
Chapter 2
Basics of Quandles

Abstract We study the basics of quandles. In Sect. 2.1, we define quandles and
examine some properties. Although the reader who first sees the definition may think
it incomprehensible, we give many examples of quandles, and observe that quan-
dles are somehow compatible with geometry in some sense. After that, in Sect. 2.2
we see that any quandle is characterized by (a union of) “homogeneous quandles”
(Theorems 2.23 and 2.24). In Sect. 2.5, we give some comments on quandles.
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2.1 Definitions and Examples of Quandles

We start by introducing the definition of quandles, and see basic notation.

Definition 2.1 A quandle is a set X with a binary operation � : X × X → X
satisfying the following three conditions:
(QI) The identity a�a = a holds for any a ∈ X .
(QII) The map (•�b) : X → X defined by a �→ a�b is bijective for any b ∈ X .
(QIII) The distributive identity (a�b)�c = (a�c)�(b�c) holds for any a, b, c ∈ X.

By a�Nb, we mean, (· · · (a�b)�b · · · )�b, the N -times on the right operation
with b. Analogously, we denote the inverse mapping of •�b : X → X by •�−1b.

A quandle X is of type n, if there exists n ∈ Z ∪ {∞} which is the minimum
number satisfying x�n y = x for any x, y ∈ X . That is,

Type(X) = min{ n | x�n y = x for any x, y ∈ X } ∈ N ∪ {∞}.

We should pay attention to that, if X is of finite order, then Type(X) < ∞ (Why?).
The concept of type is useful to capture illustrations for quandles, as seen in Examples
2.4–2.10.

Next, we discuss homomorphisms among quandles, and give some remarks.

Definition 2.2 (I) A map f : X → Y between quandles is called a homomorphism
if f (a�b) = f (a)� f (b) for any a, b ∈ X .
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(II) We write HomQnd(X,Y ) for the set of quandle homomorphisms from X to Y :

HomQnd(X,Y ) := { f : X −→ Y | ∀x, y ∈ X, f (x�y) = f (x)� f (y) }.

(III) A subset A of a quandle X is called a subquandle (of X) if A also forms a
quandle under the operation �.
Remark 2.3 (1) There are many papers on quandles, which denote the binary oper-
ation by ∗, �, or � instead, and present the axiom (QIII) by left distribution. When
reading papers on quandle, such differences require careful attention.
(2) The axiom (QIII) implies that the bijective map •�c : X → X for any c ∈ X is
a quandle homomorphism.
(3) Besides, for any quandles X and Y , every constant map X → Y is a quandle
homomorphism. We often deal with these maps as something trivial.
(4) There are many cases that subsets A, B,C ⊂ X satisfy (A�B)�C �= (A�C)�
(B�C).
(5) In seminar, it is useful to abbreviate quandle as “qd ′l”.

Next, we establish some examples of quandles, and observe a wide variety of
quandles. The reader may skip the check for the quandle axioms hold since these
checks are basic and direct calculations. As observed below, a quandle is a set con-
sisting of, figuratively speaking, ‘operations centered at y ∈ X itself’. The hasty
reader may skip some examples, but should understand Theorems 2.23 and 2.24.
Actually, the theorems unify all the examples, and are keys in this book.

Example 2.4 (Trivial quandle) Any set X is with the operation x�y = x for any
x, y ∈ X is a quandle called the trivial quandle.

Example 2.5 (Dihedral quandle Dm) Consider the following situation:

X = Dm = Z/m, x�y := 2y − x for any x, y ∈ X.

Then X is a quandle of type 2. Figuratively speaking, this operation •�y is the
reflection at y, where we identify X with the vertices of the regularm-sided polygon.

Example 2.6 (Alexander quandle) LetZ[T±1] be theLaurent polynomial ring. Then,
any Z[T±1]-module M is made into a quandle by the operation

x � y := y + T (x − y) (2.1)

for x, y ∈ M . We call this quandle an Alexander quandle, and later study it in
detail (see Sect.B.3). The right operation (•�y) with y ∈ M can be geometrically
compared to the T -multiple with center y; see Fig. 2.1. Furthermore, we can easily
see Type(M) = min{N |T N = 1}. (This example is generalized in Sect. 3.2.3).

