Chapter 2
Evolution Inclusions with m-Dissipative
Operator

Abstract This chapter deals with a nonlinear delay differential inclusion of evolu-
tion type involving m-dissipative operator and source term of multivalued type in a
Banach space. Under rather mild conditions, the Rj-structure of C O_solution set is
studied on compact intervals, which is then used to obtain the Rs-property on non-
compact intervals. Secondly, the result about the structure is furthermore employed
to show the existence of C?-solutions for the inclusion (mentioned above) subject to
nonlocal condition defined on right half-line. No nonexpansive condition on nonlo-
cal function is needed. As samples of applications, we consider a partial differential
inclusion with time delay and then with nonlocal condition at the end of the chapter.

2.1 Introduction

It is worth mentioning that for differential inclusions on noncompact intervals, gov-
erned by a nonlinear multivalued operator (specially, an m-dissipative operator), the
research of topological structure of solution sets is much more delicate and the related
results are still very rare. Furthermore, much of the previous research on differen-
tial inclusions in infinite dimensional spaces was done provided the nonlinearity (a
multivalued function), with compact values, is upper semicontinuous with respect
to solution variable. This condition turns out to be restrictive to some extent and is
not satisfied usually in practical applications (see, e.g., Vrabie [192, Example 5.1,
Example 5.2] and [189]). To make things more applicable, an appropriate alterative is
that the nonlinearity, with closed and convex values, is weakly upper semicontinuous
with respect to solution variable.

Throughout this section, X is a real Banach space with norm | - |, X* denotes the
topological dual of Banach space X. Denote by | - |o the sup-norm of C([—7, 0], X).
Note that X x C([—7, 0], X), endowed with the norm

|Cx, V[ == max{lx|, [vlo}, (x,v) € X x C([—7,0], X),
is a Banach space.
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We consider the Cauchy problem of nonlinear delay differential inclusion of
evolution type
u'(t) € Au(t) + f(t), teRT,
f@) e Ft,u(t),u), teR", (2.1)

u(t) = ¢(1), t€[—1,0]

Here A: D(A) C X — P(X) is an m-dissipative operator (possible multivalued
and/or nonlinear), the forcing source F : Rt x D(A) x C([—t, 0], D(A)) — P(X)
is a multivalued function with convex, closed values, and ¢ € C([—T, 0], m).
u, € C([—7, 0], D(A)) is defined by u,(s) = u(t +5) (s € [—7, 0]) for every u €
C([—1,00), D(A)) and r € R™.

Here, we are interested in studying the topological characterization of the solution
set for the Cauchy problem (2.1) in some Fréchet spaces. We first investigate the
existence of C%-solutions and R;s-structure of the solution set for the Cauchy problem
(2.1) on compact intervals, then proceed to study the Rs-structure of the solution set
for the Cauchy problem (2.1). In the proof of the latter result, the key tool is the
inverse limit method.

As an application of the information about the structure, we shall deal with the
C-solutions for the nonlocal Cauchy problem of nonlinear delay evolution inclusion
of the form

u'(t) € Au(t) + f(t), teRT,
f@t) e F(t,u(t),u,), tEe€ R, 2.2)
u(t) = gu)(), t €[-r1,0],

where A and F are defined the same as those in the problem (2.1), and
g : Cy([—7,00), D(A)) > C([—7,0], D(A))

is a function to be specified later. As can be seen, g constitutes a nonlocal condition.
It is also noted that the nonlocal function g depends on history states, that is, it takes
history values. We emphasize that in the proof of our main result, no nonexpansive
condition on nonlocal function g will be required.

The consideration for nonlocal initial condition g is stimulated by the observation
that this type of conditions is more realistic than usual ones in treating physical
problems, see, e.g., [5, 8, 82, 110, 192, 194, 197] for more detailed information
about the importance of nonlocal initial conditions in applications. Some typical
examples for g are

e g(u)(t) = u(t + w) foreach r € [—7,0] (Periodicity condition);
e g(u)(t) = —u(t + w) foreacht € [-1,0] (Anti-periodicity condition);
e g(u)() =/ k(@)u%(t + 6)dé for each t € [—1, 0] with k € L'(R*, R*) and

T

oo
/ k(@)dO =1 (Mean value condition);



2.1 Introduction 39

n
1
e g(u)(t) = za,-m(z,» +1) for each ¢ € [—7,0], where 37, |o;| < 1 and T <
i=1
<t <---<t, <ooareconstants (Multi-point discrete mean condition).

Remark 2.1 The final case on g above can be seen as a generalization of the nonlocal
function introduced in Deng [82], where the nonlocal function is used to describe
the diffusion phenomenon of a small amount of gas in a transparent tube.

It is noted that by using an interplay of compactness arguments and invariance
techniques, Vrabie [192] obtained an existence result of C O_solutions to the nonlocal
Cauchy problem (2.2). Similar arguments are also used to solve other nonlocal prob-
lems, we refer the reader to Paicu and Vrabie [162], Vrabie [191], Wang and Zhu
[197] and references therein. However, there exists a limitation among these results,
that is, it is assumed that the nonlocal function is nonexpansive. Thus, there naturally
arises a question: “Is there any chance to solve this problem without this condition?”.
The results in Sect. 2.4 in fact gives an affirmative answer to this question and close
this gap.

Remark 2.2 Let us mention that the lack of nonexpansive condition on nonlocal
function prevents us from using the well-known tools such as Banach and Schauder
fixed point theorems to show the existence of C°-solutions to the nonlocal Cauchy
problem (2.2). This difficulty leads us to study the topological structure of the solution
set to the Cauchy problem (2.1), before applying a fixed point theorem for multivalued
mappings with non-convex values.

This chapter is organized as follows. Section2.2 gives some properties of
m-dissipative operators and the definition of C°-Solutions. Section2.3 is devoted
to the existence of C-solutions and Rj-structure of the solution set for the Cauchy
problem (2.1) on compact intervals. In Sect.2.3.2, we obtain the Rs-structure of the
solution set for the Cauchy problem (2.1) on noncompact intervals by the inverse
limit method. Section 2.4 is concerned with the existence of C°-solutions to the non-
local Cauchy problem (2.2) defined on right half-line. Finally, as an illustration of
the developed theory, we apply it to the examples of partial differential inclusions
defined on right half-line.

The results in this chapter are taken from Chen, Wang and Zhou [71].

2.2 The m-Dissipative Operators and C°-Solution

Given a multivalued operator A : D(A) C X — P(X) with the domain D(A), we
let R(A) = U, cpa) Ax stand for the range of A.
Letx,y € X and h € R\ {0}. We put

x4 Ayl — x|

[x, yln A
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and then note that there exists the limit

X, = lim [x, .

[x. yl+ = Lim [x. yls
Furthermore, foreach x, y € X and « > 0,

lox, y14 =[x, y14+, lx, yl4] < Iyl

Recall that A : D(A) C X — P(X) is m-dissipative if R(/ — LA) = X for all
A > 0 and A is dissipative, i.e.,

[x1 —x2, y2 — y1]y = 0 forall (x;, ;) € Gra(A), i =1,2.
Consider the following evolution inclusion
u'(t) € Au(t) + f (1), (2.3)

where A is m-dissipative. By a CP-solution of (2.3) on [a, b], it will be understood
an element u € C([a, b], X), u(t) € D(A) foreach t € [a, b] and u verifies

lu(t) — x| < |u(s) — x| +/ [u(o) —x, f(o) — ylido

for each (x, y) € Gra(A) anda <s <t <b.

