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Abstract. Lane departure warning (LDW) system attached to modern vehicles
is responsible for lowering car accident caused by inappropriate lane changing
behaviour. However the success of LDW system depends on how well it define
and segment the drivable ego lane. As the development of deep learning meth-
ods, the expensive light detection and ranging (LIDAR) guided system is now
replaced by analysis of digital images captured by low-cost camera. Numerous
method has been applied to address this problem. However, most approach only
focusing on achieving segmentation accuracy, while in the real implementation
of LDW, computational time is also an importance metric. This research focuses
on utilizing deconvolutional neural network to generate accurate road lane seg-
mentation in a realtime fashion. Feature maps from the input image is learned to
form a representation. The use of convolution and pooling layer to build the
feature map resulting in spatially smaller feature map. Deconvolution and
unpooling layer then applied to the feature map to reconstruct it back to its input
size. The method used in this research resulting a 98.38% pixel level accuracy
and able to predict a single input frame in 28 ms, enabling realtime prediction
which is essential for a LDW system.
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1 Introduction

With the development of urban transportation system, safety become one of the most
important aspect when developing advanced driving system. According to WHO
(2009), road incident is the highest cause of death for people in age 15-29, higher than
suicide or HIV/AIDS [1]. This road accident according to IFRCRCS is up to 80-90%
caused by bad driving behavior, such as improper lane changing [2].

However, road accident caused by the improper lane changing behavior can be
reduced by 11-23% with the implementation of Lane Departure Warning (LDW)
system [3]. LDW works by segmenting the drivable lane of the road and guide the
driver to follow this lane. Most of the segmentation approach are using LIDAR sensor.
However, this sensor is relatively expensive and unable to give precise information of
color and texture of the road. On the other side, segmentation can also be done by
analyzing image captured by digital camera that is relatively cheaper compared to light
detection and ranging (LIDAR) sensor and able to capture road detail in high resolution
images.
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While there are many approach to segment drivable lane using digital image, most
of them only focus on getting high accuracy. In the real implementation, computational
time is also an important metric. An LDW system should be able to warns the driver
immediately when the driver leave their drivable lane improperly. The use of fully
convolutional network (FCN) that is first introduced in [4] opens possibility for real
time image segmentation. However, the simple upsampling method employed in FCN
produce inaccurate reconstruction of segmented image.

2 Related Works

Road and lane segmentation is an active research for past few years. Methods, both
using traditional handcrafted features as well as deep learning based are employed to
solve the segmentation problem.

A work by Aly [15] make use of Inverse Perspective Mapping (IPM) transforma-
tion followed by Random Sample Consensus (RANSAC) to extract road lane candi-
dates from input images. RANSAC spline fitting method then applied to the candidates
to retrieve appropriate road lane. Similar work to extract road lane features has been
done by Niu et al. [14]. Features extracted using curve fitting that produce small lane
segment followed by clustering it. The final segmentation obtained by using particular
features such as distance between dashed line and its vanishing point.

He et al. [12] used the dual-view convolutional network to solve the segmentation
problem. The first view shows road from the driver’s perspective. The second view is
the result of IPM transformation, resulting a bird eye view of the road. Each view
feeded into two different Convolutional Neural Network (CNN) that are then joined to
a single fully connected layer at the end.

An attempt to reduce the dependency on human labeling on solving road and lane
segmentation was done in [13]. OpenStreetMap data was used to reconstruct the sur-
rounding environment, resulting additional training data. Fully Convolutional Network
(FCN) is then trained on the combined data.

Contextual Blocks was introduced in [11] as a way to provide contextual infor-
mation to the classifier. These blocks are classification, contextual blocks and road
blocks. In order to determine the class of a classification blocks, it uses the feature
extracted from its own block as well as the corresponding contextual and road blocks.
The feature is then concatenated to a single vector an inputted to a standard MLP.

Mohan in [5] proposed the use of deconvolutional neural network to address road
segmentation problem. The deconvolutional layer (also known as transposed convo-
Iution) is used as learnable upsampling part of a deep neural network. This research
also introduce multipatch training method, in which the input image is separated to
several patch and the same number of network is trained on each patch independently.
Although this method produce outputs with high F-score, it takes 2 s per image on its
inference time. Other methods with similar F-score are able to segment an input in less
than 0.2 s.

