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Abstract. In this paper, the robust control for a class of continuous-
time nonlinear system with unmatched uncertainties is investigated using
an event-triggered adaptive dynamic programming method. First, the
robust control problem is solved using the optimal control method. Under
the event-triggered mechanism, the solution of the optimal control prob-
lem can asymptotically stabilize the uncertain system with an designed
triggering condition. That is, the designed event-triggered controller is
robust to the original uncertain system. Then, a single critic network
structure with experience replay technique is constructed to approach
the optimal control policies. Finally, a simulation example is provided to
demonstrate the effectiveness of the proposed control scheme.
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1 Introduction

As many practical control systems become more and more complex, the uncer-
tainties arise in the system models frequently. These uncertainties may severely
degrade the system performance, and even lead to system instability, so it is nec-
essary to design the robust controller for uncertain nonlinear systems. Lin et al.
[1] established a connection between the robust control problem and optimal
control problem. They proposed an indirect approach for the robust stabiliza-
tion by designing a corresponding optimal controller. In [2], the uncertainties
was divided into matched and unmatched ones and proved that the optimal
controller can stabilize the linear and nonlinear robust control systems in the
same way. However, the detailed approach to solve the Hamilton-Jacobi-Bellman
(HJB) equation to obtain the optimal control policy was not discussed.

As is known, it is intractable to give an analytic solution to the HJB equation
for the nonlinear systems [3]. Recently, adaptive dynamic programming (ADP)
which was proposed by Werbos [4] has been widely applied to approximate the
solution of the HJB equation. For example, the H∞ control approach based on
ADP was investigated for the uncertain nonlinear systems in [5]. Jiang et al.
proposed a robust adaptive dynamic programming (RADP) methodology in [6].
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Liu et al. [7] investigated the optimal robust guaranteed cost control problem
using corresponding optimal control method. In [8], the robust control problem
of nonlinear systems with matched uncertainties was converted into an optimal
control problem of an nominal system. For the nonlinear deterministic systems,
Zhao et al. developed several ADP methods to solve the corresponding optimal
control problems [9,10]. However, the aforementioned approaches are conducted
predicated on the traditional time-triggered strategy.

In general, the amount of transmitted data is huge using the traditional
time-triggered approach. To mitigate the unnecessary waste of communication
resources, event-triggered control (ETC) method has received great interests
among the control researchers. Recently, the ETC method has been integrated
with the ADP approach to solve the optimal control problems [11]. In [12], Sahoo
et al. proposed a neural network (NN)-based ETC scheme for nonlinear discrete-
time systems using ADP approach. Vamvoudakis proposed an optimal adaptive
ETC algorithm based on the actor-critic structure for CT nonlinear systems
with guaranteed performance in [13]. In [14], the event-triggered reinforcement
learning approach was developed for the nonlinear systems without requiring
exact knowledge of system dynamics. However, the system uncertainties are not
concerned in the existing work of event-triggered optimal control.

In this paper, we investigate the robust control problem of nonlinear systems
with unmatched uncertainties using an optimal control approach.

Section 2 introduces the robust control problem of the nonlinear system with
unmatched uncertainties and the traditional optimal control problem. In Sect. 3,
the connection between the robust stabilization and the optimal control prob-
lem is discussed. In Sect. 4, the event-triggered ADP algorithm is proposed to
approximate the optimal control policy. Simulation results and the conclusion
are presented in the end.

2 Problem Statement

Consider the following CT uncertain nonlinear system

ẋ(t) = f(x(t)) + g(x(t))u(x) + k(x(t))W (x(t)) (1)

where x = x(t) ⊆ R
n is the state vector, u = u(x) ∈ R

m is the control input,
f(·) ∈ R

n, g(·) ∈ R
n×m and k(·) ∈ R

n×q are differentiable nonlinear dynamics
with f(0) = 0, and W (·) ∈ R

q is the unknown nonlinear perturbation. Assume
that W (0) = 0, so that x = 0 is an equilibrium of system (1).

The uncertainty W (x) is known as an unmatched uncertainty for system (1),
if k(x) �= g(x). In this paper, we aim to find a control policy so that the system (1)
is globally asymptotically stable for all unmatched uncertainties W (x) satisfying
the following assumption.

