
Intrusion Detection Based on Self-adaptive
Differential Evolution Extreme Learning

Machine with Gaussian Kernel

Junhua Ku(&) and Bing Zheng

Department of Information Engineering,
Hainan Institute of Science and Technology, Haikou 571100, China

kujunhua@163.com, 512049181@qq.com

Abstract. In our everyday life, intrusion detection system(IDS) becomes a
promising area of research in the domain of security. With the rapid develop-
ment of network-based services, IDS can detect the intruders who are not
authorized to the present computer system, so IDS has emerged as an essential
component and an important technique for network security.
In order to conquer the disadvantage of the traditional algorithm for

single-hidden layer feedforward neural network (SLFN), an improved algorithm,
called extreme learning machine (ELM), is proposed by Huang et al. However,
ELM is sensitive to the neuron number in hidden layer and its selection is a
difficult-to-solve problem. ELM is an interested area of research for detecting
possible intrusions and attacks. In this paper, we propose an improved learning
algorithm named self-adaptive differential evolution extreme learning machine
with Gaussian Kernel (SaDE-KELM) for classifying and detecting the intrusions.
We compare our methods with commonly used ELM, DE-ELM techniques in
classifications. Simulation results show that the proposed SaDE-KELM approach
achieves higher detection accuracy in classification case.

Keywords: Extreme learning machines � Differential evolution extreme
learning machines � Self-adaptive differential evolution extreme learning
machines � Intrusion detection � Network security

1 Introduction

Intrusion into computer networks and systems is a major threat in today’s network
centric world. Few most prevalent intrusion attacks include Denial-of-Service
(DoS) attacks, Distributed-Denial-of-Service(DDoS) attacks, probing based attacks
and account takeover attacks. Intrusion detection identifies computer attacks by
observing various records processed on the network. Intrusion detection models are
classified into two variants, misuse detection and anomaly detection systems. Misuse
detection can discover intrusions based on a known pattern also known as signatures
[1]. Anomaly detection can identify the malicious activities by observing the deviation
from normal network traffic pattern [2]. Hence anomaly detection can identify new
anomalies. The difficulty with the current developmental techniques is not only the
high false positive rate, but also the low false negative rate.

© Springer Nature Singapore Pte Ltd. 2017
G. Chen et al. (Eds.): PAAP 2017, CCIS 729, pp. 13–24, 2017.
DOI: 10.1007/978-981-10-6442-5_2

Recently, extreme learning machine (ELM) [3, 4], was developed to improve the
efficiency of SLFNs. ELM is different from the conventional learning algorithms for
neural networks (such as BP algorithms [5]), which can easily deal with difficulties in
manually tuning control parameters (learning rate, learning epochs, etc.) and/or local
minima. ELM is fully automatically implemented without iterative tuning, and tends to
provide better generalization performance at extremely fast learning speed. Further-
more, It was popular for its fast training speed by means of utilizing random hidden
node parameters and calculating the output weights with least square algorithm [6–10].
However, in ELM, the number of hidden nodes is assigned in advance, the hidden node
parameters are randomly chosen and they stay the same during the training phase.
Many non-optimal nodes may exist and contribute less in minimizing the cost function.
Moreover, in [11] Huang et al. indicated that ELM was inclined to require more hidden
nodes than conventional tuning-based algorithms [12, 13] in many cases.

Differential evolution (DE) [14] which is a simple but powerful population-based
stochastic direct searching technique is a frequently used method for selecting the
network parameters [15–17]. In [15], DE is directly adopted as a training algorithm for
feed forward networks where all the network parameters are encoded into one popu-
lation vector and the error function between the network approximate output and the
expected output is used as the fitness function to evaluate all the populations. However,
Subudhi and Jena [16] have indicated that using the DE approach alone for the network
training may lead to a decrease in convergence. Therefore, in [17], DE-ELM based on
DE and ELM has been developed for SLFNs. Using the DE method to optimize the
network input parameters and the ELM algorithm to calculate the network output
weights, DE-ELM has shown several promising features. It not only ensures a more
compact network size than ELM, but also has better generalization performance.

