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Abstract We give examples of dichotomy spectra for nonautonomous linear dif-
ference equations in infinite-dimensional spaces. Particular focus is on the spectrum
of integrodifference equations having compact coefficients. Concrete systems with
explicitly known spectra are discussed for several purposes: (1) They yield refer-
ence examples for numerical approximation schemes. (2) The asymptotic behavior
of spectral intervals is tackled illustrating their merging.
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1 Motivation and Introduction

Over the last decades, integrodifference equations (IDEs, for short) became popular
models in theoretical ecology, since they provide a flexible tool to describe the growth
anddispersal of populationswith discrete nonoverlappinggenerations. In the simplest
case, where growth precedes dispersal, they are of Hammerstein type

ut+1(x) =
∫

Ω

kt (x, y) ft (y, ut (y)) dy for all t ∈ Z, x ∈ Ω (1)

(see [17]). Here, the real-valued function ut represents the density of a population
at discrete time t over some spatial habitat Ω ⊆ R

κ , the kernels kt are probabil-
ity density functions describing the dispersal and ft is a growth function of e.g.
Beverton–Holt or Ricker type. Both functions kt and ft are allowed to depend on
time in order to include temporally changing environments into our analysis; we refer
to [16] for a concrete application. Typical state spaces for (1) are the continuous or
the p-integrable functions over Ω .
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Apparently, linear IDEs are of fundamental nature. First, they describeMalthusian
growth ft (y, u) = ct (y)u with ambient growth functions ct . Second, and more
importantly, when linearizing (1) along a reference solution (φ∗

t )t∈Z, one arrives at a
linear variational equation

vt+1(x) =
∫

Ω

kt (x, y)D2 ft (y, φ∗
t (y))vt (y) dy for all t ∈ Z, x ∈ Ω. (2)

This is a nonautonomous linear difference equation in the infinite-dimensional state
space of (1) and alone a local analysis near φ∗ requires a thorough insight into
the dynamical behavior of (2). Theoretically the dichotomy spectrum Σ ⊆ (0,∞)

(also denoted as dynamical or Sacker–Sell spectrum) of (2) provides such an insight
and hence an adequate “linear algebra” well-suited to establish a geometric theory
of nonautonomous difference equation (cf. [20]) and particularly (1). In terms of
spectral intervals it indeed gives nonautonomous counterparts to eigenvalue moduli,
while the spectral bundles extend (generalized) eigenspaces to a time-variant setting.
Specific applications of the dichotomy spectrum are as follows:

• The solutionφ∗ is uniformly asymptotically stable, if and only ifΣ ⊆ (0, 1) holds,
while a spectral interval in (1,∞) implies instability.

• If 1 /∈ Σ , then the solution φ∗ is robust and persists locally as unique bounded
entire solution to (1) under variation of the system.

• For each gap inΣ one can construct a pair of invariant fiber bundles, which gener-
alize the classical hierarchy of invariant manifolds to a nonautonomous setting. In
case 1 ∈ Σ stability is determined by the behavior on such a center fiber bundle.
Hence, the gaps determine the number of invariant fiber bundles corresponding to
an entire solution φ∗ to (1).

While the dichotomy spectrum dates back to [4, 25], a detailed analysis of its
structure for difference equations in infinite-dimensional spaces is of more recent
origin [24]. Nevertheless the motivation for this text is two-fold: First, already in
finite dimensions only numerical methods allow an approximation of the spectrum
(see [15]). It is thus handy to have a class of reference exampleswith explicitly known
spectra available in order to verify computational methods. Second, we illustrate the
structure of several spectra arising for nonautonomous IDEs and investigate the
asymptotics of their spectral intervals.

The organization of this paper is as follows: We begin reviewing the dichotomy
spectrum and some of its central properties for difference equations in infinite-
dimensional state spaces. Particular focus is on the situation of compact operators,
which was established in [24]. We then concentrate on operators having a discrete
spectrum and provide the spectra for associate systems with multiplicative time-
varying perturbations. As concrete application we consider IDEs. Sufficient criteria
for their well-definedness in L p- and C-spaces are quoted, we address the asymp-
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totic behavior of the spectral intervals accumulating at 0, and finally present operators
with explicitly known spectra or at least explicitly known asymptotics. The latter case
applies to various equations relevant in applications.

As reference for difference equations in Banach spaces we mention [11, 20].
Corresponding results for nonautonomous parabolic evolutionary equations were
obtained in [23].

Notation

LetK be one of the fieldsR orC. The Kronecker symbol is denoted by δkl . A discrete
interval I is the intersection of a real interval withZ, i.e. a set of consecutive integers.
We write I′ : = {t ∈ I : t + 1 ∈ I} and suppose throughout that I is unbounded. For
nonempty subsets A, B ⊆ R and λ ∈ R let us abbreviate

AB : = {ab ∈ R : a ∈ A, b ∈ B} , λA : = {λa ∈ R : a ∈ A} .

Unless further noted, X, Y are Banach spaces, resp. their complexification, if spec-
tral theoretical matters are addressed. Let X ′ be the dual space of X with dual-
ity pairing 〈·, ·〉. The bounded linear maps from X to Y are denoted by L(X, Y ),
L(X) : =L(X, X) and IX is the identity mapping on X . We write N (T ) : =T −1({0})
for the kernel and R(T ) : =T X for the range of T ∈ L(X, Y ). The spectrum of
S ∈ L(X) is σ(S) ⊂ C.

A subset A ⊆ I × X is called a nonautonomous set, if all t-fibers

A (t) : = {x ∈ X : (t, x) ∈ A } , t ∈ I

are nonempty. One speaks of a vector bundle V ⊆ I × X , if every fiber V (t) ⊆ X
is a linear subspace and in case all V (t) have the same dimension, it determines the
dimension dim V of V . Constant vector bundles are of the form V = I × X0 with
a subspace X0 ⊆ X and particular examples are

O : =I × {0} , X : =I × X.

2 Dichotomy Spectrum

Given a sequence (Kt )t∈I′ of bounded linear operators in L(X) as coefficients, we
consider linear nonautonomous equations

ut+1 = Kt ut (L)

in an infinite-dimensional Banach space X . A vector bundle V is called forward
invariant resp. invariant, providedKtV (t) ⊆ V (t + 1) orKtV (t) = V (t + 1) hold
for all t ∈ I

′. Their evolution operator is the mapping
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ΦK : {(t, s) ∈ I × I : s ≤ t} → L(X), ΦK(t, s) : =
{
Kt−1 · · ·Ks, s < t,

IX , s = t.