From [139, Theorems 3.5.1 and 3.6.1] it follows that for each x € D(A) and
f € L'([a, b], X), there exists an unique C°-solution to (2.3) on [a, b] which satisfies
u(a) = x. Moreover, as proved in [31, Theorem 2.1],if f, g € L'([a, b], X) and u, v
are two C-solutions to (2.3) corresponding to f and g, respectively, then

() —v(®)| < u(s) —v(s)] +/ [u(o) —v(o), f(o) — glo)]+do

foralla < s <t < b. In particular, we see

lu(t) —v(@)| < u(s) —v(s)| +/ |f(o) —g(o)ldo

foralla <s <t <b.

Let x € D(A), c € [a,b) and f € L'([a, b], X). We denote by u(-, ¢, x, f) the
unique CP-solution v : [¢, b] — D(A) of (2.3) on [c, b] which satisfies v(¢) = x.
Define

S(t) : D(A) — D(A) with S(t)x = u(t, 0, x,0) foreacht >0, x € D(A).
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Then it follows readily that {S(#)},>0 is a semigroup of contractions on D(A) (see,
e.g., Barbu [31] for more details). We say that this semigroup is generated by A.

The semigroup {S()},>¢ is called compact if S(¢) is a compact operator for each
t > 0.

Definition 2.1 Anm-dissipative operator A : D(A) C X — P(X)iscalled of com-
pact type if for each a < b and each sequence {(f,,u,)} in L'([a,b], X) x
C([a, b], X) such that u, is a C°-solution on [a, b] of the evolution inclusion

u,(t) € Au,(t) + fu(t), n=1,2,...,

fo — fin L'([a,b], X) and u,, — u in C([a, b], X), then it follows that u is a
CP-solution on [a, b] of the limit problem

u'(t) € Au(t) + f(@).

Lemma 2.1 [189, Corollary 2.3.1]) Let X* be uniformly convex and A an m-
dissipative operator generating a compact semigroup. Then A is of compact type.

The following compactness result is due to Baras [30]. See also Vrabie [189,
Theorem 2.3.3].

Lemma 2.2 Let A be an m-dissipative operator generating a compact semigroup.
Suppose in addition that B is a bounded set in D(A) and % is uniformly integrable
in L'([a, b], X). Then for each c € (a, b), the C°-solution set

{u(,a,x, f):xeB, feF}

is relatively compact in C([c, b], X). If, in addition, B is relatively compact, then
the CO-solution set is relatively compact in C([a, b], X).

Next, foreach ¢ € C([—7, 0], D(A)) and f € L'([0, b], X), we define the map-
ping Sg p : L'([0, b], X) — C([—T, b], D(A)) by setting

¢(t)v re [_T’ O)’

Se.p (@) = [ u(t,0,¢(0), £), tel0,b].

Clearly, Sy 5 (f) is the unique C O_solution for the evolution inclusion with time delay
of the form

u'(t) € Au(t) + f(r), te€]l0,b],
u(t) = ¢(1), t € [-7,0]

As an immediate consequence of Lemmas 2.1 and 2.2, we obtain the following
result.
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Lemma 2.3 Let X* be uniformly convex and A an m-dissipative operator generating
a compact semigroup. Then the following results hold:

() if .Z is uniformly integrable in L' ([0, b], X) and B C C([—1, 0], D(A)) is
relatively compact, then Sp ,(F) is relatively compact in C([—1, b], X);

(ii) for each sequence {(f,,u,)} in L'([0, b], X) x C([—1, b], X) such that u, =
S¢.»(fu), n =1, f, converges weakly to f and u, converges to u, it follows that
u =Sy p(f)

2.3 Topological Structure of Solution Set

We introduce the following assumptions:

(Hy) A: D(A) C X — P(X)isanm-dissipative operator withO € A0 and A gener-
ates a compact semigroup. In addition, D(A) is convex and X* is uniformly convex.
(H)) F:R* x D(A) x C([—7,0], D(A)) = P, (X) is a multivalued function
for which F(¢, -, -) is weakly u.s.c. for a.e. r € RT and F(-, x, v) has a strongly
measurable selection for each (x, v) € m x C([—t, 0], m).

(H») There exists L € L} (R*, RT) such that

loc

|F(r,x,v)| =sup{|f|: f € F(t,x,v)} < L(r) (1 + |x| + [vo)

for a.e t € RT and each (x,v) € D(A) x C([—t, 0], D(A)).
Define a multivalued mapping Selr : C([—1, 00), D(A)) — P(L},.(R", X)) by
setting

Selp(u) ={f € L}, (R*, X) : f(1) € F(t,u(t), u,) forae.treR"}

for each u € C([—t, 00), D(A)).

Remark 2.3 Let us note that if u € C([—z, T], D(A)), then Selr will be seen as a
multivalued mapping from C([—7, T], D(A)) into L'([0, T], X).

2.3.1 Compact Intervals Case

For the sake of convenience, put J; = [—7, 0] U J with J = [0, T]. Let us consider
the Cauchy problem

u'(t) € Au(®) + f(t), telJ,
f@) e Ft,ut),u), tel, (2.4)
u() =¢(@), t e[-1,0].
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The following lemma provides an useful property of Sel.

Lemma 2.4 Let (H)) and (H>) be satisfied and let X be reflexive. Then Selp is
weakly u.s.c. with nonempty, convex and weakly compact values.

Proof Letus first show that Selr (u) # @ foreachu € C(J;, D(A)). For this purpose
we assume that u € C(J;, D(A)) and {(u,, v,)} is a sequence of step functions from
Jto D(A) x C([—t, 0], D(A)) such that

sup u,(t) —u()| - 0, sup|v,(t) —u;lo — 0 asn — oo.
teJ teJ

By (H;) we see readily that for each n, F(-, u,(-), v,(-)) admits a strongly mea-
surable selection f,(-). Furthermore, it follows from (H,) that { f,} is integrably
bounded in L'(J, X). Making use of Lemma 1.24 we then see that { f,,} is relatively
weakly compact in L'(J, X). Hence, we may assume, by passing to a subsequence
if necessary, that f, — f in L'(J, X). An apphcatlon of Mazur’s theorem enables
us to find that there exists a sequence { fn c L'(J, X) such that fn € co{fr : k > n}
for each n > 1 and fn — f1nL (J, X). Hence, fnk(t) — f(t)in X forae.t € J
with some subsequence { f,,k} of { f,,}

Denote by E the set of all + € J such that f,lk (t) - f(¢t) in X and f,(?) €
F(t,u,(t),v,(t)) foralln > 1.Letx* € X*,¢ > 0,andt € E be fixed. From (H,), it
follows immediately that (x* o F)(¢, -, -) : X — P(R) isu.s.c. with compact convex
values, so ¢ — § u.s.c. with compact convex values. Accordingly, we have

X (fa (1) € colx™ (fi(0) s k = ny CxX*(F (1, un (1), va (1))
Cx*(F(t, u(t), up) + (=&, &)

with k large enough. Therefore, we obtain that x*(f(t)) € x*(F(t,u(t), u,)) for
each x* € X* and ¢t € E. Since F has convex and closed values, we conclude that
f(t) € F(t,u(t), u,) for each t € E, which implies that f € Selp(u).

In the sequel, let {u,} be a sequence converging to u € C(J, m) and f, €
Selr(u,), n > 1. Using the same argument as above, we obtain that { f,, } is relatively
weakly compact, and there exists a subsequence { f,,,} of { f,} and f € Selr(u) such
that f,, — fin L'(J, X). This, together with Lemma 1.7 (ii), shows that Sel is
weakly u.s.c. Also, from the arguments above it is easy to see that Selr has weakly
compact values. Moreover, it is readily checked that Selr has convex values. The
proof is complete.

In order to study the topological structure of solution set for the Cauchy problem
(2.4), we first establish the following existence result.

Theorem 2.1 Let (Hy)—(H,) be satisfied. Then the Cauchy problem (2.4) has at
least one CO-solution for each ¢ € C([—t, 0], D(A)).

