
Chapter 2
Image Enhancement in the Spatial Domain

Abstract Although the transform domain processing is essential, as the images
naturally occur in the spatial domain, image enhancement in the spatial domain is
presented first. Point operations, histogram processing, and neighborhood operations
are presented. The convolution operation, alongwith the Fourier analysis, is essential
for any form of signal processing. Therefore, the 1-D and 2-D convolution operations
are introduced. Linear and nonlinear filtering of images is described next.

An image is enhanced to increase the amount of information that can be interpreted
visually. Image enhancement improves the quality of an image for a specific purpose.
The process depends up on the characteristics of the image and whether it is required
for human perception or machine vision. Some features are enhanced to suit human
or machine vision. For example, the spot noise is reduced in median filtering so that
a better viewing of the original image is obtained. Edges are enhanced by highpass
filtering and the output image is a step in computer vision. In this chapter, we present
three types of operations. The simplest and yet very useful image enhancement
process is point operation. The output pixel is a function of the corresponding input
pixels of one or more images. Thresholding is an important operation in processing
images. Another type is intensity transformations to contrast enhancement, called
histogram processing. Linear and nonlinear filtering is a major type of processing in
which the output pixel is a function of the pixels in a small neighborhood of the input
pixel. An operation is linear, if the output to a linear combination of input signals is
the same linear combination of the outputs to the individual signals.

2.1 Point Operations

In point processing, the new value of a pixel is a function of the corresponding
values of one or more images. Let x(m, n) and y(m, n) be two images of the same
size. Then, pointwise arithmetic operations of corresponding pixel values of the two
images are given as

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_2

23
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z(m, n) = x(m, n) + y(m, n)

z(m, n) = x(m, n) − y(m, n)

z(m, n) = x(m, n) ∗ y(m, n)

z(m, n) = x(m, n)/y(m, n)

One of the operands in these operations can be a constant. For example, z(m, n) =
Cx(m, n) and z(m, n) = C + x(m, n), where C is a constant. Logical operations
AND (&), OR (|) and NOT (˜) are also used in a similar way on binary images.

2.1.1 Image Complement

The complement of an image is its photographic negative obtained by subtracting the
pixel values from their maximum range. In a 8-bit gray-level image, the complement,
x̃(m, n), of the image x(m, n) is given by

x̃(m, n) = 255 − x(m, n)

The new pixel value is obtained by subtracting the current value from 255. For
example,

x(m, n) =

⎡
⎢⎢⎣
101 104 110 134
96 103 100 126
98 99 106 98

100 93 107 90

⎤
⎥⎥⎦ x̃(m, n)

⎡
⎢⎢⎣
154 151 145 121
159 152 155 129
157 156 149 157
155 162 148 165

⎤
⎥⎥⎦

Figure2.1a, b show, respectively, a 256 × 256 8-bit gray level image and its
complement. The flower in the middle is white in (a) and it has become black in
(b), as expected. The dark areas have become white and vice versa. Sometimes, the
complement brings out certain features better. For a binary image, the complement
is given by

x̃(m, n) = 1 − x(m, n)

2.1.2 Gamma Correction

Image sensors and display devices often have nonlinear intensity characteristics.
Since the nonlinearity is characterized by a power law and γ is the symbol used
for the exponent, this operation is called gamma correction. To compensate such
nonlinearity, an inverse transformation has to be applied to individual pixels of the
image.
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Fig. 2.1 a A 256 × 256 8-bit gray level image and b its complement
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Fig. 2.2 Intensity transformation in γ correction a γ = 0.6; b γ = 1.6

In gamma correction, the new intensity value inew of a pixel is its present value
i raised to the power of γ.

inew = iγ (2.1)

Let the maximum intensity value be 255. Then, all the pixel values are first divided
by 255 to map the intensity values into the range 0–1. This step ensures that the pixel
values stay in the range 0–255. Then, Eq. (2.1) is applied. The resulting values are
multiplied by 255 and rounded to get the processed values.

Figure2.2a, b show, respectively, the intensity mapping for values of γ = 0.6 and
γ = 1.6. The pixel values are also tabulated in Table2.1. For γ < 1, the intensity
values are scaled up and the output image gets brighter. For γ > 1, the intensity
values are scaled down. Figure2.3a, b, show, respectively, the versions of the image
in Fig. 2.1a after gamma correction with γ = 0.8 and γ = 1.6, respectively. The
image is brighter in (a) and dimmer in (b). In addition to correcting nonlinearity of
devices, this transformation can also be used for contrast manipulation of images.
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Table 2.1 Gamma correction

i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i0.6 0 0.2512 0.3807 0.4856 0.5771 0.6598 0.7360 0.8073 0.8747 0.9387 1

i1.6 0 0.0251 0.0761 0.1457 0.2308 0.3299 0.4416 0.5651 0.6998 0.8449 1

Fig. 2.3 Versions of the image in Fig. 2.1a after gamma correction with γ = 0.8 (a) and γ = 1.6 (b)

2.2 Histogram Processing

The histogram, which is an important entity in image processing, depicts the number
of occurrences of each possible gray level in an image. Consider the 4× 4 8-bit gray
level image shown in Table2.2 (left). In order to find the histogram of the image,
the histogram vector is initialized to zero. Its length is 256 since the range of gray
levels is 0–255. All the pixel values of the image are scanned. Depending on the
pixel value, the corresponding element in the histogram vector is incremented by 1.
For example, the first pixel value is 249 and it occurs only once as indicated in the
last column of the middle row of the histogram, shown in Table2.3. The pixels with
zero occurrences are not shown in the table.

Table 2.2 Pixel values of a 4 × 4 8-bit image (left) and its contrast-stretched version (right)
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Table 2.3 Histograms of the input image and its contrast-stretched version. Pixels with zero occur-
rences are not shown

Gray
level

10 85 87 95 96 98 100 104 108 110 113 114 249

Count 1 2 1 1 1 2 1 1 2 1 1 1 1

Gray
level

0 1 18 88 96 114 131 166 201 219 245 254 255

Two images can have the same histogram. By modifying the histogram suitably,
the image can be enhanced. While it is a simple process to construct a histogram of
an image, it is very useful in several image processing tasks such as enhancement and
segmentation. It is also a feature of an image. The distribution of the gray levels of an
image gives useful information. Then, the histogram is used as such or modified to
suit the requirements. Large number of pixels with values at the lower end of the gray
level range indicates that the image is dark. Large number of pixels with values at
the upper end indicates that the image is too bright. If most of the pixels have values
in the middle, then the image contrast will not be good. In all these cases, contrast
stretching or histogram equalization is possible for improving the image quality. The
point is that a well spread out histogram over most of the range gives a better image.
Contrast stretching increases the contrast, while histogram equalization enhances the
contrast. The shape of the histogram remains the same in contrast stretching and it
changes in histogram equalization. As in the case of any processing, the enhancement
ability of these processes varies depending on the characteristics of the histogram of
the input image.

2.2.1 Contrast Stretching

Let the range of gray levels before and after the transformation be the same, for
example 0–255. Contrast is the difference between the maximum and minimum of
the gray level range of the image. A higher difference results in a better contrast. Due
to the limited dynamic range of the image recording device or underexposure, the
gray levels of pixels may be concentrated only at some part of the allowable range.
In general, some gray levels will lie outside the range intended for stretching. Let i
and inew are the gray levels before and after contrast stretching. In this case, using
the transformation

inew =
⌊

(Imax − Imin − 2)

(M − L)
(i − L)

⌋
+ 1, L ≤ i ≤ M

inew = Imin, i < L

inew = Imax , i > M
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the contrast of the image can be enhanced, where Imin and Imax are the values of
the minimum and maximum of the allowable gray level range, and L and M are
the values of the minimum and maximum of the part of the gray level range to be
stretched. The gray levels outside the main range are given only single values.