For simplicity we suppose from now on that (L) has bounded (forward) growth, i.e.

α0 : = sup
t∈I′

‖Kt‖ < ∞. (3)

One says a linear difference equation (L) has an exponential dichotomy (ED for short,
cf. [14, p. 229, Definition 7.6.4]) on I, if there exists a projector P : I → L(X) and
reals K ≥ 1, α ∈ (0, 1) such that

• Kt P(t) = P(t + 1)Kt for all t ∈ I
′ (P is an invariant projector)

• Φ̄K(t, s) : =ΦK(t, s)|N (P(s)) : N (P(s)) → N (P(t)) is a topological isomor-
phism for s < t1

• ‖ΦK(t, s)P(s)‖ ≤ Kαt−s and
∥∥Φ̄K(s, t) [IX − P(t)]

∥∥ ≤ Kαt−s for s ≤ t .

The dichotomy spectrum of (L) is defined as

ΣI(K) : = {
γ > 0 : ut+1 = γ −1Kt ut admits no ED on I

}

andρI(K) : =(0,∞)\ΣI(K) denotes the dichotomy resolvent. If the discrete interval
I is fixed, then we simply write Σ(K) resp. ρ(K).

Due to the bounded growth (3) one hasΣ(K) ⊆ (0, α0]. The components ofΣ(K)

are called spectral intervals and the dominant spectral interval contains the largest
elements. If Σ(K) consists of isolated points, one speaks of a discrete spectrum.

Essential properties of the dichotomy spectrum can be summarized as follows:

• Σ(K) ∪ {0} is compact, ΣI(K) ⊆ ΣZ(K) for unbounded subintervals I ⊆ Z and

Σ(λK) = |λ| Σ(K) for all λ ∈ C \ {0}

• It is upper-semicontinuous, i.e. for every ε > 0 there exists a δ > 0 such that every
sequence (K̄t )t∈I′ in L(X) fulfills

sup
t∈I′

∥∥K̄t − Kt

∥∥ < δ ⇒ Σ(K̄) ⊆ Bε(Σ(K))

• Σ(K) is invariant under kinematic similarity, i.e. if there exists a sequence (St )t∈I
of invertible operators St ∈ L(X, Y ) with supt∈I max

{‖St‖ ,
∥∥S−1

t

∥∥} < ∞, then
(L) and vt+1 = S−1

t+1KtSt vt have the same dichotomy spectrum. The sequence
(St )t∈I is called Lyapunov transformation.

1For this it suffices to assume thatKt |N (P(t)) : N (P(t)) → N (P(t +1)), t ∈ I
′, are isomorphisms.
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Finally, for every γ > 0 we define the vector bundles

V +
γ :=

{
(τ, ξ) ∈ X : sup

τ≤t
‖ΦK(t, τ )ξ‖ γ τ−t < ∞

}
,

V −
γ :=

{
(τ, ξ) ∈ X : there exists a solution (φt )t∈I of (L)

with φτ = ξ and supτ≤t ‖φt‖ γ τ−t < ∞
}

;

in case γ is chosen from the dichotomy resolvent ρ(K), one denotesV +
γ as a pseudo-

stable and V −
γ as a pseudo-unstable bundle of (L).

The subsequent classes of linear difference equations allow more detailed state-
ments and insights into the structure of their dichotomy spectrum:

2.1 Periodic Difference Equations

Let (L) be p-periodic, i.e. there exists a p ∈ N such that Kt = Kt+p for all t ∈ Z.
Then the dichotomy spectrum reads as

ΣZ(K) = |{λ ∈ C : λ ∈ σ(ΦK(p, 0))} \ {0}|1/p (4)

and in particular for autonomous equations (p = 1) it consists of the positive moduli
of the spectral points for K. The pseudo-stable and -unstable bundles of (L) can be
characterized in terms of Riesz projections (see [8, p. 30, Theorem 1.5.4]) associated
to the components of σ(ΦK(p, 0)), but need not to be finite-dimensional.

Rather explicit information can be obtained in

Example 1 (multiplication operator) Suppose (Ω,Σ,μ) is a σ -finitemeasure space
and 1 ≤ p < ∞. For K-valued functions at ∈ L∞(Ω,μ) we define the essential
range

ρess(at ) : =
{
λ ∈ C : μ

({
x ∈ Ω :

∣∣∣at (x) − λ

∣∣∣ < ε
})

�= 0 for all ε > 0
}

for all t ∈ I
′. On X = L p(Ω,μ) the multiplication operators

Kt ∈ L(L p(Ω,μ)), [Kt v](x) : =at (x)v(x) for all t ∈ I
′, x ∈ Ω

are well-defined and yield an evolution operator of (L) given by

[ΦK(t, τ )v](x) =
(

t−1∏
s=τ

as(x)

)
v(x) for all τ ≤ t, v ∈ L p(Ω,μ),
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which is a multiplication operator again. In the periodic situation at = at+p, t ∈ Z,
the spectrum of ΦK(p, 0) is the essential range of the product

∏p−1
s=0 as : Ω → K

(see [10, pp. 30ff]) and due to (4) we arrive at

Σ(K) =
∣∣∣∣∣ρess

(p−1∏
s=0

as

)
\ {0}

∣∣∣∣∣
1/p

.

Example 2 (shift operator) Suppose that (Bt )t∈Z is a bounded sequence in L(Y ) such
that the difference equation yt+1 = Bt yt in Y has a nonempty dichotomy spectrum
ΣZ(B). Furthermore, let X : =�p(Y ) be the space of p-summable sequences (yt )t∈Z
in Y for p ∈ [1,∞] and define the shift

K ∈ L(�p(Y )), [Kv]s : =Bs−1vs−1 for all s ∈ Z, v ∈ �p(Y ).

In [21, Theorem 1] it is shown that σ(K) = {λ ∈ C : |λ| ∈ ΣZ(B)} and we hence
obtain from (4) for p = 1 that ΣI(K) = ΣZ(B).

2.2 Compact Difference Equations

Let (L) be compact, i.e. the coefficients Kt ∈ L(X), t ∈ I
′, are compact operators.

Due to our global bounded growth assumption (3) the spectrumΣ(K) is bounded
above by α0 and there exists a γ0 > 0 such that (γ0,∞) ⊆ ρ(K); we set

V +
γ0

: =X , V −
γ0

: =O.

