
Chapter 2
Evolution Inclusions with m-Dissipative
Operator

Abstract This chapter deals with a nonlinear delay differential inclusion of evolu-
tion type involving m-dissipative operator and source term of multivalued type in a
Banach space. Under rather mild conditions, the Rδ-structure of C0-solution set is
studied on compact intervals, which is then used to obtain the Rδ-property on non-
compact intervals. Secondly, the result about the structure is furthermore employed
to show the existence of C0-solutions for the inclusion (mentioned above) subject to
nonlocal condition defined on right half-line. No nonexpansive condition on nonlo-
cal function is needed. As samples of applications, we consider a partial differential
inclusion with time delay and then with nonlocal condition at the end of the chapter.

2.1 Introduction

It is worth mentioning that for differential inclusions on noncompact intervals, gov-
erned by a nonlinear multivalued operator (specially, an m-dissipative operator), the
research of topological structure of solution sets ismuchmore delicate and the related
results are still very rare. Furthermore, much of the previous research on differen-
tial inclusions in infinite dimensional spaces was done provided the nonlinearity (a
multivalued function), with compact values, is upper semicontinuous with respect
to solution variable. This condition turns out to be restrictive to some extent and is
not satisfied usually in practical applications (see, e.g., Vrabie [192, Example 5.1,
Example 5.2] and [189]). Tomake thingsmore applicable, an appropriate alterative is
that the nonlinearity, with closed and convex values, is weakly upper semicontinuous
with respect to solution variable.

Throughout this section, X is a real Banach space with norm | · |, X∗ denotes the
topological dual of Banach space X . Denote by | · |0 the sup-norm of C([−τ, 0], X).
Note that X × C([−τ, 0], X), endowed with the norm

|(x, v)|τ := max{|x |, |v|0}, (x, v) ∈ X × C([−τ, 0], X),

is a Banach space.
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38 2 Evolution Inclusions with m-Dissipative Operator

We consider the Cauchy problem of nonlinear delay differential inclusion of
evolution type ⎧

⎪⎨

⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ R
+,

f (t) ∈ F(t, u(t), ut ), t ∈ R
+,

u(t) = φ(t), t ∈ [−τ, 0].
(2.1)

Here A : D(A) ⊂ X → P(X) is an m-dissipative operator (possible multivalued
and/or nonlinear), the forcing source F : R+ × D(A) × C([−τ, 0], D(A)) → P(X)

is a multivalued function with convex, closed values, and φ ∈ C([−τ, 0], D(A)).
ut ∈ C([−τ, 0], D(A)) is defined by ut (s) = u(t + s) (s ∈ [−τ, 0]) for every u ∈
C̃([−τ,∞), D(A)) and t ∈ R

+.
Here, we are interested in studying the topological characterization of the solution

set for the Cauchy problem (2.1) in some Fréchet spaces. We first investigate the
existence ofC0-solutions and Rδ-structure of the solution set for the Cauchy problem
(2.1) on compact intervals, then proceed to study the Rδ-structure of the solution set
for the Cauchy problem (2.1). In the proof of the latter result, the key tool is the
inverse limit method.

As an application of the information about the structure, we shall deal with the
C0-solutions for the nonlocal Cauchy problem of nonlinear delay evolution inclusion
of the form ⎧

⎪⎨

⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ R
+,

f (t) ∈ F(t, u(t), ut ), t ∈ R
+,

u(t) = g(u)(t), t ∈ [−τ, 0],
(2.2)

where A and F are defined the same as those in the problem (2.1), and

g : C̃b([−τ,∞), D(A)) → C([−τ, 0], D(A))

is a function to be specified later. As can be seen, g constitutes a nonlocal condition.
It is also noted that the nonlocal function g depends on history states, that is, it takes
history values. We emphasize that in the proof of our main result, no nonexpansive
condition on nonlocal function g will be required.

The consideration for nonlocal initial condition g is stimulated by the observation
that this type of conditions is more realistic than usual ones in treating physical
problems, see, e.g., [5, 8, 82, 110, 192, 194, 197] for more detailed information
about the importance of nonlocal initial conditions in applications. Some typical
examples for g are

• g(u)(t) = u(t + ω) for each t ∈ [−τ, 0] (Periodicity condition);
• g(u)(t) = −u(t + ω) for each t ∈ [−τ, 0] (Anti-periodicity condition);

• g(u)(t) =
∫ ∞

τ

k(θ)u
1
3 (t + θ)dθ for each t ∈ [−τ, 0] with k ∈ L1(R+,R+) and

∫ ∞

τ

k(θ)dθ = 1 (Mean value condition);
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• g(u)(t) =
n∑

i=1

αi u
1
3 (ti + t) for each t ∈ [−τ, 0], where ∑n

i=1 |αi | ≤ 1 and τ <

t1 < t2 < · · · < tn < ∞ are constants (Multi-point discrete mean condition).

Remark 2.1 The final case on g above can be seen as a generalization of the nonlocal
function introduced in Deng [82], where the nonlocal function is used to describe
the diffusion phenomenon of a small amount of gas in a transparent tube.

It is noted that by using an interplay of compactness arguments and invariance
techniques, Vrabie [192] obtained an existence result ofC0-solutions to the nonlocal
Cauchy problem (2.2). Similar arguments are also used to solve other nonlocal prob-
lems, we refer the reader to Paicu and Vrabie [162], Vrabie [191], Wang and Zhu
[197] and references therein. However, there exists a limitation among these results,
that is, it is assumed that the nonlocal function is nonexpansive. Thus, there naturally
arises a question: “Is there any chance to solve this problemwithout this condition?”.
The results in Sect. 2.4 in fact gives an affirmative answer to this question and close
this gap.

Remark 2.2 Let us mention that the lack of nonexpansive condition on nonlocal
function prevents us from using the well-known tools such as Banach and Schauder
fixed point theorems to show the existence of C0-solutions to the nonlocal Cauchy
problem (2.2). This difficulty leads us to study the topological structure of the solution
set to theCauchyproblem (2.1), before applying afixedpoint theorem formultivalued
mappings with non-convex values.

This chapter is organized as follows. Section2.2 gives some properties of
m-dissipative operators and the definition of C0-Solutions. Section2.3 is devoted
to the existence of C0-solutions and Rδ-structure of the solution set for the Cauchy
problem (2.1) on compact intervals. In Sect. 2.3.2, we obtain the Rδ-structure of the
solution set for the Cauchy problem (2.1) on noncompact intervals by the inverse
limit method. Section2.4 is concerned with the existence of C0-solutions to the non-
local Cauchy problem (2.2) defined on right half-line. Finally, as an illustration of
the developed theory, we apply it to the examples of partial differential inclusions
defined on right half-line.

The results in this chapter are taken from Chen, Wang and Zhou [71].

2.2 The m-Dissipative Operators and C0-Solution

Given a multivalued operator A : D(A) ⊂ X → P(X) with the domain D(A), we
let R(A) = ⋃

x∈D(A) Ax stand for the range of A.
Let x, y ∈ X and h ∈ R \ {0}. We put

[x, y]h = |x + hy| − |x |
h
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and then note that there exists the limit

[x, y]+ = lim
h→0+

[x, y]h .

Furthermore, for each x, y ∈ X and α > 0,

[αx, y]+ = [x, y]+, |[x, y]+| ≤ |y|.

Recall that A : D(A) ⊂ X → P(X) is m-dissipative if R(I − λA) = X for all
λ > 0 and A is dissipative, i.e.,

[x1 − x2, y2 − y1]+ ≥ 0 for all (xi , yi ) ∈ Gra(A), i = 1, 2.

Consider the following evolution inclusion

u′(t) ∈ Au(t) + f (t), (2.3)

where A is m-dissipative. By a C0-solution of (2.3) on [a, b], it will be understood
an element u ∈ C([a, b], X), u(t) ∈ D(A) for each t ∈ [a, b] and u verifies

|u(t) − x | ≤ |u(s) − x | +
∫ t

s
[u(σ ) − x, f (σ ) − y]+dσ

for each (x, y) ∈ Gra(A) and a ≤ s ≤ t ≤ b.
From [139, Theorems 3.5.1 and 3.6.1] it follows that for each x ∈ D(A) and

f ∈ L1([a, b], X), there exists an uniqueC0-solution to (2.3) on [a, b]which satisfies
u(a) = x . Moreover, as proved in [31, Theorem 2.1], if f, g ∈ L1([a, b], X) and u, v
are two C0-solutions to (2.3) corresponding to f and g, respectively, then

|u(t) − v(t)| ≤ |u(s) − v(s)| +
∫ t

s
[u(σ ) − v(σ ), f (σ ) − g(σ )]+dσ

for all a ≤ s ≤ t ≤ b. In particular, we see

|u(t) − v(t)| ≤ |u(s) − v(s)| +
∫ t

s
| f (σ ) − g(σ )|dσ

for all a ≤ s ≤ t ≤ b.
Let x ∈ D(A), c ∈ [a, b) and f ∈ L1([a, b], X). We denote by u(·, c, x, f ) the

unique C0-solution v : [c, b] → D(A) of (2.3) on [c, b] which satisfies v(c) = x .
Define

S(t) : D(A) → D(A) with S(t)x = u(t, 0, x, 0) for each t ≥ 0, x ∈ D(A).
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Then it follows readily that {S(t)}t≥0 is a semigroup of contractions on D(A) (see,
e.g., Barbu [31] for more details). We say that this semigroup is generated by A.

