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Abstract. In order to solve the problem that automatic train operation control
system considering the single factor and control is not easy to be accurate, a
multi-objective optimization (MO) based on improved genetic algorithm
(GA) and fuzzy PID control method is proposed in this paper. Firstly, based on
train operation characteristics, a multi-objective model of train operation process
is established. Secondly, in order to improve the performance of the algorithm,
the train operation process is optimized by using linear weight method and
multi-objective genetic algorithm. Third, in order to suppress the local con-
vergence of GA, a dual population genetic mechanism is adopted in the iterative
process. Finally, a fuzzy PID controller is embedded into the control designer
after target curve and control train operation in real time according to the real
time running state. The results show that the proposed algorithm can get a
reasonable MO result and accurate real-time control.
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1 Introduction

Automatic train operation (ATO) control system is the core of speed and energy
consumption control. However, the indicators considered by the researches of ATO
control strategy are incomplete, and these indicators cannot reflect the multi-objective
features of train operation process [1].

Various control schemes have been proposed in recent works on the ATO control
strategy [2–8]. In [2], under actuator saturation caused by constraints from serving
motors, an on-line approximation based robust adaptive control problem for the ATO
system is proposed. An actuator saturation nonlinearity with unknown system
parameters and nonlinear dynamics during the whole operational process is considered
explicitly. The robustness of the system can be improved. In order to obtain com-
promises between journey duration and energy saving, an approach for speed tuning in
railway management is proposed in [3]. The proposed method can deal with a
bi-criteria optimization problem, which consists in designing speed profiles integrating
both criteria in order to provide patterns of speed control. Besides, this method inte-
grates the energy consumption as a criterion to optimize. In [4], in order to minimize
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the net energy at substations, an optimal ATO speed profiles of metro trains taking into
account the energy recovered from regenerative brake is designed. Meanwhile, a model
of a train with an on-board energy storage device as well as a network model for
estimating the energy recovered by the train is presented. In [5], the adaptive optimal
control (AOC) method is developed to improve the dual heuristic programming
(DHP) design with respect to modeling errors as well as optimality, and an automatic
train regulation (ATR) designed was developed and evaluated by using AOC method.
The result shows that the AOC method is able to find a near-optimal solution more
rapidly and accurately than the DHP method. In [6], a novel online learning control
strategy is proposed to solve the train automatic stop control (TASC) problem.
Meanwhile, an extensive comparison study on a real-world data set collected in the
Beijing subway line is performed. The proposed online learning algorithm can
dynamically reduce stopping errors by using the precise location data. In [7], an
optimization approach for the speed trajectory of high-speed train in a single section is
studied. Besides, a MO model for the speed trajectory is developed by considering the
constraints such as safety requirement, track profiles, passenger comfort, and the
dynamic performance. It should be noted that numerical examples are given to illustrate
the effectiveness of the train operation process optimization. However, there is a little
related literature published about the MO based on improved GA and fuzzy PID
control method in order to solve ATO control system. The main advantages of the
proposed algorithms are summarized as follows:

(i) For the optimization algorithm of the train operation process applied to the ATO
system, it is necessary to establish an optimization model of the train running
process. In this paper, a more in-depth analysis of the train running process is
carried out to derive a formula for calculating the fitness function with accel-
eration, distance and velocity as real-time measurements to simplify the
calculation.

(ii) It is difficult to find a satisfactory solution in the latter part of the iteration by
using genetic algorithm. Therefore, this paper uses a dual population genetic
mechanism. It uses two populations to evolve at the same time and exchange the
outstanding individuals in genetic information with each other, for obtaining a
higher equilibrium state by destroying the former equilibrium state within the
population, which breaks down the “dominant” position established in the long
process of a single population, thus jumping out of local optimum.

(iii) General researches on optimization of train operation are limited to finding a rel-
atively optimized train trajectory, instead of considering its rationality in practice. It
is obviously not enough for ATO control system applied to the actual train operation
control system. In this paper, a speed controller based on fuzzy PID control strategy
is used to track the target curve after finding an optimized trajectory.

2 Multi-objective Model of Train Operation Process

ATO system of the train is a complex nonlinear system. It includes a plurality of input
and output variables, and regards energy consumption, precise parking, punctuality,
comfort and other performance index as control targets.
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2.1 Constraint Model

Energy consumption of the train is represented by the energy consumed when the train
overcomes resistance and operates in the whole running process. The train energy
function can be obtained:

E ¼
R
Fvdt
nM

þAtþ nB

Z
Bvdt ð2Þ

In (2), F is the train running traction: B is the train running braking force; v is the
train running speed; A is the train auxiliary power; t is the train inter-station running
time; nM is the product factor of that traction electric energy converting to mechanical
energy; nB is the product factor of that braking mechanical energy converting to electric
energy.