Furthermore, in [24, Corollary 4.13] it is shown that Σ(K) is a union of at most
countably many intervals which can only accumulate at a number μ̄ ≥ 0 and that
the pseudo-unstable bundles V −

γ are finite-dimensional. In detail, one of the cases
holds:

(S0) Σ(K) = ∅
(S1) Σ(K) consists of finitely many closed spectral intervals:

(S1
1) There exists a k ∈ N and reals 0 < αk ≤ βk < . . . < α1 ≤ β1 ≤ α0 with

Σ(K) =
k⋃

j=1

[α j , β j ]

and we choose reals γ j ∈ (β j+1, α j ), 1 ≤ j < k, and γk ∈ (0, αk) (see Fig. 1)
(S2

1) There exists a k ∈ N0 and reals 0 < βk+1 < αk ≤ βk < . . . < α1

≤ β1 ≤ α0 with
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R
α0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1γk

Fig. 1 Case (S1
1) with k compact spectral intervals

R
α0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1

βk+1

γk

Fig. 2 Case (S2
1) with k + 1 spectral intervals

Σ(K) = (0, βk+1] ∪
k⋃

j=1

[α j , β j ]

and we choose reals γ j ∈ (β j+1, α j ), 1 ≤ j ≤ k (see Fig. 2).
In both cases the spectral bundles

X0 : =V −
γ0

, X j : =V +
γ j−1

∩ V −
γ j

�= O for all 1 ≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the finite Whitney
sum

X =
k⊕

j=0

X j ⊕ V +
γk

and the bundle V −
γk

= ⊕k
j=0 X j satisfying k ≤ dim V −

γk
= ∑k

j=0 dimX j

(S2) Σ(K) consists of infinitely many spectral intervals: There exist strictly
decreasing sequences (α j ) j∈N, (β j ) j∈N such that

Σ(K) = σ∞ ∪
∞⋃
j=1

[α j , β j ],

where μ̄ < α j ≤ β j , lim j→∞ α j = μ̄, σ∞ = ∅ for μ̄ = 0 and σ∞ = (0, μ̄]
otherwise (see Fig. 3). If we choose reals γ j ∈ (β j+1, α j ), j ∈ N, then the spectral
bundles

X0 : =V −
γ0

, X j : =V +
γ j−1

∩ V −
γ j

�= O for all j ∈ N

are finite-dimensional invariant vector bundles of (L) and for every k ∈ N one has
the finite Whitney sum
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R
α0α1 β1α2 β20

γ0γ1γ2γj

αj βj

Fig. 3 Case (S2) with infinitely many spectral intervals [α j , β j ] accumulating at μ̄ = 0 i.e.
σ∞ = ∅

X =
k⊕

j=0

X j ⊕ V +
γk

and the bundle V −
γk

= ⊕k
j=0 X j satisfying k ≤ dim V −

γk
= ∑k

j=0 dimX j .

By construction, the dominant interval is [α1, β1]. The order of a spectral interval
with maximum β j is the dimension of the associate spectral bundle X j ; a simple
spectral interval has order 1.

2.3 Finite-Rank Difference Equations

Let (L) be of finite rank, i.e. there exists a finite-dimensional subspace X0 ⊂ X such
that R(Kt ) = X0 for all t ∈ I

′. In particular, everyKt is compact and (L) essentially
behave like finite-dimensional equations.

If d : = dim X0, then Σ(K) is a union of at most d intervals (cf.
[24, Theorem 4.14]), i.e. either (S0) holds or Σ(K) consists of k ∈ {1, . . . , d}
spectral intervals: There exist reals 0 < αk ≤ βk < . . . < α1 ≤ β1 ≤ α0 with closed
spectral intervals:

Σ(K) =
{

[αk, βk]
(0, βk] ∪

k−1⋃
j=1

[α j , β j ]. (5)

If possible, we choose γk ∈ ρ(K) such that (0, γk) ⊆ ρ(K) and otherwise, we define
V +

γk
= O and V −

γk
= X . Then Xk+1 = V +

γk
and X0 = V −

γ0
are invariant vector

bundles of (L). For k > 1 we choose reals γ j ∈ (β j+1, a j ), 1 ≤ j < k. Then the sets

X j : =V +
γ j−1

∩ V −
γ j

�= O for all 1 ≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the Whitney sum

X =
k+1⊕
j=0

X j .
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Remark 1 Note that the above situation differs from the dichotomy spectrum intro-
duced in [4] for finite-dimensional equations. Indeed, [4] work with the dichotomy
concept from [3], which is not �∞-robust and yields a finer spectrum than ours.

2.4 Finite-Dimensional and Difference Equations

Suppose that (Bt )t∈I′ is a bounded sequence in Kn×n and consider a linear equation

yt+1 = Bt yt (6)

with evolution operator ΦB(t, s) ∈ K
n×n , s ≤ t . Its dichotomy spectrum Σ(B) fits

in the above framework of Sect. 2.3. Each spectral interval in (5) corresponds to an
invariant vector bundle

Y j : = {
(t, x) ∈ I × K

n : x ∈ R(p j (t))
}

for all 1 ≤ j ≤ k,

where p j : I → L(Kn) is an invariant projector for (6), and I × K
n = ⊕k

j=1 Y j .
For scalar difference equations the following notion of Bohl exponents is central.

Assume (at )t∈I′ is a tempered sequence inK, i.e. it satisfies at �= 0 for all t ∈ I
′ and

sup
t∈I′

max
{|at | ,

∣∣a−1
t

∣∣} < ∞.

Let IT (I) : = {J ⊆ I : J is a discrete interval with #J = T } denote the family of all
discrete subintervals of Iwith T ∈ N elements. The upper resp. lower Bohl exponent
of a are given by

β(a) : = lim
T →∞ sup

J∈IT (I)

T

√∣∣∣∏
s∈J

as

∣∣∣, β(a) : = lim
T →∞ inf

J∈IT (I)
T

√∣∣∣∏
s∈J

as

∣∣∣

and one clearly has the homogeneity relations

β(λa) = |λ| β(a), β(λa) = |λ| β(a) for all λ ∈ C \ {0} .