Proof Let ¢ € C([—t, 0], D(A)). Consider the set
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Ky ={u € C(Jr, D(A)) 1 u(t) = ¢(t) fort € [—7,0] and [u(r)| < x4(¢) forall 7 € J},

where x4 € C(J, RT) is the unique continuous solution of the integral equation in
the form

Xp(1) = |Plo —I—/O L(o) (1+ 2x¢(0)) do, telJ. (2.5)

We seek for solutions in K. To the end, let us define a multivalued mapping W¢
on K7 by setting

W (u) = Sy.r(Selp(u), u € Kr.

It is clear that we obtain the result if we show that the map W¢ admits a fixed point
in K7. Below, we shall omit the subscript “7”” and write only S, instead of Sy 7 if
there is no danger of confusion.

Observe that for every u € Ky, Selp(u) # ¢ due to Lemma 2.4 and hence
W?(u) C C(J;, D(A)). Also, {V|j_r.01: v € W?(u)} = {¢} for all u € K7. More-
over, taking f € Selr(u) with u € Kr, it follows from (H,) that for every r € J,

1551 (0] <Ip(O)] +/0 \f(o)ldo
<16 (0)] +/0 L(0) (1 + [u(0)] + luglo) do

<o+ [ L) (1+254(0) do
0
=.X¢(I).

Here, we have tacitly used the condition 0 € A0 and the fact |u, [y < x4(¢) for every
t € J and u € Kr. Hence, it is proved that W?(u) C Ky forevery u € Kr.

We process to verify that W? is u.s.c. on K7. Due to Lemma 1.9, it suffices to
prove that W¢ is quasi-compact and closed. By (H») we obtain that forall f € .F :=
Selp(K7),

[f@®)] < L)1 +2x4(T)) forae.t € J, (2.6)

which implies that .% is integrably bounded and thus uniformly integrable. From
this and Lemma 2.3 (i) we see that W?(K7)(= S¢(F)) is relatively compact in
C(J;, X). This in particular implies that W¢ is quasi-compact.

Let {(u,, v,)} be asequence in Gra(W?) such that (u,, v,) — (u, v)inC(J;, X) x
C(J;, X). Since v, € W?(u,), there exists a sequence {f,} C L'(J, X) satisfying
fu € Selp(u,) and v, = Sg(f,). Therefore, noticing that Selr is weakly u.s.c. with
convex, weakly compact values due to Lemma 2.4, an application of Lemma 1.7 (ii)
yields that there exists f € Selr(u) and a subsequence of { f,}, still denoted by { f,,},
such that f, — fin L'(J, X). From this and Lemma 2.3 (ii) we see that v = Se(f)
and then v € W% (u). It follows that W is closed.
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Consider the set
Sy =7co(W?(Kr)),

the closed convex hull of W? (K ). Clearly, .#7 is a compact, convex setin C(J;, X)
and W? (7)) C 7.

Below, we shall prove that W¢ has a fixed point in #7. Due to Theorem 1.17, it
suffices to show that W¢ has compact, contractible values. Given u € J#7, it is easy
to see that W () is compact because of the closedness and qusi-compactness of W¢.
Fix f* € Selr(u) and put u* = S, (f*). Define a function H : [0, 1] x W) —
W (u) by setting

v(t), t € -1, AT],

o= [ u(t, AT, v(AT), f*), t €T, T]

for each (A,v) € [0, 1] x W?(u), where u(-, AT, v(AT), f*), as prescribed in
Sect.2.2, is the unique C°-solution of the evolution inclusion in the form

u'(t) € Au(t) + f*(t), te[rT,T],
u(AT) = v(AT).

What followed is to show that H (%, v) € W?(u) for each (1, v) € [0, 1] x W (u).
Note that for each v € W?(u), there exists f € Selp(u) such that v = Se(f). Put

F@) = FOxoom @) + £*@) xor.m(t) foreach s € J.

It is clear that f € Selp(u). Also, it is readily checked that S¢(f) (1) = v(¢) for all
t € [—t,AT] and S¢(f)(t) =u(t,\T,v(AT), f*) for all t € (AT, T], which gives
Ss(f) = H(x,v) and hence H(x,v) € W (u).

To show that W? (1) is contractible, we first note that

H(0,v) =u* and H(1,v) = v for every v € W®(u).
It remains to show that H is continuous. Given (A;, v;) € [0, 1] x W?(u),i =1, 2,
with 4| < Ay, we can choose f; € Selr(u) suchthat H(A;, vi) = Sg(f;) and fi(t) =
f*(@) forallt € [A;T, T]. Then, we have thatfor —7 <s <t < T,

|H (A1, v1)(1) = H(Rz, v2) ()] <[H (A1, vi)(s) — H (A2, v2)(s)]

+ / 1£1(6) — fa(o)ldo.

Noticing (2.6) and the fact fi(t) = f>(¢) for t € [A,T, T], we see that for all ¢ €
(M T, T],
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|H X1, vi)(t) — H (X2, v2)(1)]
T

SIH@, v)(T) — H(rz, v2) (A T)] +/ [fi(0) = falo)|do
T

A

T
<|H (o, v) (i T) — H(hg, v) (M T)| + (2 +4X¢(T))/ L(o)do,
MT
which combining with the fact that H(A;, v;)(¢) = v;(¢) for all t € [—7, A;T] yields

rT
sup [H (A1, vi) () — H(A2, v2) ()] < [vi —wall + (2 +4X¢(T))/ L(o)do.
A

tel; v

The continuity of H follows immediately.
Finally, an application of Theorem 1.17 yields that W has at least one fixed point,
which is a C?-solution of the Cauchy problem (2.4). This completes the proof.

In the sequel,we denote by 24‘; r the solution set of the Cauchy problem (2.4),
ie.,

Z‘;T ={ueC(J;,D(A)) uis theC”-solution of 2.4)
satisfying u(t) = ¢ (¢t) for t € [—7, 0]},

and, by I%T the set
I?T ={ueC(J,,D(A):ult)=¢(@), tel[—1,0]}.

Let Fix(W?) be the fixed point set of W? acting on K, where Ky and W? were
introduced in Theorem 2.1. We present the following characterization.

Lemma 2.5 Let the hypotheses in Theorem 2.1 hold. Then Edf, » = Fix(W?) and
qu,T is compact in C(J;, X) for each ¢ € C([—t, 0], D(A)).

Proof Let ¢ € C([—1, 0], m) and let x4 be the unique continuous solution of
(2.5). Along the same line with the proof of Theorem 2.1, we define a mapping wé
on Kr by

W?(u) = Sy(Selp (), u € Kr,

which is regarded as an extension of W?. Observe that X/ , = Fix(W?). Below, it

will be sufficient to show that u € K7 whenever u € Fix(W?). Taking u € Fix(W?),
it follows that there exists f € Selr(u) such that u = S4(f). Then, noticing (H)
and the condition 0 € A0 and using the same arguments as in the proof of Theorem
2.1 one can show

t
luelo < I@lo +/ L(o) (1 +2[uglo)do, 1 € J.
0
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With the aid of the generalized Gronwall-Bellman’s inequality we obtain that for
eacht € J,

t
o §|¢|0+/ L(o)do
0

+ 2/t L(s) (|¢|0 + / L(a)dcr) exp (2 /t L(a)da) ds
0 0 K

=x4(1),

which implies that # € K. Based on the considerations above, we have X ¢F r =
Fix(W?).

Moreover, as in the proof of Theorem 2.1, J#7 is compact in C(J;, X) and W9 is
closed, from this we see that Fix(W?) is a compact set in 7, so is qu - The proof
is complete.

We present the following approximation result.