Because train operation process is the major thing to consider, so the train auxiliary
power A can be ignored. Simultaneously, setting the value of product factor nM , nB to 1
and simplifying formula 3 according to integral linearity, and the traction force F and
the braking force B are expressed with m � a� R, and vdt are expressed with ds, which
can be expressed as:

E ¼
Z

FþBð Þvdt ¼
Z

ma� Rð Þds ð3Þ

Therefore, the Eq. (3) above is discretized, then train running energy consumption
model can be expressed:

KE ¼
Xn
i¼1

mai�1 � Ri�1ð Þ si � si�1ð Þ ð4Þ

In (4), si is position of running point; Ri is resistance of running point; ai is
accelerated speed of running point; KE is the energy consumption measurement index.

Comfort reflects the riding quality of passengers, and it is usually expressed by the
accumulation of the acceleration difference in the unit time. Therefore, train running
comfort model can be expressed:

KC ¼
Xn
i¼1

ai � ai�1j j ð5Þ

In (5), KC is the comfort measurement index.
The indicator model of exact parking is the distance difference between running

distance of train in the whole running process and the distance of train from running
starting point to docking stations. The parking error of the docking station will keep
within the range of ±20 cm, the exact parking model can be expressed as:
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KP ¼ Sz � S0j j ð6Þ

In (6), KP is parking accuracy error measurement index; SZ is the actual driving
distance of the train; S’ is the distance between two stations.

The punctuality model can be expressed by the difference between the train running
time and the given time, and then train punctuality model can be obtained:

KT ¼
Xn
i¼1

Ti � T

�����
����� ð7Þ

si and ai refer to the position and accelerated speed of i-th operation condition.
After gaining si and ai, vi and ti can be gained by the following formula:

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ai si � si�1ð Þþ v2i�1

q
ð8Þ

ti ¼ vi � vi�1

ai
ð9Þ

For the punctuality index, T is the specified running time of the train in the running
interval. The error of actual running time of the train and specific time is not more than
5%.

2.2 Multi-objective Optimization Model

In summary, the multi-objective optimization model is shown as

min KE;KC;KP;KTf g ð10Þ

In (8), min represents getting the minimum value of the function, namely, each
sub-goal function takes the minimum value as much as possible. This paper presents by
linear weight method to gather it as single objective optimization problems. Before the
polymerization, each index should be nondimensionalized, and the solution should be
obtained by the genetic algorithm.

f ¼ w1KE þw2KC þw3KP þw4KT ð11Þ

In (11), w1, w2, w3 and w4 are weight coefficients, the formula is expressed as
follows

wi ¼ w0
1i � w2i

w2i ¼ 1= Dfi Xð Þj j
ai � fi Xð Þ� bi
Dfi Xð Þ ¼ bi�ai

2

8>><
>>:

ð12Þ
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where w0
1i represents the principal factor, and satisfy w11 þw12 þw13 þw14 ¼ 1, which

reflects the relative importance of the i-th indicator; w2i represents the correction factor,
which is used to adjust the effect of each target on differences in dimension and
magnitude; fi Xð Þ represents the objective function value of the i-th indicator; ai and bi
represent the upper and lower bounds of the objective function values of the i-th index;
fi Xð Þ is the tolerance of the objective function value of the i-th indicator. The train
operation optimization is equivalent to find a train trajectory to take into account the
various operational indicators. In (12), X is the trajectory, and fi Xð Þ is the objective
function value of the i-th index.

In the formula (13), wiði ¼ 1; 2; 3; 4Þ expresses weight of each fitness index. The
formula (4), (5), (6), (7), (8) and (9) are substituted into formula (11), we can get fitness
function:

F ¼ 1=f ¼
w1

Pn
i¼1

mai�1 � Ri�1ð Þ si � si�1ð Þþw2
Pn
i¼1

ai � ai�1j j þw3 SZ � S0j j

þw4
Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ai si � si�1ð Þþ v2i�1

p
� vi�1

� �
=ai

h i
� T

� �
0
BB@

1
CCA

�1

ð13Þ

In (13), F is fitness function. From the formula (13), it is can be seen that this paper
designs a fitness calculating function with acceleration, distance and velocity as
real-time measurements. This fitness calculating function greatly simplifies the calcu-
lation in the iterative process, which can guarantee the accuracy and optimization of the
results.