Especially for Kt : =at IX , t ∈ I, one has the spectrum

Σ(K) = [β(a), β(a)]

and we refer to [22] for further properties of Bohl exponents.
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3 Operators with Discrete Spectrum

Assume now that K ∈ L(X) is a single linear operator. Given an eigenvalue λ ∈ C

of K, we denote its order as

oλ = min
{
o ∈ N : N (K − λIX )o = N (K − λIX )o+1

}

and our future analysis is based on the following properties:

• (H1) There exist nonempty discrete intervals J(K) ⊆ I (K) ⊆ N such that

– σ(K) \ {0} = {λi : i ∈ I (K)} consists of eigenvalues λi such that (|λi |)i∈I (K)

is a decreasing sequence
– |σ(K) \ {0}| = {

ρ j : j ∈ J(K)
}
with a strictly deceasing sequence (ρ j ) j∈J(K)

of positive reals and s j : =#
{
λ ∈ σ(K) : |λ| = ρ j

}
< ∞ for j ∈ J(K)

• (H2) Given bases of generalized (and norm 1) eigenvectors such that

N (K − λIX )oλ = span
{
e1λ, . . . , eoλ

λ

}
for all λ ∈ σ(K) \ {0} ,

the sequence (en)n∈N : =(e1λ1
, . . . , e

oλ1
λ1

, e1λ2
, . . . , e

oλ2
λ2

, . . .) is a basis of X .

According to [8, p. 80, Lemma 3.3.1] one can complement the basis (en)n∈N of X to
a biorthonormal system (en, fn)n∈N , where N ⊆ N is a discrete interval. This means
there exists a sequence ( fn)n∈N : =( f 1λ1

, . . . , f
oλ1
λ1

, f 1λ2
, . . . , f

oλ2
λ2

, . . .) of functionals
fn ∈ X ′ satisfying 〈en, fm〉 = δnm for all m, n ∈ N . Then

Π(λ) : =
oλ∑

n=1

〈·, f n
λ

〉
en
λ for all λ ∈ σ(K) \ {0}

is a bounded projector onto N (K − λIX )oλ with

Π(λi )Π(λ j ) = δi jΠ(λi ), Π(λi )K = KΠ(λi ) for all i, j ∈ I (K), (7)

since (en, fn)n∈N is a biorthonormal system. We next define the spectral spaces

X j : =
⊕

|λ|=ρ j

N (K − λIX )oλ for all j ∈ J(K),

which are invariant and of dimension
∑

|λ|=ρ j
oλ, as well as finite rank mappings

Π j : X → X j , Π j : =
∑

|λ|=ρ j

Π(λ) for all j ∈ J(K).
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From (7) we readily obtain the commutativity relations

Π jΠi = δi jΠ j , KΠ j = Π jK for all i, j ∈ J(K).

Thus, Π j , j ∈ J(K), are a family of complementary projections onto the spectral
spaces X j .

Example 3 (normal compact operators) If K ∈ L(X) is a compact operator with
I (K) = J(K) = N, then limi→∞ λi = lim j→∞ ρ j = 0 holds. In case X is an infinite-
dimensional Hilbert space and K is normal, we identify X ′ with X by means of the
Riesz representation theorem. One chooses fn : =en , n ∈ N , and the projectionsΠ j ,
as well as the eigenspaces X j are pairwise orthonormal (see [18, p. 484ff, Sect. 6.7]).

Example 4 (finite rank operators) Suppose that X0 : =R(K) is finite-dimensional
with a basis (x1, . . . , xd) and let S : X0 → C

d be an isomorphism. Following [1,
p. 274, Theorem 7.4] and using the representation

Kv =
d∑

j=1

〈
v, x ′

j

〉
x j for all v ∈ X

we define the matrix K : =(x ′
i (x j ))

d
i, j=1 ∈ C

d×d and obtain σ(K) = σ(K )∪{0}. By
means of e.g. the Jordan form there exists an invertible matrix T ∈ C

d×d such that

T −1K T =
⎛
⎜⎝

Sk

. . .

S1

⎞
⎟⎠ and k ≤ d.

The eigenvalues of each block matrix Sj ∈ C
d j ×d j have the same moduli and satisfy∣∣σ(Sj+1)

∣∣ <
∣∣σ(Sj )

∣∣ for 1 ≤ j < k. One obtains the spectral spaces

X j : =ST ({0} × C
d j × {0}) ⊂ X for all 1 ≤ j ≤ k

and Π j : =ST diag(0, I
C

d j , 0)(ST )−1 as corresponding projections.

In conclusion, we arrive at a weighted sum

Kv =
∑

j∈J(K)

∑
|λ|=ρ j

λΠ(λ)v for all v ∈ X

and the discrete semigroup (Kt )t≥0 generated by K has the Fourier representation

Kt v =
∑

j∈J(K)

∑
|λ|=ρ j

λtΠ(λ)v for all t ≥ 0, v ∈ X. (8)
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For autonomous difference equations

ut+1 = Kut

in X with coefficients K ∈ L(X) satisfying (H1)–(H2) the above notions translate
into the language of Sect. 2.2 as follows: We obtain a discrete dichotomy spectrum

Σ(K) =
⋃

j∈J(K)

{
ρ j

}

and constant spectral bundles X j = I × X j , j ∈ J(K), from (4). An immediate
nonautonomous generalization is treated in

Theorem 1 (multiplicative perturbation 1) If a sequence (at )t∈I is tempered, then
the difference equation

ut+1 = atKut (9)

has the dichotomy spectrum Σ(aK) = [
β(a), β(a)

]⋃
j∈J(K)

{
ρ j

}
and constant

spectral bundles.

Proof Using the Fourier representation (8) we obtain that the evolution operator of
(9) reads as

ΦaK(t, s) =
∑

j∈J(K)

(
t−1∏
r=s

ar

) ∑
|λ|=ρ j

λt−sΠ(λ) for all s ≤ t.

If
{
λ1

j , . . . , λ
s j

j

}
⊆ σ(K) is the set of eigenvalues with absolute value ρ j , we obtain

Π jΦaK(t, s) =
∑

j∈J(K)

(
t−1∏
r=s

ar

) s j∑
i=1

(λi
j )

t−s PjΠ(λi
j )

= ΦaK(t, s)Π j for all s ≤ t.

Hence, the finite-dimensional vector bundlesP j : = {
(t, v) ∈ X : v ∈ R(Π j )

}
are

invariant w.r.t. (9) for all j ∈ J(K). Inside of each P j the dynamics is given by

ut+1 = at

s j∑
i=1

λi
jΠ(λi

j )ut ,

having an evolutionoperatorΦ j (t, s) : =ΦaK(t, s)Π j and the spectrumρ j
[
β(a), β(a)

]
.

Thanks to ΦaK(t, s) = ∑
j∈J(K) Φ j (t, s) for all s ≤ t we thus obtain the assertion.

��
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Corollary 1 If a sequence (at )t∈Z in K is p-periodic with nonzero values, then

Σ(aK) = p

√√√√p−1∏
s=0

|as |
⋃

j∈J(K)

{
ρ j

}
.

Proof The upper and lower Bohl exponents of a are given by p

√∏p−1
s=0 |as |.

