Dichotomy Spectra of Nonautonomous
Linear Integrodifference Equations

Christian Potzsche

Abstract We give examples of dichotomy spectra for nonautonomous linear dif-
ference equations in infinite-dimensional spaces. Particular focus is on the spectrum
of integrodifference equations having compact coefficients. Concrete systems with
explicitly known spectra are discussed for several purposes: (1) They yield refer-
ence examples for numerical approximation schemes. (2) The asymptotic behavior
of spectral intervals is tackled illustrating their merging.
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1 Motivation and Introduction

Over the last decades, integrodifference equations (IDEs, for short) became popular
models in theoretical ecology, since they provide a flexible tool to describe the growth
and dispersal of populations with discrete nonoverlapping generations. In the simplest
case, where growth precedes dispersal, they are of Hammerstein type

Uy (x) = /Q ki(x, ) fi(y,u;(y))dy forallt € Z, x € 2 (1)

(see [17]). Here, the real-valued function u, represents the density of a population
at discrete time ¢ over some spatial habitat 2 C R*, the kernels k; are probabil-
ity density functions describing the dispersal and f; is a growth function of e.g.
Beverton—Holt or Ricker type. Both functions &, and f; are allowed to depend on
time in order to include temporally changing environments into our analysis; we refer
to [16] for a concrete application. Typical state spaces for (1) are the continuous or
the p-integrable functions over 2.
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Apparently, linear IDEs are of fundamental nature. First, they describe Malthusian
growth f;(y,u) = c¢;(y)u with ambient growth functions ¢,. Second, and more
importantly, when linearizing (1) along a reference solution (¢;),ez, one arrives at a
linear variational equation

Vo1 () = / k(e ) Do f (v () dy forallr € Z, x € 2. (2)
2

This is a nonautonomous linear difference equation in the infinite-dimensional state
space of (1) and alone a local analysis near ¢* requires a thorough insight into
the dynamical behavior of (2). Theoretically the dichotomy spectrum X < (0, 0o)
(also denoted as dynamical or Sacker—Sell spectrum) of (2) provides such an insight
and hence an adequate “linear algebra” well-suited to establish a geometric theory
of nonautonomous difference equation (cf. [20]) and particularly (1). In terms of
spectral intervals it indeed gives nonautonomous counterparts to eigenvalue moduli,
while the spectral bundles extend (generalized) eigenspaces to a time-variant setting.
Specific applications of the dichotomy spectrum are as follows:

e The solution ¢* is uniformly asymptotically stable, if and only if X' C (0, 1) holds,
while a spectral interval in (1, co) implies instability.

o If 1 ¢ X, then the solution ¢* is robust and persists locally as unique bounded
entire solution to (1) under variation of the system.

e For each gap in X' one can construct a pair of invariant fiber bundles, which gener-
alize the classical hierarchy of invariant manifolds to a nonautonomous setting. In
case 1 € X stability is determined by the behavior on such a center fiber bundle.
Hence, the gaps determine the number of invariant fiber bundles corresponding to
an entire solution ¢* to (1).

While the dichotomy spectrum dates back to [4, 25], a detailed analysis of its
structure for difference equations in infinite-dimensional spaces is of more recent
origin [24]. Nevertheless the motivation for this text is two-fold: First, already in
finite dimensions only numerical methods allow an approximation of the spectrum
(see [15]). Itis thus handy to have a class of reference examples with explicitly known
spectra available in order to verify computational methods. Second, we illustrate the
structure of several spectra arising for nonautonomous IDEs and investigate the
asymptotics of their spectral intervals.

The organization of this paper is as follows: We begin reviewing the dichotomy
spectrum and some of its central properties for difference equations in infinite-
dimensional state spaces. Particular focus is on the situation of compact operators,
which was established in [24]. We then concentrate on operators having a discrete
spectrum and provide the spectra for associate systems with multiplicative time-
varying perturbations. As concrete application we consider IDEs. Sufficient criteria
for their well-definedness in L?”- and C-spaces are quoted, we address the asymp-
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totic behavior of the spectral intervals accumulating at 0, and finally present operators
with explicitly known spectra or at least explicitly known asymptotics. The latter case
applies to various equations relevant in applications.

As reference for difference equations in Banach spaces we mention [11, 20].
Corresponding results for nonautonomous parabolic evolutionary equations were
obtained in [23].

Notation

Let K be one of the fields R or C. The Kronecker symbol is denoted by 8x;. A discrete
interval I is the intersection of a real interval with Z, i.e. a set of consecutive integers.
We write I’ : ={r € I : r 4+ 1 € I} and suppose throughout that I is unbounded. For
nonempty subsets A, B € R and A € R let us abbreviate

AB:={abeR:a€ A, be B}, M:={laeR:aecA}.

Unless further noted, X, Y are Banach spaces, resp. their complexification, if spec-
tral theoretical matters are addressed. Let X’ be the dual space of X with dual-
ity pairing (-, -). The bounded linear maps from X to Y are denoted by L(X,Y),
L(X) : =L(X, X) and Iy is the identity mapping on X. We write N(T) : =T ~'({0})
for the kernel and R(T) : =T X for the range of T € L(X,Y). The spectrum of
SelL(X)isa(S) cC.

A subset o C I x X is called a nonautonomous set, if all t-fibers

di):={xeX: (t,x)ed}, tel

are nonempty. One speaks of a vector bundle ¥ C 1 x X, if every fiber 7 () € X
is a linear subspace and in case all #'(¢) have the same dimension, it determines the
dimension dim ¥ of ¥'. Constant vector bundles are of the form ¥ = I x X, with
a subspace X(y € X and particular examples are

0 . =1 x {0}, 2 =IxX.