In the following example, we can illustratively verify the distributive law (QIII) .

http://dx.doi.org/10.1007/978-981-10-6793-8_3
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Fig. 2.1 Topological descriptions of the Alexander and spherical quandle operations
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Fig. 2.2 Topological descriptions of the distributive law on S2 and symmetric spaces (cf. Congru-
ence transformation)

Example 2.7 (A quandle on the 2-sphere S2) Let X be the 2-sphere S2, and fix
θ ∈ R. For two points x, y ∈ S2, we define a map (•�y) : S2 → S2 by the θ -rotation
centered at y. So we can easily see Type(X) < ∞ iff θ/2π ∈ Q. To check the rest
(QIII) can be done by observing the congruent transformation as in Fig. 2.2.

More generally, the concept of quandles contains the symmetric space in differ-
ential geometry.

Example 2.8 (Symmetric space) Let X be a symmetric space, i.e., a C∞-manifold
equipped with a Riemannian metric such that each point y ∈ X admits an isometry
sy : X → X that reverses every geodesic line γ : (R, 0) → (X, y), meaning that
sy◦γ (t) = γ (−t). Then, X has a quandle structure of type 2 defined by x�y := sy(x)
(see, e.g., [Loos, Joy, E3]). (Incidentally, similarRiemannianmanifoldswith quandle
structure of type > 2 are called generalized symmetric space; see [Hel, K80]).

While the examples above are C∞-manifolds, we can find further examples over
commutative fields. Here are two quandles, in analogy of Lie groups of type B, C,

and D (see [Tak] for details of the scheme structure).

Example 2.9 (Spherical quandle) Let F be a commutative field of characteristic
�= 2. Let 〈, 〉 : Fn+1⊗Fn+1 → F be the standard symmetric bilinear form. Consider

SnF := { x ∈ Fn+1 | 〈x, x〉 = 1 }.

We define the operation x�y to be 2〈x, y〉y− x ∈ SnF . This pair (SnF , �) is a quandle
of type 2, and is referred to as the spherical quandle (over F). This operation •�y
can be interpreted as a 180◦-rotation centered at y.
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Fig. 2.3 The Dehn twist
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Example 2.10 (Symplectic quandle) Let F be a commutative field, and fix r ∈
F \ 0. Let �g be the closed oriented surface of genus g. Let 〈, 〉 denote the standard
symplectic 2-form H 1(�g; F)×H 1(�g; F) → F . Letting X be thefirst cohomology
with F-coefficients outside 0, and we define a binary operation

X = H 1(�g; F)�{0} = F2g
�{0}, x�y := r〈x, y〉y + x ∈ X

Then this set X is made into a quandle, and is called a symplectic quandle (over F).
The operation •�y : X → X is usually called the transvection of y; see, e.g., [Jac,
MR]. The quandle X is of type p =Char(F) since x�N y = Nr〈x, y〉y + x .

Furthermore, we can get a quandle from the closed surface �g of genus g:

Example 2.11 (Dehn quandle) Consider the sets, Dg and Dns
g , defined to be

Dg := { isotopy classes of (unoriented) simple closed curves γ in �g }, (2.2)

Dns
g := { isotopy classes of non-separating simple closed curves γ in �g }.

Then, for α and β ∈ Dg , we can consider τβ(α) that is called the (positive) Dehn
twist of α along β; see Fig. 2.3.1 Then, we define α�β ∈ Dg by τβ(α); The pair
(Dg,�) is a quandle, and called the Dehn quandle, according to [Zab]. Further, the
subsetDns

g ⊂ Dg is a subquandle. As seen in [Zab] or in Sect. 9.2, the Dehn quandle
Dg is applicable to study 4-dimensional Lefschetz fibrations.

As is seen above, quandle structures can be roughly summarized to “operations
centered at y on homogenous sets”. In the next section, we will justify this imagery
in mathematical terms.

Besides, given a groupG, there exist many ways to construct quandles as follows.

Example 2.12 (Core quandle) A group X = G as the quandle operation: a�b =
ba−1b. This quandle is referred to as the core quandle, and is of type 2.

For instance, every Lie group G has a symmetric space as in Example 2.8; see
[Hel]. The associated quandle structure is known to be this core quandle on G.