Assumption 1 [2]

1. The uncertainty W (x) is bounded by a known non-negative function WM (x),
i.e., ‖W (x)‖ ≤ WM (x) with WM (0) = 0.
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2. There exists a non-negative function gM (x) such that

‖g+(x)k(x)W (x)‖2 ≤ g2M (x)
2

(2)

where g+(x) denotes the (Moore-Penrose) pseudoinverse of function g(x).

Motivated by [2], the robust control problem of the uncertain nonlinear
system will be converted into an optimal control problem of a corresponding
auxiliary system with an appropriate cost function. First, the uncertainty term
k(x)W (x) is decomposed into a matched component and an unmatched one in
the range space of g(x).

k(x)W (x) = g(x)g+(x)k(x)W (x) + (I − g(x)g+(x))k(x)W (x) (3)

Then, we can transform the robust control problem into an optimal control
problem as follows.

Optimal Control Problem: For the corresponding auxiliary system

ẋ = f(x) + g(x)u(x) +
(
I − g(x)g+(x)

)
k(x)w(x) (4)

where w = w(x) ∈ R
q is an augmented control to deal with the unmatched uncer-

tainty component, and [uT(x), wT(x)]T is a control policy pair of system (4).
Assume that the auxiliary system (4) is controllable. It is desired to find the

optimal control policy pair [u∗T(x), w∗T(x)]T that minimizes the cost function
given by

V
(
x(0)

)
=

∫ ∞

0

‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x) + U(x, u, w)dt (5)

where the utility U(x, u, w) = xTQx+uT(x)Ru(x)+η2wT(x)Mw(x), and η > 0
is a designed parameter. Here, Q, R and M are positive definite symmetric matri-
ces. According to the principle of Cholesky decomposition, we have R = rrT and
M = mmT, where r and m are two appropriate lower triangular matrices.

Remark 1. For the optimal control problem of the auxiliary system (4), the
designed feedback control inputs should be admissible (see [5] for definition). In
this paper, we use Φ(Ω) to denote the set of admissible policies on a compact
set Ω.

For any admissible policies u,w ∈ Φ(Ω), if the cost function (5) is contin-
uously differentiable, the infinitesimal version of (5) is the so-called nonlinear
Lyapunov equation

∇V T
(
f(x) + g(x)u(t) + (I − g(x)g+(x))k(x)w(t)

)

+ ‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x) + U(x, u, w) = 0,

(6)

where ∇V = ∂V (x)/∂x is the partial derivative of the cost function V (x) with
respect to the state x, and V (0) = 0.
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Define the Hamiltonian function of system (4) as

H(x,∇V, u,w) =‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x) + U(x, u, w)

+ (∇V )T
(
f(x) + g(x)u(t) + (I − g(x)g+(x))k(x)w(t)

) (7)

Then the optimal cost function of system (4)

V ∗(x(0)
)

= min
u,w∈Φ(Ω)

∫ ∞

0

{‖rT‖2g2M (x(τ)) + η2‖mT‖2

× W 2
M (x(τ)) +U(x(τ), u(τ), w(τ))} dτ

(8)

satisfies the associated HJB equation

min
u,w∈Φ(Ω)

H(x,∇V ∗, u, w) = 0 (9)

where V ∗(x) is a solution of the HJB equation.
Assume that the minimum policy pair on the left-hand side of (9) exists and

is unique. According to the stationary conditions, the optimal control policies
are given by

u∗(x) = −1
2
R−1gT(x)∇V ∗ (10)

w∗(x) = − 1
2η2

M−1kT(x)(I − g(x)g+(x))T∇V ∗ (11)

Denote d(x) = (I − g(x)g+(x))k(x). Based on (10) and (11), the HJB Eq. (9)
can be rewritten as

H(x,∇V ∗, u∗, w∗)

= (∇V ∗)Tf(x) + xTQx + ‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x)

− 1
4
(∇V ∗)Tg(x)R−1gT(x)∇V ∗ − 1

4η2
(∇V ∗)Td(x)M−1dT(x)∇V ∗ = 0

(12)
So far, the robust control problem is transformed into a corresponding time-

triggered optimal control problem. Then the traditional ADP technique can be
employed to approximate the solution V ∗(x) of the HJB equation. In order to
reduce the computational burden and save communication resources, the ETC
mechanism is introduced in this paper. And an adaptive triggering condition will
be designed to guarantee the stability of the uncertain system with an event-
triggered optimal controller.