Lemma 2.6 Put 2 = D(A) x C([—1,0], D(A)). Suppose that F satisfies the
hypotheses (Hy) and (H,). Then there exists a sequence of multivalued functions
{E,} with F,, : J X 9 — P (X) such that

(i) F(t,x,v) C Fyp 1 (t,x,v) C F,(t, x,v) Cco(F(t, Byi-(x,v) N D)), n> 1, for
eacht € J, (x,v) € 9;
(i) |F,(t, x,v)| < L@t)B+ |x|+ [vlp), n > 1, fora.e.t € Jandeach(x,v) € I;
(iii) there exists 7 C J with mes(.7) = 0 such that for each x* € X*, ¢ > 0 and
(t,x,v) € J\T x D, there exists N > 0 such that for alln > N,

X*(F,(t,x,v)) Cx*(F(t,x,v)) + (—¢, ¢);

(iv) F,(t,) : D — Poo(X) is continuous for a.e. t € J with respect to Hausdorff
metric for eachn > 1;

(v) for each n > 1, there exists a selection G, : J x 9 — X of F, such that
G, (-, x,v) is strongly measurable for each (x,v) € & and for any compact
subset 7' C D there exist constants Cy > 0 and § > 0 for which the estimate

|G, (t, x1,v1) — Gu(t, X2, v2)| < CyL(#)(|x1 — x2| + [vi — v2l0) (2.7)

holds for a.e. t € J and each (x1,v1), (x2,v2) € V with V := (2’ + Bs(0)) N
D;

(vi) F, verifies the condition (H) with F, instead of F for each n > 1, provided
that X is reflexive.

Proof Putr, =37",n > 1.Foreachn > 1,let{B,, (x, v)} (e be an open cover of
2. Therefore, there exists a locally finite refinement {V; ,,} je;, of {B,, (x, V)}(x.ve2-
For each j € I,, we can choose y; , := (X, Vj,) € Z suchthat V; , C B, (yj ).
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Now let {p; ,(x, v)}jei, be alocally Lipschitz partition of unity subordinated to the
open cover {V; ,}es,. For each n > 1, define

Fa(t,x,v) = D~ pjn(x, vJCO(F (1, Bay, (yj) N D)), (t,x,v) € J x D,
J€ly

and
Gu(t.x.v) = D pia(x.v)gin(®). (t.x.v) €T x P,

Jel

where g; ,, () is a strongly measurable selection of F (-, y;,) foreach j € I,.

With the preparation above at hand, the assertions (i), (iv) and (v) can be proved
by the same kind of manipulations as in [106, Theorem 3.5] (see also [80, Lemma
2.2]). The assertion (ii) is an immediate consequence of (i) and (H>).

We process to prove the assertion (iii). Let .7 be the set of all # € J such that
both F(¢,-,:) : 2 — P (X)is weakly u.s.c. and F (¢, x, v) verifies the condition
(H>) for all (t, x, v) with (x,v) € 2. Giveny = (x,v) € Z,weput I, ={jel,:
pj.n(y) > 0}, which is a finite set due to the local finiteness of the cover {V; ,} e, -
It is readily checked that

€ 1) implies y € By, (i), Fa(t,y) = D pja(3)T(F(t, By, (yjn) N 7))
jely
(2.8)

andhence |z — y|; < 3r,foreachj € I andz € By, (yj.n), whichgives By, (¥;,) C
B3r,, (y)

Let x* € X*, ¢ > 0 and t € 7 be fixed. From (H)) it follows immediately that
(x*o F)(t,-,-) : 2 — 2R isu.s.c. and thus £-8 u.s.c. That is, there exists § > 0 such
that for all z € Bs(y) N 2,

X*(F(t,2)) C x*(F(t, y)) + (—g 2) . (2.9)

Selecting N large enough so that n > N implies 3r, < §, we conclude from (2.9)
that

X*(F(t, By, 3jn) N D)) Cx*(F(t,y)) + (—%, g) foreachn > Nand j € I}

(2.10)
On the other hand, since x*(F (¢, y)) is convex due to (H;), we obtain

@ (v () + (-5 5)) =eo Pty + (-5 5)

. 2e 2e
Cx*(F(t,y) + (—?, ?) )
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whence (2.10) gives

x* (CO(F (t, Bay, (yj.n) N D)) =COx™(F(t, Boy, (yj.n) N D))
2e 2¢

CX*(F(t, y) + (— = ?)

foreachn > N and j € I;. We thus use (2.8) to obtain that for all n > N,

X —( 2e 2¢ .
x*(F,(t,y)) C co(x (F(t,y)+ (— 3 ?>) Cx"(F(,y) + (—¢,¢).

This proves the assertion (iii).

It remains to verify the assertion (vi). Letn > 1 be fixed and .7 the setof allr € J
such that both F,(¢,-,-) : Z — P ,(X) is continuous with respect to Hausdorff
metric and F), (¢, x, v) verifies the inequality in the assertion (ii) for all (¢, x, v) with
(x,v) € 2. Clearly, J \ 7' has null measure and F,(t, -, -) is -8 u.s.c. for each
t € 7'. From the reflexivity of X it follows that F,(z, -, -) has weakly compact
values for each ¢ € .7 Therefore, we conclude from Lemma 1.7 (i) that F, (z, -, -) is
weakly u.s.c. fora.e t € J. Also, itis clear that F, (-, x, v) has a strongly measurable
selection G, (-, x, v) for each (x, v) € &, and thereby the assertion is established.

Remark 2.4 1t is assumed in Lemma 2.6 that for ae. t € J, F(z, -, -) is weakly
u.s.c. rather than u.s.c. Such condition is more easily verified usually in practical
applications (see Sect. 5 below and [192, Sect. 5]). The latter condition can be found
in some situations of previous research such as [1, 14, 130].

The following result is the main result in this subsection.

Theorem 2.2 Let the hypotheses in Theorem 2.1 be satisfied. Then X qf 7 is an Rs-set
for each ¢ € C([—t, 0], D(A)).

Proof Assume that { F},} is the approximate sequence established in Lemma 2.6. For
each n > 1, consider the approximate problem of the form

u'(t) € Au(t) + f(t), tel,
u(t) =¢(t)7 te [_Ta 0]7
where ¢ € C([—7, 0], D(A)). Let E;,WT be the solution set of (2.11).
Noticing Lemma 2.6 (ii) and (vi) and performing similar arguments as in Theorem

2.1 and Lemma 2.5, we infer that Z‘;”T is nonempty and compact in C(J;, X).
Moreover, by Lemma 2.6 (i) we have

qu,TC"'CEJHT"'CE;T,ZTCE;]T'
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n=1

We claim that £, = (., %,";. Note first that £1" ;. €
the reverse inclusion, we take u € (,_, ZQ’T. Therefore, there exists a sequence
{fu} C L'(J, X) such that fu € Selg, (u), u = Sy(f,), and foralln > 1,

F,,
n>1 2y'r. To prove

[ fa(®)] < L()(3 4+ 2|u;lo) forae.t e J

in view of Lemma 2.6 (ii). From which together with the fact that X is reflexive
it follows that { f,} is relatively weakly compact in L'(J, X) due to Lemma 1.24.
Thus, there exists a subsequence of { f,,}, still denoted by { f, }, such that f, converges
weakly to f € L! (J X). Anapplication of Mazur’s theorem yields that there exists a
sequence{f,,} C L'(J, X) such that f,, € co{fr : k = n}foreachn > 1 and fn — f
in L'(J, X) as n — oo. Passing to a subsequence if necessary, we may assume
that for a.e. r € J, f,,(t) — f(¢) in X. Denote by .7, the set of all + € J such that
fn(t) — f(¢)in X and f,(t) € F, (¢, u(t), u,) forall n > 1. Clearly, J\.Z. has null
measure.