1The explicit definition is as follows: Regard every element α and β in Dg as an embedding of the
anulus S1 × [0, 1]. Let τβ(α) be a map from �g to itself which is the identity outside of Im(β) and

inside Im(β) we have f (s, t) = (se
√−12π t , t). Then τβ(α) is a Dehn twist of α about the curve β;

see also [FM] for details.
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Example 2.13 (Conjugacy quandle) Let X = G. Then, the conjugacy quandle is
defined to be X with quandle operation a�b = b−1ab. This quandle is conjugacy
quandle written in Conj(G). In addition, any subset of G that is closed under conju-
gation is also a subquandle.

Example 2.14 More generally, for any n ∈ Z, X = G has a quandle operation
a�b = b−nabn .

Example 2.15 (Coxeter quandle) If G is a Coxeter group (see Example B.16 for the
definition), let X be the subset consisting of elements conjugate to the generators
of G. Namely, X is the set of the reflections in G. Then, X can be regarded as a
quandle of type 2.

Example 2.16 (Free quandle) Let I be a set of indices, and FI be the free group
of basis xi with i ∈ I . Then the free quandle of X , denoted by Qfree

I , is the con-
jugacy class of xi ’s (i ∈ I ) with the conjugacy quandle operation, i.e., Qfree

I =
∪i∈I, g∈FI g

−1xi g ⊂ FI .

2.2 Characterization Theorem of Quandles from Groups

The purpose is to show Theorems 2.23–2.24. These theorems indicate that any
quandle is characterized by (a union of) the homogeneous quandles in Definition
2.17. Roughly speaking, quandle structures turn to be ‘good’ operations defined on
homogenous spaces. To begin with,

Definition 2.17 (Quandles on homogenous sets, Joyce [Joy] and Matveev [Mat])
Let G denote a group, and H denote a subgroup of G. Let ρ : G → G be a

group isomorphism such that ρ(h) = h for any h ∈ H . Then, the left quotient H\G
becomes a quandle with operation [Hx]�[Hy] := [Hρ(xy−1)y]. It is easy to check
the well-definedness.

For example, if ρ is the map g �→ z−1
0 gz0 for some z0 ∈ G and if z0 ∈ G

commutes with any elements of H , then the quandle operation on H\G is given by

[Hx]�[Hy] = [Hz−1
0 xy−1z0y] ∈ H\G, (2.3)

for any x, y ∈ G. We later denote this quandle by the triple (G, H, z0).

Example 2.18 Some quandles in the preceding section are expressed by such triples
(G, H, z0) as follows:
• The dihedral quandle X = Z/m. Here G is the dihedral group Z/m � Z/2, and
H = {0} � Z/2 � (0, 1) = z0.

•Thequandle on the2-sphere S2.HereG = SO(3) ⊃ SO(2), z0 =
(
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

)
.
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• The spherical quandle SnF . Here G is the orthogonal group O(n + 1; F), and
H := O(n; F) with z0 = diag(1, . . . , 1,−1).
•The symplectic quandle X ; HereG is the symplectic group Sp(g; F), with a certain
subgroup H which contains Sp(g − 1; F); see Lemma B.2 for details.

In addition, to state the theorems, we introduce a group As(X):

Definition 2.19 Given a quandle X , we define the associated group As(X) to be
the abstract group defined by generators ex labeled by x ∈ X modulo the relations
ex · ey = ey · ex�y with x, y ∈ X : In other words, As(X) has the presentation

As(X) = 〈 ex (x ∈ X) | e−1
x�y · e−1

y · ex · ey (x, y ∈ X) 〉.

Note that every quandle homomorphism X → Y canonically induces a group
homomorphism As(X) → As(Y ). Hence, we can regard As(•) as a functor from the
category of quandles to that of groups. Further, we can easily show the adjointness
by a routine work regarding adjoint functors: More precisely,

Lemma 2.20 The functor As is the left adjoint to the functor Conj; see Example
2.13. Namely, for any quandle X and any group G, there is a natural bijection

Homgr(As(X), G) � HomQnd(X, Conj(G)).

In particular, by adjointness, we can define small (co)limits in the category of quan-
dles (see [Mac, Chapter V.5] for the details).

Next, we introduce connectivity and state Theorem 2.23. Define a right action

X � As(X) by x · ey := x�y

for x, y ∈ X . One can easily check the well-definedness.