In the following, we are interested in systems of difference equation

Ut+1 = K̃tUt (10)

on the state space Xn for coefficient sequences (K̃t )t∈I′ in L(Xn). We conveniently
abbreviate U = (u1, . . . , un) ∈ Xn throughout. Suppose that (Bt )t∈I′ is a sequence
of invertible matrices in Kn×n satisfying

sup
t∈I′

‖Bt‖ < ∞, sup
t∈I′

∥∥B−1
t

∥∥ < ∞ (11)

and having the entries bi j (t), 1 ≤ i, j ≤ n. In [4, Theorem 2.1] and Sect. 2.4 it is
shown that Σ(B) consists of compact intervals in (0,∞).

Theorem 2 (multiplicative perturbation 2) Suppose that (11) holds. If (6) possesses
full spectrum, i.e.

Σ(B) =
n⋃

i=1

σi (12)

with compact, decreasing and disjoint spectral intervals σi ⊂ (0,∞), then the
difference Eq. (10) with

K̃tU : =
⎛
⎜⎝

b11(t)Ku1 + . . . + b1n(t)Kun
...

bn1(t)Ku1 + . . . + bnn(t)Kun

⎞
⎟⎠ for all t ∈ I

′, U ∈ Xn

has the dichotomy spectrum Σ(K̃) = ⋃
j∈J(K) ρ j

⋃n
i=1 σi = ⋃

j∈J(K) ρ jΣ(B).

Remark 2 (computation of (12)) For general coefficient sequences in (6) the compu-
tation of the dichotomy spectrum Σ(B) is only possible using numerical schemes,
as developed in [9, 15].

For the remaining section it is convenient to define the operator

K̂ : =
⎛
⎜⎝
K

. . .

K

⎞
⎟⎠ ∈ L(Xn).
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Proof First of all, we obtain from [26, Reduction Theorem] that (6) is kinemati-
cally similar to a diagonal system in K

n . More precisely, there exists a Lyapunov
transformation (St )t∈I inKn×n such that S−1

t+1Bt St = diag(b1
t , . . . , bn

t )with tempered
sequences (bi

t )t∈I′ such that σi = [β(bi ), β(bi )], 1 ≤ i ≤ n. One has

K̂StU = StK̂U for all t ∈ I, U ∈ Xn

and consequently we arrive at

S−1
t+1K̃t St = S−1

t+1BtK̂St = S−1
t+1Bt StK̂ =

⎛
⎜⎝

b1
t K

. . .

bn
t K

⎞
⎟⎠ for all t ∈ I

′.

Hence, (10) is kinematically similar to a diagonal difference system in Xn and there-
fore Σ(K̃) = ⋃n

i=1 Σ(biK). Then the assertion follows from Theorem 1 yielding
the spectra Σ(biK). ��

We next investigate scalar multiplicative and time-dependent perturbations. The
situation is related to Theorem 2, but allows a different proof.

Theorem 3 (multiplicative perturbation 3) Suppose D ∈ K
n×n is diagonalizable

and σ(D) = {d1, . . . , dn}. If (at )t∈I′ is tempered, then the difference Eq. (10) with

K̃tU : =at

⎛
⎜⎝

d11Ku1 + . . . + d1nKun

...

dn1Ku1 + . . . + dnnKun

⎞
⎟⎠ for all t ∈ I

′, U ∈ Xn

has the dichotomy spectrum Σ(aK̃) = [
β(a), β(a)

]⋃
j∈J(K) ρ j

⋃n
i=1 |di | and con-

stant spectral bundles.

Proof First of all, one has the representation K̃t = at DK̂ and therefore

ΦK̃(t, s) =
(

t−1∏
r=s

ar

)
(DK̂)t−s for all s ≤ t.

Since D and K̂ commute, we arrive at

ΦK̃(t, s) =
(

t−1∏
r=s

ar

)
Dt−sK̂t−s for all s ≤ t.

By assumption D is diagonalizable and hence there is an invertible T ∈ K
n×n with

D = T diag(d1, . . . , dn)T −1. From K̂T −1 = T −1K̂ we get
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T ΦK̃(t, s)T −1 =
(

t−1∏
r=s

ar

)
T Dt−sK̂t−s T −1 =

(
t−1∏
r=s

ar

)
T Dt−s T −1K̂t−s

=
(

t−1∏
r=s

ar

)
(T DT −1)t−sK̂t−s

=
(

t−1∏
r=s

ar

)
diag((d1K)t−s, . . . , (dnK)t−s) for all s ≤ t.

Thus, (10) is kinematically similar to the n systems ut+1 = di atKut for all 1 ≤
i ≤ n and therefore has the dichotomy spectrum Σ(K̃) = ⋃n

i=1 Σ(di aK). Using
Theorem 1 again, this implies the assertion. ��

On the basis of Corollary 1 it is easy to conclude the special case of a periodic
Eq. (10) in Theorem 3.

4 Linear Integrodifference Equations

Throughout this section, we suppose that (Ω,Σ,μ) is a measure space. From now
on the coefficients in our difference Eq. (L) are assumed to be integral operators

Kt v : =
∫

Ω

kt (·, y)v(y) dμ(y) : Ω → K for all t ∈ I
′

of Fredholm typewith appropriate kernels kt : Ω2 → K. Such equations for instance
occur as right-hand sides of variational Eq. (2). Consequently, (L) is an IDE and
well-definedness of the coefficients Kt on various function spaces will be tacked in
Sect. 4.1. On a purely formal level, the evolution operator of (L) is again an integral
operator

ΦK(t, τ ) =
∫

Ω

kt−1
τ (·, y)v(y) dμ(y) : Ω → K for all τ < t

with the iterated kernels for all x, y ∈ Ω and τ, τ + n ∈ I
′ given by

kτ+n
τ (x, y) : =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kτ (x, y), n = 1,∫
Ω

· · ·
∫

Ω︸ ︷︷ ︸
n−1 times

kτ+n−1(x, yn−1) . . . kτ+1(y2, y1)kτ (y1, y)·

· dμ(yn−1) . . . dμ(y2) dμ(y1), n > 1.
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4.1 Integral Operators

We now summarize basic properties of the integral operatorsKt . For this purpose it
suffices to focus on the time-invariant situation

Kv : =
∫

Ω

k(·, y)v(y) dμ(y). (13)

Theorem 4 ([1, p. 275, Theorem 7.7]) Let Ω be a compact metric space, μ be the
Borel measure and p ∈ [1,∞]. If k ∈ C(Ω2), thenK ∈ L(L p(Ω,μ)) is well-defined
and compact.

