tt.com/

Interactive Urban Synthesis 33

\ ‘/ W‘r < | 0“'= : :» =]
é\\ 51'\\&
Pl
L7 P

Fig. 11. Various urban scenarios for different shapes of initial input polygons representing three
different neighborhoods. The tool provides fast results and the designer can modify the initial
positions of axis for the street network generation. The layout of streets and blocks rearranges
accordingly. For more details on the generative process, see also the video-links listed in the
acknowledgement.

Created with NodeXL (http /inodexd codeplex com)

Fig. 12. Clusters of neighborhood preferences. Each household was asked for the preferred
other households it would like to live nearby. Cluster computation and visualization created with
NodeXL (http:/nodexl.codeplex.com).

the proximity to other households. The aim of this approach was to ensure that people
living in the neighbourhoods could create or preserve communities. For this, we pro-
posed a social network and integrated cognitive analysis to help arrange how people
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live together and in consequence support an intimate relationship in the community.
We use the collected information of the preferred proximities as social network
structure. In this network, we can identify groups and arrange them in so called clusters
or communities. For computing the clusters from given neighborhood preferences of
the inhabitants as illustrated in Fig. 12, we used the NodeXL library [25].

Each cluster shows a network consisting of densely connected residents with their
preferences. The difficulty was to transfer the household clusters from Fig. 12 to a
spatial distribution of houses that form corresponding spatial communities. Distributing
the same cluster of residents in proper building locations needed to confirm that each
building had a shortest path between them. The measurement of distance in urban space
depends on the cognitive distance [26], which represents a better empirical model of
pedestrian movement than metric distance. For the computation of angular distances in
Grasshopper we used the components developed by Fuchkina [27]. The ranked-shortest
path for all buildings allowed to map the household clusters from Fig. 12 into nearby
buildings (Fig. 13). The optimized cluster layout was limited by the minimum total
metric area size, which allowed to create a more dense living arrangement. This method
assisted the urban planner in allocating residents close to each other according to
preferences in combination with an efficient plot packing strategy (Fig. 13).

*,

Fig. 13. Clustering of placed buildings. The method allows the designer to allocate residents
according to their neighborhood preferences.

Although the buildings are placed appropriately based on the criteria introduced so
far, limitations persist in respect to a meaningful distribution of open public spaces
across the site. At the current state, some of the generated blocks are randomly taken
out and exempted from the plots generation (Fig. 14). This aspect should be given
serious attention in the further investigation in order to generate open public spaces
with higher qualities.

For a later optimization of other aspects, we used the generated urban fabric as
input for various simulations that measure performances of the generated spatial
configurations. Whereas the optimizations methods are not presented in this paper, we
consider possible performance measures. We use an Isovist field analysis as shown in
Fig. 15 to derive perceived security (measured by the Isovist properties compactness,
occlusivity or control), potentials for community spaces (by the Isovist property area),
and potentials for pedestrian traffic (measured by the Isovist property view-through).
These performance measures shall be used in a later stage of this research for opti-
mizing them at certain locations. For example, we can maximize the maximum area
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The larger urban scenario test. The definition incorporates unique building prototypes

Fig. 14

defined by the designers and they are being placed on the site according to the generated street

and plots layout.

Four variations for a synthesized neighborhood in Cape Town. The plots are limited to

. 15.

1g

F

a defined size. The colors in the layouts show an Isovist field analysis. In this case the area that

can be seen from one location is encoded by the colors (red maximum area,

area).

green minimum

we may maximize the

values for creating bigger community spaces. Alternatively,

average compactness values in order in increase perceived security. This approach has

been exemplified by Schneider and Koenig [28].

The second case study regards the redevelopment of the Singapore container ter-
minal in Tanjong Pagar, which will be relocated by 2027 freeing 325ha of land for a

high-profile waterfront development [33]. In collaboration with urban designers from
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the Grand Projet and other researchers at the Future Cities Laboratory at the Singa-
pore ETH Center, our computational method is applied to support the design of a
sustainable high-density, mixed-use urban waterfront development. In particular, the
methods presented in this paper are applied to test and explore different urban design
concepts and development strategies for the site, as they allow generating urban fabric
prototypes quickly and to easily explore and evaluate design alternatives. There is a
link to a video provided at the end of this article, which shows the generative process.

The functionalities of our components are further developed and adapted in this
ongoing case study to better respond to the requirements of the collaborating design
team. An example and proof of concept, which was generated based on a given initial
design concept, can be seen in Fig. 16. Design requirements implemented in the
prototype includes the observation of existing street axis and connections to the
existing Tanjong Pagar area as well as the Core Business District (CBD) in Singapore.
Accordingly, we started the generative process with a set of initial street segments,
which represented the access points to the site. The good selection of the position of the
initial street also guarantees the generation of relatively regular and realistic plots, as
can be seen in Fig. 16. The further generation of blocks, parcels and buildings followed
the nested approach describe in Sect. 4 to create a hierarchical street pattern with
primary and secondary streets.

Furthermore, we subdivided the site computationally into two areas of different
characteristics in correspondence to the definition of different land use areas in the
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Fig. 16. Example for a fast urban fabric prototyping for the Tanjong Pagar container terminal in
Singapore. The data of the environment including the 3D information of the buildings are
imported from open street maps via the Grasshopper plugin Elk2. For generating the urban fabric,
we used the components introduced in Sect. 4. For more details on the generative process, see
also the video-links listed in the acknowledgement.
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design brief. To exemplify different land uses, different minimum block widths, parcel
widths and building heights were defined, with larger blocks and higher buildings in
the area towards the CBD and smaller blocks and lower buildings in the area towards
the waterfront (Fig. 17).