Consider the 4× 4 8-bit image shown in Table2.2 (left). The histogram is shown
in Table2.3 (first 2 rows). The range of the gray levels is 0–255. With only 16 pixels
in the image, most of the entries in the histogram are zero and they are not shown in
the table. The point is that the histogram is concentrated in the range 85–114. Gray
levels 10 and 249 are extreme values. As only a small part of the range of gray levels
is used, the contrast of this type of images is poor. Contrast stretching is required to
enhance the quality of the image. Now, the scale factor is computed as

255 − 0 − 2

114 − 85
= 8.7241

For all those gray levels in the range 0–84, we assign the new gray level 0. For all
those gray levels in the range 115–255, we assign the new gray level 255. For those
gray levels in the range 85–114, the new value inew is computed from i as

inew = �8.7241(i − 85)� + 1

The computation involves the floor function which rounds the numbers to the nearest
integer towards minus infinity. For example, gray level 114 is mapped to

inew = �8.7241(114 − 85)� + 1 = 253 + 1 = 254

The contrast stretched image is shown in Table2.2 (right). The new histogram, which
is well spread out, is also shown in Table2.3 (last 2 rows).

While we have presented the basic procedure, the algorithm can be modified to
suit the specific requirements. For example, selection of the range to be stretched
and the handling of the other values have to be suitably decided.

Figure2.4a shows a 256 × 256 8-bit image and (b) shows its histogram. The
horizontal axis shows the gray levels and the vertical axis shows the count of the
occurrence of the corresponding gray levels. The distribution of pixels is very heavy
in the first half of the histogram. Therefore, the range of the histogram 0–104 is
stretched and the rest compressed. The resulting image is shown in Fig. 2.4c and
its histogram is shown in (d). While the dark areas got enhanced, the contrast of
the brighter areas got deteriorated. Ideally, the pixels outside the range of stretching
should have zero occurrences. Since it is unlikely in practical images, judgment is
required to select the part to be stretched.
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Fig. 2.4 aA256×256 8-bit image;b its histogram; c the histogram-stretched image;d its histogram

2.2.2 Histogram Equalization

In both contrast stretching and histogram equalization, the objective is to spread the
gray levels over the entire allowable gray level range. While stretching is a linear
process and is reversible, equalization is a nonlinear process and is irreversible.
Histogram equalization tries to redistribute about the same number of pixels for each
gray level and it is automatic.

Consider the 4 × 4 4-bit image shown in Table2.4 (left). The gray levels are
in the range 0–15. The histogram of the image is shown in Table2.5 (second row,
count_in). It is more usually presented in a graphic form, as shown in Fig. 2.5a.
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Table 2.4 A 4 × 4 4-bit image (left) and its histogram-equalized version (right)

Table 2.5 Histogram of the image and its equalized version

Gray level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

count_in 0 1 2 1 0 1 0 0 1 1 1 0 0 2 2 4

count_eq 0 1 0 2 1 1 1 1 1 2 0 2 0 0 0 4
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Fig. 2.5 a The histogram of the image shown in Table2.4 (left); b the histogram of the histogram-
equalized image shown in Table2.4 (right); c the cumulative distribution of the image; d the cumu-
lative distribution of the histogram-equalized image

The sum of the number of occurrences of all the gray levels must be equal to the
number of pixels in the image. The histogram is normalized by dividing the number
of occurrences by the total number of pixels. The normalized histogram of the image
is obtained by dividing by 16 (the number of pixels in the image) as

{0, 0.0625, 0.125, 0.0625, 0, 0.0625, 0, 0, 0.0625, 0.0625, 0.0625, 0, 0, 0.125, 0.125, 0.25}

This is also the probability distribution of the gray levels. Often, the histograms
of images are not evenly spread over the entire intensity range. The contrast of
an image can be improved by making the histogram more uniformly spread. The
more the number of occurrence of a gray level, the wider the spread it gets in the
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equalized histogram. For a N × N image with L gray levels {u = 0, 1, . . . , L − 1},
the probability of occurrence of the uth gray level is

p(u) = nu

N 2

where nu is the number of occurrences of the pixel with gray level u. The equalization
process for a gray level u of the input image is given by

v = (L − 1)
u∑

n=0

p(n), u = 0, 1, . . . , L − 1

where v is the corresponding gray level in the histogram equalized image. The jus-
tification for the process is as follows. The cumulative histogram value, up to gray
level u, in the histogram of the input image should be covered up to gray level v in
the histogram after equalization.

u∑
n=0

hist(n) =
v∑

n=0

hist_eq(n)

Since the new histogram is to be flat, for a N × N image with gray level values
0 − (L − 1), the number of pixels for each gray level range is

N 2

L − 1

The new cumulative histogram is

v
N 2

L − 1

Since

u∑
n=0

hist(n) = v
N 2

L − 1
, v = (L − 1)

∑u
n=0 hist(n)

N 2
= (L − 1)

u∑
n=0

p(n)

For the example image, the cumulative distribution of the pixel values are

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.375, 0.4375, 0.5, 0.5, 0.5, 0.625, 0.75, 1}

obtained by computing the cumulative sum of the probability distribution computed
earlier and it is shown in Fig. 2.5c. These values, multiplied by L − 1 = 15, are
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{0, 0.9375, 2.8125, 3.75, 3.75, 4.6875, 4.6875, 4.6875,
5.625, 6.5625, 7.5, 7.5, 7.5, 9.375, 11.25, 15}

The rounding of these values yields the equalized gray levels.

{0, 1, 3, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 9, 11, 15}

Mapping the input image, using these values, we get the histogram equalized image
shown in Table2.4 (right). The equalized histogram of the image is shown in Fig. 2.5b
and in Table2.5 (third row, count_eq). The cumulative distribution of the gray levels
of the image is shown in Fig. 2.5d. It is clear fromFig. 2.5c, d that the gray level values
are more evenly distributed in (d). In histogram equalization, the densely populated
areas of the histogram are stretched and the sparsely populated areas are compressed.
Overall, the contrast of the image is enhanced. So far, we considered the distribution
of the pixels over the whole image. Of course, histogram processing can also be
applied to sections of the image if it suits the purpose.

Figure2.6a shows a 256 × 256 8-bit image and (b) shows the histograms of the
image and its equalized version (c). Figure2.6d shows the corresponding cumulative
distributions of the gray levels. The cumulative distribution of the gray levels is a
straight line for the histogram-equalized image. It is clear that equalization results in
the even distribution of the gray levels. The histogram-equalized image looks better
than that of the histogram-stretched image, shown in Fig. 2.4c.

As always, the effectiveness of an algorithm to do the required processing for
the given data has to be checked out. Blind application of an algorithm for all data
types is not recommended. For example, histogram equalization may or may not be
effective for a certain image. If the number of pixels at either or both the ends of the
histogram is large, equalization may not enhance the image. In these cases, an algo-
rithm has to be modified or a new algorithm is used. The point is that the suitability
of the characteristics of the image for the effective application of an algorithm is an
important criterion in the selection of the algorithm.