However, in the above DE based neural network training algorithms, the trial vector
generation strategies and the control parameters in DE have to be manually chosen.
Therefore, we propose the SaDE-KELM for SLFNs. In SaDE-KELM, the hidden node
learning parameters are optimized by the self-adaptive differential evolution algorithm.
We verify our SaDE-KELM using the data originated from the 1998 DARPA Intrusion
Detection Evaluation Program 1999 [18], and deliberate to regard as a common
benchmark for evaluating intrusion detection techniques [19–21].

The rest of the paper is organized as follows. In Sect. 2, a brief introduction to ELM
and SaDE are given. In Sect. 3, we introduce model of proposed SaDE-ELM algorithm
in detail. In Sect. 4, we present the dataset we use in our SaDE-KELM-based intrusion
detection technique. In Sect. 5, we ran experiments for detecting intrusion in network
traffic data and obtained the performance comparisons among ELM-based techniques,
DE-ELM-based techniques and SaDE-KELM techniques. In Sect. 6, we conclude and
summarize our results.

2 Background

As we know that ELM is very efficient and effective for SLFNs’ training algorithms. In
this section, we gave a review of ELM in brief. At the same time we briefly reviewed
SaDE approach and proposed our SaDE-ELM techniques in the end.

14 J. Ku and B. Zheng

2.1 Extreme Learning Machine (ELM)

For N arbitrary distinct samples ðxj; tjÞ, where xj ¼½xj1; xj2; � � � ; xjn�T 2 R
n,

tj ¼ ½tj1; tj2; � � � ; tjm�T 2 R
m, SLFNs with L hidden nodes and activation function g

(x) are

XL
i¼1

bigiðxjÞ ¼
XL
i¼1

bigiðwi � xj þ bjÞ ¼ oj ðj ¼ 1; 2; . . .;NÞ ð1Þ

where wi = [wi1, wi2, …, win]T is the weight vector connecting the ith hidden node and
the input nodes, bi = [bi1, bi2, …, bim]T is the weight vector connecting the ith hidden
node and the output nodes, bi is the threshold of the ith hidden node, wi � xj denotes the
inner product of wi and xj, g(x) is activation function and Sigmoid, Sine, Hardlim and
other functions are commonly used. The output nodes are chosen linear in this paper,
and o j = [o j1, o j2, …, o jm]T is the jth output vector of the SLFNs [22].

The SLFNs with L hidden nodes and activation function g(x) can approximate these
N samples with zero error. It means

PL
j¼1 oj � tj

�� �� ¼ 0 and there exist bi, wi and b i

such that

XL
i¼1

bigiðxjÞ ¼
XL
i¼1

bigiðwi � xj þ bjÞ ¼ tj ðj ¼ 1; 2; . . .;NÞ ð2Þ

The equation above can be expressed compactly as follows:

Hb ¼ T ð3Þ

where H(w1;w2; � � � ;wL; b1; b2; � � � ; bL; x1; x2; � � � ; xLÞ

¼ [hij]

g(w1 � x1 þ b1Þ g(w1 � x1 þ b2Þ � � � g(w1 � x1 þ bLÞ
g(w1 � x2 þ b1Þ g(w2 � x2 þ b2Þ � � � g(wL � x2 þ bLÞ

..

. ..
. ..

.

g(w1 � xN þ b1Þ g(w2 � xN þ b2Þ � � � g(wL � xN þ bLÞ

2
6664

3
7775
N�L

b ¼
b11 b12 � � � b1m
b21 b22 � � � b2m
..
. ..

. ..
. ..

.

bL1 bL2 � � � bLm

0
BBB@

1
CCCA and T ¼

t11 t12 � � � t1m
t21 t22 � � � t2m
..
. ..

. ..
. ..

.

tN1 tN2 � � � tNm

0
BBB@

1
CCCA

We call the matric H the hidden layer output matrix of the neural network.
Meanwhile, with respect to inputs x1; x2; . . .; xN , it is easy to see that the ith hidden
node output is the ith column of H.