The semigroup {S(t)}t≥0 is called compact if S(t) is a compact operator for each
t > 0.

Definition 2.1 Anm-dissipative operator A : D(A) ⊂ X → P(X) is called of com-
pact type if for each a < b and each sequence {( fn, un)} in L1([a, b], X) ×
C([a, b], X) such that un is a C0-solution on [a, b] of the evolution inclusion

u′
n(t) ∈ Aun(t) + fn(t), n = 1, 2, . . . ,

fn ⇀ f in L1([a, b], X) and un → u in C([a, b], X), then it follows that u is a
C0-solution on [a, b] of the limit problem

u′(t) ∈ Au(t) + f (t).

Lemma 2.1 [189, Corollary 2.3.1]) Let X∗ be uniformly convex and A an m-
dissipative operator generating a compact semigroup. Then A is of compact type.

The following compactness result is due to Baras [30]. See also Vrabie [189,
Theorem 2.3.3].

Lemma 2.2 Let A be an m-dissipative operator generating a compact semigroup.
Suppose in addition that B is a bounded set in D(A) andF is uniformly integrable
in L1([a, b], X). Then for each c ∈ (a, b), the C0-solution set

{u(·, a, x, f ) : x ∈ B, f ∈ F }

is relatively compact in C([c, b], X). If, in addition, B is relatively compact, then
the C0-solution set is relatively compact in C([a, b], X).

Next, for each φ ∈ C([−τ, 0], D(A)) and f ∈ L1([0, b], X), we define the map-
ping Sφ,b : L1([0, b], X) → C([−τ, b], D(A)) by setting

Sφ,b( f )(t) =
{

φ(t), t ∈ [−τ, 0),

u(t, 0, φ(0), f ), t ∈ [0, b].

Clearly, Sφ,b( f ) is the uniqueC0-solution for the evolution inclusion with time delay
of the form

{
u′(t) ∈ Au(t) + f (t), t ∈ [0, b],
u(t) = φ(t), t ∈ [−τ, 0].

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain the following
result.
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Lemma 2.3 Let X∗ be uniformly convex and A anm-dissipative operator generating
a compact semigroup. Then the following results hold:

(i) if F is uniformly integrable in L1([0, b], X) and B ⊂ C([−τ, 0], D(A)) is
relatively compact, then SB,b(F ) is relatively compact in C([−τ, b], X);

(ii) for each sequence {( fn, un)} in L1([0, b], X) × C([−τ, b], X) such that un =
Sφ,b( fn), n ≥ 1, fn converges weakly to f and un converges to u, it follows that
u = Sφ,b( f ).

2.3 Topological Structure of Solution Set

We introduce the following assumptions:
(H0) A : D(A) ⊂ X → P(X) is anm-dissipative operator with 0 ∈ A0 and A gener-
ates a compact semigroup. In addition, D(A) is convex and X∗ is uniformly convex.
(H1) F : R+ × D(A) × C([−τ, 0], D(A)) → Pcl,cv(X) is a multivalued function
for which F(t, ·, ·) is weakly u.s.c. for a.e. t ∈ R

+ and F(·, x, v) has a strongly
measurable selection for each (x, v) ∈ D(A) × C([−τ, 0], D(A)).
(H2) There exists L ∈ L1

loc(R
+,R+) such that

|F(t, x, v)| = sup{| f | : f ∈ F(t, x, v)} ≤ L(t) (1 + |x | + |v|0)

for a.e t ∈ R
+ and each (x, v) ∈ D(A) × C([−τ, 0], D(A)).

Define a multivalued mapping SelF : C([−τ,∞), D(A)) → P(L1
loc(R

+, X)) by
setting

SelF (u) = { f ∈ L1
loc(R

+, X) : f (t) ∈ F(t, u(t), ut ) for a.e. t ∈ R
+}

for each u ∈ C([−τ,∞), D(A)).

Remark 2.3 Let us note that if u ∈ C([−τ, T ], D(A)), then SelF will be seen as a
multivalued mapping from C([−τ, T ], D(A)) into L1([0, T ], X).

2.3.1 Compact Intervals Case

For the sake of convenience, put Jτ = [−τ, 0] ∪ J with J = [0, T ]. Let us consider
the Cauchy problem

⎧
⎪⎨

⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ J,

f (t) ∈ F(t, u(t), ut ), t ∈ J,

u(t) = φ(t), t ∈ [−τ, 0].
(2.4)



2.3 Topological Structure of Solution Set 43

The following lemma provides an useful property of SelF .

Lemma 2.4 Let (H1) and (H2) be satisfied and let X be reflexive. Then SelF is
weakly u.s.c. with nonempty, convex and weakly compact values.

Proof Let us first show that SelF (u) �= ∅ for each u ∈ C(Jτ , D(A)). For this purpose
we assume that u ∈ C(Jτ , D(A)) and {(un, vn)} is a sequence of step functions from
J to D(A) × C([−τ, 0], D(A)) such that

sup
t∈J

|un(t) − u(t)| → 0, sup
t∈J

|vn(t) − ut |0 → 0 as n → ∞.

By (H1) we see readily that for each n, F(·, un(·), vn(·)) admits a strongly mea-
surable selection fn(·). Furthermore, it follows from (H2) that { fn} is integrably
bounded in L1(J, X). Making use of Lemma 1.24 we then see that { fn} is relatively
weakly compact in L1(J, X). Hence, we may assume, by passing to a subsequence
if necessary, that fn ⇀ f in L1(J, X). An application of Mazur’s theorem enables
us to find that there exists a sequence { f̃n} ⊂ L1(J, X) such that f̃n ∈ co{ fk : k ≥ n}
for each n ≥ 1 and f̃n → f in L1(J, X). Hence, f̃nk (t) → f (t) in X for a.e. t ∈ J
with some subsequence { f̃nk } of { f̃n}.

Denote by E the set of all t ∈ J such that f̃nk (t) → f (t) in X and fn(t) ∈
F(t, un(t), vn(t)) for all n ≥ 1. Let x∗ ∈ X∗, ε > 0, and t ∈ E be fixed. From (H1), it
follows immediately that (x∗ ◦ F)(t, ·, ·) : X → P(R) is u.s.c. with compact convex
values, so ε − δ u.s.c. with compact convex values. Accordingly, we have

x∗( f̃nk (t)) ∈ co{x∗( fk(t)) : k ≥ n} ⊂x∗(F(t, un(t), vn(t)))

⊂x∗(F(t, u(t), ut )) + (−ε, ε)

with k large enough. Therefore, we obtain that x∗( f̃ (t)) ∈ x∗(F(t, u(t), ut )) for
each x∗ ∈ X∗ and t ∈ E . Since F has convex and closed values, we conclude that
f (t) ∈ F(t, u(t), ut ) for each t ∈ E , which implies that f ∈ SelF (u).
In the sequel, let {un} be a sequence converging to u ∈ C(Jτ , D(A)) and fn ∈

SelF (un), n ≥ 1. Using the same argument as above, we obtain that { fn} is relatively
weakly compact, and there exists a subsequence { fnk } of { fn} and f ∈ SelF (u) such
that fnk ⇀ f in L1(J, X). This, together with Lemma 1.7 (ii), shows that SelF is
weakly u.s.c. Also, from the arguments above it is easy to see that SelF has weakly
compact values. Moreover, it is readily checked that SelF has convex values. The
proof is complete.

In order to study the topological structure of solution set for the Cauchy problem
(2.4), we first establish the following existence result.

Theorem 2.1 Let (H0)–(H2) be satisfied. Then the Cauchy problem (2.4) has at
least one C0-solution for each φ ∈ C([−τ, 0], D(A)).

Proof Let φ ∈ C([−τ, 0], D(A)). Consider the set

http://dx.doi.org/10.1007/978-981-10-6656-6_1
http://dx.doi.org/10.1007/978-981-10-6656-6_1
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KT = {u ∈ C(Jτ , D(A)) : u(t) = φ(t) for t ∈ [−τ, 0] and |u(t)| ≤ xφ(t) for all t ∈ J },

where xφ ∈ C(J,R+) is the unique continuous solution of the integral equation in
the form

xφ(t) = |φ|0 +
∫ t

0
L(σ )

(
1 + 2xφ(σ )

)
dσ, t ∈ J. (2.5)

We seek for solutions in KT . To the end, let us define a multivalued mapping W φ

on KT by setting

W φ(u) = Sφ,T (SelF (u)), u ∈ KT .

It is clear that we obtain the result if we show that the map W φ admits a fixed point
in KT . Below, we shall omit the subscript “T ” and write only Sφ instead of Sφ,T if
there is no danger of confusion.

Observe that for every u ∈ KT , SelF (u) �= ∅ due to Lemma 2.4 and hence
W φ(u) ⊂ C(Jτ , D(A)). Also, {v|[−τ,0] : v ∈ W φ(u)} = {φ} for all u ∈ KT . More-
over, taking f ∈ SelF (u) with u ∈ KT , it follows from (H2) that for every t ∈ J ,

|Sφ( f )(t)| ≤|φ(0)| +
∫ t

0
| f (σ )|dσ

≤|φ(0)| +
∫ t

0
L(σ ) (1 + |u(σ )| + |uσ |0) dσ

≤|φ|0 +
∫ t

0
L(σ )

(
1 + 2xφ(σ )

)
dσ

=xφ(t).