2 Dichotomy Spectrum

Given a sequence (X,),cr of bounded linear operators in L(X) as coefficients, we
consider linear nonautonomous equations

Q

in an infinite-dimensional Banach space X. A vector bundle ¥ is called forward
invariant resp. invariant, provided K, 7' (t) C ¥ (t + 1) or K, ¥ (t) = ¥ (¢ + 1) hold
for all r € I'. Their evolution operator is the mapping
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fKt_l ---IKX, s <t,

Dy {(t,s) el x1:5 <t}— L(X), Px(t,s):=
Iy, s =1.

For simplicity we suppose from now on that (L) has bounded (forward) growth, i.e.

o : =sup [|X;]| < oo. 3)

tel’

One says a linear difference equation (L) has an exponential dichotomy (ED for short,
cf. [14, p. 229, Definition 7.6.4]) on L, if there exists a projector P : I — L(X) and
reals K > 1, a € (0, 1) such that

e X, P(t) = P(t + DX, forall t € I (P is an invariant projector)

o Dyc(t,s) : =Dy (t, 8)|npisy) @ N(P(s)) — N(P(t)) is a topological isomor-
phism for s < ¢!

o |Px(t,5)P(s)| < Ka'™* and || P (s, 1) [Ix — P(1)]| < Ko'~* fors < 1.

The dichotomy spectrum of (L) is defined as
2i(K) - = {y >0: Uy = y’lfK,ut admits no ED on ]I}

and pr(K) : =(0, 00)\ X1(KX) denotes the dichotomy resolvent. If the discrete interval
I is fixed, then we simply write X (K) resp. p(X).

Due to the bounded growth (3) one has X' (X) C (0, «p]. The components of X' (K)
are called spectral intervals and the dominant spectral interval contains the largest
elements. If X'(XK) consists of isolated points, one speaks of a discrete spectrum.

Essential properties of the dichotomy spectrum can be summarized as follows:

e X (X) U {0} is compact, X1(K) € X7 (XK) for unbounded subintervals I € Z and

Y(AK) = | X(K) forall » € C\ {0}

e Itis upper-semicontinuous, i.e. for every ¢ > 0 there exists a§ > 0 such that every
sequence (K;),cr in L(X) fulfills

sup [K, — K| <8 = X (K) S B(Z(K))
tell

e X (X) is invariant under kinematic similarity, i.e. if there exists a sequence (8;);c1
of invertible operators 8, € L(X, Y) with sup,.; max {||S,|| |87t ||} < 00, then
(L) and v,y = 8:15{,&\}, have the same dichotomy spectrum. The sequence
(8¢)ze1 is called Lyapunov transformation.

IFor this it suffices to assume that Kilnpey : N(P()) = N(P(t+1)),t € I, are isomorphisms.
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Finally, for every y > 0 we define the vector bundles

Vb= [(r,é) €2 sup || P (r, DEN YT < 00] :
T<t

’

7/1,_ — [(t’ E)e 2 there exists a solution (¢;);cr of (L) ]

with ¢, = & andsup,_, [|¢,]| ™" < o0

in case y is chosen from the dichotomy resolvent p (X), one denotes ”I/VJF as a pseudo-
stable and ”1/},’ as a pseudo-unstable bundle of (L).

The subsequent classes of linear difference equations allow more detailed state-
ments and insights into the structure of their dichotomy spectrum:

2.1 Periodic Difference Equations

Let (L) be p-periodic, i.e. there exists a p € N such that X, = K, forall t € Z.
Then the dichotomy spectrum reads as

22(K) = [{r € C: 1 € o (P (p, )} \ {0}]"/7 )

and in particular for autonomous equations (p = 1) it consists of the positive moduli
of the spectral points for K. The pseudo-stable and -unstable bundles of (L) can be
characterized in terms of Riesz projections (see [8, p. 30, Theorem 1.5.4]) associated
to the components of o (@ (p, 0)), but need not to be finite-dimensional.

Rather explicit information can be obtained in

Example 1 (multiplication operator) Suppose (£2, X, 1) is a o -finite measure space
and 1 < p < oo. For K-valued functions a; € L*°(£2, u) we define the essential
range

pess(a;) : ={k eC: u({x €R:

a;(x) —A‘ < 8}) # (O forall ¢ > O}

forallr € I'. On X = L?(82, u) the multiplication operators
XK, € L(L?(£2, n)), [Kv](x) : =a,(x)v(x) forallt el, x € 2

are well-defined and yield an evolution operator of (L) given by

t—1

[P (1, TIV](x) = (Has(x)) v(x) forallt <t, ve LP(2,n),

S=T
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which is a multiplication operator again. In the periodic situation @, = a,4p, t € Z,

the spectrum of @4 (p, 0) is the essential range of the product Hf;ol a; : 2 - K
(see [10, pp. 30ff]) and due to (4) we arrive at
p—1 1/p

Pess( av) \ {0}

2(X) = :
s=0

Example 2 (shift operator) Suppose that (B;),cz is abounded sequence in L(Y) such
that the difference equation y,;; = B,y, in Y has a nonempty dichotomy spectrum
X'7(B). Furthermore, let X : =£7(Y) be the space of p-summable sequences (y;)sez
in Y for p € [1, oo] and define the shift

X e LP(Y)), [Xv]s : =Bs_1vs_y foralls € Z, v € £P(Y).