Because L is far smaller than N in actual problem, here in particular it is rare
condition that L equals to N [23]. That is to say, in ELM algorithm, the important thing
is to find a least-square solution of this linear system as follow

Intrusion Detection Based on Self-adaptive Differential 15

b
_ ¼ HyT ð4Þ

where Hy is the Moore-Penrose Generalized inverse of matrix H, depending on the

singularity of HTH or HHT, we can obtain Hy = (HTH)�1HT or HTðHHTÞ�1 Then the
output function of ELM can be modeled as follows.

f xð Þ ¼ h xð Þb ¼ h xð ÞHyT ð5Þ

It’s getting more stable to introduce a positive coefficient into ELM. For example,
HTH is nonsingular, the coefficient 1=C is added to the diagonal of HTH in the
calculation of the output weights b. So, the corresponding function of the regularized
ELM is:

f ðxÞ ¼ h(x)b = h(xÞHT E
C

+ HHT
� ��1

T ð6Þ

Moreover, we know that many nonlinear activation and kernel functions can be
used in ELM. Let XELM = HHT : XELMi;j ¼ h(xiÞh(xjÞ = K(xi; xjÞ, the output function
can be written as:

f ðxÞ ¼ hðxÞHT E
C

+ HHT
� ��1

T =

K(x,x1Þ

K(x,xNÞ

2
64

3
75
T

E
C

þXELM

� ��1

T ð7Þ

The hidden layer feature mapping h(x) need not to be known, and instead its
corresponding kernel K(u,v) can be computed. In this way, the Gaussian kernel is used,
K(u,v) = exp(-c||u-v||2) [14].

2.2 Self-adaptive Differential Evolution

Differential evolution (DE), proposed by Storn and Price in 1995, is a powerful evo-
lutionary algorithm [24]. There are three parameters in DE, which are the population
size NP, mutation scaling factor F and crossover rate CR. To overcome the limitations
of choosing the parameters in DE, Brest et al. [25] proposed a parameter adaptation
technique to choose the mutation scaling factor F and crossover rate CR namely SaDE
which performs better than the basic DE. In general, SaDE is composed of three main
steps: mutation, crossover, and selection [26].

We consider the following optimization problem:

Minimizef ðxÞ; xi�RD

where xi ¼ ½xi1; xi2; � � � ; xiD�T ; i ¼ 1; 2; � � � ;NP is a target vector of D decision vari-
ables. During the mutation operation, mutant vector vi is generated by mutation
strategy in the current population:

16 J. Ku and B. Zheng

vi ¼ xr1 þF � ðxr2 � xr3Þ ð8Þ

where r1; r2; r3 are randomly mutually exclusive integers in the range [1,NP], and
r1 6¼ r2 6¼ r3 6¼ i.

Following mutation, trial vector ui is generated between xi and vi during crossover
operation where the most widely used operator is the binomial crossover performed as
follows:

uij ¼ vij; if ðrndrealð0; 1Þ\CR or j ¼ jrandÞ;
xij; otherwise

�
ð9Þ

where jrand is a integer randomly chosen in the range [1, D], and rndreal(0, 1) is a real
number randomly generated in (0, 1). Finally, to keep the population size constant
during the evolution, the selection operation is used to determine whether the trial or
the target vector survives to the next generation according to one-to-one selection:

xi ¼ ui; if ðf ðuiÞf ðxiÞÞ
xi; otherwise

�
ð10Þ

where f(x) is the optimized objective function. During the evolution, F and CR are
adaptively tuned to improve the performance of DE for each individual

Fi;Gþ 1 ¼ Fl þ rand1 � Fu if ðrand2\s1Þ
Fi;G otherwise

�
ð11Þ

CRi;Gþ 1 ¼
rand3 if ðrand4\s2Þ
CRi;G otherwise

�
ð12Þ

where Fi;G+1 and CRi;G+1 are the mutation scaling factor and crossover rate for i indi-
vidual in G generation respectively, randj = 1;2;3;4 are randomly chosen from (0, 1),
s1 and s2 both valued 0.1 which is used to control the generation of F and CR, Fl valued
0.1 and Fu is valued 0.9. In the first generation, F and CR are initialized to 0.5.