Here, we have tacitly used the condition 0 ∈ A0 and the fact |ut |0 ≤ xφ(t) for every
t ∈ J and u ∈ KT . Hence, it is proved that W φ(u) ⊂ KT for every u ∈ KT .

We process to verify that W φ is u.s.c. on KT . Due to Lemma 1.9, it suffices to
prove thatW φ is quasi-compact and closed. By (H2)we obtain that for all f ∈ F :=
SelF (KT ),

| f (t)| ≤ L(t)(1 + 2xφ(T )) for a.e. t ∈ J, (2.6)

which implies that F is integrably bounded and thus uniformly integrable. From
this and Lemma 2.3 (i) we see that W φ(KT )(= Sφ(F )) is relatively compact in
C(Jτ , X). This in particular implies that W φ is quasi-compact.

Let {(un, vn)}be a sequence inGra(W φ) such that (un, vn) → (u, v) inC(Jτ , X) ×
C(Jτ , X). Since vn ∈ W φ(un), there exists a sequence { fn} ⊂ L1(J, X) satisfying
fn ∈ SelF (un) and vn = Sφ( fn). Therefore, noticing that SelF is weakly u.s.c. with
convex, weakly compact values due to Lemma 2.4, an application of Lemma 1.7 (ii)
yields that there exists f ∈ SelF (u) and a subsequence of { fn}, still denoted by { fn},
such that fn ⇀ f in L1(J, X). From this and Lemma 2.3 (ii) we see that v = Sφ( f )
and then v ∈ W φ(u). It follows that W φ is closed.

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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Consider the set
KT = co(W φ(KT )),

the closed convex hull ofW φ(KT ). Clearly,KT is a compact, convex set inC(Jτ , X)

and W φ(KT ) ⊂ KT .
Below, we shall prove that W φ has a fixed point in KT . Due to Theorem 1.17, it

suffices to show that W φ has compact, contractible values. Given u ∈ KT , it is easy
to see thatW φ(u) is compact because of the closedness and qusi-compactness ofW φ .
Fix f ∗ ∈ SelF (u) and put u∗ = Sφ( f ∗). Define a function H : [0, 1] × W φ(u) →
W φ(u) by setting

H(λ, v)(t) =
{
v(t), t ∈ [−τ, λT ],
u(t, λT, v(λT ), f ∗), t ∈ (λT, T ]

for each (λ, v) ∈ [0, 1] × W φ(u), where u(·, λT, v(λT ), f ∗), as prescribed in
Sect. 2.2, is the unique C0-solution of the evolution inclusion in the form

{
u′(t) ∈ Au(t) + f ∗(t), t ∈ [λT, T ],
u(λT ) = v(λT ).

What followed is to show that H(λ, v) ∈ W φ(u) for each (λ, v) ∈ [0, 1] × W φ(u).
Note that for each v ∈ W φ(u), there exists f̃ ∈ SelF (u) such that v = Sφ( f̃ ). Put

f̂ (t) = f̃ (t)χ[0,λT ](t) + f ∗(t)χ(λT,T ](t) for each t ∈ J.

It is clear that f̂ ∈ SelF (u). Also, it is readily checked that Sφ( f̂ )(t) = v(t) for all
t ∈ [−τ, λT ] and Sφ( f̂ )(t) = u(t, λT, v(λT ), f ∗) for all t ∈ (λT, T ], which gives
Sφ( f̂ ) = H(λ, v) and hence H(λ, v) ∈ W φ(u).

To show that W φ(u) is contractible, we first note that

H(0, v) = u∗ and H(1, v) = v for every v ∈ W φ(u).

It remains to show that H is continuous. Given (λi , vi ) ∈ [0, 1] × W φ(u), i = 1, 2,
with λ1 ≤ λ2, we can choose fi ∈ SelF (u) such that H(λi , vi ) = Sφ( fi ) and fi (t) =
f ∗(t) for all t ∈ [λi T, T ]. Then, we have that for −τ ≤ s ≤ t ≤ T ,

|H(λ1, v1)(t) − H(λ2, v2)(t)| ≤|H(λ1, v1)(s) − H(λ2, v2)(s)|
+

∫ t

s
| f1(σ ) − f2(σ )|dσ.

Noticing (2.6) and the fact f1(t) = f2(t) for t ∈ [λ2T, T ], we see that for all t ∈
[λ1T, T ],

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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|H(λ1, v1)(t) − H(λ2, v2)(t)|

≤|H(λ1, v1)(λ1T ) − H(λ2, v2)(λ1T )| +
∫ λ2T

λ1T
| f1(σ ) − f2(σ )|dσ

≤|H(λ1, v1)(λ1T ) − H(λ2, v2)(λ1T )| + (
2 + 4xφ(T )

)
∫ λ2T

λ1T
L(σ )dσ,

which combining with the fact that H(λi , vi )(t) = vi (t) for all t ∈ [−τ, λi T ] yields

sup
t∈Jτ

|H(λ1, v1)(t) − H(λ2, v2)(t)| ≤ ‖v1 − v2‖ + (
2 + 4xφ(T )

)
∫ λ2T

λ1T
L(σ )dσ.

The continuity of H follows immediately.
Finally, an application of Theorem 1.17 yields thatW φ has at least one fixed point,

which is a C0-solution of the Cauchy problem (2.4). This completes the proof.

In the sequel,we denote by Σ F
φ,T the solution set of the Cauchy problem (2.4),

i.e.,

Σ F
φ,T = {u ∈ C(Jτ , D(A)) :u is theC0-solution of (2.4)

satisfying u(t) = φ(t) for t ∈ [−τ, 0]},

and, by K̂T the set

K̂T = {u ∈ C(Jτ , D(A)) : u(t) = φ(t), t ∈ [−τ, 0]}.

Let Fix(W φ) be the fixed point set of W φ acting on KT , where KT and W φ were
introduced in Theorem 2.1. We present the following characterization.

Lemma 2.5 Let the hypotheses in Theorem 2.1 hold. Then Σ F
φ,T = Fix(W φ) and

Σ F
φ,T is compact in C(Jτ , X) for each φ ∈ C([−τ, 0], D(A)).

Proof Let φ ∈ C([−τ, 0], D(A)) and let xφ be the unique continuous solution of
(2.5). Along the same line with the proof of Theorem 2.1, we define a mapping Ŵ φ

on K̂T by
Ŵ φ(u) = Sφ(SelF (u)), u ∈ K̂T ,

which is regarded as an extension of W φ . Observe that Σ F
φ,T = Fix(Ŵ φ). Below, it

will be sufficient to show that u ∈ KT whenever u ∈ Fix(Ŵ φ). Taking u ∈ Fix(Ŵ φ),
it follows that there exists f ∈ SelF (u) such that u = Sφ( f ). Then, noticing (H2)

and the condition 0 ∈ A0 and using the same arguments as in the proof of Theorem
2.1 one can show

|ut |0 ≤ |φ|0 +
∫ t

0
L(σ ) (1 + 2|uσ |0) dσ, t ∈ J.

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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With the aid of the generalized Gronwall-Bellman’s inequality we obtain that for
each t ∈ J ,

|ut |0 ≤|φ|0 +
∫ t

0
L(σ )dσ

+ 2
∫ t

0
L(s)

(

|φ|0 +
∫ s

0
L(σ )dσ

)

exp

(

2
∫ t

s
L(σ )dσ

)

ds

=xφ(t),

which implies that u ∈ KT . Based on the considerations above, we have Σ F
φ,T =

Fix(W φ).
Moreover, as in the proof of Theorem 2.1,KT is compact in C(Jτ , X) and W φ is

closed, from this we see that Fix(W φ) is a compact set inKT , so is Σ F
φ,T . The proof

is complete.

We present the following approximation result.

Lemma 2.6 Put D = D(A) × C([−τ, 0], D(A)). Suppose that F satisfies the
hypotheses (H1) and (H2). Then there exists a sequence of multivalued functions
{Fn} with Fn : J × D → Pcl,cv(X) such that

(i) F(t, x, v) ⊂ Fn+1(t, x, v) ⊂ Fn(t, x, v) ⊂ co(F(t, B31−n (x, v) ∩ D)), n ≥ 1, for
each t ∈ J , (x, v) ∈ D;

(ii) |Fn(t, x, v)| ≤ L(t)(3 + |x | + |v|0), n ≥ 1, for a.e. t ∈ J and each (x, v) ∈ D;
(iii) there exists T ⊂ J with mes(T ) = 0 such that for each x∗ ∈ X∗, ε > 0 and

(t, x, v) ∈ J\T × D , there exists N > 0 such that for all n ≥ N,

x∗(Fn(t, x, v)) ⊂ x∗(F(t, x, v)) + (−ε, ε);

(iv) Fn(t, ·) : D → Pcl,cv(X) is continuous for a.e. t ∈ J with respect to Hausdorff
metric for each n ≥ 1;

(v) for each n ≥ 1, there exists a selection Gn : J × D → X of Fn such that
Gn(·, x, v) is strongly measurable for each (x, v) ∈ D and for any compact
subset D ′ ⊂ D there exist constants CV > 0 and δ > 0 for which the estimate

|Gn(t, x1, v1) − Gn(t, x2, v2)| ≤ CV L(t)(|x1 − x2| + |v1 − v2|0) (2.7)

holds for a.e. t ∈ J and each (x1, v1), (x2, v2) ∈ V with V := (D ′ + Bδ(0)) ∩
D;

(vi) Fn verifies the condition (H1) with Fn instead of F for each n ≥ 1, provided
that X is reflexive.