Definition 2.21 Let X be a quandle. The connected components of X are the orbits
of the action of As(X) on X . We denote the orbits by O(X).

Further, a quandle X is said to be connected if the action of As(X) on X is
transitive, i.e., |O(X)| = 1. In other words, X is connected iff every pair (x, y) ∈ X2

admits a1, . . . , an ∈ X such that y = (· · · (x�ε1a1)�ε2 · · · )�εn an for some ε j ∈ {±1}.
Remark 2.22 For any quandle epimorphism f : X → Y , if X is connected, so is Y .

Then, any connected quandle is reduced to nothing but Definition 2.17 as follows:

Theorem 2.23 ([Joy, Mat]) Let X be a connected quandle and fix x0 ∈ X. Let H
be the stabilizer of x0, i.e., H = Stab(x0) = {h ∈ As(X) | x0 · h = x0 }. Equip the
quotient H\As(X) with a quandle operation from the triple (As(X), H, ex0).

Then, the map
E : As(X) −→ X; φ �−→ x0 · φ

induces a quandle isomorphism (As(X), H, ex0) ∼= X.
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Proof. Notice that, from a set-theoretical viewpoint, the map E descends to a bijec-
tion between the left quotient H\As(X) and the quandle X . Hence, it is enough to
show that E is a quandle homomorphism. Indeed, compute:

E(φ�ψ) = E(z−1φψ−1zψ) = ((((x0z
−1)φ)ψ−1)z)ψ = (((x0φ)ψ−1)�x0)ψ

= (((x0φ)ψ−1)ψ)�(x0ψ) = (x0φ)�(x0ψ) = E(φ)�E(ψ) ∈ X,

for any φ,ψ ∈ As(X). Hence, this completes the proof. �
Remark. Such a representation as a triple (G, H, z) of X is not unique. For example,
we may replace As(X) by “the inner automorphism group Inn(X)” in Sect. 2.3.

Exercise 1 Describe explicitly quandle structures on all the regular polyhedra,
which should be subquandles of the spherical quandle on S2; see [HSV, Example
8.8] for the answer (cf. Platonic solid).

Exercise 2 Consider the (3 × 3 × 3)-rubic cube. As is known, every situation on
the rubic cube (with certain orientation and boundary conditions) can be solved. In
other words, some group transitively acts on every situation of the cube. So, describe
explicitly an appropriate quandle structure of type 4 on the rubic cube.

Finally, some adjustments are needed to represent the non-connected case. Given
a group G and an index set I , we fix elements zi of G, and subgroups Hi of G with
respect to each index i ∈ I . Assume that, for each i ∈ I , any element hi in Hi

satisfies the commutativity zi hi = hi zi . Then, we can define a quandle, denoted by

(Hi\G; zi | i ∈ I ),

to be the disjoint union of the left quotients

X := �i∈I (Hi\G)

with the quandle operation

[Hi x]�[Hj y] = [Hi z
−1
i xy−1z j y], for any x, y ∈ G. (2.4)

It is left to the reader to check the well-definedness and the quandle axioms.

Theorem 2.24 ([Joy, Mat])Every quandle X is representable as (Hi\G; zi | i ∈ I ).

Proof. LetG be As(X), and I be the orbit set of the action X � As(X). Decompose
X as �i∈I Xi orbitwise. For each i ∈ I , we fix an element xi ∈ Xi , and denote
exi ∈ As(X) by zi , and let Hi be the stabilizer of xi . Then, we have a quandle
(Hi\G; zi | i ∈ I ). Define a map Ei : G → Xi by φ �→ xi · φ. Note the bijection
between Xi and the left quotient Hi\As(X) for any i ∈ I . In a similar way to the
proof of Theorem 2.23, the disjoint union �i∈I Ei induces a quandle isomorphism
X ∼= (Hi\G; zi | i ∈ I ). �
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2.3 Quandles and Centrally Extended Groups

As seen in the preceding theorems, it is important to determineAs(X). In this section,
we propose an outline to compute As(X). Here, we should emphasize a close relation
between central extensions of groups and quandles

We start by introducing inner automorphism groups.