For the performance evaluation of the generated street patterns, we used the
DecodingSpaces Grasshopper components for spatial analysis, which allows to cal-

g2 o0 6
ik, B
'-/’,;:3"5 S — v
- 5e 2 AR
30 S LTI

Fie Edt View Disgley Scifin Heb Specke Sule
Panma sts Ses Ve o Sutece Mesh iseect Transk
&.' 0 900 00O 0000 0COD 00 & Wum Ml
L 0 000 000 000 90 NOVO VA . s> uil
e e T et

Perspective  Top Front
CPlanex 41480 12825 20000 Meters [liSteets 2

Fig. 17. Exemplary definition of different land use areas for the Tanjong Pagar site with larger
blocks and parcels as well as higher buildings towards the CBD area and smaller blocks and
parcels as well as lower buildings towards the waterfront.

culate and evaluate centrality measures and thus evaluate the integration and accessi-
bility of the generated urban area [27, 32]. Figure 18 shows the calculated global
betweenness centrality of an exemplary generated urban network for the Tanjong Pagar
site in relation to the existing neighborhoods in its vicinity on the left and its calculated
global closeness centrality on the right. Analysis methods can be easily integrated into
the design workflow, as respective components can be integrated into the generative
parametric definition. Thus, they can help provide immediate feedback on the per-
formance of a solution based on which the designer can adjust the parameters and adapt
the solution accordingly.
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Fig. 18. Global betweenness (left) and closeness (right) centrality of the generated urban
network from Fig. 17 in relation to the existing neighborhood.

6 Conclusions and Outlook

In the scope of this paper, we presented a new urban synthesis method as well as its
implementation for the procedural modeling of urban designs. Based on two exemplary
case studies, we have shown that this method can produce satisfactory results [30] for
urban planning tasks with different requirements. Furthermore, due to the interactive
nature of our urban synthesis methods and tools, planners can benefit from exploring
many possible solutions quickly.

Initial feedback obtained from collaborating designers suggests that our compo-
nents can support the urban planning process in practice. Whereas our main aim with
this research was to develop a relevant part for a cognitive design computing approach,
which we introduced in the beginning of this paper. We may conclude that the pre-
sented methods provide a good basis for geometry synthesis. Synthesizing geometry is
in turn an important pillar for cognitive design computing, since it provides the specific
contribution for solving a design problem. Hence, geometric representation is the
primary basis for a productive combination of human cognition and computing power.
How we may use our geometry synthesis methods in a next step for optimization is
described later in this section.

Towards our cognitive design computing approach our geometry synthesis
implementation still comes with a few limitations. For example, the generation and
desirable distribution of the plots are very much dependent on the generated layout of
the street network, which itself is dependent on the defined control parameters and the
placement of initial street segments. Even though the nesting of the parceling com-
ponent (Fig. 9) helped to alleviate the precise plot dimension problem encountered in
the Empower Shack case study, it does not solve it fundamentally. A more general
issue we are facing is that the rules that generate the spatial configurations cannot be
saved. As the generative algorithms use in part random values or behaviors, all parts of
a generated solution are changed if a user changes a control parameter or manipulates
the initial geometry. Furthermore, the user interaction capabilities of Grasshopper are
limited to changes of the referenced geometry and to the manipulation of control
parameter values. A more sophisticated user interaction during the generative process,
which includes the direct interaction with and manipulation of generated geometries,
and for later during an optimization process is not possible. The addition of such
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features would require a separate user interface on top of Grasshopper or a standalone
implementation as exemplified by Koenig and Schmitt [2, 31].

Moreover, for the time being, we have not integrated components for data analysis
and evolutionary multi-criterion optimization (EMO) to achieve our final goal: the
realization of a system based on the cognitive design computing framework as
described in [2, 29]. For more advanced data analysis, the capabilities to process big
data still need to be introduced into the system. One big data application could be the
collection and analysis of existing urban patterns and their deployment as a library,
which can be utilized for the generation and evaluation of urban layouts. For EMO, an
abstract data representation has to be developed, which can parameterize all urban
features for unified optimization. Existing approaches and plugins for Grasshopper like
Galapagos or Octopus.E (http://www.food4rhino.com/app/octopuse) are limited to
numerical representations but cannot compute complicated data structures as used in
our approach in form of the instruction tree (Fig. 1). However, for example, spatial
analysis components, which are available as Grasshopper plugins [27, 32], can be used
and integrated to compute the fitness of generated urban designs.

In consequence, further investigation will address the development of a more
comprehensive data structure, which will allow to represent generated urban fabrics in
a way that they can be used for evolutionary optimization. In a subsequent step, we will
then be looking at extending the Grasshopper Octopus.E component to work with our
newly developed data structure. Finally, the combination of user-friendly interaction
strategies with easy to understand problem representations and intuitively navigable
solution spaces as a basis for integrated computational planning and design is an issue
that is still unresolved.
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There is a demo video for the generative process illustrated in Fig. 16 at https://vimeo.com/
191807352 and https://vimeo.com/212540621. The process for generating the urban fabrics
shown in Figs. 11, 12, 13 and 14 is shown in this video: https://www.youtube.com/watch?v=
ELUKfsx890g&feature=youtu.be

The Rhino3D/Grasshopper components can be downloaded from the website of the Com-
putational Planning Group: http://cplan-group.net/
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