Proof Put rn = 3−n , n ≥ 1. For each n ≥ 1, let {Brn (x, v)}(x,v)∈D be an open cover of
D . Therefore, there exists a locally finite refinement {Vj,n} j∈In of {Brn (x, v)}(x,v)∈D .
For each j ∈ In , we can choose y j,n := (x j,n, v j,n) ∈ D such that Vj,n ⊂ Brn (y j,n).
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Now let {p j,n(x, v)} j∈In be a locally Lipschitz partition of unity subordinated to the
open cover {Vj,n} j∈In . For each n ≥ 1, define

Fn(t, x, v) =
∑

j∈In
p j,n(x, v)co(F(t, B2rn (y j,n) ∩ D)), (t, x, v) ∈ J × D,

and
Gn(t, x, v) =

∑

j∈In
p j,n(x, v)g j,n(t), (t, x, v) ∈ J × D,

where g j,n(·) is a strongly measurable selection of F(·, y j,n) for each j ∈ In .
With the preparation above at hand, the assertions (i), (iv) and (v) can be proved

by the same kind of manipulations as in [106, Theorem 3.5] (see also [80, Lemma
2.2]). The assertion (ii) is an immediate consequence of (i) and (H2).

We process to prove the assertion (iii). Let T be the set of all t ∈ J such that
both F(t, ·, ·) : D → Pcl,cv(X) is weakly u.s.c. and F(t, x, v) verifies the condition
(H2) for all (t, x, v) with (x, v) ∈ D . Given y = (x, v) ∈ D , we put I yn = { j ∈ In :
p j,n(y) > 0}, which is a finite set due to the local finiteness of the cover {Vj,n} j∈In .
It is readily checked that

j ∈ I yn implies y ∈ Brn (y j,n), Fn(t, y) =
∑

j∈I yn
p j,n(y)co(F(t, B2rn (y j,n) ∩ D))

(2.8)
andhence |z − y|τ < 3rn for each j ∈ I yn and z ∈ B2rn (y j,n),whichgives B2rn (y j,n) ⊂
B3rn (y).

Let x∗ ∈ X∗, ε > 0 and t ∈ T be fixed. From (H1) it follows immediately that
(x∗ ◦ F)(t, ·, ·) : D → 2R is u.s.c. and thus ε-δ u.s.c. That is, there exists δ > 0 such
that for all z ∈ Bδ(y) ∩ D ,

x∗(F(t, z)) ⊂ x∗(F(t, y)) +
(
−ε

3
,
ε

3

)
. (2.9)

Selecting N large enough so that n ≥ N implies 3rn ≤ δ, we conclude from (2.9)
that

x∗(F(t, B2rn (y j,n) ∩ D)) ⊂ x∗(F(t, y)) +
(
−ε

3
,
ε

3

)
for each n ≥ N and j ∈ I yn .

(2.10)
On the other hand, since x∗(F(t, y)) is convex due to (H1), we obtain

co
(
x∗(F(t, y)) +

(
−ε

3
,
ε

3

))
=co (x∗(F(t, y))) +

(
−ε

3
,
ε

3

)

⊂x∗(F(t, y)) +
(

−2ε

3
,
2ε

3

)

,
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whence (2.10) gives

x∗ (
co(F(t, B2rn (y j,n) ∩ D))

) =co(x∗(F(t, B2rn (y j,n) ∩ D)))

⊂x∗(F(t, y)) +
(

− 2ε

3
,
2ε

3

)

for each n ≥ N and j ∈ I yn . We thus use (2.8) to obtain that for all n ≥ N ,

x∗(Fn(t, y)) ⊂ co
(
x∗(F(t, y)) +

(
− 2ε

3
,
2ε

3

))
⊂ x∗(F(t, y)) + (−ε, ε).

This proves the assertion (iii).
It remains to verify the assertion (vi). Let n ≥ 1 be fixed andT ′ the set of all t ∈ J

such that both Fn(t, ·, ·) : D → Pcl,cv(X) is continuous with respect to Hausdorff
metric and Fn(t, x, v) verifies the inequality in the assertion (ii) for all (t, x, v) with
(x, v) ∈ D . Clearly, J \ T ′ has null measure and Fn(t, ·, ·) is ε-δ u.s.c. for each
t ∈ T ′. From the reflexivity of X it follows that Fn(t, ·, ·) has weakly compact
values for each t ∈ T ′. Therefore, we conclude from Lemma 1.7 (i) that Fn(t, ·, ·) is
weakly u.s.c. for a.e t ∈ J . Also, it is clear that Fn(·, x, v) has a strongly measurable
selection Gn(·, x, v) for each (x, v) ∈ D , and thereby the assertion is established.

Remark 2.4 It is assumed in Lemma 2.6 that for a.e. t ∈ J , F(t, ·, ·) is weakly
u.s.c. rather than u.s.c. Such condition is more easily verified usually in practical
applications (see Sect. 5 below and [192, Sect. 5]). The latter condition can be found
in some situations of previous research such as [1, 14, 130].

The following result is the main result in this subsection.

Theorem 2.2 Let the hypotheses in Theorem 2.1 be satisfied. ThenΣ F
φ,T is an Rδ-set

for each φ ∈ C([−τ, 0], D(A)).

Proof Assume that {Fn} is the approximate sequence established in Lemma 2.6. For
each n ≥ 1, consider the approximate problem of the form

⎧
⎪⎨

⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ J,

f (t) ∈ Fn(t, u(t), ut ), t ∈ J,

u(t) = φ(t), t ∈ [−τ, 0],
(2.11)

where φ ∈ C([−τ, 0], D(A)). Let Σ Fn
φ,T be the solution set of (2.11).

Noticing Lemma 2.6 (ii) and (vi) and performing similar arguments as in Theorem
2.1 and Lemma 2.5, we infer that Σ

Fn
φ,T is nonempty and compact in C(Jτ , X).

Moreover, by Lemma 2.6 (i) we have

Σ F
φ,T ⊂ · · · ⊂ Σ

Fn
φ,T · · · ⊂ Σ

F2
φ,T ⊂ Σ

F1
φ,T .

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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We claim that Σ F
φ,T = ⋂

n≥1 Σ
Fn
φ,T . Note first that Σ F

φ,T ⊂ ⋂
n=1 Σ

Fn
φ,T . To prove

the reverse inclusion, we take u ∈ ⋂
n=1 Σ

Fn
φ,T . Therefore, there exists a sequence

{ fn} ⊂ L1(J, X) such that fn ∈ SelFn (u), u = Sφ( fn), and for all n ≥ 1,

| fn(t)| ≤ L(t)(3 + 2|ut |0) for a.e. t ∈ J

in view of Lemma 2.6 (ii). From which together with the fact that X is reflexive
it follows that { fn} is relatively weakly compact in L1(J, X) due to Lemma 1.24.
Thus, there exists a subsequence of { fn}, still denoted by { fn}, such that fn converges
weakly to f ∈ L1(J, X). An application ofMazur’s theorem yields that there exists a
sequence { f̃n} ⊂ L1(J, X) such that f̃n ∈ co{ fk : k ≥ n} for each n ≥ 1 and f̃n → f
in L1(J, X) as n → ∞. Passing to a subsequence if necessary, we may assume
that for a.e. t ∈ J , f̃n(t) → f (t) in X . Denote by Tc the set of all t ∈ J such that
f̃n(t) → f (t) in X and fn(t) ∈ Fn(t, u(t), ut ) for all n ≥ 1. Clearly, J\Tc has null
measure.

Now by Lemma 2.6 (iii) we have that there exists E ⊂ J with mes(E) = 0 such
that for each t ∈ (J \ E) ∩ Tc, ε > 0 and x∗ ∈ X∗,

x∗( f̃n(t)) ∈ co{x∗( fk(t)) : k ≥ n} ⊂ x∗(Fn(t, u(t), ut ) ⊂ x∗(F(t, u(t), ut )) + (−ε, ε)

with n large enough. Here we use Lemma 2.6 (i) and the result that Fn has convex
values for each n ≥ 1. Passing to the limit in the inclusion above for n → ∞ and
taking into account the arbitrariness of ε, we get that x∗( f (t)) ∈ x∗(F(t, u(t), ut ))
for each x∗ ∈ X∗ and t ∈ (J \ E) ∩ Tc. Since x∗ is arbitrary and F has convex
and closed values, we conclude that f (t) ∈ F(t, u(t), ut ) for each t ∈ (J \ E) ∩
Tc, which implies that f ∈ SelF (u). Moreover, noticing fn ⇀ f in L1(J, X), we
deduce, in view of Lemma 2.3 (ii), that Sφ( f ) = u. This proves that u ∈ Σ F

φ,T , as
desired.