3 Model of Proposed SADE-KELM Algorithm

Since the ELM may not reach the optimal result in classification or regression, a hybrid
approach integrated SaDE and ELM with gaussian kernel namely SADE-KELM
algorithm to optimize the input weights and hidden biases is able to obtain better
generalization performance than ELM. In SaDE-KELM, we proposed SaDE-KELM
for SLFNs by incorporating the SaDE to optimize the network input weights and
hidden node biases and ELM with gaussian kernel to derive the network output
weights.

Given a set of training data and L hidden nodes with an activation function g(�), we
summarize the SaDE-KELM algorithm in the following steps.

Intrusion Detection Based on Self-adaptive Differential 17

Step 1. Initialization
A set of NP vectors where each one includes all the network hidden node
parameters are initialized as the populations of the first generation

hk;G ¼ wT
1;k;G; � � � ;wT

L;k;G; b
T
1;k;G; � � � ; bTL;k;G

h i
ð13Þ

where wj and bj (j = 1, …, L) are randomly generated, G represents the
generation and k = 1, 2,…, NP.

Step 2. Calculations of output weights and RMSE
Calculate the network output weight matrix and root mean square error
(RMSE) with respect to each population vector with the following equations,
respectively.

bk;G ¼ Hyk;GT ð14Þ

RMSEk;G ¼
ffiPN

i¼1

PL
j¼1 bjgðwj;k;G; bj;k;G; xiÞ � ti

��� ���
m� N

s
ð15Þ

Then use the value of RMSE to calculate the new best population vector hk;Gþ 1

with the following equation.

hk;Gþ 1 ¼

uk;Gþ 1 if (RMSEhk;G - RMSEuk;Gþ 1Þ[e � RMSEhk;G

uk;Gþ 1 if RMSEhk;G - RMSEuk;Gþ 1

�� ��\e � RMSEhk;G

and buk;Gþ 1

��� ���\ bh;G
�� ��

hi;G otherwise

8>>><
>>>:

ð16Þ

where e is the preset small positive tolerance rate. In the first generation, the population
vector with the best RMSE is stored as hbest,1 and RMSEhbest,1 .

All the trial vectors uk,G+1 generated at the (G + 1)th generation are evaluated using
Eq. (11).The norm of the output weight bk k is added as one more criteria for the trial
vector selection as pointed out in [23] that the neural networks tend to have better
generalization performance with smaller weights.

The three operations mutation, crossover and selection are repeated until the preset
goal is met or the maximum learning iterations are completed. At last we calculate the

output weigh b ¼ bi1 bi2 � � � biL½ �T with equation b ¼ HyT.

4 Intrusion Detection Using SADE-KELM

In this section, we describe the dataset that we use for our numerical studies, and our
SaDE-KELM approach to classification of intrusions in the data.

18 J. Ku and B. Zheng

4.1 Dataset Description

The dataset we use is from the 1998 DAPRA intrusion detection program [27]. Four
main categories of attacks were simulated:

(1) DoS: denial of service attack
(2) R2L: unauthorized access from a remote machine
(3) U2R: unauthorized access to local root previledges
(4) Probing: surveillance and other probing

In the intrusion detection simulation, the dataset was labeled with 22 attack types
falling into the four categories shown in Table 1. The feature list and its descriptions
are in Tables 2, 3 and 4.

4.2 Intrusion Detection System Using SaDE-ELM

We use a ELM method to classify the data to provide a comparison benchmark, our
SaDE-KELM IDS has the following steps.