2.2.3 Histogram Specification

In histogram equalization, the gray levels of the input image is redistributed in the
equalized image so that its histogram approximates a uniform distribution. The dis-
tribution can be other than uniform. In certain cases where equalization algorithm
is not effective, using a suitable distribution may become effective in enhancing the
image. The histogram a(n) of a reference image A is specified and the histogram b(n)

of the input image B is to be modified to produce an image C so that its distribution
of pixels (histogram c(n)) is as similar to that of image A as possible. This process
is useful in restoring an image from its modified version, if its original histogram is
known. The steps of the algorithms are:
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Fig. 2.6 a A 256× 256 8-bit image; b the histograms of the image (dot) and its equalized version
(cross) (c); d the corresponding cumulative distributions of the gray levels

1. Compute the cumulative distribution, cum_a(n), of the reference image A.
2. Compute the cumulative distribution, cum_b(k), of the input image B.
3. For each value in cum_b(k), find the minimum value in cum_a(n) that is greater

than or equal to the current value in cum_b(k). That n is the new gray level in
the image C corresponding to k in image B.

Consider the 4×44-bit reference (left) and input (right) images shown inTable2.6.
The histogram of the reference and input images, respectively, are
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Table 2.6 4 × 4 4-bit reference (left) and input (right) images

{0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0} and

{16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

The cumulative distribution, cum_a(n), of the reference image and the cumulative
distribution, cum_b(k), of the input image, respectively, are

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1} and

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

All the values in cum_b(k) map to cum_a(8) and all the pixels in the input image
map to 8 in the output image. That is, the histograms of the reference and output
images are the same. Let us interchange the reference and input images. Then, all
the values in cum_b(k) map to cum_a(0) and all the pixels in the input image map
to 0 in the output image.

As this problem is a generalization of the histogram equalization problem, let us
do that example again following the 3 steps given above. In histogram equalization,
the reference cumulative distribution values are those of the uniform probability
distribution. Therefore, the values of cum_a(n) are

{0, 0.0667, 0.1333, 0.2, 0.2667, 0.3333, 0.4, 0.4667, 0.5333,
0.6, 0.6667, 0.7333, 0.8, 0.8667, 0.9333, 1}

From the equalization example, the values of cum_b(k) are

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.375, 0.4375, 0.5, 0.5, 0.5, 0.625, 0.75, 1}

The first value in cum_b(k) is zero. The minimum value greater than or equal to it
in cum_a(n) is 0 and gray level value 0 maps to 0. Carrying out this process for all
the values in cum_b(k), we get the equalized gray levels.

{0, 1, 3, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 10, 12, 15}

These are about the same values obtained by equalization algorithm. Using these
values the output image is created. Figure2.7a shows the cumulative distributions of
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Fig. 2.7 a The cumulative distributions of the reference (∗) and input images (o); b The cumulative
distributions of the reference (∗) and output images (o)

Table 2.7 4 × 4 reference, input and output images, respectively, from left

the reference (∗) and input images (o). Figure2.7b shows the cumulative distributions
of the reference (∗) and output images (o). The cumulative distribution of the output
image is close to that of the uniform distribution.

Example images A, B and C are shown in Table2.7. The normalized histogram
of the reference image is

{0, 0.0625, 0.1250, 0.0625, 0, 0.0625, 0, 0, 0.0625,
0.0625, 0.0625, 0, 0, 0.1250, 0.1250, 0.25}

The normalized histogram of the input image is

{0.1875, 0.0625, 0.0625, 0, 0.0625, 0.0625, 0, 0.0625,
0, 0, 0, 0.1250, 0, 0.1250, 0, 0.25}

The cumulative distribution, cum_a(n), of the reference image is

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.3750, 0.4375, 0.5, 0.5, 0.5, 0.6250, 0.75, 1}

The cumulative distribution, cum_b(k), of the input image is
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Fig. 2.8 a The cumulative distributions of the input (×) and reference (∗) images; b the cumulative
distributions of the output (o) and reference (∗) images

{0.1875, 0.25, 0.3125, 0.3125, 0.3750, 0.4375, 0.4375,
0.5, 0.5, 0.5, 0.5, 0.6250, 0.6250, 0.75, 0.75, 1}

The cumulative distributions of the reference and input images are shown in Fig. 2.8a.
Each value in cum_b(k) has to be mapped to the minimum value of cum_a(n) that
is greater than or equal to cum_b(k). For example, the first value of cum_b(k) is
0.1875. The corresponding value is cum_a(2). That is, gray level 0 is mapped to 2
in the output image. Gray level with value 1 is mapped to 3 and so on. In Fig. 2.8a,
the mappings are shown by dashed lines. Pixels of the input image in the range 0–15
are mapped to

{2, 3, 5, 5, 8, 9, 9, 10, 10, 10, 10, 13, 13, 14, 14, 15}

in the output image. Using these mappings, the output image is reconstructed (the
rightmost in Table2.7. The cumulative distribution of the output image is

{0, 0, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125, 0.3750, 0.4375,
0.5, 0.5, 0.5, 0.6250, 0.75, 1}

The cumulative distributions of the reference and output images are almost the same,
as shown in Fig. 2.8b.

Figure2.9a, b show, respectively, a 256 × 256 8-bit image and its histogram.
Figure2.9c, d show, respectively, the restored image using histogram specification
algorithm and its histogram.
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Fig. 2.9 a A 256 × 256 8-bit image and b its histogram; c the restored image using histogram
specification algorithm and d its histogram

2.3 Thresholding

Thresholding operation is frequently used in image processing. It is used in tasks such
as enhancement, segmentation and compression. A threshold indicates an intensity
level of some significance. There are several variations of thresholding used in image
processing. The first type is to threshold a gray level image to get a binary image.
A threshold T > 0 is specified and all the gray levels with magnitude less than or
equal to T are set to zero and the rest are set to 1.
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Fig. 2.10 a Binary thresholding; b Hard thresholding; c Soft thresholding

gb(x) =
{
0 if x ≤ T
1, otherwise

This type of thresholding is shown in Fig. 2.10a.
In another type of thresholding, all the gray levels with magnitude less than or

equal to T are set to zero and the rest are unaltered or set to the difference between
the input values and the threshold. Hard thresholding, shown in Fig. 2.10b, is defined
as

gh(x) =
{
0 if |x | ≤ T
x, if |x | > T

In hard thresholding, the value of the function is retained, if its magnitude is greater
than a chosen threshold value. Otherwise, the value of the function is set to zero.
Typical application of this type of thresholding is in lossy image compression. A
higher threshold gets a higher compression ratio at the cost of image quality. Soft
thresholding, shown in Fig. 2.10c, is defined as

gs(x) =
⎧⎨
⎩

0, if |x | ≤ T
x − T, if x > T
x + T, if x < −T

The difference in soft thresholding is that the value of the function is made closer to
zero by adding or subtracting the chosen threshold value from it, if its magnitude is
greater than the threshold. A typical application of soft thresholding is in denoising.
Thresholding is easily extended to multiple levels.

Figure2.11a shows a damped sinusoid. Figure2.11b shows the damped sinusoid
hard thresholded with level T = 0.3. Values less than or equal to 0.3 have been
assigned the value zero. Figure2.11c shows the damped sinusoid soft thresholded
with level T = 0.3. Values less than or equal to 0.3 have been assigned the value
zero and values greater than 0.3 have been assigned values closer to zero by 0.3.
Figure2.11d shows the damped sinusoid binary thresholded with level T = 0.3.
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Fig. 2.11 a A damped sinusoid; b hard, c soft and d binary thresholding of the sinusoid with
T = 0.3

Values less than or equal to 0.3 have been assigned the value zero and values greater
than 0.3 have been assigned the value 1.