Finally, in order to show that Σ F
φ,T is an Rδ-set, it suffices to verify that Σ

Fn
φ,T

is contractible for each n ≥ 1. Let Gn be the selection of Fn which is established
in Lemma 2.6 (v). Observe, thanks to Lemma 2.6 (v), that Gn(t, ·, ·) is continuous
for a.e. t ∈ J . Also, Dn := {(u(t), ut ) : t ∈ J, u ∈ Σ

Fn
φ,T } is a relatively compact set

in X × C([−τ, 0], X), since Σ
Fn
φ,T is compact in C(Jτ , X). Therefore, we conclude,

again by Lemma 2.6 (v), that there exists a neighborhood U of Dn and a constant
CU > 0 such that (2.7) is satisfied with CV replaced by CU . Furthermore, it is easy
to see that Gn verifies

|Gn(t, x, v)| ≤ L(t)(3 + |x | + |v|0) (2.12)

for a.e. t ∈ J and each (x, v) ∈ D(A) × C([−τ, 0], D(A)).
Now, performing a trivial variant of an argument from Theorem 2.1, we obtain

the existence of C0-solutions of the Cauchy problem of the form

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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{
v′(t) ∈ Av(t) + Gn(t, v, vt ), t ∈ [s, T ],
v(s + θ) = ϕ(θ), θ ∈ [−τ, 0] (2.13)

for each s ∈ J and ϕ ∈ C([−τ, 0], D(A)). Moreover, we point out that the C0

-solution to (2.13) is unique. Indeed, if v1 and v2 are two solutions of (2.13) cor-
responding to s ∈ J and ϕ ∈ C([−τ, 0], D(A)), then there exists a neighborhoodU ′
related to v1 and v2 and w := v1 − v2 satisfies

|w(t)| ≤
∫ t

s
|Gn(t, v1(σ ), v1σ ) − Gn(t, v2(σ ), v2σ )|dσ

≤CU ′

∫ t

s
L(σ )(|w(σ )| + |wσ |0)dσ

for every t ∈ [s, T ]. We here used the result (v) of Lemma 2.6. Therefore, by Lemma
1.4 we see that v1 ≡ v2, as desired.

We denote by v(·, s, ϕ) the unique C0-solution of (2.13) corresponding to s ∈ J
and ϕ ∈ C([−τ, 0], D(A)). Define a function Ĥ : [0, 1] × Σ

Fn
φ,T → Σ

Fn
φ,T by setting

Ĥ(λ, u)(t) =
{
u(t), t ∈ [−τ, λT ],
v(t, λT, uλT ), t ∈ (λT, T ]

for each (λ, u) ∈ [0, 1] × Σ
Fn
φ,T . In a manner similar to the proof in Theorem 2.1

we can show that Ĥ(λ, u) ∈ Σ
Fn
φ,T for each (λ, u) ∈ [0, 1] × Σ

Fn
φ,T , and Ĥ(0, u) =

v(·, 0, φ) and Ĥ(1, u) = u for each u ∈ Σ
Fn
φ,T .

Below is to show that Ĥ is continuous. Let us consider a sequence {(λk, uk)} ⊂
[0, 1] × Σ

Fn
φ,T with (λk, uk) → (λ, u) in [0, 1] × C(Jτ , X) as k → ∞. Set

ρk(t) = |Ĥ(λ, u)(t) − Ĥ(λk, uk)(t)| for t ∈ Jτ .

We are going to show that sup
t∈Jτ

ρk(t) → 0 as k → ∞. Without loss of generality we

assume that λk ≤ λ for all k ≥ 1, since the remaining cases can be treated in a similar
way. For simplicity in presentation, we put v̂k = Ĥ(λk, uk), k ≥ 1, and v̂ = Ĥ(λ, u).

From Lemma 2.6 (v) it follows that for each t ∈ [λT, T ],

ρk(t) =|v̂(t) − v̂k(t)|
≤|v̂(λT ) − v̂k(λT )| +

∫ t

λT
|Gn(σ, v̂(σ ), v̂σ ) − Gn(σ, v̂k(σ ), v̂kσ )|dσ

≤ρk(λT ) + CU

∫ t

λT
L(σ )

(

ρk(σ ) + sup
θ∈[σ−τ,σ ]

ρk(θ)

)

dσ.

Then an application of Lemma 1.4 yields

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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ρk(t) ≤ sup
θ∈[λT−τ,λT ]

ρk(θ) exp

(

2CU

∫ t

λT
L(σ )dσ

)

, λT ≤ t ≤ T . (2.14)

Also, noticing that Σ
Fn
φ,T is compact, we can find a constant M > 0 for which the

estimates

|u(t)| ≤ M and |ut |0 ≤ M

hold for all u ∈ Σ
Fn
φ,T and t ∈ J , which together with (2.12) imply that for every

λkT ≤ t ≤ λT ,

ρk(t) ≤|v̂(λkT ) − v̂k(λkT )| +
∫ t

λk T
|Gn(σ, v̂(σ ), v̂σ ) − Gn(σ, v̂k(σ ), v̂kσ )|dσ

≤|u(λkT ) − uk(λkT )| + (6 + 4M)

∫ t

λk T
L(σ )dσ.

(2.15)

Then, note that
ρk(t) = |u(t) − uk(t)| for t ∈ [−τ, λkT ], (2.16)

which, together with (2.15), yields

sup
θ∈[λT−τ,λT ]

ρk(θ) ≤ ‖u − uk‖ + (6 + 4M)

∫ λT

λk T
L(σ )dσ. (2.17)

Recalling (2.14)–(2.17), we end up with

ρk(t) ≤2‖u − uk‖ + (6 + 4M)

∫ λT

λk T
L(σ )dσ

+
(

‖u − uk‖ + (6 + 4M)

∫ λT

λk T
L(σ )dσ

)

exp

(

2CU

∫ T

λT
L(σ )dσ

)

for every t ∈ Jτ . The right-hand side of the inequality above can be made small when
k is large independently of t ∈ Jτ . Accordingly, our result follows. Therefore, we
conclude thatΣ Fn

φ,T is contractible, and thusΣ F
φ,T is an Rδ-set. This proof is complete.

2.3.2 Noncompact Intervals Case

Throughout this subsection, let J̃τ = [−τ, 0] ∪ R
+. We first present the following

result.
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Lemma 2.7 Let X be reflexive. Suppose further that F satisfies the hypotheses (H1)

and (H2). Then SelF (u) �= ∅ for each u ∈ C̃( J̃τ , D(A)).

Proof Let u ∈ C̃( J̃τ , D(A)). ByLemma2.4, one can choose fm ∈ SelF |[0,m](u|[−τ,m])
for each m ∈ N \ {0}, where F |[0,m] is the restriction of F to [0,m], it is to say

F |[0,m](t, x, v) = F(t, x, v) on [0,m] × D(A) × C([−τ, 0], D(A)).

Consider the function f : R+ → X defined as

f (t) =
∞∑

m=1

χ[m−1,m)(t) fm(t), t ∈ R
+,

where χ[m−1,m) denotes the characteristic function of interval [m − 1,m). It is not
difficult to see that f ∈ SelF (u) and it is locally integrable. This gives desired result.

Assume that {C([a,m], X), π
p
a,m,N(a)} and {L1([0,m], X), π̇

p
m,N \ {0}} are the

inverse systems established in Sect. 1.2.4. Given φ ∈ C([−τ, 0], D(A)), we have
that the family {id, Sφ,m} is a mapping from {L1([0,m], X), π̇

p
m,N \ {0}} into

{C([−τ,m], X), π
p
−τ,m,N \ {0}}. Indeed, this can be seen from the observation

π
p
−τ,m(Sφ,p( f )) = Sφ,m(π̇ p

m( f )) for all f ∈ L1(0, p, X) and m ≤ p.

So the family {id, Sφ,m} induces a limit mapping Sφ,∞ : L1
loc(R

+, X) → C̃( J̃τ , X)

such that Sφ,∞( f )|[−τ,m] = Sφ,m( f |[0,m]) for each f ∈ L1
loc(R

+, X) andm ∈ N \ {0}.
In this subsection, by a C0-solution of the Cauchy problem (2.1), we mean a

continuous function u : J̃τ → D(A) which satisfies u(t) = φ(t) for all t ∈ [−τ, 0]
and is a C0-solution in the sense of Benilan to u′(t) + Au(t) � f (t), where f ∈
L1
loc(R

+, X) and f (t) ∈ F(t, u(t), ut ) for a.e. t ∈ R
+.

Let Σ F
φ,∞ stand for the set of all C0-solutions to the Cauchy problem (2.1). We

are in the position to present our main result in this subsection.

Theorem 2.3 Assume that the hypotheses (H0)-(H2) are satisfied. Then Σ F
φ,∞ is an

Rδ-set for each φ ∈ C([−τ, 0], D(A)).

Proof Assume that φ ∈ C([−τ, 0], D(A)). For every m ∈ N \ {0}, let W φ
m : K̂m →

2K̂m be a multivalued mapping defined by

W φ
m(u) = Sφ,m(SelF |[0,m](u)) for each u ∈ K̂m,

where

K̂m := {u ∈ C([−τ,m], D(A)) : u(t) = φ(t), t ∈ [−τ, 0]}.

Applying Theorem 2.1 and Lemma 2.5 to F |[0,m] we obtain that Fix(W
φ
m) = Σ

F |[0,m]
φ,m

and Fix(W φ
m) is nonempty and compact. Also, it is seen, thanks to Theorem 2.2, that

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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Fix(W φ
m) is an Rδ-set. Moreover, one finds that {K̂m, π

p
−τ,m,N \ {0}} is an inverse

system and

K̃ :={u ∈ C̃( J̃τ , D(A)) : u(t) = φ(t) for all t ∈ [−τ, 0]}
= lim← {K̂m, π

p
−τ,m,N \ {0}}.