Definition 2.25 The inner automorphism group, Inn(X ), is defined as the subgroup
of the automorphism group generated by (•�x), where x runs over every elements
of X (here we should recall Remark 2.3). Concisely, the group is formulated by

Inn(X) := 〈 (•�x) 〉x∈X ⊂ Bij(X, X).

For a general quandle X , it is not always easy to describe its group of inner automor-
phisms (or even its full automorphism group). However, in some familiar cases we
can do so. For example,

Example 2.26 We consider a group X = G to be the conjugacy quandle in Example
2.13. Then, by definitions, the inner automorphism group Inn(X) is exactly the usual
one in group theory; i.e., Inn(X) is isomorphic to G/Z , where Z is the center of G.

In contrast to Lemma 2.20, quandle homomorphisms do not always yield group
homomorphisms on Inn(•); find such non-faithful examples as an exercise.

However, we will see that the group Inn(X) is useful to analyze As(X) in detail
(see Summary below and Theorem 2.29). To see this, it is worth noting the equality

ex ·g = g−1ex g ∈ As(X) for x ∈ X, g ∈ As(X), (2.5)

which is shown by induction on the length of g. Regard the action of As(X) as a
group epimorphism ψX from As(X) to Inn(X). Thus, we have a group extension

0 −→ Ker(ψX ) −→ As(X)
ψX−→ Inn(X) −→ 0 (central extension). (2.6)

Here, we should notice that this kernel ofψX is contained in the center (Indeed, apply
g ∈ Ker(ψX ) to (2.5)). Furthermore, recalling the 5-exact sequence associated with
(2.6) [see [Bro, Wei1] for the proof], we immediately have an exact sequence

H gr
2 (As(X)) → H gr

2 (Inn(X)) → Ker(ψX ) → H gr
1 (As(X)) → H gr

1 (Inn(X)) → 0.
(2.7)

(See Sect. 7.1 for the definition of group homology H gr
n (G), though we need not it

here.)
� �

Summary. In order to analyse As(X), we compute the group homologies
H gr

1 (As(X)) and H gr
2 (As(X)) and determine the group Inn(X).

� �
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For this purpose, we begin by studying H1(As(X)):

Lemma 2.27 With respect to an element, i , in the orbit (i.e., i ∈ O(X)), define a
group homomorphism

εi : As(X) −→ Z by

{
εi (ex ) = 1 ∈ Z, if x ∈ Xi ,

εi (ex ) = 0 ∈ Z, if x ∈ X�Xi .
(2.8)

Then, the direct sum ⊕i∈O(X)εi yields the abelianization H1(As(X)) ∼= Z
⊕O(X).

If X is connected, i.e., |O(X)| = 1, then the epimorphism εi splits. In particular,

As(X)ab ∼= Z, and As(X) ∼= Ker(εi ) � Z.

Proof. The equality (2.5) means that εi (ex ) = εi (ey) ∈ Z if and only if x and y are
contained in the same orbit. Hence, the sum ⊕i∈O(X)εi is the maximum map among
abelian groups, that is, the abelianization.

The latter statement is clear, since Z is free and is generated by εi (ex )’s. �

Since we later use this lemma, the reader should keep it in mind. Next, we will
see that the concept of type is important for studying the centrality of As(X):

Lemma 2.28 Let X be a connected quandle of type t < ∞. Then, for any x, y ∈ X,
the identity (ex )t = (ey)t holds in the central kernel Ker(ψX ).

In particular, (2.7) implies that H1(Inn(X)) is annihilated by t.

Proof. Since b�t x = b in X by definition, (ex )t lies in the kernel Ker(ψX ). Further,
the connectivity admits g ∈ As(X) such that x · g = y. Hence, it follows from (2.5)
and centrality that (ex )t = g−1(ex )t g = (ex ·g)t = (ey)t as desired. �

Finally, we state a theorem on H gr
2 (As(X)) as a useful estimate:

Theorem 2.29 For any connected quandle X of type tX (possibly, X could be of
infinite order), the second group homology H gr

2 (As(X)) is annihilated by tX .
In particular, for any prime � ∈ Zwhich is relatively prime to tX , the �-localization

of the sequence (2.6) gives the isomorphism

Ker(ψX )(�) ∼= Z(�) ⊕ H gr
2 (Inn(X))(�).