In [21, Theorem 1] it is shown that o (X) = {A € C: |A| € Xz(B)} and we hence
obtain from (4) for p = 1 that X1(KX) = Xz(B).

2.2 Compact Difference Equations

Let (L) be compact, i.e. the coefficients K, € L(X), t € I, are compact operators.
Due to our global bounded growth assumption (3) the spectrum X' (X) is bounded
above by « and there exists a yy > 0 such that (yy, 00) € p(K); we set
+ . - =
Py i =2, Vi =0.
Furthermore, in [24, Corollary 4.13] it is shown that X'(X) is a union of at most
countably many intervals which can only accumulate at a number & > 0 and that

the pseudo-unstable bundles “//y‘ are finite-dimensional. In detail, one of the cases
holds:

(6o 2(XK) =0
(61) 2 (KX) consists of finitely many closed spectral intervals:

((‘5}) There existsak € Nandreals 0 < o < B < ... < a1 < B1 < o with
k
2(K) = | Jle;. 85
j=1

and we choose reals y; € (841, ), 1 < j <k, and yx € (0, o) (see Fig. 1)
(6%) There exists a k € Ny andreals 0 < Sry) < ap < B < ... < o
< Bi < ap with
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Fig.1 Case (6}) with k compact spectral intervals

Tk V-1 V2 71 70
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Fig.2 Case (G%) with k + 1 spectral intervals

k
Z(XK) =0, BV U a;, Bl

and we choose reals y; € (841, o)), 1 < j < k (see Fig.2).
In both cases the spectral bundles

Zo =Y, %::"f/),jilﬂ”//);;éﬁforalllfjfk

are finite-dimensional invariant vector bundles of (L) with the finite Whitney
sum

k
2 =D zior
j=0

and the bundle 7~ = @1;:0 Z; satisfying k < dim 7~ = z];zo dim 2

(&3) X (X) consists of infinitely many spectral intervals: There exist strictly
decreasing sequences (o) jen, (B;) jen such that

[e¢]

T (K) = 05 U |l 811,
j=1

where i < a; < B, limj 0 = I, 0o = P for . = 0 and oo, = (0, 1]

otherwise (see Fig. 3). If we choose reals y; € (841, @;), j € N, then the spectral
bundles

2o =Y, %::"//},ji]ﬂ“f/)/;;éﬁ forall j € N

are finite-dimensional invariant vector bundles of (L) and for every k € N one has
the finite Whitney sum
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Fig. 3 Case (&) with infinitely many spectral intervals [«;, 8;] accumulating at i = 0 i.e.
O =0

k
r=Prer

j=0

and the bundle 7~ = @]j‘.zo Z; satisfying k < dim ¥~ = le‘.:O dim Z;.

By construction, the dominant interval is [«, B1]. The order of a spectral interval
with maximum g; is the dimension of the associate spectral bundle Z; a simple
spectral interval has order 1.

2.3 Finite-Rank Difference Equations

Let (L) be of finite rank, i.e. there exists a finite-dimensional subspace Xy C X such
that R(X,) = X, forall r € I. In particular, every X, is compact and (L) essentially
behave like finite-dimensional equations.

If d : =dimXy, then X(X) is a union of at most d intervals (cf.
[24, Theorem 4.14]), i.e. either (S¢) holds or X' (X) consists of k € {1,...,d}
spectral intervals: There existreals 0 < oy < B < ... < o] < B < g with closed
spectral intervals:

P AR T )
(O’ IBk]

j=1
If possible, we choose y; € p(XK) such that (0, y;) € p(X) and otherwise, we define

”I/V:r =0and ¥, = 2. Then 2y = ”I/yj and 2y = ¥, are invariant vector
bundles of (L). For k > 1 we choose reals y; € (Bj41,a;),1 < j < k. Then the sets

%fj::”f/yﬁ] ﬂ“//y]_ # 0 foralll <j<k
are finite-dimensional invariant vector bundles of (L) with the Whitney sum

k+1

2 =02
j=0
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Remark 1 Note that the above situation differs from the dichotomy spectrum intro-
duced in [4] for finite-dimensional equations. Indeed, [4] work with the dichotomy
concept from [3], which is not £*°-robust and yields a finer spectrum than ours.

2.4 Finite-Dimensional and Difference Equations

Suppose that (B;),cr is a bounded sequence in K"*" and consider a linear equation

®

with evolution operator @5(z, s) € K", s < ¢. Its dichotomy spectrum X (B) fits
in the above framework of Sect.2.3. Each spectral interval in (5) corresponds to an
invariant vector bundle

% ={(t,x) e IxK": x € R(p;(1))} foralll <j <k,

where p; : I — L(K") is an invariant projector for (6), and I x K" = @];:1 ;.
For scalar difference equations the following notion of Bohl exponents is central.
Assume (a,),cr is a tempered sequence in KK, i.e. it satisfies g, # 0 forall t € I and

supmax{|a,| , |at_1|} < 00.
tel

Let I7(I) : ={J € 1: Jis adiscrete interval with #J = 7'} denote the family of all
discrete subintervals of [ with 7' € N elements. The upper resp. lower Bohl exponent
of a are given by

B(a): = lim sup T‘Has, Bla): = lim inf ,

[1a
sel

= germ |\ gy T—00 Jelr (D)
and one clearly has the homogeneity relations
B(Oa) = |1] B(a), B(ra) = |A| B(a) forallx e C\ {0}.