In order to applyTheorem1.19,wefirst show that the family {id,W φ
m } is amapping

from {K̂m, π
p
−τ,m,N \ {0}} into itself. Let p,m ∈ N with p ≥ m and u ∈ K̂ p. We

claim that
SelF |[0,m](u|[−τ,m]) = { f |[0,m] : f ∈ SelF |[0,p](u)}. (2.18)

The case p = m is obvious. For the case p > m it is readily checked that { f |[0,m] :
f ∈ SelF |[0,p](u)} ⊂ SelF |[0,m](u|[−τ,m]). It remains to prove the reverse inclusion. Let
f ∈ SelF |[0,m](u|[−τ,m]). Choose g ∈ SelF |[0,p](u) and put

f̂ (t) = f (t)χ[0,m](t) + g(t)χ(m,p](t), t ∈ [0, p].

We then obtain that f̂ ∈ SelF |[0,p](u), which gives SelF |[0,m](u|[−τ,m]) ⊂ { f |[0,m] : f ∈
SelF |[0,p](u)}, as desired.

Now, by using (2.18) and the fact π p
−τ,m(Sφ,p( f )) = Sφ,m(π̇

p
m( f )) for every f ∈

L1(0, p, X), we have

π
p
−τ,m(W φ

p (u)) =π
p
−τ,m(Sφ,p(SelF |[0,p](u)))

={Sφ,m(π̇ p
m( f )) : f ∈ SelF |[0,p](u)}

={Sφ,m( f ) : f ∈ SelF |[0,m](u|[−τ,m])}
=W φ

m(π
p
−τ,m(u)).

Hence, {id,W φ
m} induces a limit mapping W φ∞ : K̃ → 2K̃ , defined by

W φ
∞(u) = {w ∈ K̃ :w|[−τ,m] = Sφ,m( f |[0,m]) for every m ∈ N \ {0},

f ∈ L1
loc(R

+, X) and f (t) ∈ F(t, u(t), ut ) for a.e. t ∈ R
+}

for each u ∈ K̃ . Here we used Lemma 2.7. Moreover, it readily follows that

W φ
∞(u) = Sφ,∞(SelF (u)) for every u ∈ K̃ .

Now, applying Theorem 1.19 yields that Fix(W φ∞) is an Rδ-set, which together
with relation Σ F

φ,∞ = Fix(W φ∞) implies that Σ F
φ,∞ is an Rδ-set. Thus, the proof is

complete.

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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2.4 Nonlocal Cauchy Problem

We are concerned with the existence ofC0-solutions to the nonlocal Cauchy problem
(2.2) defined on right half-line.

The next lemma, which gives the convergence property of SelF in the case when
J = R

+, plays an important role in the sequel.

Lemma 2.8 Let X be reflexive and F verify the hypotheses (H1) and (H2). If {un} ⊂
C̃( J̃τ , D(A)) with un → u0 in C̃( J̃τ , X) and fn ∈ SelF (un), then there exists f ∈
SelF (u0) and a subsequence { fn′ } of { fn} such that fn′ ⇀ f in L1([0,m], X) for
each m ∈ N \ {0}.
Proof Observe that un → u0 in C([−τ,m], X) for each m ∈ N \ {0}. Also, from
Lemma 2.4 it follows that SelF |[0,1] is weakly u.s.c. with convex and weakly com-
pact values. Since fn|[0,1] ∈ SelF |[0,1](un|[−τ,1]), we see, in view of Lemma 1.7 (ii),
that there exists a subsequence of { fn}, say { fn,1}, and f̂1 ∈ SelF |[0,1](u0|[−τ,1]) such
that fn,1|[0,1] converges weakly to f̂1 in L1([0, 1], X). Similarly, we can select a
subsequence { fn,2} of { fn,1} and f̂2 ∈ SelF |[0,2](u0|[−τ,2]) such that fn,2|[0,2] ⇀ f̂2
in L1([0, 2], X). Proceeding in this manner, we can choose a family of subse-
quences { fn,m}, m ≥ 1, of { fn} and a sequence { f̂m} such that fn,m |[0,m] ⇀ f̂m in
L1([0,m], X). Note that f̂m ∈ SelF |[0,m](u0|[−τ,m]). Write

f̂ (t) =
∞∑

m=1

χ[m−1,m)(t) f̂m(t), t ∈ R
+.

It is clear that f̂ ∈ SelF (u0). Moreover, we see that the diagonal sequence { fn,n},
as a subsequence of { fn}, verifies fn,n|[0,m] ⇀ f̂ |[0,m] in L1([0,m], X) for each m ∈
N \ {0}. The lemma is proved.

To present our main result, we also need the following conditions.
(H3) There exists r > 0 such that [x, f ]+ ≤ 0 for each x ∈ D(A) with |x | = r ,
t ∈ R

+, v ∈ C([−τ, 0], D(A)) with |v|0 ≤ r and f ∈ F(t, x, v).
(H4) g : C̃b( J̃τ , D(A)) → C([−τ, 0], D(A)) verifies

(i) the restriction of g to �r is continuous and |g(u)|0 ≤ r for each u ∈ �r , where
�r = {u ∈ C̃b( J̃τ , D(A)) : |u(t)| ≤ r for all t ∈ J̃τ }, and

(ii) for each subset U ⊂ �r which restricted to [δ,∞) is relatively compact in
C̃([δ,∞), X) for each δ ∈ (0,∞), g(U ) is relatively compact inC([−τ, 0], X),
where r is given by (H3).

Remark 2.5 (a) Let us mention that the condition (ii) above on g is quite general.
In particular, we claim that the condition (ii) is satisfied when the condition (i)
above and the following condition are fulfilled: (Hg) There exists δ′ ∈ (0,∞)

such that for every u,w ∈ �r satisfying u(t) = w(t) (t ∈ [δ′,∞)), g(u) = g(w).
To illustrate it, let us define a linear operator � : C̃([δ′,∞), X) → C̃( J̃τ , X) by

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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�(u) =
{
u(t), t ∈ (δ′,∞),

u(δ′), t ∈ [−τ, δ′].

Then it is clear that � is bounded and hence ĝ := g ◦ � is a continuous func-
tion from �r |[δ′,∞) to C([−τ, 0], D(A)). Moreover, if U ⊂ �r and U[δ,∞)

is relatively compact in C̃([δ,∞), X) for each δ ∈ (0,∞), then we see that
ĝ(U |[δ′,∞)) is compact in C([−τ, 0], X). From this and (Hg) it follows that
g(U )(= ĝ(U |[δ′,∞)) ⊂ ĝ(U |[δ′,∞))) is relatively compact in C([−τ, 0], X).

(b) Note that the condition (Hg), which was used in some situations of previous
research (cf. e.g., Wang [194] et al. and references therein), covers the multi-
point discrete mean condition mentioned in the Introduction.

For some r̃ > 0, denote Qr̃ := {w ∈ C([−τ, 0], D(A)) : |w|0 ≤ r̃} below.
Lemma 2.9 Let r̃ > 0 be fixed. Under the hypotheses (H0)-(H2), the multivalued
mapping Γ : Qr̃ → P(C̃( J̃τ , X)), defined by Γ (φ) = Σ F

φ,∞ for each φ ∈ Qr̃ , is an
Rδ-mapping.

Proof As proved in Theorem 2.3, Γ (φ) is an Rδ-set for each φ ∈ Qr . It suffices to
verify the upper semi-continuity of Γ .

We first show that Γ is quasi-compact. Let A ⊂ Qr̃ be a compact set and

Fr̃ = { f ∈ L1
loc(R

+, X) : | f (t)| ≤ L(t)(1 + 2xr̃ (t)) for a.e. t ∈ R
+}, (2.19)

where xr̃ is the unique continuous solution of

xr̃ (t) = r̃ +
∫ t

0
L(σ ) (1 + 2xr̃ (σ )) dσ, t ∈ R

+.

An argument similar to that in Lemma 2.5 enables us to obtain that |vt |0 ≤ xr̃ (t) for
each t ∈ R

+ and v ∈ Γ (Qr̃ ). From this and the fact that

Γ (φ) ⊂ Sφ,∞(SelF (Γ (φ))) for each φ ∈ Qr̃ ,

we deduce, thanks to (H2), that Γ (φ) ∈ Sφ,∞(Fr̃ ) and hence Γ (A) ⊂ SA,∞(Fr̃ ).
Also, it is easy to see thatFr̃ |[0,m] is uniformly integrable in L1([0,m], X) for each
m ∈ N \ {0}. Applying Lemma 2.3 (i) gives that Γ (A)|[−τ,m](⊂ SA,m(Fr̃ |[0,m])) is a
relatively compact set inC([−τ,m], X) for eachm ∈ N \ {0}. Therefore, by Lemma
1.18 we see that Γ (A) is relatively compact in C̃( J̃τ , X), as desired.