Consider the 8 × 8 8-bit gray level image shown by the left matrix.

117 170 130 54 84 209 164 148
135 151 137 96 56 157 225 189
136 152 174 146 64 84 146 90
123 139 182 133 51 71 56 74
119 137 172 146 119 67 65 70
90 123 166 184 203 101 49 64
85 102 162 194 164 80 38 56
73 84 155 185 147 163 87 57

0 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 1 1 1 0 0 1 0
1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0

The result of binary thresholding with T = 120 is shown in the right matrix. The
results of hard and soft thresholding with T = 120 are shown in the left and right
matrices, respectively.
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(a) (b)

Fig. 2.12 a A 256 × 256 image and b its threshold version with T = 1

0 170 130 0 0 209 164 148
135 151 137 0 0 157 225 189
136 152 174 146 0 0 146 0
123 139 182 133 0 0 0 0
0 137 172 146 0 0 0 0
0 123 166 184 203 0 0 0
0 0 162 194 164 0 0 0
0 0 155 185 147 163 0 0

0 50 10 0 0 89 44 28
15 31 17 0 0 37 105 69
16 32 54 26 0 0 26 0
3 19 62 13 0 0 0 0
0 17 52 26 0 0 0 0
0 3 46 64 83 0 0 0
0 0 42 74 44 0 0 0
0 0 35 65 27 43 0 0

Figure2.12a shows a 256×256 image. The image is corrupted with noise and the
letters are not clear. The white pixels showing the letters have values varying from
2 to 255. Therefore, with the threshold T = 1, setting all the pixels greater than 1 to
255 with the rest set to 0 enhances the image, as shown in Fig. 2.12b.

2.4 Neighborhood Operations

In this type of processing, called neighborhood operation, each pixel value is replaced
by another, which is a linear or nonlinear function of the values of the pixels in its
neighborhood. The area of a square or rectangle or circle (sometimes of other shapes)
forming the neighborhood is called a window. Typical window sizes vary from 3×3
to 11×11. If the window size is 1×1 (the neighborhood consists of the pixel itself),
then the operation is called the point operation. The window is moved over the image
row by row and column by column and the same operation is carried out for each
pixel.



2.4 Neighborhood Operations 41

A 3 × 3 window of the pixel x(m, n) is

⎡
⎣

x(m − 1, n − 1) x(m − 1, n) x(m − 1, n + 1)
x(m, n − 1) x(m, n) x(m, n + 1)

x(m + 1, n − 1) x(m + 1, n) x(m + 1, n + 1)

⎤
⎦

The set of pixels (strong neighbors)

{x(m − 1, n), x(m, n + 1), x(m + 1, n), x(m, n − 1)

is called the 4-neighbors of x(m, n).

⎡
⎣

x(m − 1, n)

x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n)

⎤
⎦

The distance between these pixels and x(m, n) is 1. The other 4 pixels (weak neigh-
bors) are diagonal neighbors of x(m, n). All the neighbors in the window are called
the 8-neighbors of x(m, n).

Border Extension

If the complete window is to overlap the image pixels, then the output image after
a neighborhood operation will be smaller. This is due to the fact that the required
pixels are not defined at the borders. Then, we have to accept a smaller output image
or extend the input image at the borders suitably. For example, many operations
are based on convolving an image with the impulse response or coefficient matrix.
When trying to find the convolution output corresponding to the pixels located in the
vicinity of the borders, some of the required pixels are not available. Obviously, we
can assume that the values are zero. This method of border extension is called zero-
padding. Of course, when this method is not suitable, there are other possibilities.
Consider the 4 × 4 image

23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

Some of the commonly used image extensions are given below. Any other suitable
extension can also be used.

The symmetric extension of the image by 2 rows and 2 columns on all sides yields
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44 32 32 44 44 23 23 44
51 23 23 51 23 32 32 23

51 23 23 51 23 32 32 23
44 32 32 44 44 23 23 44
23 23 23 23 44 32 32 44
44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23
23 23 23 23 44 32 32 44

The extension is the mirror image of itself at the borders.
The replication method of extension of the image by 2 rows and 2 columns on all

sides yields
23 23 23 51 23 32 32 32
23 23 23 51 23 32 32 32

23 23 23 51 23 32 32 32
32 32 32 44 44 23 23 23
23 23 23 23 44 32 32 32
44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23
44 44 44 44 23 23 23 23

Border values are repeated.
The periodic extension of the image by 2 rows and 2 columns on all sides yields

44 32 23 23 44 32 23 23
23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51
44 23 32 44 44 23 32 44
44 32 23 23 44 32 23 23
23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51
44 23 32 44 44 23 32 44

This extension considers the image as one period of a 2-D periodic signal. The
top and bottom edges are considered adjacent and so are the right and left edges.

2.4.1 Linear Filtering

A filter, in general, is a device that passes the desirable part of its input. In the context
of image processing, a filter modifies the spectrum of an image in a specified man-
ner. This modification can be done either in the spatial domain or frequency domain.
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The choice primarily depends of the size of the filter among other considerations.
A linear filter is characterized by its impulse response, which is its response for a
unit-impulse input with zero initial conditions. For enhancement purposes, a filter
is used to improve the quality of an image for human or machine perception. The
improvement in the quality of an image is evaluated subjectively. Two types of filters,
lowpass and highpass, are often used to improve the quality. A lowpass filter is essen-
tially an integrator, passing the low frequency components and suppressing the high
frequency components. For example, the integral of cos(ωt) is sin(ωt)/ω. The higher
the frequency, the higher is the attenuation of the frequency component after integra-
tion. A highpass filter is essentially a differentiator that suppresses the low frequency
components. The derivative of sin(ωt) is ω cos(ωt). The higher the frequency, the
higher is the amplification of the frequency component after differentiation.

In linear filtering, convolution operation is a convenient system model. It relates
the input and output of a system through its impulse response. Although the image
is a 2-D signal, its processing can often be carried out using the corresponding
1-D operations repeatedly over the rows and columns. Conceptually, 1-D operations
are easier to understand. Further, 2-D convolution is a straightforward extension of
that of the 1-D. Therefore, we present the 1-D convolution briefly. First, as it is so
important (along with Fourier analysis), we present a simple example to explain the
concept.

Consider the problem of finding the amount in our bank account for the deposits
on a yearly basis. We are familiar that, for compound interest, the amount of interest
paid increases from year to year. Let the annual interest rate be 10%. Then, an amount
of $1 will be $1 at the time of deposit, $1.1 after 1 year, $1.21 after 2 years and so
on, as shown in Fig. 2.13a. Let our current deposit be $200, $300 a year before and
$100 two years before, as shown in Fig. 2.13b. The problem is to find the current
balance in the account. From Fig. 2.13a, b, it is obvious that if we reverse the order
of numbers in (a), shift and multiply with the corresponding numbers in (b) and sum
the products, we get the current balance $651, as shown in Fig. 2.13c.

Of course, we could have reversed the order of the numbers in (b) either. For
longer sets of numbers, we can repeat the operation. This is convolution operation
and it is simple. It is basically a sum of products of two sequences, after either one
(not both) is time-reversed. In formal description, the set of interest rates is called as
the system impulse response. The set of deposits is called the input to the system.
The set of balances at different time periods is called the system output. Convolution
relates the input and the impulse response of a system to its output.