Table 1. Attack type

Denial of Service User to Root Remote to User Probing

Back
Neptune
Land
Teardrop
Ping of Death
Smurf

Perl
Buffer Overflow
Load Module
Rootkit

FTP Write
Guess Password
Imap
Multihop
Phf
Spy
Warezclient
Warezmaster

IP Sweep
Nmap
Port Sweep
Satan

Table 2. Basic features of individual tcp connections

Feature name Description Type

Duration
protocol_type
service
src_bytes
dst_bytes
flag
land
wrong_fragment
urgent

Length (number of seconds) of the connection
Type of the protocol
Network service on the destination
Number of data bytes from source to destination
Number of data bytes from destination to source
Normal or error status of the connection
1 if connection is from/to the same host/port, 0
otherwise
Number of “wrong” fragments
Number of urgent packets

Continuous
Discrete
Discrete
Continuous
Continuous
Discrete
Discrete
Continuous
Continuous

Intrusion Detection Based on Self-adaptive Differential 19

Step 1. Converting the raw TCP/IP dump data into machine readable form.
Step 2. SaDE-KELM and ELM are trained on normal data and different types of
attacks. For the binary classification case, the data has 41 features and falls into 2
classes: normal and attack; for the multi-class classification case, the data has 41
features and falls into 23 classes: normal and 22 types of attack. The model is
trained in a large program which can test immediately after the training completed.
According to SaDE-KELM theory that has been introduced above, we can sum-
marize the following steps.

For N arbitrary distinct samples (xi,ti), i = 1,… N, and hidden nodes and activation
function g(x):

Table 3. Content features within a connection suggested by domain knowledge

Feature name Description Type

Hot
Num failed logins
Logged in
Num compromised
Root shell
Su attempted
Num root
Num file creations
Num shells
Num access files
Num outbound cmds
Is hot login
Is guest login

Number of “hot” indicators
Number of failed login attempts
1 if successfully logged in, 0 otherwise
Number of “compromised” conditions
1 if root shell is obtained, 0 otherwise
1 if “su root” command attempted, 0 otherwise
Number of “root” accesses
Number of file creation operations
Number of shell prompts
Number of operations on access control files
Number of outbound commands in an ftp session
1 if the login belongs to the “hot” list, 0 otherwise
1 if the login is a “guest”login, 0 otherwise

Continuous
Continuous
Discrete
Continuous
Discrete
Discrete
Continuous
Continuous
Continuous
Continuous
Continuous
Discrete
Discrete

Table 4. Traffic features computed using a two-second time window

Feature name Description Type

Count

Serror rate
Rerror rate
Same srv rate
Diff srv rate
Srv count

Srv serror rate
Srv rerror rate
Srv diff host rate

Number of connections to the same host as the
current connection in the past two seconds
% of connections that have “SYN” errors
% of connections that have “REJ” errors
% of connections to the same service
% of connections to different services
number of connections to the same service
as the current connection in the past two seconds
% of connections that have “SYN” errors
% of connections that have “REJ” errors
% of connections to different hosts

Continuous

Continuous
Continuous
Continuous
Continuous
Continuous

Continuous
Continuous
Continuous

20 J. Ku and B. Zheng

(2:1) A set of NP individual parameter vectors hk;G (k = 1, 2 … NP), where each one
includes all the network hidden node parameters are initialized as the popula-
tions of the first generation;

(2:2) In the case of g(x) and L are invariable run the three operations including
mutation, crossover and selection to produce the new population, and the pro-
cess is repeated until the stop condition is completed.

(2:3) Changing the type of g(x) and increase the number of hidden nodes L gradually
from one to find the most suitable g(x) and L to construct an optimal forecasting
model with the best testing accuracy;

(2:4) Calculating the output matrix H;

(2:5) Calculating the output weights b ¼ HyH.

Step 3. Testing phase: ELM, DE-ELM and SaDE-KELM are used to predict the type of
each data point in the testing dataset, and their performances are compared.

Experiments have shown that if the number of values in an attribute is not too large,
this coding is more stable than using a single number. The simulation of the three
algorithms on all datasets are carried out using MATLAB 2013a on a machine with an
Intel Core 2 Duo, 2.26 GHz CPU and 4 GB RAM.

5 Simulation Results

The datasets being tested are 2000, 4000, 8000 connection data chosen randomly from
the dataset downloaded from the website [18]. We split them equally into training data
and testing data. Simulation results including average testing accuracy and corre-
sponding 95% confidence interval are given in Table 4.