What followed is to show that Γ is closed. Let {(φn, un)} be a sequence in
Gra(Γ ), which converges to (φ, u) ∈ C([−τ, 0], X) × C̃( J̃τ , X). It is known that
there exists a sequence { fn} ⊂ Fr̃ such that fn ∈ SelF (un) and Sφn ,∞( fn) = un .
Then an application of Lemma 2.8 yields that there exists f ∈ SelF (u) and a subse-
quence of { fn}, still denoted by { fn}, such that fn|[0,m] ⇀ f |[0,m] in L1([0,m], X)

for every m ∈ N \ {0}. Recalling Lemma 2.1 and the representation of Sφ,m , we see

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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that Sφ,m( f |[0,m]) = u|[−τ,m] for everym ∈ N \ {0}, which gives u = Sφ,∞( f ). Thus,
it follows that u ∈ Γ (φ). An application of Lemma 1.9 then completes this proof.

Theorem 2.4 Suppose that the hypotheses (H0)-(H4) are satisfied. Then the nonlo-
cal Cauchy problem (2.2) admits at least one C0-solution.

Proof Since D(A) is convex, it follows from Theorem 1.4 that there exists a continu-
ous extension ĩ d of identity mapping id : D(A) → D(A) satisfying ĩ d(X) ⊂ D(A).
Let ρ : X × C([−τ, 0], X) → Br (0, 0) be defined by

ρ(x, v) =
{

(x, v), if (x, v) ∈ Br (0, 0),

r |(x, v)|−1
τ (x, v), in rest.

Thenwe define themulti-value function Fρ : R+ × X × C([−τ, 0], X) → Pcl,cv(X)

by

Fρ(t, x, v) = F(t, ρ(ĩ d(x), ĩ d(v))), (t, x, v) ∈ R
+ × X × C([−τ, 0], X),

where ĩ d(v)(s) = ĩ d(v(s)) for each s ∈ [−τ, 0].
Since both ρ and ĩ d are continuous, it follows that Fρ verifies the condition (H1).

Clearly it satisfies the condition (H2) (with a modified L(·)). Moreover, from (H3)

one has
[x, f ]+ ≤ 0 (2.20)

for each x ∈ D(A)with |x | ≥ r , t ∈ R
+, v ∈ C([−τ, 0], D(A)) and f ∈ Fρ(t, x, v).

In the sequel, let Σ
Fρ

φ,∞ be the set of all C0-solutions to the Cauchy problem of
the form ⎧

⎪⎨

⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ R
+,

f (t) ∈ Fρ(t, u(t), ut ), t ∈ R
+,

u(t) = φ(t), t ∈ [−τ, 0].
(2.21)

Define the multivalued mapping Γρ : Qr → P(C̃( J̃τ , X)) by

Γρ(φ) = Σ
Fρ

φ,∞ for each φ ∈ Qr .

Then based on the considerations above with Lemma 2.9 we deduce that Γρ is
an Rδ-mapping. Moreover, we claim that Γρ(Qr ) ⊂ �r . In fact, if this is not the
case, then we can assume that there exist φ ∈ Qr , u ∈ Γρ(φ) and t0 > 0 such that
u(t0) > r . Therefore, it can find h ∈ (0, t0] such that |u(t)| ≥ r on [t0 − h, t0] and
|u(t0 − h)| = r , since u is continuous and |u(0)| ≤ r . We thus use (2.20) to obtain

r < |u(t0| = |u(t0 − h)| +
∫ t0

t0−h
[u(σ ), f (σ )]+dσ ≤ |u(t0 − h)| = r,

where f ∈ SelF (u) such that u = Sφ,∞( f ), which is a contradiction.

http://dx.doi.org/10.1007/978-981-10-6656-6_1
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Put
Qi

r = co( g(�i
r )) and �i+1

r = co( Γρ(Q
i
r )), i = 0, 1,

where�0
r := �r . Then, by (H4) (i) we have Q0

r ⊂ Qr , which together with the result
Γρ(Qr ) ⊂ �r implies that �1

r ⊂ �0
r . From this it follows that Γρ(Q1

r ) ⊂ �2
r ⊂ �1

r .
Therefore, the following composition is well-defined:

Γρ ◦ g : �1
r

g−→ Q1
r

Γρ−→ �1
r .

We seek for solutions in �1
r . To do this, we show that the multivalued mapping

Γρ ◦ g has a fixed point in �1
r . Observe that �1

r and Q1
r being respectively convex

subset of C̃( J̃τ , X) and C([−τ, 0], X), are AR-spaces. Also, (H4) (i) implies that g
is an Rδ-mapping.

Next, we verify that the set �1
r |[δ,∞) is relatively compact in C̃([δ,∞), X) for

each δ > 0. Assume that δ > 0 and m ∈ N(δ). Let Fr be defined by (2.19) with r
instead of r̃ . As

Γρ(Q0
r )|[0,m] ⊂ {u(·, 0, x, f ) ∈ C([0,m], X) : x ∈ D(A) with |x | ≤ r, f ∈ Fr |[0,m]}

and Lemma 2.2, we find that Γρ(Q0
r )|[δ,m] is relatively compact in C([δ,m], X).

Moreover, using Theorem 1.1 we obtain that co(Γρ(Q0
r )|[δ,m]) is relatively compact

and hence co(Γρ(Q0
r )|[δ,m]) is compact. Now, noticing co(Γρ(Q0

r )|[δ,m]) ⊃ �1
r |[δ,m]

it follows that �1
r |[δ,m] is relatively compact, which together with the arbitrariness of

m and Lemma 1.18 yields that�1
r |[δ,∞) is relatively compact in C̃([δ,∞), X). Hence

g(�1
r ) is relatively compact in C([−τ, 0], X) by the arbitrariness of δ > 0 and (H4)

(ii). We thus see, again using Theorem 1.1, that Q1
r is compact.

Since Γρ is u.s.c. with compact values, we obtain the compactness of Γρ(Q1
r )

due to Lemma 1.11. Therefore, we conclude from the result Γρ(g(�1
r )) ⊂ Γρ(Q1

r )

and Theorem 1.16 that there exists a fixed point u of Γρ ◦ g in �1
r . Moreover, it is

readily checked that u(t) ∈ D(A) and max{|u(t)|, |ut |0} ≤ r for each t ∈ R
+. From

this we see Fρ(t, u(t), ut ) = F(t, u(t), ut ) for every t ∈ R
+, which implies that u is

a C0-solution of the nonlocal Cauchy problem (2.2). The proof is complete.

2.5 Applications

As samples of applications, we consider a system of partial differential inclusions
defined on right half-line in this section. The topological characterization of solution
set to the system considering a time delay condition is discussed. Then, for the
system subject to a nonlocal condition, we establish the existence of C0-solutions in
the absence of nonexpansive condition on nonlocal function. These examples do not
aim at generality but indicate how our theorems can be applied to concrete problems.

http://dx.doi.org/10.1007/978-981-10-6656-6_1
http://dx.doi.org/10.1007/978-981-10-6656-6_1
http://dx.doi.org/10.1007/978-981-10-6656-6_1
http://dx.doi.org/10.1007/978-981-10-6656-6_1
http://dx.doi.org/10.1007/978-981-10-6656-6_1
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Our examples are inspired directly from the work of [192, Example 5.1] (see also
[189]).

Example 2.1 Let � be a nonempty bounded open set in R
n with C2-boundary ∂�,

p ∈ [2,∞) and λ > 0. Consider the system of partial differential inclusions in the
form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
−

n∑

i=1

∂

∂ξi

(∣
∣
∣
∂u

∂ξi

∣
∣
∣
p−2 ∂u

∂ξi

)
+λ|u|p−2u∈F(t, ξ, u(t, ξ), ut (ξ)),

(t, ξ) ∈ R
+ × �,

−
n∑

i=1

∣
∣
∣
∂u

∂ξi

∣
∣
∣
p−2 ∂u

∂ξi
cos(−→n ,

−→ei ) ∈ β(u(t, ξ)), (t, ξ) ∈ R
+ × ∂�

(2.22)

subject to a initial history

u(t, ξ) = φ(t, ξ), (t, ξ) ∈ [−τ, 0] × �, (2.23)

where the partial derivatives are taken in the sense of distributions over �, −→n is the
outward normal of ∂�, {−→e1 , · · · ,

−→en } is the canonical base in Rn , β : D(β) ⊂ R →
2R is a maximal monotone operator with 0 ∈ D(β), 0 ∈ β(0), and

F(t, ξ, u, v) = [ f1(t, ξ, u, v) + h(ξ), f2(t, ξ, u, v) + h(ξ)]

is a closed interval for each (t, ξ, u, v) ∈ R
+ × � × R × C([−τ, 0], L2(�,R)), in

which h ∈ L2(�,R) and fi : R+ × � × R × C([−τ, 0], L2(�,R)) → R are given
functions such that f1(t, ξ, u, v) ≤ f2(t, ξ, u, v) for each (t, ξ, u, v) ∈ R

+ × � ×
R × C([−τ, 0], L2(�,R)), f1 is l.s.c., and f2 is u.s.c.

Here, our objective is to investigate the topological characterization of solution
set to the system (2.22)–(2.23).

Take X = L2(�,R) anddenote its normby | · | and inner product by (·, ·).Assume
that f1, f2 verify the following hypothesis:
[(A1)] there exist L1, L2 ∈ L∞(R+,R+) such that

| fi (t, ξ, u, v)| ≤ L1(t) (|u| + |v|0) + L2(t), i = 1, 2

for each (t, ξ, u, v) ∈ R
+ × � × R × C([−τ, 0], X).

Before stating our main results, we first present the following lemma, which can
be seen from [192, Lemma 5.1].