3 Event-Triggered Robust Optimal Controller

To propose the ETC mechanism, we first define a monotonically increasing
sequence of triggering instants {τj}∞

j=0, where τj is the jth consecutive sam-
pling instant with τj < τj+1, j ∈ N with N = {0, 1, 2, · · ·}. Then an sampled-data
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system characterized by the triggering instants is introduced, where the con-
troller is updated based on the sampled state x̂j = x(τj) for all t ∈ [τj , τj+1).
Define the event-triggered error as

ej(t) = x̂j − x(t),∀t ∈ [τj , τj+1), j ∈ N (13)

where x(t) and x̂j denote the current state and the sampled state, respectively.
In the ETC method, the triggering condition is determined by the event-

triggered error and a designed state-dependent threshold. When the event-
triggered error exceeds the state-dependent threshold, an event is triggered.
Then, the system states are sampled that resets the event-triggered error ej(t)
to zero, and be held until the next triggering instant. Accordingly, the designed
event-triggered controller u(x̂j)

Δ= μ(x̂j) is updated. Clearly, the control signal
μ(x̂j) is a function of the event-based state vector, which is executed based on
the latest sampled state x̂j instead of the current value x(t). That is, the event-
triggered controller is only updated at the triggering instant sequence {τj}∞

j=0

and remains unchanged in each time interval t ∈ [τj , τj+1). Hence, this con-
trol signal μ(x̂j) with j ∈ N is a piecewise constant function on each segment
[τj , τj+1).

Under the event-triggering mechanism, the transformed optimal control prob-
lem in the previous section can be restated as follows.

With the event-triggered control input μ(x̂j), the sampled-data version of
the auxiliary system (4) can be written as

ẋ(t) = f(x) + g(x)μ (x(t) + ej(t)) + d(x)w (x(t)) (14)

Considering the event-triggered sampling rule, the optimal control policy (10)
becomes

μ∗(x̂j) = −1
2
R−1gT(x̂j)∇V ∗(x̂j) (15)

for all t ∈ [τj , τj+1), where ∇V ∗(x̂j) = ∂V ∗(x)/∂x|x=x̂j
.

By using the optimal cost function V ∗(x), the event-triggered controller (15)
and the augmented controller (11), the Hamiltonian function (7) becomes

H(x,∇V ∗, μ∗(x̂j), w∗(x))

= (∇V ∗)Tf(x) + xTQx + ‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x)

− 1
2
(∇V ∗)Tg(x)R−1gT(x̂j)∇V ∗(x̂j)

+
1
4
(∇V ∗(x̂j))Tg(x̂j)R−1gT(x̂j)∇V ∗(x̂j)

− 1
4η2

(∇V ∗)Td(x)M−1dT(x)∇V ∗

(16)

For convenience of analysis, results of this paper are based on the following
assumptions.

Assumption 2 [8]: f +gu+dw is Lipschitz continuous on Ω ∈ R
n containing the

origin.
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Assumption 3 [13]: The controller u(x) is Lipschitz continuous with respect to
the event-triggered error,

‖u(x(t)) − u(x̂j)‖ = ‖u(x(t)) − u(x(t) + ej(t))‖ ≤ L‖ej(t)‖ (17)

where L is a positive real constant.

Remark 2. This assumption is satisfied in many applications where the con-
troller are affine with respect to ej. Note that w(t) is not the direct control policy
of the robust control system (1), but it plays an important role in finding the
event-triggered optimal control policy μ∗(x̂j) for the system (14).

Remark 3. Combined (12) and (16), we have

H(x,∇V ∗, μ∗(x̂j), w∗(x))

=(∇V ∗)T (f(x) + g(x)μ∗(x̂j) + d(x)w∗(x)) + ‖rT‖2g2M (x)

+ η2‖mT‖2W 2
M (x) + U

(
x, μ∗(x̂j), w∗(x)

)

=
(
rT(u∗(x) − μ∗(x̂j))

)T (
rT(u∗(x) − μ∗(x̂j))

)

(18)

It is called the event-triggered HJB equation. Different from the traditional HJB
Eq. (12), the event-triggered HJB equation is only equal to zero at every trig-
gering instant. In other words, a transformation error is introduced due to
the event-triggered transformation from (10) to (15), which makes the func-
tion H(x,∇V ∗, μ∗(x̂j), w∗(x)) not equal to zero during each time interval t ∈
(τj , τj+1).