The proof will appear in Sect. 6.2. In conclusion, metaphorically speaking, As(X)

turns out to be the ‘universal central extension’ of Inn(X) up to tX -torsion; hence,
this theorem emphasizes importance of the concept of types. Furthermore, as seen
in Sect.B.3, one can sometimes determine As(X) by using this theorem.

http://dx.doi.org/10.1007/978-981-10-6793-8_6
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2.4 Link Quandles and Their Properties

In this section, we turn to knot theory from the homological view of quandle.
In knot theory (or the geometrization theorem), the fundamental group of the com-

plementary space is quite important. Analogously, this section studies fundamental
quandles of links, and sees that the concept goes well with the knot theory.

Since this section uses some knowledge of knot theory, we roughly review some
notation (see Fig. 2.4 and Appendix A for more details). A link is an oriented C∞-
embedding of L : �mS1 ↪→ S3. A link diagram is a pair of a transverse immersion
D : �S1 → R

2, “with information of signs of crossings”. Every link is represented
by some link diagram D, via a canonical projection S3 � {∞} = R

3 → R
2; see

Reidemeister theorem A.7. Then, π1(S3�L) has a finite group presentation, which is
described by the arcs and crossings of D; seeWirtinger presentation in TheoremA.8.
Furthermore, when we use some theorem in this section, we cite it from Appendix
A case by case.

Next, using homogenous quandles defined in (2.4), we algebraically introduce

Definition 2.30 Let L be a link embedded in S3 with #L-components, and I be
{1, . . . , #L}. For � ∈ I , we fix a meridian longitude pair m�, l� ∈ π1(S3�L) as in
Sect.A. Then, the link quandle (of L), QL , is defined to be the quandle arising from
(H�\G; z� | � ∈ I ), where we set

G := π1(S
3
�L), H� := 〈m�, l�〉, z� := m�.

When #L = 1, we often call QL the knot quandle (of L).

We can easily check that QL is independent of the choices of (m�, l�), up to
quandle isomorphisms. Further, we note that the link quandle QL recovers the fun-
damental group π1(S3�L):

Theorem 2.31 ([Joy, Mat]) For any link L, the associated groupAs(QL) is isomor-
phic to the fundamental group π1(S3�L).

Proof. Let us consider a homomorphism As(QL) → π1(S3�L) which takes eH�x

to x−1m�x . Thus, we shall construct the inverse mapping hereafter.
For this, we prepare notation. Fix a link diagram D. For each �, we con-

sider the path P� along the longitude l� as illustrated in Fig. 2.5. Furthermore, let
α1, α2, . . . , αN�

, αN�+1 = α1 be the over-path on thisP�, and let βk be the path that

Fig. 2.4 Examples; a link
diagram with three arcs, and
a meridian-longitude pair

arc meridian
longitude



2.4 Link Quandles and Their Properties 15

α1 =

α2 α3

β1 β2 βN· · ·

Fig. 2.5 Le Trompe-l’œil; The arcs αi ’s and βi around the �-th link component (where we ignore
under arcs). The reader should keep this figure in mind, since we use it later in several times.

divides αk and αk+1. Here α1 corresponds to the meridian m�. Denote by εk ∈ {±1}
the sign of the crossing between αk and βk .

Next, consider theWirtinger presentation of π1(S3�L) (see TheoremA.8), which
are generated byαi ’s.With abuse of notation,we regard ameridian circulating around
the arc βi as an element of π1(S3�L), and denote it by βi as well. Then, the longitude
l� is expressed as

l� := β
ε1
1 β

ε2
2 · · · βεN�

N�
∈ π1(S

3
�L). (2.9)

In the situation above, the correspondence αi �→ e(H�β
ε1
1 β

ε2
2 ···βεi−1

i−1 ) gives rise to a group

homomorphismπ1(S3�L) → As(QL); check thewell-definedness. By construction,
this is the desired inverse mapping. �

As a consequence of this theorem, it is sensible to ask whether the link quandle
has more useful information than π1(S3�L) or not.

As a typical case, we will observe that quandle is qualitatively useful in the knot
case, i.e., #L = 1. To see this, we should notice that, if L is a tame knot K , i.e.,
#L = 1, the link quandle QK is connected. Further, notice from Theorem A.3 that
the subgroup H� = 〈m�, l�〉 is isomorphic to Z

2 and H� �= π1(S3�K ) unless K is
the unknot.2 Hence, QK is a single point if and only if K is the unknot.