The Hilbert space L2(Ω) = L2(Ω,μ) with the Lebesgue measure μ is tackled in

Theorem 5 ([12, p. 47, Theorem3.2.7])Let Ω ⊆ R
κ be measurable. If k ∈ L2(Ω2),

then K ∈ L(L2(Ω)) is well-defined and compact with

‖K‖ ≤
√∫

Ω

∫
Ω

|k(x, y)|2 dy dx .

In the setting of Theorems 4 and 5 the adjoint operator K∗ ∈ L(L2(Ω)) of K
becomes

K∗v =
∫

Ω

k(y, ·)v(y) dy

and consequently K is

• self-adjoint, if and only if k(x, y) = k(y, x) for μ-almost all (x, y) ∈ Ω2. In this
case one denotes the kernel k as symmetric and it follows that σ(K) ⊂ R

• normal, if and only if k(x, y)k(z, y) = k(y, x)k(y, z) forμ-almost all x, y, z ∈ Ω .

On the continuous functions we eventually obtain

Theorem 6 ([12, p. 45, Theorem 3.2.6]) Let Ω ⊂ R
κ be compact. If k : Ω2 → K

satisfies

(i)
∫
Ω

|k(x, y)| dy < ∞
(ii) limξ→x

∫
Ω

|k(ξ, y) − k(x, y)| dy = 0 for all x ∈ Ω ,

then K ∈ L(C(Ω)) is well-defined and compact.

The following consequence of Theorems4 and 6 ensures that the spectrum of an
integral operator K is independent of the state space:

Corollary 2 For k ∈ C(Ω2) one has ‖K‖L(C(Ω)) = maxx∈Ω

∫
Ω

|k(x, y)| dy and
the spectrum ofK is independent whetherK is considered in L(L2(Ω)) or L(C(Ω)).

Proof See [12, p. 45, Lemma 3.2.2] for the assertion on the norm and [8, p. 113,
Theorem 4.2.20]) concerning the spectrum. ��
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4.2 Asymptotics of Spectral Intervals

It is not difficult to construct difference equations (L) having an empty dichotomy
spectrum (e.g. Kt ≡ 0). However, whether Σ(K) consists of a finite (case (S1),
see Figs. 1 and 2) or an infinite number of spectral intervals (case (S2), see Fig. 3)
depends on various factors. The relevance of this question is due to the fact that
the gaps in the dichotomy spectrum Σ(K) of a variational equation determines the
number of invariant fiber bundles associated to the entire solution alongwhich e.g. (1)
is linearized.

In the prototypical situation of a multiplicative perturbation

ut+1 = atKut

with a tempered sequence (at )t∈I′ in K it results from Theorem 3 that

Σ(aK) =
⋃

j∈J(K)

σ j , σ j : =[∣∣λ j

∣∣β(a),
∣∣λ j

∣∣β(a)
]
.

Even for J(K) = N it is possible that consecutive intervals σ j eventually overlap and
yield a finite number of components and hence spectral intervals in Σ(aK). Since
the eigenvalues λ j are ordered as in (H1) we obtain: The intervals σ j , σ j+1

• merge in case max σ j+1 ≥ min σ j , which is equivalent to

∣∣λ j

∣∣ ≤ β(a)

β(a)

∣∣λ j+1

∣∣ (14)

• stay apart for max σ j+1 < min σ j , which holds if and only if

∣∣λ j+1

∣∣ <
β(a)

β(a)

∣∣λ j

∣∣ . (15)

Hence, in order to have an infinite number of spectral intervals, one needs exponen-
tially decaying eigenvalues of K with a suitable decay rate. This property depends
on the smoothness of the kernel, as the following results illustrate:

• Let the compact set Ω ⊂ R
κ be equipped with the Borel measure. If a continuous

kernel k : Ω2 → K satisfies a Hölder condition in the second variable with
∫

Ω

‖k(x, ·)‖Cγ dx < ∞

for some exponent γ ∈ (0, 1], then the eigenvalues of K ∈ L(L2(Ω,μ)) behave
asymptotically like λi = O(i−1/2−γ /κ ) as i → ∞ (see [13, Theorem 3]). For
such positively definite kernels this can be improved to λi = O(i−1−γ /κ) (see [7,
Theorem 4]), which still cannot guarantee (15)
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• Let Ω = [−1, 1] and k : Ω2 → R be of class C1. If k is symmetric, k(·, y) has
an analytic extension from [−1, 1] to the ellipse (foci ±1, axis sum R > 1)

ER : =
{

z ∈ C : (�z)2

a2 + (�z)2

b2 < 1
}

, a : = 1
2 (R + 1

R ), b : = 1
2 (R − 1

R )

and k is boundedon ER×[−1, 1], thenλi = O(R−i ) (see [5, p. 68, Theorem4.22]).
An analytic extension to every such set thus yields super-exponential decay.

Further information on the asymptotic behavior of eigenvalues to integral operators
can be found in the monograph [6].

4.3 Examples

In this section, we first collect miscellaneous examples of time-invariant integral
operators (13) resp. corresponding kernel functions, for which both eigenvalues and
-functions are explicitly known. Then several convolution kernels relevant for appli-
cations are discussed, which also allow to obtain information on the asymptotics
of their spectrum. These operators fulfill the properties (H1)–(H2) from Sect. 3 and
consequently the dichotomy spectra of the nonautonomous Eqs. (9) and (10) tackled
in Theorems 1, 2 resp. 3 — which are now linear IDEs — can be determined.

By means of the following remark these results extend to wider classes of IDEs:

Remark 3 (kinematic similarity) Let 1 ≤ p < ∞ andKt ∈ L(L p(Ω,μ)). Suppose
that mt ∈ L∞(Ω,μ) are K-valued functions with 0 /∈ ρess(mt ) for all t ∈ I

′ and

sup
t∈I′

ρess(mt ) < ∞, sup
t∈I′

ρess(m
−1
t ) < ∞.

According to [10, pp. 30ff] the multiplication operators

Mt ∈ L(L p(Ω,μ)), [Mt v](x) : =mt (x)v(x) for all t ∈ I
′, x ∈ Ω

are well-defined and invertible. Consequently, due to

[M−1
t+1KtMt v](x) =

∫
Ω

kt (x, y)
mt (y)

mt+1(x)
v(y) dμ(y) for all t ∈ I

′, x ∈ Ω

the linear IDE (L) and

ut+1 =
∫

Ω

kt (·, y)

mt+1(·)mt (y)ut (y) dμ(y)

are kinematically similar and thus have the same dichotomy spectrum.
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4.3.1 Explicitly Known Spectra

Assume that (at )t∈I′ is a tempered sequence in K with β(a) < β(a).