1-D Linear Convolution

The 1-D linear convolution of two aperiodic sequences x(n) and h(n) is defined as

y(n) =
∞∑

k=−∞
x(k)h(n − k) =

∞∑
k=−∞

h(k)x(n − k) = x(n) ∗ h(n) = h(n) ∗ x(n)
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Fig. 2.13 Basics of linear
convolution. a annual
interest rate; b deposits;
c computation of current
balance

1 1.1 1.21

0 1 2 years

100 300 200

−2 −1 0 years

(100)(1.21) +(300)(1.1) + (200)(1) = 651

−2 −1 0 years

(a)

(b)

(c)

The convolution operation relates the input x(n), the output y(n) and the impulse
response h(n) of a system. The impulse response, which characterizes the system in
the time-domain, is the response of a relaxed (initial conditions are zero) system for
the unit-impulse δ(n). A discrete unit-impulse signal is defined as

δ(n) =
{
1, for n = 0
0, for n �= 0

It is an all-zero sequence, except that its value is one when its argument n is equal to
zero. The input x(n) is decomposed into a sum of scaled and delayed unit-impulses.
The response to each impulse is found and the superposition summation of all the
responses is the system output. It can also be considered as the weighted average of
sections of the input with the weighting sequence being the impulse response.

Figure2.14 shows the convolution of the signal {x(0) = 4, x(1) = 3, x(2) =
1, x(3) = 2 and {h(0) = 1, h(1) = −2, h(2) = 1. The output y(0), from the
definition, is

y(0) = x(k)h(0 − k) = (4)(1) = 4,

where h(0− k) is the time-reversal of h(k). Shifting h(0− k) to the right, we get the
remaining outputs as

Fig. 2.14 1-D linear
convolution

0 1 2 3k
1 −2 1h(k)
4 3 1 2x(k)

1 −2 1h(0− k)
1 −2 1h(1− k)

1 −2 1h(2− k)
1 −2 1h(3− k)

1 −2 1h(4− k)
1 −2 1h(5− k)

0 1 2 3 4 5n
4 −5−1 3 −3 2y(n)
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y(1) = x(k)h(1 − k) = (4)(−2) + (3)(1) = −5

y(2) = x(k)h(2 − k) = (4)(1) + (3)(−2) + (1)(1) = −1

y(3) = x(k)h(3 − k) = (3)(1) + (1)(−2) + (2)(1) = 3

y(4) = x(k)h(4 − k) = (1)(1) + (2)(−2) = −3

y(5) = x(k)h(5 − k) = (2)(1) = 2

Outside the defined values of x(n), we have assumed zero values. As mentioned
earlier, a suitable extension of the input, to get a convolution output of the same
length, should be made to suit the requirements of the problem. The six convolution
output values are called the full convolution output. Most of the times, the central
part of the output, of the same size as the input, is required. If the window is to be
confined inside the input data, the size of the output will be smaller than that of the
input.

2-D Linear Convolution

In the 2-D convolution, a 2-D window is moved over the image. The convolution of
images x(m, n) and h(m, n) is defined as

y(m, n) =
∞∑

k=−∞

∞∑
l=−∞

x(k, l)h(m − k, n − l)

=
∞∑

k=−∞

∞∑
l=−∞

h(k, l)x(m − k, n − l) = h(m, n) ∗ x(m, n)

Four operations, similar to those of the 1-D convolution, are repeatedly executed in
carrying out the 2-D convolution.

1. One of the images, say h(k, l), is rotated in the (k, l) plane by 180◦ about the
origin to get h(−k,−l). The same effect is achieved by folding the image about
the k axis to get h(k,−l) and then, folding the resulting image about the l axis.

2. The rotated image is shifted by (m, n) to get h(m − k, n − l).
3. The products x(k, l)h(m − k, n − l) of all the overlapping samples are found.
4. The sum of all the products yields the convolution output y(m, n) at (m, n).

Consider the convolution of the 3 × 3 image h(k, l) and the 4 × 4 image x(k, l)

h(k, l) =
⎡
⎣

−1 −2 −1
0 0 0
1 2 1

⎤
⎦ and x(k, l) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

shown in Fig. 2.15. Four examples of computing the convolution output are shown.
For example, with a shift of (0−k, 0− l), there is only one overlapping pair (1,−1).
The product of these numbers is the output y(0, 0) = −1. The process is repeated to
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−1 −2 −1
0 0 0
1 2 1

h(k, l)(0, 0)
−1 −2 −1
0 0 0
1 2 1

h(k,−l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

x(k, l)
−1 −1 −2 −7 −7 −2
−2 −5 −6 −9 −10 −4
0 0 1 6 9 4

−1 −2 −1 2 4 2
1 1 1 1 −2 −2
3 7 7 7 6 2

y(m,n)

1 2 1
0 0 0

−1 −2 −1

h(−k,−l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(0, 0) =
x(k, l)h(0− k, 0− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(0, 1) =
x(k, l)h(0− k, 1− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1
y(3, 2) = x(k, l)h(3− k, 2− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(2, 1) = x(k, l)h(2− k, 1− l)

Fig. 2.15 2-D linear convolution

get the complete convolution output y(m, n) shown in the figure. We assumed that
the pixel values outside the defined region of the image are zero. This assumption
may or may not be suitable. Some other commonly used borer extensions are based
on periodicity, symmetry or replication, as presented earlier.

Lowpass Filtering

The output of convolution for a given input depends on the impulse response of the
system. In lowpass filtering, the frequency response corresponding to the impulse
response will be of lowpass nature. The system readily passes the low frequency
components of the signal and suppresses the high frequency components. Low fre-
quency components vary slowly compared with the bumpy nature of the high fre-
quency components. Lowpass filtering is typically used for deliberate blurring to
remove unwanted details of an image and reduce the noise content of the image. The
impulse response of the simplest and widely used 3 × 3 lowpass filter, called the
averaging filter, is

h(m, n) = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ , m = −1, 0, 1, n = −1, 0, 1

The origin of the filter is shown in boldface. All the coefficient values are the same.
Other filters produce weighted average outputs. This filter, when applied to an image,
replaces each pixel in the input by the average of the values of a set of its neighboring
pixels. Pixel x(m, n) is replaced by the value
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y(m, n) = 1

9
(x(m − 1, n − 1) + x(m − 1, n) + x(m − 1, n + 1) + x(m, n − 1) + x(m, n)

+ x(m, n + 1) + x(m + 1, n − 1) + x(m + 1, n) + x(m + 1, n + 1))

The bumps are smoothed out due to averaging. Blurring will proportionally increase
with larger filters. This filter is separable.Multiplying the 3×1 column filter hc(m) =
{1, 1, 1}T /3 with the 1 × 3 row filter hr (n) = {1, 1, 1}/3, which is the transpose of
the column filter, we obtain the 3 × 3 averaging filter.

h(m, n) = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ = 1

3

⎡
⎣
1
1
1

⎤
⎦ 1

3

[
1 1 1

] = hc(m)hr (n)

This implies that the computational complexity is reduced by convolving each row
of the input image with the row filter first and then convolving each column of the
result with the column filter or vice versa. With the 2-D filter h(m, n) separable,
h(m, n) = hc(m)hr (n) and, with input x(m, n),

h(m, n) ∗ x(m, n) = (hc(m)hr (n)) ∗ x(m, n)

= (hc(m) ∗ x(m, n)) ∗ hr (n) = hc(m) ∗ (x(m, n) ∗ hr (n))

y(k, l) =
∑

m

hc(m)
∑

n

hr (n)x(k − m, l − n) =
∑

n

hr (n)
∑

m

hc(m)x(k − m, l − n)

Whenever a filter is separable, it is advantageous to decompose a 2-D operation into
a pair of 1-D operations.