Especially for X, : =a,Ix, t € I, one has the spectrum

2(X) = [B@). B@)]

and we refer to [22] for further properties of Bohl exponents.
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3 Operators with Discrete Spectrum

Assume now that X € L(X) is a single linear operator. Given an eigenvalue A € C
of X, we denote its order as

0, =minf{o € N: N(X — 1ly)° = N(K — alx)"*}

and our future analysis is based on the following properties:
e (H)) There exist nonempty discrete intervals J(X) € I (X) € N such that

— o (X)\{0} = {A; : i € I(K)} consists of eigenvalues A; such that (|A;]);er(x)
is a decreasing sequence

— o (B \ {0} = {p, : j € J(XK)} with a strictly deceasing sequence (p;) jer(x)
of positive reals and s; : =# {1 € o(X) : [A| = p;} < oo for j € J(K)

e (H,) Given bases of generalized (and norm 1) eigenvectors such that
N(X — Alx)* = span {e,{, e e;"“} forall A € o(X) \ {0},

s | o 1 2 . .
the sequence (e,)nen : =€, € s € ..) is a basis of X.

According to [8, p. 80, Lemma 3.3.1] one can complement the basis (e;,),cn of X to
a biorthonormal system (e,,, f,,)sen, Where N C N is a discrete interval. This means
there exists a sequence (f,)nen 1 =(f) . ..., ;}“, i, f:z, ....) of functionals
fn € X’ satistying (e,, f,n) = 8um forallm,n € N. Then

o) : =Z(-, f)e! forall A € o(X)\ {0}
n=1
is a bounded projector onto N (K — Alx)? with
T ()T (X ) = 8;T(Ry), OOHKX =X ;) foralli, je I[(X), (7

since (e, fu)nen 18 a biorthonormal system. We next define the spectral spaces

Xj:= P N&K—rly)* forall j e J(X),

[Al=p;

which are invariant and of dimension Z‘ il=p; 02> as well as finite rank mappings
-

m:X — X, mj:= > 1) forall j € J(X).

|Al=p;
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From (7) we readily obtain the commutativity relations

HjHiz(Sinj, :KHJIHJ:K foralli,j e J(X).
Thus, IT;, j € J(X), are a family of complementary projections onto the spectral
spaces X ;.

Example 3 (normal compact operators) If X € L(X) is a compact operator with
I(K) = J(X) = N, thenlim;_, A; = lim;_, o p; = 0holds. Incase X is an infinite-
dimensional Hilbert space and X is normal, we identify X’ with X by means of the
Riesz representation theorem. One chooses f, : =e,,n € N, and the projections I7;,
as well as the eigenspaces X ; are pairwise orthonormal (see [18, p. 484ff, Sect. 6.7]).

Example 4 (finite rank operators) Suppose that X : =R(X) is finite-dimensional
with a basis (x;,...,xz) and let S : X; — C? be an isomorphism. Following [1,
p. 274, Theorem 7.4] and using the representation

d
Ky = Z(v, x})xj forallv e X
=1
we define the matrix K : =(x[’(x_,'))§{j:1 € C?*4 and obtain o (K) = o (K)U{0}. By

means of e.g. the Jordan form there exists an invertible matrix 7 € C?*¢ such that

Sk
T'KT = and k <d.
S

The eigenvalues of each block matrix S; € C% > have the same moduli and satisfy
|a(Sj+1)| < |O‘(Sj)| for 1 < j < k. One obtains the spectral spaces

X;:=ST({0} x C% x {0) C X foralll <j <k

and I7; : =5Tdiag(0, I, 0)(ST)~! as corresponding projections.

In conclusion, we arrive at a weighted sum

Ky = Z Z ATy forallv e X

JEIX) [Ml=p;

and the discrete semigroup (X'),>( generated by X has the Fourier representation

Ky = Z Z MII(W)v forallt >0, ve X. (8)
JEIX) Hl=p;
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For autonomous difference equations

uy = Kuy

in X with coefficients X € L(X) satisfying (H,)—(H,) the above notions translate
into the language of Sect.2.2 as follows: We obtain a discrete dichotomy spectrum

230 = {»}

JEeJ(X)

and constant spectral bundles Z; = I x X, j € J(X), from (4). An immediate
nonautonomous generalization is treated in

Theorem 1 (multiplicative perturbation 1) If a sequence (a;);c1 is tempered, then

the difference equation
o

has the dichotomy spectrum X (aX) = [é(a), E(a)] Ujej(x) {,oj} and constant
spectral bundles.

Proof Using the Fourier representation (8) we obtain that the evolution operator of
(9) reads as

t—1
uxc(t.s) = D (Ha) > ATIG) foralls <.

Jel(X) \r=s [Al=p;

If {A}, R A;j] C o (X) is the set of eigenvalues with absolute value p;, we obtain

t—1 Sj
Mi®exc(t.5) = . (Hm)Z(M)"’P,H(M-)

JEIK) \r=s i=1
= ®,x(t,s)[1; foralls <t.