Next, we show a corollary, which concludes that the knot quandle is a complete
knot-invariant (up to K ∼ (−K )∗); see Appendix A for the definition of the mirror
image (−K )∗ with opposite orientation.
Corollary 2.32 ([Joy, Mat]) Let K and K ′ be two oriented knots in the 3-sphere.
Then, K ′ is ambient isotopic to either K or (−K )∗ if and only if there exists a quandle
isomorphism between the knot quandles QK and QK ′ .

Proof. Since the “if” part is clear, we show the converse. Neither of K and K ′ may be
the unknot. Then, by Theorem 2.31, the assumption implies a quandle isomorphism
(π1(S3�K ), H�,m) ∼= (π1(S3�K ′), H ′

�,m
′). Namely, this is exactly the condition

in the classifying theorem A.2, immediately leading to K ′ � K or K ′ � −K ∗. �
In comparison, there are many pairs of nonisotopic knots which have the same

fundamental group (however, there is a classifying theorem of prime knots, only
using the fundamental groups; see [BZ, Lic]).

2For links with #L > 1, H� is not always Z
2 in π1(S3�L); e.g., consider a union of unknots.
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That being said, it is true that the knot quandle QK is a complete knot invariant, but
it is essentially difficult to directly analyze the algebraic system QK , in general. So, in
this book, in order to study the knot K , we often relatively deal with a homomorphism
QK → X for some quandle X . Such homomorphisms will be studied in Sect. 3.1, as
X -colorings (see Proposition 3.7). Here, it is worth noticing from Remark 2.22 that
X shall be assumed to be connected.

Furthermore, in advance of such studies, we now observe that every finitely gen-
erated quandle is immanently useful to some knot. Here a quandle X is finitely
generated if there are a finite index-set I and a surjective quandle homomorphism
from the free quandle Qfree

I to X .

Proposition 2.33 Let X be a connected quandle. Then, there are a knot K and a
quandle epimorphism f : QK → X, if and only if X is finitely generated.

Proof. Since the “only if” part is clear, we show the converse. Here the key is Theo-
rem A.4. Fix x0 ∈ X. Since As(Qfree

I ) ∼= FI , the epimorphism FI → As(X) implies
that As(X) is finitely generated. Since As(X) is generated by {g−1ex0g}g∈As(X) by
connectivity, Theorem A.4 ensures a knot K with meridian m and a group epimor-
phism f : π1(S3�K ) → As(X)with f (m) = ex0 . Since X ∼= (As(X),Stab(x0), ex0)
by Theorem 2.23, we obtain a quandle epimorphism QK → X as desired. �
� �

Conclusion. It is sensible for studying the knot quandle to relatively consider
other quandles X which are connected and finitely generated, and to analyse
the group As(X). However, for the sake of knot invariants, we need to develop
methods to get something quantitative from quandles, as in Chaps. 3–8.

� �

2.5 Appendix: Historical and Topological Comments
on Quandles

In this appendix, we comment a history of quandles, and give a topological inter-
pretation of the link quandle, although there are other surveys written by J.S. Carter
[Car] and S. Kamada [Kam1] (see also the dissertation [Joy3]).

Historical comments on quandles.
It is often said that the original model of quandle is first introduced by Takasaki
[T] in 1943. Since the paper was written in old characters of Japanese and in the
WW2, the concept was not widely known in the world. The idea was rediscovered
and generalized in (unpublished) 1959 correspondence between John Conway and
Gavin Wraith. It is heard that the modern definition of quandles first appears.

These efforts surfaced again in the 1980’s with applications to knot theory; by
Joyce [Joy] (where the term quandlewas coined), byMatveev [Mat] (under the name
distributive groupoids), and by Brieskorn [Bri] (where they were called automorphic

http://dx.doi.org/10.1007/978-981-10-6793-8_3
http://dx.doi.org/10.1007/978-981-10-6793-8_3
http://dx.doi.org/10.1007/978-981-10-6793-8_2
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sets). A detailed overview of racks 3 may be seen in the paper by Rourke, Fenn and
Sanderson [FR] [FRS1]–[FRS3]. Further, quandles have been intensively studied by
several authors and under various names, for example, as “crossed G-sets” by Freyd
and Yetter [FY], as “crystals” by Kauffman [Kau].