Example 5 The Sturm–Liouville problem −u′′ = λu, u(α) = u(β) = 0 leads to a
continuous, symmetric Green’s function (see Fig. 4 (left))

k(x, y) : =
{

(y − α)(β − x), α ≤ y ≤ x ≤ β,

(x − α)(β − y), α ≤ x < y ≤ β.

Thanks to Theorem 5, on the interval Ω : =(α, β) the operator K ∈ L(L2(α, β))

is compact with real eigenvalues λ j : = (β−α)3

π2 j2 of order o j = 1 and normed eigen-

functions e j (x) : =
√

2
β−α

sin( π j
β−α

(x − α)), j ∈ N. From (4) we obtain a discrete
spectrum

Σ(K) =
{

(β−α)3

π2 j2 : j ∈ N

}
, X j : =I × span

{
e j

}

with simple spectral intervals. Moreover, (14) shows thatΣ(aK) is of the form (S2
1).

Example 6 On Ω : =(α, β) the analytical function (see Fig. 4 (right))

k(x, y) : = 1 − γ 2

1 + γ 2 − 2γ cos( 2π
β−α

(x + y − 2α))
for all γ ∈ (0, 1)

defines a symmetric kernel. By Theorem 5 the operatorK ∈ L(L2(α, β)) is compact,
has real eigenvalues (of order o j = 1) and eigenfunctions (cf. [2, pp. 254–255])

Fig. 4 The symmetric kernels k : (0, 1)2 → R from Example 5 (left) and Example 6 (right, for
γ = 1

2 )
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λ j : =(β − α)

{
γ j , j ≥ 0,

−γ − j , j < 0.
, e j (x) : =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

β−α
cos( 2π j

β−α
(x − α)), j > 0,√

1
β−α

, j = 0,√
2

β−α
sin( 2π j

β−α
(α − x)), j < 0.

Note that the reals λ j are exponentially decaying and symmetrically distributed
around 0. It follows from

∣∣λ j

∣∣ = ∣∣λ− j

∣∣ and (4) that

Σ(K) = {
(β − α)γ j : j ∈ N0

}
, X j = I ×

{
span {e0} , j = 0,

span
{
e j , e− j

}
, j > 0;

the dominant interval {β − α} is simple, while the other intervals have order 2.
Furthermore, the concrete structure of Σ(aK) depends on the ratio of the Bohl

exponents. In case
β(a)

β(a)
≤ γ it follows from (14) that Σ(aK) is of the form (S2

1).

For γ <
β(a)

β(a)
however, (15) implies a countably infinite number of spectral intervals,

where the dominant one (β − α)
[
β(a), β(a)

]
is simple, while the remaining ones

are of order 2.

Example 7 On Ω : =(−π, π) consider the discontinuous kernel (see Fig. 5 (left))

k(x, y) : =
{
2, −π ≤ y ≤ x ≤ π,

1, −π ≤ x < y ≤ π,

which fails to be symmetric. It has the complex eigenvalues and -functions

λ j = 2π

ln 2 + 2π ı j
, e j (x) = exp

(
( ln 22π + ı j)x

)
for all j ∈ Z.

Fig. 5 The asymmetric kernel k : (−π, π)2 → R from Example 7 with α = 1, β = 2 (left) and
symmetric finite radius dispersal kernel from Example 8 (right) for α = 2
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Due to [8, p. 89, Theorem 3.3.15] the set
{
e j

}
j∈Z is a minimal complete set in L2(Ω).

Moreover,
∣∣λ j

∣∣ = ∣∣λ− j

∣∣ and (4) imply

Σ(K) =
{

2π√
(ln 2)2+(2π j)2

: j ∈ N0

}
, X j = I ×

{
span {e0} , j = 0,

span
{
e j , e− j

}
, j > 0;

consequently, the dominant spectral interval
{
2π
ln 2

}
is simple, while the other spectral

intervals have order 2. Moreover, since the eigenvalues decay merely linearly, it
results that Σ(aK) is of the form (S2

1).

We next discuss a class of kernels, where also a spectrum of the form (S1
1) (see

Fig. 1) can be realized. Thereto, a kernel k : Ω2 → K is denoted as degenerate, if it
can be written as

k(x, y) : =
d∑

j=1

a j (y)x j (x) for all x, y ∈ Ω

with linearly independent functions x1, . . . , xd : Ω → K. This brings us into the
framework of finite rank operators discussed in Sect. 2.3 and Example 4 with

Kv =
∫

Ω

d∑
j=1

a j (y)v(y) dμ(y)x j =
d∑

j=1

〈
v, x ′

j

〉
x j : Ω → K

and functionals
〈
v, x ′

j

〉
: = ∫

Ω
a j (y)v(v) dμ(y). The entries of the matrix K ∈ K

d×d

from Example 4 are ki j : = ∫
Ω

ai (y)x j (y) dμ(y), 1 ≤ i, j ≤ d, yield the discrete
spectrum

Σ(K) = |{λ ∈ C : det(λICd − K ) = 0} \ {0}| .

Example 8 (finite radius dispersal kernel) Let Ω = (−1, 1). The kernel

k(x, y) : =
{

π
4α cos

(
π(x−y)

2α

)
, |x − y| ≤ α,

0, |x − y| > α

(cf. [17], see Fig. 5 (right)) is continuous and symmetric. Moreover, due to

k(x, y) =
{

π
4α

(
cos πx

2α cos πy
2α + sin πx

2α sin πy
2α

)
, |x − y| ≤ α,

0, |x − y| > α
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it is degenerate. Hence, for α ≥ 2 the integral operator K allows the representation

Kv =
2∑

j=1

(∫ 1

−1
a j (y)v(y) dy

)
x j : Ω → K

with a1(x) : = cos πx
2α , a2(x) = sin πx

2α and the linearly independent functions

x1(x) : = π
4α cos πx

2α , x2(x) : = π
4α sin πx

2α .

Therefore,K is a rank 2 operator and its eigenvalues λ are the roots of the equation

det

(
λ − ∫ 1

−1 a1(y)x1(y) dy − ∫ 1
−1 a1(y)x2(y) dy

− ∫ 1
−1 a2(y)x1(y) dy λ − ∫ 1

−1 a2(y)x2(y) dy

)
= 0.

In the following example the eigenvalues are not explicitly known, but can be
obtained as solutions of a transcendental equation in R yielding also their asymptot-
ics.