A convolutional patch network for road and lane segmentation is proposed in [6].
On this method, a standard CNN is trained to predict each pixel on a input image by
looking at the value of its surrounding pixel. The output of the network is binary
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decision stating whether the current pixel is part of the road/lane or not. The inference
process should then be done to each pixel on input image. This means that the inference
process must be iterated up to the total number of pixel in the image. Thus, resulting a
30 s inference time of a single input image.

Fully Convolutional Network (FCN) has been employed to address slow inference
time problem [7]. This network remove the fully convolutional layers on a standard
Convolutional Neural Network. By removing the fully connected layers, the number of
weight to be multiplied on a forward phase reduced significantly. This research also
employ Network in Network architecture that is claimed to reduce inference time.
However, the FCN architecture is only used when inferencing a new image. The
network is trained in patch based and the network transformation to become FCN
requires a complex prerequisite.

3 Method

3.1 Network Architecture

The network architecture is consist of two part. The first part is the encoder, which is
used to generate segmentation map from input image. The second part is the decoder,
which is used to reconstruct the segmentation map back to its input size.

The final network is structured by stacking several encoders followed by a same the
number of decoders as shown in Fig. 1.
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Fig. 1. Encoder-decoder architecture

3.2 Encoder Architecture

The encoder is used to encode input image to a segmentation map. It consist of a series
of convolution and pooling operation. The encoder segment the image by classifying
each pixel on its input image to either part of ego lane or not. By classifying all pixel on
the input image, all pixel will be labeled. Thus, giving different color code to each pixel
label will output a segmentation map of the input image.
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Convolution. The first operation in the encoder part is the convolution operation. In
our final architecture, we use 64 filters with the size 5 x 5. These filter is initialized
with random number using normal distribution. The filter convolved through its input
with the stride 1.

Maxpooling. The maxpooling layer is used to add translation invariant property to the
network. This layer also enlarge the receptive field on the following encoder, enabling
the network to give coarse prediction of its input image. However, the use of max-
pooling in the encoder resulting a feature map that is spatially smaller than its input
size.

3.3 Decoder Architecture

The decoder is used to reconstruct the segmentation map created by the encoder
part. This can be done by using deconvolution and unpooling operation.

The output of the last decoder has the same spatial size with the input image and the
ground truth. We then add a cross-entropy loss function layer to calculate how far the
difference of the segmentation result generated by the network with its respective
ground truth. The comparison is done pixel wise, that is by comparing each pixel on the
segmentation result with pixel on the same position on the ground truth image. This
error value is then back propagated through the network to correct its weights and
produce better segmentation.

Unpooling. Reconstructing from low resolution to high resolution image is not trivial
because there are some information that is lost during the maxpooling step in the
encoder part. To overcome this problem, [9] propose the use of unpooling layer to
reconstruct high resolution image from low resolution image. The position of maxi-
mum value in maxpooling step is stored in a switch variable. The unpooling layer then
use this information to place current pixel value to the position of its maximum value
when maxpooled that is stored in the switch variable and fill the other position with 0.
The maxpooling operation is shown in Fig. 2.
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Fig. 2. Unpooling and deconvolution operation

Deconvolution. The deconvolution operation can be thought as inverse of convolution
operation. It convolves to each single pixel on its input image with a M x N kernel,
then multiply the current convolved pixel with the kernel. The multiplication result a
M x N output matrix. A certain activation function then applied to the multiplication
result. The M x N activated matrix then placed in the output space of the deconvo-
lution layer. The deconvolution layer also works with certain stride value S. As the
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layer move one step in the input space, it moves S steps in the output space. When two
output overlap each other, those overlapping value is added. The deconvolution
operation can be used to convert sparse image generated by unpooling layer to dense
image. This operation is shown in Fig. 2.

As for recap, the unpooling layer is used to increase the spatial size of its input
image. The sparse output generated by unpooling layer is then filled using deconvo-
lutional layer using its learnable filter. By stacking several decoders, the segmentation
map size can be reconstructed back to its input image size (Fig. 3).