In order to test the relationship between SaDE-KELM and the number of hidden
layer, according to the different number of hidden layer nodes, we made classification
tests using ELM, DE-ELM and SaDE-KELM respectively. Simulation results are given
in Table 5.

Figure 2 show the time spent by ELM, DE-ELM and SaDE-KELM when testing
the same size of dataset. It can be seen that the training time and testing time spent by
SaDE-KELM increase sharply when the size of data increases. In comparison, ELM

Table 5. Performance comparison results

Dataset Size ELM DE-ELM SaDE-KELM

Training/Testing Accuracy
(%)

95%
Confidence
Interval (%)

Accuracy
(%)

95%
Confidence
Interval (%)

Accuracy
(%)

95%
Confidence
Interval

1000/1000 99.32 99.08–99.47 99.33 99.15–99.51 99.55 99.05–99.65
2000/2000 99.10 98.82–99.23 99.24 98.90–99.44 99.47 99.25–98.58
4000/4000 99.07 98.79–9.28 99.18 99.01–99.26 99.35 99.11–99.65

Intrusion Detection Based on Self-adaptive Differential 21

and DE-ELM increase slowly when the number of data increases. Eventually, DE-ELM
starts consuming more time for both training and testing than ELM.

Prediction of test samples (SaELM) with Nmin = 5, Nmax = 120 and NInter-
val = 5 for the classification problem can be seen from Fig. 1. A clear time con-
sumption comparison can be seen from Fig. 2. From the results, we can conclude that
ELM performs better than DE-ELM and SaDE-KELM in terms of speed. To increase
accuracy, we can implement SaDE-KELM. This shows that our proposed SaDE-ELM
methods have better scalability than ELM and DE-ELM when classifying network
traffic for intrusion detection.

Fig. 1. Prediction of test samples (SaDE-KELM) with Nmin = 5, Nmax = 120 and NInterval = 5
for the classification problem.

Fig. 2. Testing time comparison

22 J. Ku and B. Zheng

6 Conclusion

ELM is sensitive to the neuron number in hidden layer and its selection is a
difficult-to-solve problem. Recently, Extreme Learning Machine has been widely
applied in IDS. It’s an important and efficient way to improve the performance of IDS,
However, the conventional feedback relevance schemes could not give considerations
to the both accuracy and speed. To combine KELM(Extreme Learning Machine with
Gaussian Kernel) with the SaDE method, we can overcome the limitation of the
conventional problems. In this paper, we have made a comparison by the use of ELM,
DE-ELM and SaDE-KELM for intrusion detection. For the SaDE-KELM, By incor-
porating the SaDE to optimize the network hidden node parameters and employing the
KELM to derived the network output weights. Obviously, the proposed SaDE-KELM
can obtain higher accuracy. Simulation results show that the proposed SaDE-KELM
approach achieves higher detection accuracy in classification case.

Acknowledgement. This research was supported by key science research project of Education
Department of Hainan province (Hnky2017ZD-20).

References

1. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: a rule-based intrusion
detection approach. IEEE Trans. Softw. Eng. 21(3), 181–199 (1995)

2. Ikram, S.T., Cherukuri, A.K.: Improving accuracy of intrusion detection model using PCA
and optimized SVM[J]. CIT. J. Comput. Inf. Technol. 24(2), 133–148 (2016)

3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of
feedforward neural networks. In: Proceedings of International Joint Conference on Neural
Networks (IJCNN2004), vol. 2, no. 25–29, pp. 985–990

4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1–3), 489–501

5. Espana-Boquera, S., Zamora-Martínez, F., Castro-Bleda, M.J., et al.: Efficient BP algorithms
for general feedforward neural networks. In: International Work-Conference on the Interplay
Between Natural and Artificial Computation (pp. 327–336). Springer, Heidelberg (2007)

6. Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection in aggregate
traffic. IEEE/ACM Trans. Netw. 19(2), 512–525 (2011)