We further mention the work [T] of Takasaki. His motivation was to find a dis-
tributive algebraic structure to capture the notion of a reflection in the context of
finite geometry, in comparison with the symmetric space in differential geometry.
The algebraic structure would later come to be known as a quandle of type 2, and he
called itKei. In origin, the termKei, written in (Pinyin: guī), is a Chinese character
that means a jade tablet of a triangular shape which is used officials in ancient China
when addressing the emperor in court. Inspired by it, Japanese mathematicians until
the 19th century used the term Kei to briefly express an isosceles triangle in the
2-dimensional plane R

2. So, it is believed that Takasaki employed the term.

Topological construction of the link quandle.
Changing the subject, we roughly explain a topological interpretation of the link
quandle (see [Joy, Sect. 12] for details). Loosely speaking, the quandle is compatible
with topological pairs of codimension two.

In general, let M be a connected oriented C∞-manifold with basepoint ∞, and
L ⊂ M an oriented submanifold of codimension 2. Let N denote an open tubular
neighborhood of L . The fundamental quandle, Q(M, N ), is defined to be the set of
homotopy classes of continuous maps

μ : ([0, 1], {0}, {1}) −→ (M \ N , ∂N , ∞).

Here, the homotopies between suchmaps are required to have their bottomboundaries
on ∂N and their top boundaries fixed at the base point. Namely,

∃H : [0, 1] × [0, 1] → M, s.t. H(s, 0) ⊂ ∂N , H(s, 1) = {∞}, H(i, t) = μi (t).

Given two such maps μ and ν, then there is uniquely an oriented meridian mν ⊂ N
that passes through the initial point of ν. Then, the quandle operation is defined as
the path compositionμ�ν := μν−1mνν; see the right hand side of the figure below.
This operation is known to be compatible with pushforward in some sense: actually,
Joyce discussed van Kampen theorem on fundamental quandles; see [Joy, Sect. 13]
(for unoriented knots, Kamada and Oshiro [KO] studied “symmetric quandles”, and
the associated link quandles; see [Kam1]).

3A rack is a is a set X with a binary operation � : X × X → X satisfying only the two conditions
(QII) and Q(III). In particular, any quandle is a rack.
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We end this appendix by considering three examples.
First, consider the case whereM is S3 and N is a link embedded in S3. Then, it can

be verified that Q(M, N ) is isomorphic to the link quandle QL . Indeed, π1(S3�L)

canonically acts onQ(M, N )byconsidering the canonical connectionbetween a loop
and a path, and Q(M, N ) is represented as (H�\G; z� | � ∈ I ) as in Definition 2.30.

Next, let M be the 2-sphere S2 and N be the set consisting of n-points on S2.
It is shown [N13] that the Hopf fibration S3 → S2 induces a quandle isomorphism
between the link quandle of the (n, n)-torus link Tn,n and the fundamental quandle
Q(M, N ). In particular, As(Q(M, N )) turns out to beπ1(S3�Tn,n) ∼= π1(S2�N )×Z.
In general, the group As(Q(M, N )) is not always the fundamental group π1(M�N ).

Exercise 3 Show that, if L is the Hopf link, then QL is the trivial quandle of order 2,
and that if L is the (n, n)-torus link with n > 2, then QL is of infinite order.

Exercise 4 ([NP]) Let L be the trefoil knot 31. Then, the knot quandle QL is iso-
morphic to the Dehn quandle Dg with g = 1. (cf. the fact of D. Quillen that the
moduli space M1,1 is homotopic to S3�L).

Finally, we consider an embedding K : S2 × D2 → S4, which is called a 2-knot.
Sowe get the fundamental quandle Q(S4, Im(K )). However, since the quandle often
is of finite order, it is natural to anticipate that invariants arising from quandle seem
something weak. For example, if K is “the 2-twist spin of the (p, 2)-torus knot”,
Q(S4, Im(K )) is isomorphic to the dihedral quandle of order p.

Exercise 5 Look over the meaning of the twisting spun knot, and show the quandle
isomorphism Q(S4, Im(K )) ∼= Dp.



http://www.springer.com/978-981-10-6792-1
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