Example 9 On Ω : =(0, 1) the continuous kernel

k(x, y) : = 1
2 min {x, y} (2 − max {x, y})

is symmetric. Suppose that (ν j ) j∈N denotes the strictly increasing sequence of pos-
itive real solutions to the transcendental equation ν + tan ν = 0 (see Fig. 6). The
associate integral operator K has the eigenvalues λ j : = 1

ν2
j
of order o j = 1 with

normed eigenfunctions e j (x) = 2
√

ν j

(2ν j −sin(2ν j ))
sin(ν j x), j ∈ N (see [19, p. 438]).

This yields a discrete dichotomy spectrum with simple spectral intervals

Σ(K) =
{
ν−2

j : j ∈ N

}
, X j : =I × span

{
e j

}
.

In addition, (14) implies that Σ(aK) is of the form (S2
1).

Fig. 6 The points of
intersection ν j > 0 of the
graphs to x �→ x and
x �→ − tan x yield the
eigenvalues in Example 9
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4.3.2 Spectra of Convolutive Operators

In the remaining, we supposeΩ = (−1, 1) and consider kernels of convolution type

[Kv](x) : =
∫ 1

−1
k0(x − y)v(y) dy for all x ∈ (−1, 1)

with a real, even and integrable function k0 : R → R. These kernels frequently arise
in applications [17] from theoretical ecology and have a real spectrum. In addition,
we approximate their (largest) eigenvalues numerically using aNyströmmethodwith
the rectangular rule as quadrature and 1000 nodes.

Following [27], the (scaled) Fourier transformation of k0 becomes

k̃0(ξ) : =
∫
R

eıξ x k0(x) dx

and provided it is positive, we define Γ (ξ) : = − ln k̃0(ξ).

Example 10 (Gauß kernel) As archetypical mesokurtic distribution consider

k0(x) : = 1√
2πα2

exp
(
− x2

2α2

)
for all α > 0 (16)

(see Fig. 7) with standard deviation α > 0. It is real analytical with lipk0 ≤ 1√
2eπα2 ,

the Fourier transformation k̃0(ξ) = e− α2

2 ξ 2
is bounded, even and positive, whence

it is Γ (ξ) = α2

2 ξ 2. Since Γ is convex and satisfies limξ→∞ Γ (ξ)

ξ
= ∞, it follows

from [27, Corollary 1] that ln λ j ∼ − j ln j as j → ∞. Consequently, Σ(K) and
Σ(aK) consists of an infinite number of spectral intervals accumulating at 0, i.e.
both dichotomy spectra are of the form (S2) with μ̄ = 0.

0.5 1 1.5 2
α

0

0.2

0.4

0.6

0.8

1

λ
j

Fig. 7 The Gaussian convolution kernel k0 : R → R from Example 10 (left) and the super-
exponentially decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]
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Example 11 (Cauchy kernel) Another smooth kernel is the Cauchy kernel

k0(x) : = α

π(α2 + x2)
for all α > 0

(see Fig. 8) resembling the Gauß kernel (16). The Fourier transform k̃0(ξ) = e−α|ξ |
is bounded, even and positive with Γ (ξ) = α |ξ |. From [27, Theorem 2] we hence

obtain ln λ j ∼ − jψ(α) as j → ∞ with the function ψ(α) : =π
E(sech(π/α))

E(tanh(π/α))
> 0,

where E stands for the complete elliptic integral of first kind. It results from (14) that

Σ(aK) is of the form (S2
1) for eψ(α) ≤ β(a)

β(a)
, while (15) and β(a)

β(a)
< eψ(α) guarantee

(S2), i.e. an infinite number of spectral intervals.

Example 12 (Laplace kernel) The Laplace kernel is given by the function

k0(x) : = 1
2α exp

(−|x |
α

)
for all α > 0

(see Fig. 9), which is continuous with lipk0 ≤ 1
2α2 . If (ν j ) j∈N denotes the strictly

increasing sequence of positive solutions to the transcendental equation tan ν
α

= ±ν,
thenK possesses the eigenvalues λ j : = 1

1+ν2
j
, j ∈ N (see [17]). On the one hand, this

shows that λ j decays quadratically to 0. On the other hand, the Fourier transform of
k0 is k̃0(ξ) = 1

1+α2ξ 2 and hence Γ (ξ) = ln(1 + α2ξ 2). Referring to [27, Theorem I]

it results that λ j ∼ k̃0(
π
2 j + o( j)) as j → ∞, which confirms the quadratic decay.

Due to (14) this results in a dichotomy spectrum Σ(aK) of the form (S2
1).

Example 13 (exponential square root kernel) For the kernel

k0(x) : = 1
4α exp

(
−
√

|x |
α

)
for all α > 0
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Fig. 8 The Cauchy convolution kernel k0 : R → R from Example 11 (left) and the exponentially
decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]
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Fig. 9 The Laplacian convolution kernel k0 : R → R from Example 12 (left) and the quadratically
decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]

0.5 1 1.5 2
α

0

0.2

0.4

0.6

0.8

1
λ
j

Fig. 10 The exponential square root convolution kernel k0 : R → R from Example 13 (left) and
the six largest eigenvalues λ j depending on α ∈ [ 12 , 2]

(see Fig. 10) the tails are not exponentially bounded. It is continuous with a Hölder
condition hol1/2k0 ≤ 1

4α3/2 , but not differentiable in 0. The Fourier transformation

k̃0(ξ) = √
2π

sin
(

1
4α|ξ |

) (
1 − 2S

(
1√

2πα|ξ |
))

+ cos
(

1
4α|ξ |

) (
1 − 2C

(
1√

2πα|ξ |
))

|αξ |3/2

is bounded, even and positive, where S, C denote the Fresnel integrals. In this setting,
[27, Theorem I] leads to λ j ∼ k̃0(

π
2 j + o( j)) as j → ∞.

Example 14 (top hat kernel) Let α ∈ (0, 1]. The top hat kernel is defined as

k0(x) : = 1
2α (θ(x + α) − θ(x − α)) = 1

2α χ[−α,α](x) for all α > 0

(see Fig. 11) and has the Fourier transform k̃0(ξ) = sin(αξ)

αξ
, which is bounded, even,

but fails to be positive. Hence, the results from [27] do not apply.
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Fig. 11 The top hat convolution kernel k0 : R → R from Example 14 (left) and the six largest
eigenvalues λ j depending on α ∈ [ 12 , 1]. The spikes appear to be due to numerical inaccuracies
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