Hence, the finite-dimensional vector bundles &7; : = {(t, vweZ: ve R(I'[j)} are
invariant w.r.t. (9) for all j € J(X). Inside of each &7; the dynamics is given by

.Y/'

U] = Ay Z)\I]H()\.[])Mz,

i=1

having an evolution operator @/ (¢, s) : =P, (t, s)I1; and the spectrum p; [é(a), B(a)].
Thanks to @,4(t, s) = ZjeMQ @ (t,s) for all s < t we thus obtain the assertion.
O
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Corollary 1 If a sequence (a;),cz in K is p-periodic with nonzero values, then

Z@k) ="

H|a| U {ei}-

Jel(X)

Proof The upper and lower Bohl exponents of a are given by /]2, Ias
In the following, we are interested in systems of difference equation

Ut+l ij[Uz (10)

on the state space X" for coefficient sequences (UNC,) rer in L(X"™). We conveniently
abbreviate U = (uy, ..., u,) € X" throughout. Suppose that (B;),cr is a sequence
of invertible matrices in K"*” satisfying

sup || B;|| < oo, sup B < oo (11)
tell’

tel’

and having the entries b;;(t), 1 < i, j < n.In [4, Theorem 2.1] and Sect.2.4 it is
shown that X' (B) consists of compact intervals in (0, 00).

Theorem 2 (multiplicative perturbation 2) Suppose that (11) holds. If (6) possesses
full spectrum, i.e.

2B)=Jo (12)

with compact, decreasing and disjoint spectral intervals o; C (0, 00), then the
difference Eq. (10) with

b”(t)iKul + ...+ b]n(t)fKun
KU : = forallt €T, U € X"
byt (DKtty + - . . + by (1)Kt

has the dichotomy spectrum >(K) = UjeJI(SC) p;i Ui o = UjeJ](SC) p; 2 (B).
Remark 2 (computation of (12)) For general coefficient sequences in (6) the compu-

tation of the dichotomy spectrum X'(B) is only possible using numerical schemes,
as developed in [9, 15].

For the remaining section it is convenient to define the operator

X
X:= e L(XM).
X
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Proof First of all, we obtain from [26, Reduction Theorem] that (6) is kinemati-
cally similar to a diagonal system in K". More precisely, there exists a Lyapunov

transformation (S;),¢r in K”*” such that S;ll B,S, = diag(bl, ..., b!") with tempered

sequences (b});er such that o; = [B(b'), B(b)], 1 <i < n.One has

KS,U = S$KU forallr eI, U € X"
and consequently we arrive at

b K
S,;llic,s, = StlllBrkar = S,_JrlleSzﬂAC = forallz e I'.
b
Hence, (10) is kinematically similar to a diagonal difference system in X" and there-
fore 2(K) = UI_, £ (b'X). Then the assertion follows from Theorem 1 yielding
the spectra X (b'K). O

We next investigate scalar multiplicative and time-dependent perturbations. The
situation is related to Theorem 2, but allows a different proof.

Theorem 3 (multiplicative perturbation 3) Suppose D € K"*" is diagonalizable
and o (D) ={d,, ...,d,}. If (a;),er is tempered, then the difference Eq. (10) with

d”iKul + ...+ di, Ku"
KU : =q, forallt €T, U € X"
duXu' + ... +d,, Ku"

has the dichotomy spectrum Y(ak) = [é(a), E(a)] Ujej(x) p; Ui, |d;| and con-
stant spectral bundles.

Proof First of all, one has the representation 9~C, = a,DJAC and therefore

-1
Di(t,s) = (H a,) (DK forall s < t.

r=s
Since D and K commute, we arrive at
-1
Di(t,5) = (H ar) DK™ foralls <.
r=s

By assumption D is diagonalizable and hence there is an invertible 7 € K"*" with
D = Tdiag(d,, ..., d,)T~'. From XT~' = T~'K we get
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-1 -1
Tos(t, )T = (H a,) TD KT ! = (H a,) TD' ST 14—

-1

= (H a,) (TDT~ =Sk
r=s
-1

= (H ar)diag((dlfK)’s, o (dy X)) foralls <t

Thus, (10) is kinematically similar to the n systems Uyl = dia;KXu, forall 1 <

i < n and therefore has the dichotomy spectrum X(X) = [J'_, X (d;aX). Using
Theorem 1 again, this implies the assertion. O

On the basis of Corollary 1 it is easy to conclude the special case of a periodic
Eq. (10) in Theorem 3.

4 Linear Integrodifference Equations

Throughout this section, we suppose that (£2, X, ;) is a measure space. From now
on the coefficients in our difference Eq. (L) are assumed to be integral operators

Kv: :/ k(-, Y)v(y)du(y) : 2 — K forallt €T’
2

of Fredholm type with appropriate kernels k, : 2> — K. Such equations for instance
occur as right-hand sides of variational Eq. (2). Consequently, (L) is an IDE and
well-definedness of the coefficients K, on various function spaces will be tacked in
Sect.4.1. On a purely formal level, the evolution operator of (L) is again an integral
operator

Dy (t, ) = / ki’1(~, yyw(y)du(y) : 2 - K forallt <t
Q2

with the iterated kernels for all x, y € £2 and 7, T +n € I’ given by

ke (x,y), n=1,

T4n /"'/k1:+n—1(xayn—l)~~-kt+1(y2»yl)kt(y1ay)'
k7" (x,y) =1/ 2

n—1 times

~dpu(Ya—1) - .. du(y2) du(y), n>1.
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4.1 Integral Operators

‘We now summarize basic properties of the integral operators X,. For this purpose it
suffices to focus on the time-invariant situation

Kv: z/gk(n v du(y). (13)

Theorem 4 ([1, p. 275, Theorem 7.7]) Let 2 be a compact metric space, |1 be the
Borel measureand p € [1, 0o]. Ifk € C(2?), thenX € L(LP(2, b)) is well-defined
and compact.