Now by Lemma 2.6 (iii) we have that there exists £ C J with mes(E) = 0 such
that foreachr € (J \ E) N 7., ¢ > 0 and x* € X*,

() € col™ (i) : k = n} Cx*(Fut, u(t), ur) C x*(F(1, u(t), ur) + (—¢, €)

with n large enough. Here we use Lemma 2.6 (i) and the result that F,, has convex
values for each n > 1. Passing to the limit in the inclusion above for n — oo and
taking into account the arbitrariness of &, we get that x*(f(¢)) € x*(F (¢, u(t), u,))
for each x* € X* and t € (J \ E) N .. Since x* is arbitrary and F has convex
and closed values, we conclude that f(r) € F(¢, u(t), u,) foreach t € (J\ E) N
.., which implies that f € Selp(u). Moreover, noticing f, — f in L'(J, X), we
deduce, in view of Lemma 2.3 (ii), that S;(f) = u. This proves that u € qu 7> as
desired.

Finally, in order to show that Z‘¢ r 1s an Rs-set, it suffices to verify that X ”
is contractible for each n > 1. Let G, be the selection of F,, which is estabhshed
in Lemma 2.6 (v). Observe, thanks to Lemma 2.6 (v), that G, (¢, -, -) is continuous
forae.r € J. Also, D, := {(u(t),u;) :t € J,u € ZQ’T} is a relatively compact set

in X x C([—1, 0], X), since E;"T is compact in C(J;, X). Therefore, we conclude,

again by Lemma 2.6 (v), that there exists a neighborhood U of D, and a constant
Cy > 0 such that (2.7) is satisfied with Cy replaced by Cy . Furthermore, it is easy
to see that G,, verifies

|Gy (2, x,v)| < L()3 + |x[ + [v]o) (2.12)
fora.e.t € J and each (x,v) € D(A) x C([—7, 0], D(A)).

Now, performing a trivial variant of an argument from Theorem 2.1, we obtain
the existence of C°-solutions of the Cauchy problem of the form
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(2.13)
v(is+6) =¢0), 0 e[—1,0]

[ V() € Av(t) + Gu(t.v.v). t €[5, T),
for each s € J and ¢ € C([—7,0], D(A)). Moreover, we point out that the cY
-solution to (2.13) is unique. Indeed, if v; and v, are two solutions of (2.13) cor-
respondingtos € J and ¢ € C([—7, 0], D(A)), then there exists a neighborhood U’
related to v; and v, and w := v; — v, satisfies

(o) 5/ (Gt v1(©), V1a) = G2, 12(0), v20)|do
<Cy / L) (w(@)| + walo)do

forevery t € [s, T]. We here used the result (v) of Lemma 2.6. Therefore, by Lemma
1.4 we see that v; = v,, as desired.

We denote by v(-, s, ¢) the unique C-solution of (2.13) corresponding to s € J
and ¢ € C([—t, 0], D(A)). Define a function A : [0, 1] x Z‘(;”T — E(;”T by setting

6 ) — u(t), t €l—1,AT],
GO =1 AT ). te OT.T]

for each (A, u) € [0, 1] x Z’(;”T. In a manner similar to the proof in Theorem 2.1
we can show that I:I(A, u) € 25”7 for each (A, u) € [0, 1] x Z‘;”T, and I:I(O, u) =
v(-,0,¢) and H(1,u) = u foreachu € X"

Below is to show that H is continuous. Let us consider a sequence {(Ay, ux)} C
[0, 1] x qu,"r with (Ag, ur) — (A, u)in [0, 1] x C(J;, X) as k — o0. Set

ox(t) = |H O, u)(t) — H (o, up)(0)] fort € Js.

We are going to show that sup p(#) — 0 as k — oo. Without loss of generality we
teld;
assume that A, < A forall k > 1, since the remaining cases can be treated in a similar
way. For simplicity in presentation, we put v, = H (Ag, ug), k > 1,and v = H (X, u).
From Lemma 2.6 (v) it follows that for each t € [AT, T,

P (@) =[V(1) — Vi (1)

<IVAT) — (A T)] +/ |Gn(0, V(0), Vo) = Gy(o, Vi (0), Vo )ldo
AT
t

=p(AT) +Cu/

L(G)(pk(0)+ sup Pk(Q))dG-
AT

Oelo—t1,0]

Then an application of Lemma 1.4 yields
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t
pe(t) < sup  pr(0)exp (2CU/ L(a)da) , AT <t<T. (2.14)
AT

Oe[AT—7,AT]

Also, noticing that E;:flr is compact, we can find a constant M > 0 for which the
estimates

lu(®)] <M and |u;lo < M

hold for all u € ¥ ;T and ¢ € J, which together with (2.12) imply that for every
MT <t <AT,

t
ok (@) <PVOT) — (i T)| +/ |G, (0,V(0), Vo) — Gu(o, Wi (0), Vo) |do
T

1

<|luOiT) — urOi T)| + (6 +4M) L(o)do.

T
(2.15)
Then, note that
Pi(t) = [u(t) — ug(r)| fort € [—1, AT, (2.16)
which, together with (2.15), yields
AT
sup  or(0) < ||lu —ugl| + (6 +4M) L(o)do. 2.17)
OEAT —1,AT] MmT
Recalling (2.14)—(2.17), we end up with
AT
pr(t) <2||u — ug|l + (6 +4M) L(o)do
T
AT T
+ (Ilu —urll + (6 +4M) L(o)do) exp (ZCU/ L(a)da)
T AT

forevery t € J;. The right-hand side of the inequality above can be made small when
k is large independently of ¢ € J;. Accordingly, our result follows. Therefore, we
conclude that X ;”T is contractible, and thus Z‘; 7 1s an Rs-set. This proof is complete.

2.3.2 Noncompact Intervals Case

Throughout this subsection, let J; = [—1,0] URT. We first present the following
result.
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Lemma 2.7 Let X be reflexive. Suppose further that F satisfies the hypotheses (H\)
and (H,). Then Selp(u) # 0 for eachu € C(J;, D(A)).

Proof Letu € é(f,, D(A)).By Lemma 2.4, one canchoose f,, € Selpy,,, (tlj—zm))
for each m € N\ {0}, where F|jg ) is the restriction of F to [0, m], it is to say

Fliom(, x,v) = F(t,x,v) on [0, m] x D(A) x C([—7, 0], D(A)).

Consider the function f : Rt — X defined as

FO =D Xim-tm @ fu(0). 1 € RT,

m=1

where x[m—1.m) denotes the characteristic function of interval [m — 1, m). It is not
difficult to see that f € Selr(u) and itis locally integrable. This gives desired result.

Assume that {C ([a, m], X), /., N(a)} and {L' ([0, m], X), 7}, N\ {0}} are the
inverse systems established in Sect.1.2.4. Given ¢ € C([—1, 0], D(A)), we have
that the family {id S¢.m} 1s a mapping from (L'([0, m], X), rh, N\ {0}} into
{C([—7,m], X), n,r s N\ {0}}. Indeed, this can be seen from the observation

7L (Sp.p () = Sp.m(GL(f)) forall f € L'(0, p, X)and m < p.

So the family {id, Sy ,,} induces a limit mapping Sy « : ,M(R*' X) > C(JT, X)
such that Sy oo (f)l[=z,m1 = Sp,m (flj0,m1) foreach f € LIOC(IRJr X)andm € N\ {0}.
In this subsection, by a C O_solution of the Cauchy problem (2.1), we mean a
continuous function u : J, — D(A) which satisfies u(¢) = ¢(t) forall t € [—7, 0]
and is a C-solution in the sense of Benilan to u'(t) + Au(t) > f(t), where f €
L} (RY,X)and f(t) € F(t,u(t), u,) forae.t € RT.
Let X F .00 Stand for the set of all C O_solutions to the Cauchy problem (2.1). We
are in the position to present our main result in this subsection.

Theorem 2.3 Assume that the hypotheses (Hy)-(H,) are satisfied. Then X af o s an
Rs-set for each ¢ € C([—1, 0], D(A)).