Let the input be

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

Assuming zero-padding at the borders, the output of 1-D filtering of the rows of
the input and the output of 1-D filtering of the columns of the partial output are,
respectively,

yr(m, n) = 1

3

⎡
⎢⎢⎣
0 3 4 5
3 5 7 6
0 2 −1 0
4 6 5 4

⎤
⎥⎥⎦ y(m, n) = 1

9

⎡
⎢⎢⎣
3 8 11 11
3 10 10 11
7 13 11 10
4 8 4 4

⎤
⎥⎥⎦

Assuming replication at the borders, the extended input and the output are, respec-
tively,
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xe(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 −1 3 2 2
1 1 −1 3 2 2
2 2 1 2 4 4
1 1 −1 2 −2 −2
3 3 1 2 2 2
3 3 1 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

y(m, n) = 1

9

⎡
⎢⎢⎣

7 11 15 24
7 10 10 15
13 13 11 14
15 14 9 10

⎤
⎥⎥⎦

Only the output at the borders differ with different border extensions. The central
part of the output is the same.

Gaussian Lowpass Filter

The 2-D Gaussian function is a lowpass filter, with a bell-shaped impulse response
(frequency response) in the spatial domain (frequency domain). The Gaussian low-
pass filters are based on Gaussian probability distribution function. The impulse
response h(m, n) of the Gaussian N × N lowpass filter, with the standard deviation
σ, is given by

h(m, n) = e
− (m2+n2)

(2σ2)

K
, K =

(N−1)/2∑
m=−(N−1)/2

(N−1)/2∑
n=−(N−1)/2

e
− (m2+n2)

(2σ2)

assuming N is odd. The larger the value of the standard deviation σ, the flatter is
the filter impulse response. For very large value of σ, as it appears squared in the
denominator of the exponent of the exponential function of the defining equation,
it tends to the averaging filter in the limit. The impulse response of the Gaussian
lowpass filters with σ = 2, of size 11 × 11 and 12 × 12, are shown in Fig. 2.16a,
b, respectively. The impulse response of the Gaussian 3 × 3 lowpass filter, with
σ = 0.5, is
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Fig. 2.16 The impulse response of the Gaussian lowpass filters with σ = 2. a 11× 11; b 12× 12
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h(m, n) =
⎡
⎣
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

⎤
⎦ , m = −1, 0, 1, n = −1, 0, 1

The origin of the filter is shown in boldface. For example, let m = n = 0 in the
defining equation for h(m, n). Then, the numerator is 1.

K = (e−2(1+1) + e−2(0+1) + e−2(1+1) + e−2(1+0) + e−2(0+0)

+ e−2(1+0) + e−2(1+1) + e−2(0+1) + e−2(1+1))

= e−4 + e−2 + e−4 + e−2 + 1 + e−2 + e−4 + e−2 + e−4

= 4e−4 + 4e−2 + 1 = 1.6146

The inverse of 1.6146 is 0.6193 = h(0, 0). This filter is also separable. Multiply-
ing the 3 × 1 column filter {0.1065, 0.7870, 0.1065}T with the 1 × 3 row filter
{0.1065, 0.7870, 0.1065}, which is the transpose of the column filter, we obtain the
3 × 3 Gaussian filter.

The Gaussian filter is widely used. The features of this filter include:

1. There is no directional bias, since it is symmetric.
2. By varying the value of the standard deviation σ, the conflicting requirement of

less blurring and more noise removal is controlled.
3. The filter is separable.
4. The coefficients fall off to negligible levels at the edges.
5. The Fourier transform of a Gaussian function is another Gaussian function.
6. The convolution of two Gaussian functions is another Gaussian function.

Let

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

Assuming zero-padding at the borders, the output of 1-D filtering of the rows of
the input and the output of 1-D filtering of the columns of the partial output are,
respectively,

⎡
⎢⎢⎣
0.6805 −0.3610 2.4675 1.8935
1.6805 1.2130 2.1065 3.3610
0.6805 −0.4675 1.2545 −1.3610
2.4675 1.3195 1.8935 1.7870

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣
0.7145 −0.1549 2.1663 1.8481
1.4675 0.8664 2.0542 2.7018
0.9773 −0.0982 1.4133 −0.5228
2.0144 0.9887 1.6238 1.2614

⎤
⎥⎥⎦

Assuming periodicity at the borders, the extended input and the output are, respec-
tively,
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Fig. 2.17 a A 256× 256 8-bit image; b filtered image with 5× 5 averaging filter; c filtered image
with 5 × 5 Gaussian filter with σ = 1; d filtered image with 11 × 11 averaging filter

xe(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 1 2 2 3
2 1 −1 3 2 1
4 2 1 2 4 2

−2 1 −1 2 −2 1
2 3 1 2 2 3
2 1 −1 3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎣
1.2130 −0.0143 2.3679 2.1790
1.8027 0.8664 2.0542 2.8921
0.8777 −0.0982 1.4133 −0.3822
2.2545 0.9502 1.8866 1.7372

⎤
⎥⎥⎦

Figure2.17a shows a 256 × 256 8-bit gray level image. Figure2.17b, d show the
filtered images with 5× 5 and 11× 11 averaging filters, respectively. Obviously, the
blurring of the image is more with the larger filter. Figure2.17c shows the filtered
image with 5 × 5 Gaussian filter with σ = 1. As the passband spectrum of the
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averaging filter, due to sharp transition at the borders, is relatively narrow, the blurring
is more for the same size window. As the Gaussian filter is smooth, it has a relatively
wider spectrum and the blurring is less.

Highpass Filtering

Frequency, in image processing, is the rate of change of gray levels of an image
with respect to distance. A high frequency component is characterized by large
changes in gray levels over short distances and vice versa. Highpass filters pass high
frequency components and suppress low frequency components. This type of filters
are used for sharpening images and edge detection. Images often get blurred andmay
require sharpening. Blurring corresponds to integration and sharpening corresponds
to differentiation and they undo the effects of the other. High frequency components
may have to be enhanced by suppressing low frequency components.

Laplacian Highpass Filter

While the first-order derivative is also a highpass filter, the Laplacian filter is formed
using the second-order derivative. A peak is the indicator of an edge by the first-order
derivative and it is the zero-crossing by the second-order derivative. The Laplacian
operator of a function f (x, y)

∇2 f (x, y) = ∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2

is an often used linear derivative operator. It is isotropic (invariant with respect to
direction). Consider the 4-neighborhood

⎡
⎣

x(m − 1, n)

x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n)

⎤
⎦

For discrete signals, differencing approximates differentiation. At the point x(m, n),
the first differences along the horizontal and vertical directions, �h(m, n) and
�v(m, n), are defined as

�h x(m, n) = x(m, n) − x(m, n − 1) and �vx(m, n) = x(m, n) − x(m − 1, n)

Using the first differences again, we get the second differences.
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�2
vx(m, n) = �vx(m + 1, n) − �vx(m, n)

= (x(m + 1, n) − x(m, n)) − (x(m, n) − x(m − 1, n))

= x(m + 1, n) + x(m − 1, n) − 2x(m, n)

�2
h x(m, n) = �h x(m, n + 1) − �h x(m, n)

= (x(m, n + 1) − x(m, n)) − (x(m, n) − x(m, n − 1))

= x(m, n + 1) + x(m, n − 1) − 2x(m, n)