The Hilbert space L?(£2) = L?*(£2, p) with the Lebesgue measure u is tackled in

Theorem 5 ([12,p.47, Theorem 3.2.7]) Let 2 € R* be measurable. Ifk € L*(£2?),
then X € L(L*(£2)) is well-defined and compact with

X < \// / lk(x, y)|* dydx.
RJR2

In the setting of Theorems 4 and 5 the adjoint operator X* e L(L?*(£2)) of K
becomes

5y = / G v dy
2

and consequently X is

e self-adjoint, if and only if k(x, y) = k(y, x) for -almost all (x, y) € £22. In this
case one denotes the kernel k as symmetric and it follows that o (K) C R
e normal,ifandonlyifk(x, y)k(z, y) = k(y, x)k(y, z) for u-almostall x, y, z € £2.

On the continuous functions we eventually obtain
Theorem 6 ([12, p. 45, Theorem 3.2.6]) Let 2 C R* be compact. If k : 2% — K

satisfies

(i) Jqolk(x, )| dy < o0
(ii) limg_, fg k&, y) —k(x,y)| dy =0forall x € 2,

then KX € L(C(£2)) is well-defined and compact.

The following consequence of Theorems4 and 6 ensures that the spectrum of an
integral operator X is independent of the state space:

Corollary 2 For k € C(£2?) one has 1K L2y = Maxyee f_Q lk(x, y)| dy and
the spectrum of X is independent whether X is considered in L(L*(£2)) or L(C (£2)).

Proof See [12, p. 45, Lemma 3.2.2] for the assertion on the norm and [8, p. 113,
Theorem 4.2.20]) concerning the spectrum. O
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4.2 Asymptotics of Spectral Intervals

It is not difficult to construct difference equations (L) having an empty dichotomy
spectrum (e.g. X, = 0). However, whether X' ()K) consists of a finite (case (&),
see Figs. 1 and 2) or an infinite number of spectral intervals (case (S,), see Fig.3)
depends on various factors. The relevance of this question is due to the fact that
the gaps in the dichotomy spectrum X' (XX) of a variational equation determines the
number of invariant fiber bundles associated to the entire solution along which e.g. (1)
is linearized.
In the prototypical situation of a multiplicative perturbation

Uy = a;Ku,

with a tempered sequence (a,);cr in K it results from Theorem 3 that

X @akX) = U o, oj : =[|x;] B@). |1 B@)].

JeJ(X)

Even for J(X) = Nitis possible that consecutive intervals o; eventually overlap and
yield a finite number of components and hence spectral intervals in X (aX). Since
the eigenvalues A ; are ordered as in (H;) we obtain: The intervals o;, 0

e merge in case max o, > mino;, which is equivalent to
B@
2] = 5@ 2] (14)
e stay apart for max 0| < mino;, which holds if and only if

Ba)

’)‘-j+1| <%’)\.]’ (15)
Hence, in order to have an infinite number of spectral intervals, one needs exponen-
tially decaying eigenvalues of K with a suitable decay rate. This property depends
on the smoothness of the kernel, as the following results illustrate:

e Let the compact set £2 C R* be equipped with the Borel measure. If a continuous
kernel k : 2% — K satisfies a Holder condition in the second variable with

/ lk(x, ler dx <00
2

for some exponent y € (0, 1], then the eigenvalues of X € L(L*(£2, 1)) behave
asymptotically like A; = O(G~'/>77/) as i — oo (see [13, Theorem 3]). For
such positively definite kernels this can be improved to A; = O (i —1=v/cy (see [7,
Theorem 4]), which still cannot guarantee (15)
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o Let 2 =[—1,1]and k : 2% — R be of class C'. If k is symmetric, k(-, y) has
an analytic extension from [—1, 1] to the ellipse (foci &1, axis sum R > 1)

Eri={reC: 994 G2 <), ar=lR+p. bi=bR-D)

and kisboundedon Eg x[—1, 1],thenA; = O(R™) (see [5, p. 68, Theorem 4.22]).
An analytic extension to every such set thus yields super-exponential decay.

Further information on the asymptotic behavior of eigenvalues to integral operators
can be found in the monograph [6].

4.3 Examples

In this section, we first collect miscellaneous examples of time-invariant integral
operators (13) resp. corresponding kernel functions, for which both eigenvalues and
-functions are explicitly known. Then several convolution kernels relevant for appli-
cations are discussed, which also allow to obtain information on the asymptotics
of their spectrum. These operators fulfill the properties (H;)—(H,) from Sect.3 and
consequently the dichotomy spectra of the nonautonomous Egs. (9) and (10) tackled
in Theorems 1, 2 resp. 3 — which are now linear IDEs — can be determined.

By means of the following remark these results extend to wider classes of IDEs:

Remark 3 (kinematic similarity) Let 1 < p < oo and K; € L(L?(£2, u)). Suppose
that m; € L*° (82, u) are K-valued functions with 0 ¢ pess(m;) for all # € I" and

-1
sup pess (m;) < 00, sup pess(m; ') < oo.
tel’ tel

According to [10, pp. 30ff] the multiplication operators
M; € L(L?($2, ), [Mv](x) : =m,(x)v(x) foralltel, x € 2
are well-defined and invertible. Consequently, due to

m(y)
myq1(x)

[M;'_IIJC,M,V]()C) =/ ki(x,y) v(y)du(y) forallt €', x € 2
2

the linear IDE (L) and

k(-
Uit = /9 C ) () du(y)

myy1(+)

are kinematically similar and thus have the same dichotomy spectrum.
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4.3.1 Explicitly Known Spectra

Assume that (a,)er is a tempered sequence in K with B(a) < B(a).