Lemma 2.10 Suppose that (A1) is satisfied.Define amultivalued function F : R+ ×
X × C([−τ, 0], X) → P(X) as

F(t, u, v) = {x ∈ X : x(ξ) ∈ [ f1(t, ξ, u(ξ), v) + h(ξ), f2(t, ξ, u(ξ), v) + h(ξ)] a.e.}
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for each (t, u, v) ∈ R
+ × X × C([−τ, 0], X). Then F has nonempty, convex and

closed values, F(·, u, v) has a strongly measurable selection for every (u, v) ∈ X ×
C([−τ, 0], X), and F(t, ·, ·) is weakly u.s.c. for each t ∈ R

+. Moreover,

|F(t, u, v)| ≤ max{L1(t),mes
1
2 (�)L1(t),mes

1
2 (�)L2(t) + |h|}(1 + |u| + |v|0)

for a.e. t ∈ R
+, each u ∈ X and v ∈ C([−τ, 0], X).

Theorem 2.5 Under the hypothesis (A1), the set of all C0-solutions to the system
(2.22)–(2.23) is an Rδ-set for each φ ∈ C([−τ, 0], X).

Proof Let A : D(A) ⊂ X → X be defined by

Au =
n∑

i=1

∂

∂ξi

(∣
∣
∣
∂u

∂ξi

∣
∣
∣
p−2 ∂u

∂ξi

)
,

D(A) =
{
u ∈ W 1,p(�) :

n∑

i=1

∂

∂ξi

(∣
∣
∣
∂u

∂ξi

∣
∣
∣
p−2 ∂u

∂ξi

)
∈ X, and

−
n∑

i=1

∣
∣
∣
∂u

∂ξi

∣
∣
∣
p−2 ∂u

∂ξi
cos(−→n ,

−→ei ) ∈ β(u(ξ)) a.e. ξ ∈ ∂�
}
.

From [189, Example 1.5.4] and [49, Théorème 1.10, p.43] we see that A is an
m-dissipative operator with 0 ∈ A0 and D(A) = X . In addition, as in [189, Exam-
ple 2.2.4 and Corollary 2.3.2], A generates a compact semigroup of nonexpan-
sive mappings on X , which implies that the hypothesis (H0) holds. Also, by
Lemma 2.10 one finds that F verifies conditions (H1) and (H2) with J = R

+ and
L(t) = max{L1(t),mes

1
2 (�)L1(t),mes

1
2 (�)L2(t) + |h|}. Therefore, applying The-

orem 2.3 gives the result as desired.

Next,we consider the system (2.22) equippedwith a nonlocal condition as follows:

u(t, ξ) =
∫ ∞

τ

N (u(t + θ, ξ))dμ(θ), (t, ξ) ∈ [−τ, 0] × �, (2.24)

where μ is a σ -finite and complete measure on [τ,∞) such that

μ([τ,∞)) = 1 and lim
s→τ+

μ([τ, s]) = 0.

We assume that N : R → R is a continuous function satisfying either for some
C1,C2 ≥ 0 and b ∈ [0, 1),

|N (y)| ≤ C1 + C2|y|b for all y ∈ R, (2.25)

or
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|N (y)| ≤ |y| for all y ∈ R. (2.26)

It can define a Nemytskiı̆ operator N from X into itself by N (x)(ξ) = N (x(ξ))

for each x ∈ X . Moreover, one finds that N is continuous on X .

Remark 2.6 If (2.25) is satisfied, then a direct computation upon Hölder’s inequality
yields that for each x ∈ X ,

|N (x)| ≤ C1mes
1
2 (�) + C2mes

1−b
2 (�)|x |b.

Write, for each l > 0,

Φ(l) = max{C1mes
1
2 (�) + C2mes

1−b
2 (�)lb, l}.

Theorem 2.6 Let (A1) and (2.25) or (2.26) hold. Suppose further that the following
hypothesis is satisfied.
(A2) There exists c > 0 such that for every (t, ξ, u, v) ∈ R

+ × � × R × C([−τ, 0],
X),

max{u fi (t, ξ, u, v) : i = 1, 2} ≤ −cu2.

Then the system (2.22) and (2.24) has at least one C0-solution.

Proof Let r > 0 be such that r ≥ c−1|h| and Φ(r) ≤ r . Take (t, u, v) ∈ R
+ × X ×

C([−τ, 0], X)with |u| = r and f ∈ F(t, u, v). Noticing (A2) and using an argument
similar to that in [192, Theorem 5.1] we obtain

[u, f ]+ ≤ |u|−1
∫

�

(−c|u(ξ)|2 + |u(ξ)h(ξ)|) dξ ≤ −cr + |h| ≤ 0,

which yields that (H3) remains true.
Next, let us define a mapping g : C̃b( J̃τ , X) → C([−τ, 0], X) as

g(u)(t) =
∫ ∞

τ

N (u(t + θ))dμ(θ), u ∈ C̃b( J̃τ , X), t ∈ [−τ, 0].

Taking u ∈ C̃b( J̃τ , X), we have, in view of μ[τ,∞) = 1, that

|g(u)(·)|0 ≤ sup
t∈[−τ,0]

(∫ ∞

τ

|N (u(t + θ))|2 dμ(θ)

) 1
2

≤Φ

(

sup
t∈R+

|u(t)|
)

,

which implies that |g(u)|0 ≤ r for all u ∈ �r . Also, by means of Lebesgue’s dom-
inated convergence theorem it is not difficult to see that g(u)(·) is continuous on
[−τ, 0].
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We process to show that g is continuous on �r . Given ε > 0. Let {un} be a
sequence in �r such that un converges to u ∈ C̃( J̃τ , X). Since μ is σ -finite, we can
choose m ′ ∈ N \ {0} such that μ[m ′,∞) ≤ ε

4Φ(r) . Therefore, we have that for each
t ∈ [−τ, 0],

|g(un)(t) − g(u)(t)| ≤
∫ m ′

τ

|N (un(t + θ)) − N (u(t + θ))|dμ(θ) + ε

2
. (2.27)

On the other hand, noticing that

un|[−τ,m ′] → u|[−τ,m ′] in C([−τ,m ′], X) and N is continuous on X,

we conclude thatN is uniformly continuous on {un(t) : n ≥ 1, t ∈ [−τ,m ′]}, which
implies that

N (un|[0,m ′]) → N (u|[0,m ′]) in C([0,m ′], X)

as n → ∞. So, there exists N > 0 such that for all n ≥ N ,

sup
t∈[−τ,0]

∫ m ′

τ

|N (un(t + θ)) − N (u(t + θ))|dμ(θ) ≤ ε

2
.

This together with (2.27) proves the desired result.
Assume thatU ⊂ �r andU |[δ,∞) is relatively compact in C̃([δ,∞), X) for each

δ > 0. To prove that g(U ) is relatively compact inC([−τ, 0], X), it suffices to show
that g(U ) is totally bounded. Given ε > 0, it follows that there exists δ0 > 0 such
that μ([τ, τ + δ0]) ≤ ε

2Φ(r) .
Next, to construct a finite ε-net of g(U ), we need to define an operator

gδ0 : C̃b([δ0,∞), X) → C([−τ, 0], X)

as

gδ0(u)(t) =
∫ ∞

τ+δ0

N (u(t + θ))dμ(θ), u ∈ C̃b([δ,∞), X), t ∈ [−τ, 0].

The same idea as above can be used to prove that gδ0 is continuous on the set

{u ∈ C̃b([δ0,∞), X) : |u(t)| ≤ r for all t ∈ [δ0,∞)}.

SinceU |[δ0,∞) is relatively compact, we obtain that gδ0(U |[δ0,∞)) is relatively com-
pact inC([−τ, 0], X) and thus it admits a finite ε

2 -net, denoted byVε = {v1, · · · , vk}.
We claim that Vε is a finite ε-net of g(U ). Indeed, given v ∈ g(U ), we have that

there exists u ∈ U such that v = g(u). We choose vi ∈ Vε such that
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|vi − gδ0(u|[δ0,∞))|0 ≤ ε

2
. (2.28)

Here we are using the fact gδ0(u|[δ0,∞)) ∈ gδ0(U |[δ0,∞)). Also, a direct computation
gives

|g(u) − gδ0(u|[δ0,∞))|0 ≤ sup
t∈[−τ,0]

∫ τ+δ0

τ

|N (u(t + θ))|dμ(θ)

≤ε

2
,

which, together with (2.28), implies that |v − vi |0 ≤ ε, as desired. Therefore, the
desired result follows from Theorem 2.4.

At the end of this chapter, we leave two problems for further research.

(1) Is Theorem 2.4 true for the case when either A is a linear operator generating
a C0-semigroup or A is replaced with a family of linear operators generating
an evolution system? More specially, is it true for a linear operator A whose
resolvent satisfies the estimate of growth −γ (−1 < γ < 0) in a sector of the
complex plane? Let us note that such operator, generating a semigroup of growth
1 + γ , is called an almost sectorial operator (see e.g.,Wang et al. [195]) for more
details).

(2) Is Theorem 2.3 true under the weaker condition that the semigroup generated by
A is only equicontinuous?

We believe it is possible to find some interesting positive answers.

Remark 2.7 It is noted that if A is a linear operator generating a C0-semigroup, A
is replaced with a family of linear operators generating an evolution system, or A is
an almost sectorial operator, then in treating the nonlocal Cauchy problem (2.2), it
is inappropriate to impose the invariance condition (H3) on F .
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