7. Qin, M., Hwang, K.: Frequent episode rules for internet anomaly detection. In: Proceedings
of the Network Computing and Applications, Third IEEE International Symposium.
Washington, DC, USA: IEEE Computer Society, pp. 161–168 (2004)

8. He, X., Papadopoulos, C., Heidemann, J., Mitra, U., Riaz, U.: Remote detection of
bottleneck links using spectral and statistical methods. Comput. Netw. 53, 279–298 (2009)

9. Streilein, W.W., Cunningham, R.K., Webster, S.E.: Improved detection of low-profile probe
and denial-of-service attacks. In: Proceedings of the 2001 Workshop on Statistical and
Machine Learning Techniques in Computer Intrusion Detection (2001)

10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
11. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach.

Lean. Cybern. 2(2), 107–122 (2011)
12. Tandon, G.: Weighting versus pruning in rule validation for detecting network and host

anomalies. In: Proceedings of the 13th ACM SIGKDD international. ACM Press (2007)

Intrusion Detection Based on Self-adaptive Differential 23

13. Liao, Y., Vemuri, V.R.: Use of k-nearest neighbor classifier for intrusion detection. Comput.
Secur. 25, 439–448 (2002)

14. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (2004)

15. Ilonen, J., Kamarainen, J.I., Lampinen, J.: Differential evolution training algorithm for
feedforward neural networks. Neural Process. Lett. 17, 93–105 (2003)

16. Subudhi, B., Jena, D.: Differential evolution and levenberg marquardt trained neural network
scheme for nonlinear system identification. Neural Process. Lett. 27, 285–296 (2008)

17. Zhu, Q.-Y., Qin, A.-K., Suganthan, P.-N., Huang, G.-B.: Evolutionary extreme learning
machine. Pattern Recog. 38(10), 1759–1763 (2005)

18. KDDCUPdataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)
19. Mukkamala, S., Sung, A.: Detecting denial of service attacks using support vector machines.

In: Proceedings of the 12th IEEE International Conference on Fuzzy Systems (2003)
20. Luo, M., Wang, L., Zhang, H., Chen, J.: A research on intrusion detection based on

unsupervised clustering and support vector machine. In: Qing, S., Gollmann, D., Zhou,
J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 325–336. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39927-8_30

21. Kim, D.S., Park, J.S.: Network-Based Intrusion Detection with Support Vector Machines. In:
Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp. 747–756. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45235-5_73

22. Lin, Y., Lv, F., Zhu S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.S.: Large-scale image
classification: fast feature extraction and SVM training. In: Proceedings of the 24th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1689–1696 (2011)

23. Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4),
879–892 (2006)

24. Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

25. Brest, J., Greiner, S., Bŏskovíc, B., Mernik, M., Žumer, V.: Self-adapting control parameters
in differential evolution: A comprehensive study on numerical benchmark problems. IEEE
Trans. Evol. Comput. 10, 646–657 (2006)

26. Wu, J., Cai, Z.H.: Attribute weighting via differential evolution algorithm for attribute
weighted naive bayes (WNB). J. Comput. Inf. Syst. 7, 1672–1679 (2011)

27. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.K.: Costbased modeling for fraud and
intrusion detection: results from the JAM project. In: Proceedings of DARPA Information
Survivability Conference and Exposition, vol. 2, pp. 130–144 (2002)

24 J. Ku and B. Zheng

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1007/978-3-540-39927-8_30
http://dx.doi.org/10.1007/978-3-540-39927-8_30
http://dx.doi.org/10.1007/978-3-540-45235-5_73

http://www.springer.com/978-981-10-6441-8

	Intrusion Detection Based on Self-adaptive Differential Evolution Extreme Learning Machine with Gaussian Kernel
	Abstract
	1 Introduction
	2 Background
	2.1 Extreme Learning Machine (ELM)
	2.2 Self-adaptive Differential Evolution

	3 Model of Proposed SADE-KELM Algorithm
	4 Intrusion Detection Using SADE-KELM
	4.1 Dataset Description
	4.2 Intrusion Detection System Using SaDE-ELM

	5 Simulation Results
	6 Conclusion
	Acknowledgement
	References