Example 5 The Sturm-Liouville problem —u” = Au, u(a) = u(B) = 0 leads to a
continuous, symmetric Green’s function (see Fig. 4 (left))

OB -x), a<y=<x=<8
k(x,y):=
x—a)B—y), a<x<y=<§p
Thanks to Theorem 5, on the interval §2 : =(«, 8) the operator X € L(L*(a, B))
3

is compact with real eigenvalues A; : = (’i Z;"z) of order o; = 1 and normed eigen-
functions e;(x) : = ,5%01 sin(%(x —«)), j € N. From (4) we obtain a discrete
spectrum

—ap .

E(fK)z{(izjz) :]GN}, Z; : =I x span {e;}

with simple spectral intervals. Moreover, (14) shows that X' (aX) is of the form (6%).

Example 6 On £2 : =(«, B) the analytical function (see Fig.4 (right))

1—)/2
k(x,y):= forall y € (0,1
@) [+ 72— 2y cos(Z (x + y — 20)) v @D

defines a symmetric kernel. By Theorem 5 the operator X € L(L*(a, f8)) is compact,
has real eigenvalues (of order 0; = 1) and eigenfunctions (cf. [2, pp. 254-255])

Fig. 4 The symmetric kernels k : (0, 1)> — R from Example 5 (left) and Example 6 (right, for
1
Yy = 7)



46 C. Potzsche

55 cos(FL(x —a)), j >0,

J i >0 fe
V ) .]— ’ 1 7
ri=B-a){T 0 T T i) =1/ j=0
’ I—J/ <o o .
/msm(—ﬁ_{x(a—x)), Jj <0.

Note that the reals A; are exponentially decaying and symmetrically distributed
around 0. It follows from |A;| = |A_;| and (4) that

. span {eo} , | =0,
K ={B-ayl: jeNy), 2;=Tx | J
span{ej, e_;}, j >0
the dominant interval {8 — «} is simple, while the other intervals have order 2.
Furthermore, the concrete structure of X' (aX) depends on the ratio of the Bohl
exponents. In case % < y it follows from (14) that X' (aX) is of the form (6%).

Fory < % however, (15) implies a countably infinite number of spectral intervals,

where the dominant one (8 — @)[B(a). B(a)] is simple, while the remaining ones
are of order 2.

Example 7 On §2 : =(—m, ) consider the discontinuous kernel (see Fig. 5 (left))

2, -t<y=<x=m,

k(x,y):=[l’ reyex

which fails to be symmetric. It has the complex eigenvalues and -functions

2w

1 . .
kam, ej(x) =exp (2 +1j)x) forall j € Z.

0
X

2

Fig. 5 The asymmetric kernel k : (—m, 7)? — R from Example 7 with = 1, 8 = 2 (left) and
symmetric finite radius dispersal kernel from Example 8 (right) for o« = 2
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Due to [8, p. 89, Theorem 3.3.15] the set {e; }jeZ is a minimal complete setin L?(£2).
Moreover, |A;| = |A_;| and (4) imply

span {eo} , Jj=0,

YK =] —2Z2—:jeNyt, 2 =Ix
(X) J(n221 (7)) J 0] J Lpan{ej,e_j}, Jj>0;

consequently, the dominant spectral interval {fn—”z} is simple, while the other spectral
intervals have order 2. Moreover, since the eigenvalues decay merely linearly, it
results that X (aX) is of the form (&?).

We next discuss a class of kernels, where also a spectrum of the form (6{) (see
Fig. 1) can be realized. Thereto, a kernel & : 2% — Kis denoted as degenerate, if it
can be written as

d
k(x.y):= Y a;j(y)x;(x) forallx,ye
j=1

with linearly independent functions xi, ..., x; : £2 — K. This brings us into the
framework of finite rank operators discussed in Sect.2.3 and Example 4 with

d

d
Ky = / > @M du)x; = > xl)x 2 > K
(el

j=1

and functionals <v, x;> = [, a;(»)v(v) du(y). The entries of the matrix K € K9*¢

from Example 4 are k;; : :fg a;(M)x;(y)du(y), 1 <1i,j < d, yield the discrete
spectrum

2(X)=1{r € C: det(Alce — K) =0} \ {0}].

Example 8 (finite radius dispersal kernel) Let 2 = (—1, 1). The kernel

big T(x—y)
@COS(T), lx =yl < «a,

, lx —y| >«

k(x,y): :{

(cf. [17], see Fig.5 (right)) is continuous and symmetric. Moreover, due to

g3 TX oo TV 4 i TA o TV _
k(x,y):[“"‘ (cos ZEcos 2 +sinZxsin 7)., |x —y| <a,

0, x —y| >«
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it is degenerate. Hence, for « > 2 the integral operator X allows the representation

2 1

Ky = Z (/ aj(y)v(y)dy) xj: 2 —-K
—1

=1
with @ (x) : =cos 7, ax(x) = sin 7, and the linearly independent functions

xp(x) : cos 20{ xo(x) : —— = sin %

Therefore, X is a rank 2 operator and its eigenvalues A are the roots of the equation

der(* Lramamdy = [amanmd )
— [Lamumdy d— [} a@ni)dy

In the following example the eigenvalues are not explicitly known, but can be
obtained as solutions of a transcendental equation in R yielding also their asymptot-
ics.