Theorem 1. Suppose that V ∗(x) is the solution of the HJB Eq. (12). For all
t ∈ [τj , τj+1), j ∈ N, the control policies are given by (11) and (15), respectively.
If the triggering condition is defined as follows

‖ej(t)‖2 >
(1 − β2)

2‖rT ‖2‖L‖2 λmin(Q)‖x‖2 − η2‖mTw∗(x)‖2
‖rT‖2‖L‖2

Δ= ‖eT ‖2 (19)

where eT denotes the threshold, λmin(Q) is the minimal eigenvalue of Q, and
β ∈ (0, 1) is a designed sample frequency parameter. Then the solution μ∗(x̂j)
to the optimal control problem is also a solution to the robust control problem.
That is, the system (1) can be globally asymptotically stable for all admissible
uncertainties W (x) under μ∗(x̂j).

Remark 4. The corresponding proof will be given in a future work. Note that the
control input μ∗(x̂j) is based on event-triggered mechanism while the augmented
control input w∗(x) is based on time-triggered mechanism in this paper.

4 Approximate Optimal Controller Design

In this section, an online event-triggered ADP algorithm with a single NN
structure is proposed to approximate the solution of the event-triggered HJB
equation.
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4.1 Event-Triggered ADP Algorithm via Critic Network

In the event-triggered ADP algorithm, only a single critic network with a three-
layer network structure is required to approximate the optimal value function.
The optimal value function based on NN can be formulated as

V ∗(x) = WT
c φ(x) + ε (20)

where Wc ∈ R
N is the critic NN ideal weights, φ(x) ∈ R

N is the activation
function vector, N is the number of hidden neurons, and ε ∈ R is the critic NN
approximation error. Then, we can obtain

∇V ∗(x) = ∇φT(x)Wc + ∇ε (21)

Since the ideal weight matrix is unknown, the actual output of critic NN can
be presented as

V̂ (x) = ŴT
c φ(x) (22)

where Ŵc represents the estimation of the unknown weight matrix Wc.
Accordingly, the augmented control policy (11) and the event-triggered con-

trol policy (15) can be approximated by

ŵ(x) = − 1
2η2

M−1dT(x)∇φT(x)Ŵc (23)

μ̂(x̂j) = −1
2
R−1gT(x̂j)∇φT(x̂j)Ŵc (24)

Using the neural network expression (20), the event-triggered HJB Eq. (18)
becomes

H(x,Wc, μ(x̂j), w)

= ‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x) + U

(
x, μ(x̂j), w

)

+ WT
c ∇φ(x)

(
f(x) + g(x)μ(x̂j) + d(x)w

)

= εcH +
(
rT(u(x) − μ(x̂j))

)T (
rT(u(x) − μ(x̂j))

)

(25)

where

εcH = −(∇ε)T
(
f(x) + g(x)μ(x̂j) + d(x)w

)

denotes the residual error. For fixed N , the NN approximation errors ε and ∇ε
are bounded locally [5]. That is, ∀∇εmax > 0,∃N(∇εmax) : sup ‖∇ε‖ < ∇εmax.
Then, the residual error is bounded locally under the Lipschitz assumption on
the system dynamics. That is, there exists εcH max > 0 such that |εcH | ≤ εcH max.

Using (22) with the estimated weight vector, the approximate event-triggered
HJB equation is

H(x, Ŵc, μ(x̂j), w)

= ‖rT‖2g2M (x) + η2‖mT‖2W 2
M (x) + U

(
x, μ(x̂j), w

)

+ ŴT
c ∇φ(x) (f(x) + g(x)μ(x̂j) + d(x)w)

Δ=ec

(26)
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where ec is a residual equation error.
Define εu =

(
rT(u(x) − μ(x̂j))

)T (
rT(u(x) − μ(x̂j))

)
as the event-triggered

transformation error. Letting the weight estimation error of the critic NN be
W̃c = Wc − Ŵc and by combining (25) with (26), we have

ec = −W̃T
c ∇φ(x) (f(x) + g(x)μ(x̂j) + d(x)w) + εcH + εu (27)

Based on experience replay technique [15], it is desired to choose Ŵc to
minimize the corresponding squared residual error

E =
1
2

(

eTc ec +
p∑

k=1

eT(tk)e(tk)

)

where e(tk) = U (x(tk), μ̂(x̂i), ŵ(tk)) + ŴT
c (t)σk, σk = ∇φ(x(tk))(f(x(tk)) +

g(x(tk))μ̂(x̂i) + k(x(tk))ŵ(tk)) are stored data at time tk ∈ [τi, τi+1), i ∈ N, and
p is the number of stored samples.