Summing the two second differences, we get the discrete approximation of the Lapla-
cian as

∇2x(m, n) = �2
h x(m, n) + �2

vx(m, n)

= x(m, n + 1) + x(m, n − 1) + x(m + 1, n) + x(m − 1, n) − 4x(m, n)

The filter coefficients h(m, n) are

h(m, n) =
⎡
⎣
0 1 0
1 −4 1
0 1 0

⎤
⎦ (2.2)

By adding this mask by its 45◦ rotated version, we get the filter coefficients h(m, n)

for 8-neighborhood

h(m, n) =
⎡
⎣
1 1 1
1 −8 1
1 1 1

⎤
⎦ (2.3)

Let the input be the same used for lowpass filtering. With zero-padded and repli-
cated inputs, the outputs of applying the Laplacian mask (Eq.2.2) are, respectively,

y(m, n) =

⎡
⎢⎢⎣

−3 9 −9 −1
−5 −2 2 −14
0 9 −7 16

−10 0 −3 −8

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣

−1 8 −6 3
−3 −2 2 −10
1 9 −7 14

−4 1 −1 −4

⎤
⎥⎥⎦

The output has large number of negative values. For proper display of the output,
scaling is required. With 256 gray levels,

ys(m, n) = (y(m, n) − ymin)

(ymax − ymin)
255

Figure2.18a show a 256 × 256 8-bit image. Figure2.18b shows the image after
the application of the Laplacian filter (Eq. (2.2)). The low contrast of the image is
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(a) (b)
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Fig. 2.18 aA256×256 8-bit image; b the image after application of the Laplacian filter (Eq. (2.2));
c its scaled histogram; d the histogram equalized image

due to the concentration of the pixel values in the middle of the scaled histogram
(Fig. 2.18c). The histogram equalized image is shown in Fig. 2.18d.

Subtracting the Laplacian from the image sharpens the image. Using the first
mask,

x(m, n) − ∇2x(m, n) = 5x(m, n) − (x(m, n + 1) + x(m, n − 1) + x(m + 1, n) + x(m − 1, n))

= x(m, n) + 5(x(m, n)

−1

5
(x(m, n + 1) + x(m, n − 1) + x(m, n) + x(m + 1, n) + x(m − 1, n)))

The third line is a blurred and scaled version of the image x(m, n). The high frequency
components are suppressed. When the blurred version is subtracted from the input
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image (called unsharp masking), the resulting image is composed of strong high
frequency components and weak low frequency components. When this version is
multiplied by the factor 5 and added to the image, the high frequency components are
boosted (high-emphasis filtering) and the low frequency components remain about
the same. The corresponding Laplacian sharpening filter is deduced from the last
equation as

h(m, n) =
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦ (2.4)

Using this filter, with the same input used for lowpass filtering, the outputs with the
input zero-padded and replicated are, respectively,

y(m, n) =

⎡
⎢⎢⎣

4 −10 12 3
7 3 0 18
1 −10 9 −18
13 1 5 10

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣
2 −9 9 −1
5 3 0 14
0 −10 9 −16
7 0 3 6

⎤
⎥⎥⎦

Figure2.19a shows the image in Fig. 2.18a after application of the Laplacian filter
(Eq. (2.3)). The edges at the diagonal directions are sharper compared with Fig.
2.18b. Figure2.19b shows the image in Fig. 2.18a after application of the Laplacian
sharpening filter (Eq. (2.4)). The edges are sharper compared with Fig. 2.18a.

Fig. 2.19 a Image in Fig. 2.18a after application of the Laplacian filter (Eq. (2.3)); b Image in Fig.
2.18a after application of the Laplacian sharpening filter (Eq. (2.4))
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2.4.2 Median Filtering

Some measures of the distribution of the pixel values in an image are the mean, the
median, the standard deviation and the histogram. The mean, x̄ , of a M × N image
x(m, n) is given by

x̄ = 1

M N

M−1∑
m=0

N−1∑
n=0

x(m, n)

The median of a list of N numbers x(n)

{x(0), x(1), . . . , x(N − 1)}

is defined as the middle number of the sorted list of x(n), if N is odd. If N is even, the
median is defined as the mean of the two middle numbers of the sorted list. For 2-D
data, all the samples in the window are listed as 1-D data for median computation.
The mean and median gives an indication of the center of the data. The spread of the
data is given by the variance and the standard deviation. The variance is a measure of
the spread of each pixel from themean of an image. A variance value of zero indicates
that all the pixels are the same as the mean. A small variance value indicates that
pixel values are distributed close to the mean and close to themselves and vice versa.
It is a positive value. The variance σ2 of a M × N image x(m, n) is given by

σ2 = 1

(M)(N )

M−1∑
m=0

N−1∑
n=0

(x(m, n) − x̄)2

(Sometimes, the divisor ((M − 1)(N − 1)) is used in the definition of σ2.) The
variance is the mean of the squared differences between each value and the mean of
the data. The standard deviation σ is the square root of the variance. Consider the
4 × 4 image

23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

The mean, variance and standard deviation are 33, 102 and 10.0995, respectively.
Median filtering, which is nonlinear, replaces a pixel by themedian of awindow of

pixels in its neighborhood. It involves sorting the pixels in the window in ascending
or descending order and selecting the middle value, if the number of pixels is odd.
Otherwise, the average of the two middle values is the median. In this case, if the
input is integer-valued then the output can be of the same type by using truncation
or rounding. The window sizes used typically are 3 × 3, 5 × 5 and 7 × 7.

Consider the 4 × 4 image and its boundary replicated version
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23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

23 23 51 23 32 32

23 23 51 23 32 32
32 32 44 44 23 23
23 23 23 44 32 32
44 44 44 23 23 23

44 44 44 23 23 23

The image after median filtering with a 3 × 3 window is

32 32 32 32
23 32 32 32
32 44 32 23
44 44 23 23

Medianfiltering is effective in reducing the spot (or impulse or salt-and-pepper) noise,
characterized by the random occurrence of black and white pixels. The probability
distribution of this noise is given by

p(x) =
⎧⎨
⎩

p1, for x = 1
p0, for x = 0
0, otherwise

Pixel value 1 indicates that it will be white and zero indicates that the pixel will be
black. If the probabilities of the occurrence of the black and white pixels are about
equal, then the effect of this noise is to look like flecks of salt and pepper spread all
over the image. Hence, it is called as salt-and-pepper noise.

A pixel with a value that is much larger than those of its neighbors is probably a
noise pixel. The image is enhanced if such pixels are replaced by the median in their
neighborhood. On the other hand, if the pixel value is valid then median filtering will
degrade the image quality. In any image processing, the most suitable operators with
respect to size and response, and algorithms should be used. This requires some trial
and error. While median filtering is commonly used, a pixel can be replaced by any
other pixel in the sorted list of its neighborhood, such as the maximum and minimum
values. Figure2.20a, b show a 256× 256 8-bit image and the image with spot noise,
respectively. Figure2.20c shows the median filtered image with a 3 × 3 window.
The noise has been removed. Figure2.20d shows the lowpass filtered image with a
3×3 window. Lowpass filtering is not effective to reduce the spot noise. Figure2.20e
shows the image with each pixel in the complement of input image replaced by the
maximum value in its 5 × 5 neighborhood. It highlights the brightest parts of the
image. The image has become brighter. Figure2.20f shows the image with each pixel
replaced by the minimum value in its 5 × 5 neighborhood. It highlights the darkest
parts of the image.
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Fig. 2.20 a A 256 × 256 8-bit image and b the image with spot noise; c median filtered image
with a 3× 3 window; d lowpass filtered image with a 3× 3 window; e image with each pixel in the
complement of the input image replaced by the maximum value in its 5× 5 neighborhood; f image
with each pixel replaced by the minimum value in its 5 × 5 neighborhood
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2.5 Summary

• Image enhancement involves modifying the pixel values to improve the quality of
the image with some respect for human or machine vision.