Pfoof Assume that ¢ € C([—t, 0], D(A)). For every m € N\ {0}, let W,ff : 1€m —
2Kn be a multivalued mapping defined by

W) = Sy m(Selpy,,, () foreachu € K,
where

={u e C(—t,m], D(A)) 1 u(t) =¢(), t €[—1,0]}.

F\mm

Applying Theorem 2.1 and Lemma 2.5 to F'|jo ,; we obtain that Fix(W) =
and le(W,'f,5 ) is nonempty and compact. Also, it is seen, thanks to Theorem 2.2, that
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Fix(W,ff) is an Rs-set. Moreover, one finds that {12,,,, nf,ym, N\ {0}} is an inverse
system and

K :={u € C(J:, D(A)) 1 u(t) = ¢(t) forallt € [-7,0]}
=1lim{K,. 7’ . N\ {0},

Inorderto apply Theorem 1.19, we first show that the family {id, W¢}1samapp1ng
from {Km, n,rm, N\ {0}} into itself. Let p,m € N with p > m and u € K We
claim that

Selpyg,, Ul—cm) = {flom : f € Selpy, , (u)}. (2.18)

The case p = m is obvious. For the case p > m it is readily checked that { {0 :
f € Selpy,,,(w)} C Selry,,, (Ul[—rm). It remains to prove the reverse inclusion. Let
S € Selpy,,, (lj—rm)- Choose g € Selfy, , (u) and put

F@) = fFOx0m @) + &0 Xom (@), 1 €10, p).

We then obtain that f € Selry,, (), which gives Selr, . (ul—z.m) C{fliom : f €
Selpy, , (1)}, as desired.

Now, by using (2.18) and the fact 7”_,, (S, () = Sp.m (7T (f)) forevery f €
L'(0, p, X), we have

7l W) =1, (S p(Selpy,, ()))
=(Sp.m (L)) : [ € Selpy,,, W)}
={Spm(f) : [ € Selpyy,, Wl—cm)}
=Wo(x?, ).

Hence, {id, Wﬁ} induces a limit mapping ng ‘K — ZE , defined by

W2 ) = {w € K W_com = Spn(flio.m) for every m € N\ {0},
feL, (R, X)and f(t) € F(t,u(t),u,) forae.t € R"}

for each u € K. Here we used Lemma 2.7. Moreover, it readily follows that
Wt‘ﬁ)(u) = S4.00(Selp(u)) forevery u € K.
Now, applying Theorem 1.19 yields that Fix(ng) is an Rjs-set, which together

with relation Z‘i o = Fix(ng) implies that ZJQI; o 18 an Rs-set. Thus, the proof is
complete.
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2.4 Nonlocal Cauchy Problem

We are concerned with the existence of C?-solutions to the nonlocal Cauchy problem
(2.2) defined on right half-line.

The next lemma, which gives the convergence property of Selr in the case when
J = R*, plays an important role in the sequel.

Lemma 2.8 Let X be reflexive and F verify the hypotheses (Hy) and (H,). If {u,} C
é(f,, D(A)) with u, — ug in 5(]1, X) and f, € Selr(u,), then there exists f €
Selp(ug) and a subsequence { fy} of {f,} such that f, — f in L'([0, m], X) for
eachm € N\ {0}.

Proof Observe that u, — ug in C([—1, m], X) for each m € N\ {0}. Also, from
Lemma 2.4 it follows that Selr,,, is weakly u.s.c. with convex and weakly com-
pact values. Since f,j0,1] € Selr|,,,(Unl[—r,17), We see, in view of Lemma 1.7 (ii),
that there exists a subsequence of { f,}, say { f,.1}, and fl € Selry,,, (tol—z,11) such
that f, 1][0.1) converges weakly to fl in L'([0, 1], X). Similarly, we can select a
subsequence {fu2) of {fu1} and fo € Selpy,, (uoli—r,2) such that f, 202 — fo
in L'([0, 2], X). Proceeding in this manner, we can choose a family of subse-
quences { f,.m}, m > 1, of {f,} and a sequence {fm} such that f5, ,ulj0,m — fm in
L'([0, m], X). Note that fm € Selp,,, (Wol[—v.m)). Write

FO = X1y @ fu(0), t €RY.

m=1

It is clear that f € Selr(up). Moreover, we see that the diagonal sequence {f, ,},
as a subsequence of { f,,}, verifies f, nljo.m] = flio.m) In L'([0, m], X) foreachm €
N\ {0}. The lemma is proved.

To present our main result, we also need the following conditions.
(H3) There exists r > 0 such that [x, f]. <0 for each x € m with |x| =r,
teRY,y € C([ 7,0], D(A)) with |v]g <rand f € F(t, x,v).
(Hy) g : Cb(Jr, D(A)) — C([—1, 0], D(A)) verifies

(1) the restriction of g to €2, is continuous and |g(u)|g < r for each u € €2,, where
Q ={ue Cb(JI, D(A)) : ju(t)| <rforallt e J }, and

(ii) for each subset 7 C 2, which restricted to [§, 00) is relatively compact in
5([8, 00), X) foreach§ € (0, 00), g(%) is relatively compact in C ([—7, 0], X),
where r is given by (H3).

Remark 2.5 (a) Let us mention that the condition (ii) above on g is quite general.
In particular, we claim that the condition (ii) is satisfied when the condition (i)
above and the following condition are fulfilled: (H,) There exists 8’ € (0, o)
such that forevery u, w € , satisfyingu () = w(z) (t € [§/, 00)), g(u) = g(w).
To illustrate it, let us define a linear operator A : 5([8’, 00), X) —> 5(.]1, X) by
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A [ u(t)/, re oo)
u(d), tel-t,81.
Then it is clear that A is bounded and hence ¢ := g o A is a continuous func-
tion from €[5 00y to C([—7, 0], D(A)). Moreover, if % C Q, and %s,c0)
is relatively compact in C ([8, 00), X) for each § € (0, c0), then we see that
8(% |i5,%)) is compact in C([—7, 0], X). From this and (H,) it follows that
8U)(=g(U 15 .00)) C &(% |15.00))) is relatively compact in C([—7, 0], X).
(b) Note that the condition (H,), which was used in some situations of previous
research (cf. e.g., Wang [194] et al. and references therein), covers the multi-
point discrete mean condition mentioned in the Introduction.

For some 7 > 0, denote Q7 := {w € C([—71, 0], D(A)) : |w|p < 7} below.

Lemma29 Let7 >0 Qe ]fixed. Under the hypotheses (Hy)-(H>), the multivalued
mapping I' : Q7 — P(C(J;, X)), defined by I' (¢) = Z’;oofor each ¢ € Q7, is an
Rs-mapping.

Proof As proved in Theorem 2.3, I'(¢) is an Rs-set for each ¢ € Q,. It suffices to
verify the upper semi-continuity of I".
We first show that I” is quasi-compact. Let A C Q7 be a compact set and
Fr=(f el R X):|f(®) <L) +2x(r)) forae reR}, (2.19)

loc

where x5 is the unique continuous solution of

x7(1) = 7—{—/ L(o) (1 +2x:(0))do, t e R*.
0

An argument similar to that in Lemma 2.5 enables us to obtain that |v;|y < x7(¢) for
eacht € RT and v € I'(Q5). From this and the fact that

I'(@) C Sp.00(Selp(I'(¢))) for each ¢ € O,

we deduce, thanks to (H>), that I'(¢) € Sy 00(-%7) and hence I'(A) C S4,00(:F5).
Also, it is easy to see that .%7(o ) is uniformly integrable in L'([0, m], X) for each
m € N\ {0}. Applying Lemma 2.3 (i) gives that I" (A)|[—¢,m](C Sa.m(FFlo.m1)) isa
relatively compact setin C ([—t, m], X) foreachm € N\ {0}. Therefore, by Lemma
1.18 we see that I" (A) is relatively compact in C (J;, X), as desired.