Example 9 On 2 : =(0, 1) the continuous kernel
k(x,y): =— min {x, y} (2 — max {x, y})
is symmetric. Suppose that (v;) jen denotes the strictly increasing sequence of pos-

itive real solutions to the transcendental equation v 4 tanv = 0 (see Fig.6). The
associate integral operator X has the eigenvalues A ; : :v% of order o; = 1 with
J

normed eigenfunctions e;(x) = 2 /(2‘)]7:1—;(2])/)) sin(vjx), j € N (see [19, p. 438]).

This yields a discrete dichotomy spectrum with simple spectral intervals
E(CK)={VJ-_21j€N}, %::]Ixspan{ej}.

In addition, (14) implies that X' (aXK) is of the form ((‘5%).

intersection v; > 0 of the
graphs to x — x and 201

x > —tanx yield the

Fig. 6 The points of 30 ‘
eigenvalues in Example 9 . ‘

lmmmw

15 20 25 30
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4.3.2 Spectra of Convolutive Operators

In the remaining, we suppose 2 = (—1, 1) and consider kernels of convolution type

1
[Kv](x) : =/ ko(x — y)v(y)dy forallx € (—1,1)
-1

with a real, even and integrable function ky : R — R. These kernels frequently arise
in applications [17] from theoretical ecology and have a real spectrum. In addition,
we approximate their (largest) eigenvalues numerically using a Nystrom method with
the rectangular rule as quadrature and 1000 nodes.

Following [27], the (scaled) Fourier transformation of ky becomes

Fo(€) : = / P55k (1) dx
R

and provided it is positive, we define I'(§) : = — In /20@ ).

Example 10 (Gauf kernel) As archetypical mesokurtic distribution consider
ko(x) s == exp (-%) foralla > 0 (16)

(see Fig.7) with standard deviation o > 0. It is real analytical with lipky < el

the Fourier transformation ko(£) = e‘%é * is bounded, even and positive, whence
itis I'(§) = %éz. Since I is convex and satisfies limg_, L = o, it follows
from [27, Corollary 1] that InA; ~ —jIn j as j — oo. Consequently, X'(X) and
Y (aX) consists of an infinite number of spectral intervals accumulating at 0, i.e.
both dichotomy spectra are of the form (S;) with o = 0.

Fig. 7 The Gaussian convolution kernel kg : R — R from Example 10 (left) and the super-
exponentially decaying largest eigenvalues A ; depending on o € [%, 2]
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Example 11 (Cauchy kernel) Another smooth kernel is the Cauchy kernel

o
ko(x) : Zm foralla > 0

(see Fig. 8) resembling the GauB kernel (16). The Fourier transform ko (£) = ¢!

is bounded, even and positive with I'(§) = « |&|. From [27, Theorem 2] we hence

obtainIni; ~ —jvy(a) as j — oo with the function ¥ («) : —EE(?&?&(T% O)‘))) > 0,

where E stands for the complete elliptic integral of first kind. It results from (14) that
X (aX) is of the form (62) for e¥@ < ’3(“) , while (15) and ﬂ(z) < eV @ guarantee

(6,), i.e. an infinite number of spectral 1ntervals

Example 12 (Laplace kernel) The Laplace kernel is given by the function
ko(x) : = exp(— x‘) foralla > 0

(see Fig.9), which is continuous with lipkp < 5, S If (v i) jen denotes the strictly

increasing sequence of positive solutions to the transcendental equation tan ; = +v,

then X possesses the eigenvalues A ; : =7 + 7 j € N(see [17]). On the one hand this
J

shows that A ; decays quadratically to 0. On the other hand, the Fourier transform of
ko is ko &) = 1+a2§2 and hence I' () = In(1 + «?£?). Referring to [27, Theorem I]

it results that A ; ~ k0(§ Jj +o0(j)) as j — oo, which confirms the quadratic decay.
Due to (14) this results in a dichotomy spectrum X' (aX) of the form (G%).

Example 13 (exponential square root kernel) For the kernel

ko(x) : =$ exp (—,/ '2—') foralla > 0

Fig. 8 The Cauchy convolution kernel kp : R — R from Example 11 (left) and the exponentially
decaying largest eigenvalues A ; depending on & € [%, 2]
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1

[0}

Fig.9 The Laplacian convolution kernel kg : R — R from Example 12 (left) and the quadratically
decaying largest eigenvalues A ; depending on a € [%, 2]

—_

0.8
0.6
<
0.4
0 =
0.5 1 1.5 2

Fig. 10 The exponential square root convolution kernel ky : R — R from Example 13 (left) and
the six largest eigenvalues A; depending on o € [%, 2]

(see Fig. 10) the tails are not exponentially bounded. It is continuous with a Holder
condition holy xkp < 40+3/2’ but not differentiable in 0. The Fourier transformation

t o - v (@) (1= 25(m)) + eos () (1 - 2 (5m)

g |2

is bounded, even and positive, v&ihere S, C denote the Fresnel integrals. In this setting,
[27, Theorem I] leads to A; ~ ko(5j + o(j)) as j — oo.

Example 14 (top hat kernel) Let o € (0, 1]. The top hat kernel is defined as
ko(x) 1 =5 (O(x + &) — 0(x — @) = 5 X—aay(x) foralla >0

(see Fig. 11) and has the Fourier transform 120 &)= %, which is bounded, even,

but fails to be positive. Hence, the results from [27] do not apply.
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0.7 0.8
«@

Fig. 11 The top hat convolution kernel £y : R — R from Example 14 (left) and the six largest
eigenvalues X ; depending on o € [%, 1]. The spikes appear to be due to numerical inaccuracies
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