• The simplest type is that in which each output pixel is a function of the input pixel
only. Typical operations include complementing and gamma correction. Pointwise
arithmetic and logical operations are carried out with corresponding pixels in two
or more images.

• Histogram is the count of the number of occurrences of each gray level in the
image. In addition to enhancement, histograms are useful for other operations
such as segmentation.

• In histogram stretching, a part of the range of gray levels is stretched to enhance
the image.

• In histogram equalization, the gray levels are redistributed uniformly over the gray
level range to enhance the image.

• In histogram specification, the gray levels are redistributed, according to the spec-
ified histogram, over the gray level range to restore the image, with a knowledge
of its original histogram.

• Thresholding is choosing a gray level of some significance and using it to do
processing such as segmentation, compression and denoising.

• In neighborhood operations, the output value of a pixel is a linear or nonlinear
function of a set of pixels in its neighborhood.

• In linear filtering, the spectrum of the image is modified in a desired way. This
includes operations such as lowpass and highpass filtering.

• Typical lowpass filters are averaging and Gaussian. Laplacian filter is of highpass
type.

• Filtering is implemented by the convolution operation in the spatial domain.
Although an image is a 2-D function, 1-D convolution is also used for filtering
with separable filters.

• In nonlinear filtering, the output value of a pixel is a nonlinear function of a set of
pixels in its neighborhood.

• Typical example of nonlinear filtering is median filtering, in which the output pixel
value corresponding to a pixel is the median of a set of pixels in its neighborhood.

Exercises

2.1 Find the complement of the 4 × 4 8-bit gray level image and verify that the
image can be restored by complementing the complemented image.
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(i) ⎡
⎢⎢⎣
112 148 72 153
120 125 30 99
95 120 89 33

170 99 109 40

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
164 127 117 59
154 122 104 83
129 136 100 60
117 128 80 48

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
46 48 46 45
42 49 46 45
64 73 60 43
94 69 63 37

⎤
⎥⎥⎦

2.2 Find the complement of the 4 × 4 binary image and verify that the image can
be restored by complementing the complemented image.

(i) ⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
1 1 0 0
1 0 0 0
1 1 1 1
1 1 0 0

⎤
⎥⎥⎦

2.3 For the list of gray levels, apply gamma correction and find the corresponding
new gray levels. Apply the inverse transformation to the new gray levels and verify
that the given gray levels are obtained.

{0, 25, 50, 100, 150, 200, 250, 255}
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(i) γ = 0.8.
(ii) γ = 1.1.
(iii) γ = 1.8.

2.4 Given a 4 × 4 4-bit image, find the histogram equalized version of it.

*(i) ⎡
⎢⎢⎣
4 4 3 3
4 4 4 3
5 4 4 4
4 4 4 4

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
1 1 0 1
1 1 0 3
1 0 0 2
1 0 0 2

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
3 5 5 3
4 4 4 3
4 2 3 4
4 2 2 3

⎤
⎥⎥⎦

2.5 Given 4×4 4-bit reference and input images, use histogram matching to restore
the input image.

*(i) The reference and input images, respectively, are

⎡
⎢⎢⎣
4 4 3 3
4 4 4 3
5 4 4 4
4 4 4 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
15 15 0 0
15 15 15 0
15 15 15 15
15 15 15 15

⎤
⎥⎥⎦

(ii) The reference and input images, respectively, are

⎡
⎢⎢⎣
3 3 3 3
3 3 3 3
3 2 2 3
2 2 2 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
15 15 15 15
15 15 15 15
15 0 0 15
0 0 0 0

⎤
⎥⎥⎦

(iii) The reference and input images, respectively, are

⎡
⎢⎢⎣
3 5 5 3
4 4 4 3
4 2 3 4
4 2 2 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 15 15 0
15 15 15 0
15 0 0 15
15 0 0 0

⎤
⎥⎥⎦
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2.6 Given a 8 × 8 8-bit image, find the binary, hard and soft thresholded versions
with the threshold T = 160.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

255 255 255 117 50 39 50 56
255 255 255 194 45 26 48 54
255 255 255 241 61 25 53 57
255 255 255 255 104 32 64 64
255 255 255 255 154 37 59 61
255 255 255 255 199 54 55 61
255 255 255 255 230 71 59 64
255 255 255 255 250 95 60 68

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.7 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
70 62 51 45
71 62 57 55
73 65 56 60
68 69 63 66

⎤
⎥⎥⎦

2.8 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
41 43 45 43
40 41 42 41
42 38 39 42
39 33 37 36

⎤
⎥⎥⎦

2.9 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
45 78 87 51
59 56 62 49
59 39 44 57
56 36 35 51

⎤
⎥⎥⎦

2.10 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders symmetrically extended.

x(m, n) =

⎡
⎢⎢⎣
202 195 192 191
216 211 200 209
224 212 215 227
224 205 227 230

⎤
⎥⎥⎦
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2.11 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
202 195 192 191
216 211 200 209
224 212 215 227
224 205 227 230

⎤
⎥⎥⎦

2.12 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
95 82 54 33
84 78 56 64
73 71 53 60
73 73 54 36

⎤
⎥⎥⎦

2.13 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter

h(m, n) =
⎡
⎣
0 1 0
1 −4 1
0 1 0

⎤
⎦

with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
45 52 56 52
49 60 55 55
47 55 53 46
45 48 51 40

⎤
⎥⎥⎦

2.14 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter with the borders symmetrically extended.

x(m, n) =

⎡
⎢⎢⎣
64 62 62 68
68 66 58 64
75 70 60 58
72 69 59 60

⎤
⎥⎥⎦

2.15 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
39 40 35 33
31 40 39 37
34 38 41 43
37 39 42 43

⎤
⎥⎥⎦
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*2.16 Given a 4×4 image, find the 4×4 enhanced output using the 3×3 Laplacian
sharpening filter

h(m, n) =
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦

with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
190 206 228 238
180 205 227 219
182 203 211 159
184 212 206 177

⎤
⎥⎥⎦

2.17 Given a 4× 4 image, find the 4× 4 enhanced output using the 3× 3 Laplacian
sharpening filter with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
138 163 162 177
148 157 167 175
153 165 160 178
157 162 164 188

⎤
⎥⎥⎦

2.18 Given a 4× 4 image, find the 4× 4 enhanced output using the 3× 3 Laplacian
sharpening filter with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
201 195 191 169
210 201 181 157
213 207 190 166
204 204 197 159

⎤
⎥⎥⎦

2.19 Given a 4 × 4 image, find the 4 × 4 median filtered output using the 3 × 3
window with the borders zero-padded.

(i)

x(m, n) =

⎡
⎢⎢⎣
201 195 191 169
210 201 181 157
213 207 190 166
204 204 197 159

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
138 163 162 177
148 157 167 175
153 165 160 178
157 162 164 188

⎤
⎥⎥⎦
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(iii)

x(m, n) =

⎡
⎢⎢⎣
190 206 228 238
180 205 227 219
182 203 211 159
184 212 206 177

⎤
⎥⎥⎦
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