What followed is to show that I" is closed. Let {(Qn, u,)} be a sequence in
Gra(I"), which converges to (¢, u) € C([—7,0], X) x C(J;, X). It is known that
there exists a sequence {f,} C % such that f, € Selp(u,) and Sy, o (f1) = un.
Then an application of Lemma 2.8 yields that there exists f € Selr(u) and a subse-
quence of {f,}, still denoted by {f,}, such that f,|0.m] = flj0.m] In L'([0, m], X)
for every m € N\ {0}. Recalling Lemma 2.1 and the representation of Sy ,,, we see
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that Sg , (flj0,m)) = ul{—r,m) forevery m € N\ {0}, which givesu = S o (f). Thus,
it follows that u € I'(¢). An application of Lemma 1.9 then completes this proof.

Theorem 2.4 Suppose that the hypotheses (Hy)-(Hy) are satisfied. Then the nonlo-
cal Cauchy problem (2.2) admits at least one C°-solution.

Proof Since D(A) is convex, it follows from Theorem 1.4 that there exists a continu-
ous extension id of identity mapping id : D(A) — D(A) satisfyingid(X) C D(A).
Letp: X x C([—7,0], X) — B,(0, 0) be defined by

(x,v), if (x,v) € B,(0,0),

1, I (x, v), in rest.

p(x,v) =’

Then we define the multi-value function F, : R™ x X x C([—7, 0], X) = P cv(X)
by

F,(t,x,v) = F(t, p(id(x),id(v))), (t,x,v) € Rt x X x C([—1, 0], X),

where i?i(v)(s) = i?igv(s)) foreach s € [—1, 0].

Since both p and id are continuous, it follows that F, verifies the condition (H).
Clearly it satisfies the condition (H,) (with a modified L(-)). Moreover, from (H3)
one has

[x, f1+ <0 (2.20)

foreachx € D(A) with |x| > r,t €e R*,v € C([—71,0], D(A))and f € Fy(t, x,v).
In the sequel, let X qf " be the set of all C O_solutions to the Cauchy problem of

the form
u'(t) € Au(t) + f(t), teR*,

f(t) € Fplt,u(t),u;), teR", (2.21)
u(t) = ¢(1), te[—1,0].

Define the multivalued mapping I, : Q, — P(a (J~,, X)) by

@) = X, foreach¢ € Q,.

Then based on the considerations above with Lemma 2.9 we deduce that I, is
an Rs-mapping. Moreover, we claim that I',(Q,) C £2,. In fact, if this is not the
case, then we can assume that there exist ¢ € Q,, u € I',(¢) and #y > 0 such that
u(ty) > r. Therefore, it can find & € (0, ty] such that |u(z)| > r on [ty — h, ty] and
lu(ty — h)| = r, since u is continuous and |u(0)| < r. We thus use (2.20) to obtain

r < |u(to| = u(to — h)| +/ [u(o), f(o)]l+do < |u(to —h)| =r,
—h

)

where f € Selp(u) such that u = Sy o (f), which is a contradiction.


http://dx.doi.org/10.1007/978-981-10-6656-6_1

58 2 Evolution Inclusions with m-Dissipative Operator

Put
0, =co(g())) and Q' =To(1,(Q})), i =0,1,

where Q? := ,. Then, by (Hy) (i) we have Q? C Q,, which together with the result
I,(Q,) C Q, implies that Q! C Q. From this it follows that I',(Q}) C @ Cc Q.
Therefore, the following composition is well-defined:

I,
rog: Q' -% ol 5 ql.

We seek for solutions in ©2!. To do this, we show that the multivalued mapping
I, o g has a fixed point in Q!. Observe that ! and Q! being respectively convex
subset of 6(.]1, X) and C([—7, 0], X), are AR-spaces. Also, (Hy) (i) implies that g
is an Rs-mapping.

Next, we verify that the set Q!5 o) is relatively compact in C([8, 00), X) for
each § > 0. Assume that § > 0 and m € N(§). Let .%, be defined by (2.19) with r
instead of 7. As

Tp(@Dljo,m) C {u(-, 0, x, f) € C(10,m], X) : x € D(A) with |x| <7, f € Frljo.m}

and Lemma 2.2, we find that Fp(Q(,))I[,;,m] is relatively compact in C([§, m], X).
Moreover, using Theorem 1.1 we obtain that co([ p(Q(r)) |(s,m1) 1s relatively compact
and hence E(FP(Q(,)N[(;,,"]) is compact. Now, noticing E(F,,(Q?)I[g,m]) D SZ} [15.m1]
it follows that Q! (5., is relatively compact, which together with the arbitrariness of
m and Lemma 1.18 yields that Q} I1s,00) 18 relatively compact in C ([8, o0), X). Hence
g(Q}) is relatively compact in C([—7, 0], X) by the arbitrariness of § > 0 and (Hy)
(ii). We thus see, again using Theorem 1.1, that Q! is compact.

Since I, is u.s.c. with compact values, we obtain the compactness of Fp(Q})
due to Lemma 1.11. Therefore, we conclude from the result I, (g(Q})) C Fp(Q})
and Theorem 1.16 that there exists a fixed point u of I', o g in ©2!. Moreover, it is
readily checked that u(¢) € D(A) and max{|u(?)|, |us|o} < r foreacht € R*. From
this we see F, (t, u(t), u;) = F(t, u(t), u,) forevery t € R™, which implies that u is
a C%-solution of the nonlocal Cauchy problem (2.2). The proof is complete.

2.5 Applications

As samples of applications, we consider a system of partial differential inclusions
defined on right half-line in this section. The topological characterization of solution
set to the system considering a time delay condition is discussed. Then, for the
system subject to a nonlocal condition, we establish the existence of C°-solutions in
the absence of nonexpansive condition on nonlocal function. These examples do not
aim at generality but indicate how our theorems can be applied to concrete problems.
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Our examples are inspired directly from the work of [192, Example 5.1] (see also
[189]).

Example 2.1 Let Q be a nonempty bounded open set in R” with C2-boundary 9€2,
p € [2,00) and A > 0. Consider the system of partial differential inclusions in the
form

”_23_”) A ulPPue F(t, &, ut, ), u, (£)),

M~ 0 | 0u
( E;

(t,§) e R" x Q, (2.22)

—cos(7, 7€) € Bu(t, &), (1,6 e RT x 9Q

subject to a initial history
u(t,§) = ¢, §5), .8 e[-7,0]xQ, (2.23)

where the partial derivatives are taken in the sense of distributions over €2, 7 is the
outward normal of 0€2, {a), ..+, & }is the canonical base in R”, B:DB)CR—
2% is a maximal monotone operator with 0 € D(8), 0 € (0), and

F@t, & u,v) =[fit. & u,v)+h&), f2(t,§, u,v) +h(E)]

is a closed interval for each (7, &, u,v) € Rt x Q x R x C([—7, 0], L>(£2, R)), in
whichh € L>(2,R)and f; : Rt x @ x R x C([—1, 0], L?>(R2, R)) — Rare given
functions such that f(¢, &, u,v) < fr(t, &, u,v) for each (t,&,u,v) € Rt x Q x
R x C([—1, 0], L?>(22, R)), fi is l.s.c., and f, is u.s.c.

Here, our objective is to investigate the topological characterization of solution
set to the system (2.22)—(2.23).

Take X = L?(2, R) and denote its norm by | - | and inner productby (-, -). Assume
that f1, f> verify the following hypothesis:
[(A))] there exist L1, L, € L>®°(R*, RT) such that

|fit, &, u,v)| = Ly (1) (Jul + [vlo) + La(t), i=1,2

foreach (1, &,u,v) e RT x Q@ x R x C([—1, 0], X).
Before stating our main results, we first present the following lemma, which can
be seen from [192, Lemma 5.1].