PE-Like Condition: The recorded data matrix M = [σ1, ..., σp] contains as
many as linearly independent elements as the number of the critic NN’s hidden
neurons, such that rank(M) = N .

The weights of the critic NN are tuned using the standard steepest descent
algorithm, which is given by

˙̂
Wc = − αc

∂E

∂Ŵc

= − αcσ
(‖rT‖2g2M (x) + η2‖mT‖2W 2

M (x)

+ σTŴc + U
(
x, μ̂(x̂j), ŵ(t)

))

− αc

p∑

k=1

σk

(‖rT‖2g2M (x(tk)) + η2‖mT‖2W 2
M (x(tk))

+ σT
k Ŵc + U

(
x(tk), μ̂(x̂i), ŵ(tk)

))

(28)

where σ = ∇φ(x) (f(x) + g(x)μ̂(x̂j) + d(x)ŵ(t)), and αc denotes the learning
rate.

Combining (25), (27) and (28), we have

˙̃Wc = − αcσ(σTW̃c − εcH − εu)

− αc

p∑

k=1

σk

(
σT

k W̃c − εcH(tk) − εu(tk)
) (29)

where εcH(tk) and εu(tk) denote the residual error and the event-triggered trans-
formation error at t = tk, respectively.

Note that the closed-loop sampled-data system behaves as an impulsive
dynamical system with the flow dynamics and jump dynamics. Define the aug-
mented state Ψ = [xT, x̂T

j , W̃T
c ]T. From (13), (14) and (29), the dynamics of the
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impulsive system during the flow t ∈ [τj , τj+1), j ∈ N can be described by

Ψ̇ =
[

F (Ψ)T 0 G(Ψ)T
]T

(30)

where the nonlinear functions

F (Ψ) = f(x) + g(x)μ∗(x̂j) + k(x)w∗(x)

+
1
2
g(x)R−1gT(x̂j)

(
∇φT(x̂j)W̃c + ∇ε

)

+
1

2η2
d(x)M−1dT(x)

(
∇φT(x)W̃c + ∇ε

)
,

G(Ψ) = − αcσ(σTW̃c − εcH − εu)

− αc

p∑

k=1

σk

(
σT

k W̃c − εcH(tk) − εu(tk)
)

.

The jump dynamics at the triggering instant t = τj+1 can be given by

Ψ (t) = Ψ
(
t−

)
+

[
0 (x − x̂j)T 0

]T
(31)

where Ψ (t−) = lim
�→0

Ψ (t − �), and 0 s are null vectors with appropriate dimensions.

4.2 Stability Analysis

In this subsection, the main theorem will be presented to guarantee the weight
estimation error of the critic NN to be UUB. Meanwhile, the stability of the
impulsive dynamical system based on the event-triggered optimal control and the
augmented control will be guaranteed with a novel adaptive triggering condition.
First, we give the following assumption.

Assumption 4

1. g(x) and d(x) are upper bounded by positive constants such that ‖g(x)‖ ≤
gmax and ‖d(x)‖ ≤ dmax.

2. The critic NN activation function and its gradient are bounded, i.e., ‖ φ(x) ‖≤
φmax and ‖ ∇φ(x) ‖≤ ∇φmax, with φmax, ∇φmax being positive constants.

3. The critic NN ideal weight matrix is bounded by a positive constant, that is
‖Wc‖ ≤ Wmax.

Theorem 2. Suppose that Assumptions 1–4 hold. The tuning law for the CT
critic neural network is given by (28). Then the closed-loop sampled-data system
(14) is asymptotically stable and the critic weight estimation error is guaranteed
to be UUB if the adaptive triggering condition

‖ej(t)‖2 >
1

L2‖rT‖2
(
(1 − β2)λmin(Q)‖x‖2

+ ‖rTμ̂(x̂j)‖2 − η2‖mTŵ(x)‖2)

Δ=
∥
∥
∥êT

(
x, x̂j , Ŵc

)∥
∥
∥
2

(32)
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holds and the following inequality

‖W̃c‖ >

√√
√
√
√α2

cη
2λmin(M)

p+1∑

k=1

(εcH max + εumax)2 + Γ

4η2(αc − 1)λmin(H)θ(M)
Δ= Πmax

(33)

is satisfied with αc > 1, where Γ = 2 (dmax∇φmax (Wmax + ∇εmax))
2.