3 Improved Genetic Algorithm and Fuzzy PID Control

The main disadvantages of genetic algorithm are summarized as follows: (1) the local
search ability of the algorithm is weak, and it is easy to fall into local optimal solution;
(2) The convergence speed of the algorithm is relatively slow [9].

3.1 A Dual Population Genetic Mechanism

Population will constantly evolve as time goes on, thus, it will have more and more
excellent quality. However, due to their growth, evolution, environment and the lim-
itations of the initial population, they will gradually evolve to the characteristics of the
relative advantage of the state after a substantial amount of time has lapsed. Thus, the
character of the population will not greatly change.

Dual population genetic mechanism is a parallel mechanism, and it uses two
populations to evolve simultaneously. It exchanges the genetic information carried by
the excellent individuals in the population. In order to break the equilibrium state of the
population, to achieve a higher equilibrium state, it will jump out of local optimization.
The calculating process of the Improved genetic algorithm is shown in Fig. 1.
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The schematic diagram of the optimal individual in the exchange population can be
shown as follows (Fig. 2):

3.2 Fuzzy PID Method

To verify the tracking effect of controller on target curve, the solved velocity curve
shall be tracked by using self-adaptive fuzzy PID speed controller. Self-adaptive fuzzy
PID speed controller includes two parts, one is fuzzy controller, and the other is PID
controller [10–12]. Its fundamental principle of Self-adaptive fuzzy PID controller is to
find out the fuzzy relation between each parameter of PID and deviation e and devi-
ation variation rate ec. The functional block diagram is shown as Fig. 3:

In design of fuzzy controller, the PID parameter (KP, KI , KD) should be used in
deviation e and deviation variation rate ec to design the controller as shown in Fig. 4.

Fig. 1. Flow chart of dual population genetic algorithm mechanism

Fig. 2. Exchange of optimal individuals

Fig. 3. Principle of self-adaptive fuzzy PID speed controller
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4 Instance Simulation

4.1 Data Processing in Train Operation Environment

The basic parameters of train are shown in Table 1:

4.2 Operate Curves of Optimization by Genetic Algorithm

To verify the optimal performance of genetic algorithm, Matlab2010a platform is used
to simulate in this paper. It is not advisable to obtain extremely small optimization
progress when consuming a huge computational cost in the optimization of the train
operation. This article sets the following initialization parameters. The population size
is 50, maximum population algebra is 200, crossover probability is 0.8, and mutation
probability is 0.02. Operate curves of optimization by genetic algorithm,genetic
algorithm iterative convergence curve are shown in Figs. 5 and 6.

The maximum running speed of train follows the speed limit on the line, and the
speed of train entering into a station is less than the speed limit in station. It can be seen
from Fig. 7 that the fitness function increases with the increase of genetic algebra.
When the genetic algebra is greater than 50 generations, the fitness function does not
change. At this time, the genetic algorithm has obtained the ideal optimal solution.

Fig. 4. PID parameter fuzzy control-rule

Table 1. Basic parameters of train

Parameter name Parameter characteristics

Train weight (t) 332
Maximum running speed/(km/h) 80
Formation scheme 4 motor 2 trail
Mean starting acceleration (m/s2) (0–35 km/h) � 1.0
Mean acceleration (m/s2) (0–80 km/h) � 0.6
Mean deceleration frequently used for braking (m/s2) (80–0 km/h) � 1.0
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4.3 Tracking Curve of Control by Fuzzy PID

The quality of train tracking target curve directly reflects the feasibility of control
algorithm. The tracking simulation results can be gained by velocity controller through
tracking and simulating the target curve. Tracking curve of control by fuzzy PID are
shown in Fig. 7.

As shown in Fig. 7, there are no large fluctuation in process of train tracking target
curve. Meanwhile, the tracking curve and target curve are basically coincident, which
shows that the following performance of train for target curve is pretty good. Thus, the
proposed algorithm is feasible.

Fig. 5. Operate curves of optimization by genetic algorithm

Fig. 6. Genetic algorithm iterative convergence curve
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5 Conclusion

In this paper, the multi-objective optimization model of train is presented, and the train
operation process is optimized by genetic algorithm. Meanwhile, to obtain a better
solution, a dual population genetic mechanism is adopted in the iterative process, so as
to improve the performance of genetic algorithm. The optimized result shows that the
punctuality, precision parking, comfort, energy saving and other multiple performance
requirements of train have been met. Finally, based on generating train running target
curve by genetic algorithm, the self-adaptive fuzzy PID control is embedded in the train
control system, and the target curve is tracked. The problem of speed controller fol-
lowing target curve can be handled well, the train can operate smoothly and safely, and
possess perfect robustness.
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