Lemma 2.10 Suppose that (Ay) is satisfied. Define a multivalued function F : RT x
XxC(—7,0],X) > P(X)as

F(t,u,v) ={x e X :x©&) € [f1(t,§,u5),v) + h(§), f2(t,§, u€),v) + h(§)] ae}
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for each (t,u,v) € R x X x C([—1, 0], X). Then F has nonempty, convex and
closed values, F (-, u, v) has a strongly measurable selection for every (u,v) € X X
C([—7,0], X), and F(t, -, -) is weakly u.s.c. for each t € RT. Moreover,

|F(t,u,v)| < max{L;(t), mes: ()L (1), mes? () La(r) + |AI}(1 + [u] + [v]o)

forae t €e RY, eachu € X andv € C([—1, 0], X).

Theorem 2.5 Under the hypothesis (A}), the set of all C°-solutions to the system
(2.22)—(2.23) is an Rs-set for each ¢ € C([—7, 0], X).

Proof Let A: D(A) C X — X be defined by

29 | du (P2 du
=3 wl %)
29 /| 0u P2 du
D(A):{MGWl’p(Q)ga—gl(‘a—sl 8_51) EX, and
Z | du (P2 du - —
- — —cos(n, e;) e Bw()) ae. & €0Qy.
;’asi og P |

From [189, Example 1.5.4] and [49, Théoreme 1.10, p.43] we see that A is an
m-dissipative operator with 0 € AQ and D(A) = X. In addition, as in [189, Exam-
ple 2.2.4 and Corollary 2.3.2], A generates a compact semigroup of nonexpan-
sive mappings on X, which implies that the hypothesis (Hp) holds. Also, by
Lemma 2.10 one finds that F verifies conditions (H;) and (H,) with J = R* and
L(t) = max{L,(¢), mes? () L(1), mes? ()L () + |h|}. Therefore, applying The-
orem 2.3 gives the result as desired.

Next, we consider the system (2.22) equipped with a nonlocal condition as follows:

u(t, &) =/ N (u@+06,8)du®d), (t,§) €[—r1,0] x Q, (2.24)

where u is a o -finite and complete measure on [7, o) such that

u([t,00)) =1 and lim+ u(z,s])) =0.

We assume that 4" : R — R is a continuous function satisfying either for some
Ci,Cy>0andb € [0, 1),

[ A (V)] < Ci+ Csly|” forall y € R, (2.25)

or
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A (y)] < |y| forally € R. (2.26)

It can define a Nemytskii operator .4” from X into itself by A4 (x)(§) = A (x(§))
for each x € X. Moreover, one finds that .4 is continuous on X.

Remark 2.6 1f (2.25) is satisfied, then a direct computation upon Holder’s inequality
yields that for each x € X,

| (x)] < Cymes? () + Cames = (Q)|x|°.
Write, for each [ > 0,

@ (1) = max{Cymes: (Q) + Cames = (Q)1°, ).

Theorem 2.6 Let (A)) and (2.25) or (2.26) hold. Suppose further that the following
hypothesis is satisfied.
(A,) There exists ¢ > 0 such that for every (t, €, u,v) € Rt x Q@ x R x C([—t, 0],

X),

max{ufi(t, &, u,v) i = 1,2} < —cu®.

Then the system (2.22) and (2.24) has at least one C°-solution.

Proof Letr > 0 be such that 7 > ¢~ !|h| and @ (r) < r. Take (t,u,v) € Rt x X x
C([—7,0], X) with |u| = rand f € F(t, u,v).Noticing (A,) and using an argument
similar to that in [192, Theorem 5.1] we obtain

[, f1s < Jul”! /Q (—clu(®) + @ h(E)) di < —cr + |h] <0,

which yields that (H3) remains true.
Next, let us define a mapping g : Cp(J;, X) = C([—7, 0], X) as

gw)(t) =/ N (u(t +60))du®), ueCy(Jy, X), t €[—1,0].

Taking u € 5b(]~f, X), we have, in view of u[7, o0) = 1, that

1

lg@)()lo = sup (/ Ie/V(M(t+9))|201M(9))2

t€[—1,0]

<o (Sup Iu(t)l),
teR+

which implies that |g(u)]o < r for all u € 2,. Also, by means of Lebesgue’s dom-
inated convergence theorem it is not difficult to see that g(u)(-) is continuous on
[—7. 0]
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We process to show that g is continuous on €2,. Given ¢ > 0. Let {u,} be a
sequence in €2, such that u, converges tou € C(J;, X). Since u is o-finite, we can

choose m’ € N\ {0} such that u[m’, c0) < 4;—(”. Therefore, we have that for each
re [_T’ O],

Ig(un)(t)—g(u)(t)ls/ |</V(un(t+9))—JV(u(t+9))|dM(9)+%. (2.27)

On the other hand, noticing that

Unli—z.m) = Ul|[—z. in C([—7, m'], X) and 4" is continuous on X,

we conclude that .4 is uniformly continuous on {u, (¢) : n > 1, € [—t, m’]}, which
implies that

A (Wnliom)) = A (lo,my) in C([0, m], X)

as n — 00. So, there exists N > 0 such that foralln > N,

’

sup / [A (un(t +0)) = A (u(t +6)|dn(6) <

te[—1,0]

| ™

This together with (2.27) proves the desired result. _

Assume that % C Q, and % |5, is relatively compact in C([8, 00), X) for each
8 > 0. To prove that g(% ) is relatively compact in C ([—1, 0], X), it suffices to show
that g(% ) is totally bounded. Given & > 0, it follows that there exists 8y > 0 such
that w([t, T + &) < %(r).

Next, to construct a finite e-net of g(%/), we need to define an operator

5, : Cp([80, 00), X) — C([—7, 0], X)

as

g5, (u)(t) = N (u(t +0))du®), ue Cp([s,0), X), t € [—1,0].

+8

The same idea as above can be used to prove that g5, is continuous on the set
{u € Cp([89, 00), X) : lu(®)] < r forallz € [8, 00)}.

Since % |1s5,,00) 18 relatively compact, we obtain that gs, (% |(s,.o0)) is relatively com-
pactin C([—t, 0], X) and thus it admits a finite %-net, denoted by 7; = {vy, - -+, v }.

We claim that 7; is a finite e-net of g(%/). Indeed, given v € g(% ), we have that
there exists u € % such that v = g(u). We choose v; € ¥; such that
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€

Vi — &s, (15,00 |0 < 3 (2.28)
Here we are using the fact g5, (it|(5,,00)) € 850 (% li55,00))- Also, a direct computation
gives

T+80
lg(u) — gs, (utl(sy,00))l0 < sup / | A (u(t +6))1d ()

re[—7.0]
€

=5,
2

which, together with (2.28), implies that |v — v;|gp < €, as desired. Therefore, the
desired result follows from Theorem 2.4.

At the end of this chapter, we leave two problems for further research.

(1) Is Theorem 2.4 true for the case when either A is a linear operator generating
a Cp-semigroup or A is replaced with a family of linear operators generating
an evolution system? More specially, is it true for a linear operator A whose
resolvent satisfies the estimate of growth —y (—1 < y < 0) in a sector of the
complex plane? Let us note that such operator, generating a semigroup of growth
1 + y,is called an almost sectorial operator (see e.g., Wang et al. [195]) for more
details).

(2) Is Theorem 2.3 true under the weaker condition that the semigroup generated by
A is only equicontinuous?

We believe it is possible to find some interesting positive answers.

Remark 2.7 1t is noted that if A is a linear operator generating a Cyp-semigroup, A
is replaced with a family of linear operators generating an evolution system, or A is
an almost sectorial operator, then in treating the nonlocal Cauchy problem (2.2), it
is inappropriate to impose the invariance condition (H3) on F'.
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