Remark 5. The proof of Theorem2 will be presented in a future paper. Note
that the triggering condition (32) is utilized to approximate the optimal control
policy pair [μ̂∗T(x̂j), ŵ∗T(x)]T for the auxiliary sampled-date system while the
triggering condition (19) in Theorem1 is utilized to guarantee the robust stabi-
lization of the original uncertain system with the obtained optimal control policy
μ̂∗(x̂j).

5 Simulation

The example is considered as follows [2]:
[

ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

]
u +

[
0.2
0

]
W (x) (34)

where W (x) = λ1x1 cos
(

1
x2+λ2

)
+ λ3x2 sin (λ4x1x2), and λ1, λ2, λ3, λ4 are the

unknown parameters. The last term reflects the unmatched uncertainty in the
system. Assume that λ1 ∈ [−1, 1], λ2 ∈ [−100, 100], λ3 ∈ [−0.2, 1], and λ4 ∈
[−100, 0].

Clearly,
g+(x) =

(
gT(x)g(x)

)−1
gT(x) = gT(x) = [0, 1] ,

(I − g(x)g+(x)) k(x) =
[

1 0
0 0

] [
0.2
0

]
=

[
0.2
0

]
,

‖W (x)‖2 ≤ x2
1 + x2

2
Δ= W 2

M (x),

2‖g+(x)k(x)W (x)‖2 = 0 Δ= g2M (x).

Set Q,R, r and m are the identity matrices with appropriate dimensions. We
experimentally choose η = 1, p = 10, β = 0.1 and L = 3.

During the implementation process of the event-triggered ADP method,
we choose a three-layer feedforward NN with structure 2-8-1 as the
critic network. The critic NN activation function is chosen as φ(x) =
[x2

1 x1x2 x2
2 x4

1 x3
1x2 x2

1x
2
2 x1x

3
2 x4

2]
T. The initial state is selected as

x0 = [1,−1]T, the learning rate is αc = 0.1, and the sampling time
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is chosen as 0.05 s. The trajectories of the critic parameters are shown in
Fig. 1. At the end of learning process, the parameters converge to Ŵc =
[1.8594 0.8845 1.1560 1.9860 0.9272 0.5403 0.4344 0.3737]T. From Fig. 2, one
can get the event-triggered error ej(t) and the threshold eT converge to zero as
the states converge to zero. In addition, the event-triggered error is forced to zero
when the triggering condition is satisfied, that is the system states are sampled at
the triggering instants. The sampling period during the event-triggered learning
process for the control policy is provided in Fig. 3. Furthermore, the lower bound
on the inter-sample times is found to be 0.15 s. In particular, the event-triggered
controller uses 47 samples of the state while the time-triggered controller uses
1000 samples, which means fewer transmissions are needed between the plant
and the controller due to event-triggered sampling. That will reduce the number
of controller updates during the learning process.
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Fig. 1. Convergence of the critic parameters

Based on the converged weights Ŵc, we can obtain the near-optimal control
laws as [

μ̂∗(x̂j)
ŵ∗(x)

]
=

[− 1
2 [0 1]∇φT(x̂j)Ŵc

− 1
2 [1 0]∇φT(x)Ŵc

]
(35)

From [2], the optimal control laws are given as
[

u∗(x)
w∗(x)

]
=

[−1.2906x1 − 2.1247x2

−0.5783x1 − 0.2581x2

]
(36)
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Fig. 2. Response of ‖ej(t)‖2 and ‖êT ‖2

Fig. 3. Triggering instants during the learning process of the control input
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Now, we apply the near-optimal control laws (35) with the triggering condition
(19) and the optimal control laws (36) for the uncertain nonlinear system with
λ1 = −1, λ2 = −100, λ3 = 0, λ4 = −100. Set the initial state be x0 = [1,−1]T,
and the sampling time be 0.05 s. The simulation results are given in Fig. 4.

Fig. 4. Case 1: (a) State trajectory. (b) Near-optimal and optimal control inputs. (c)
Response of ‖eT ‖2 and ‖e(t)‖2. (d) Sampling period.

We can observe the near-optimal controller is robust for the uncertain non-
linear system and adjusted with events.

6 Conclusion

In this paper, we propose an event-triggered ADP algorithm to solve the robust
control problem of uncertain nonlinear systems. The robust control problem is
described as an optimal control problem with an modified cost function. For
implementation purpose, a critic NN is constructed to approximate the optimal
value function. Finally, simulation results are given to demonstrate the effective
of the event-triggered ADP scheme.
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