Fig. 3. Sample input dataset and the segmentation ground truth

3.4 Training Deconvolution Neural Network

The encoder-decoder architecture is trained on 95 image and ground truth pair of
The KITTI Vision Benchmark Database. This dataset is a collection 2D images of road
lane photograph taken from driver perspective. The ground truth consist of binary
images with the same spatial dimension as the dataset images with each pixel is labeled
as ego-lane or not ego-lane.

The input images is roughly 1242 x 375 pixels by size. However, the exact size
across images are not equal. In addition, the original size of the input images is too big
for available computational power. Therefore, we reduce the spatial size of all input
images and its corresponding ground truth to 640 * 192.

We use Adam algorithm [10] with starting learning rate of 0.0001 to train our final
architecture. The forward phase of the training algorithm will compute the predicted
value of a every pixel. A cross-entropy loss function then computed using predicted
value and its ground truth. The loss/error then backpropagated through the network’s
architecture to determine the update needed to be done to each of network’s parameters
(weights).

Since we introduce deep neural network with many parameters, we add dropout
layer to each of our encoder and decoder to reduce overfitting. We also add batch
normalization layer to each encoder and decoder to speed up the training process.

We employ 7-fold cross validation on the training process. The data were initially
partitioned to 7 part. On each fold, six parts of the data is used for training and the
remaining one is used for validation. The network is trained for 27 epochs within each
fold.
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4 Experimental and Evaluation Result

4.1 Overall Result

In this section, we present result of our method in twelve different architecture setups.
On this experiment, we vary the architecture depth, that is the number of encoder and
decoder used in the architecture, and the filter/kernel size. We varying the architecture
depth with the number of encoder-decoder pair of 3, 5, 6, and 7 and varying the kernel
size to be 3 x 3,5 x 5, and 7 x 7. Other hyperparameters are set to constant. Our
experiments result is shown in Table 1.

Table 1 shows that with more encoder-decoder used, the network achieve a higher
accuracy. Meanwhile the inference time is highly depends on the filter size used. The
larger filter size gives longer inference time.

Table 1. Architecture experiments

Model name | Architecture Kernel size | Loss | Accuracy | Inference time
Model3-K3 |3 Encoder - 3 Decoder |3 x 3 0.144710.9233 0.024 s
Model3-K5 |3 Encoder - 3 Decoder |5 x 5 0.1330 | 0.9214 0.029 s
Model3-K7 |3 Encoder - 3 Decoder | 7 x 7 0.1126 | 0.9396 0.035 s
Model4-K3 |4 Encoder - 4 Decoder |3 x 3 0.1193]0.9333 0.024 s
Model4-K5 |4 Encoder - 4 Decoder |5 x 5 0.0859 | 0.9697 0.028 s
Model4-K7 |4 Encoder - 4 Decoder | 7 x 7 0.0709 | 0.9772 0.035 s
Model5-K3 |5 Encoder - 5 Decoder |3 x 3 0.0904 | 0.9673 0.024 s
Model5-K5 |5 Encoder - 5 Decoder |5 x 5 0.0522 1 0.9838 0.028 s
Model5-K7 |5 Encoder - 5 Decoder | 7 x 7 0.0558 | 0.9834 0.035 s
Model6-K3 | 6 Encoder - 6 Decoder |3 x 3 0.1216 | 0.9560 0.024 s
Model6-K5 | 6 Encoder - 6 Decoder |5 x 5 0.1949 | 0.9559 0.029 s
Model6-K7 | 6 Encoder - 6 Decoder | 7 x 7 0.1241 ] 0.9576 0.035 s

The correlation between filter size and inference time is related to the number of
parameter/weight of a filter. Filters on the convolution and deconvolution layer con-
tains weight that will be multiplied with its input on inference process to produce
segmentation. On a 3 x 3 filter, there are 9 weights on a filter. Meanwhile, on 5 x 5
there are 25 weights on a filter. Increasing the filter size to 7 x 7 produce 49 weights
on a filter.

The different on that three configuration is not significant when we only sees it as a
single filter. However, in our architecture, we use 64 filter for each encoder or decoder.
Each encoder is always paired to a decoder. Thus, we use 128 filter for each
encoder-decoder pair. Moreover, we use 3 up to 6 encoder-decoder pair in our
experiment. This high number of filter that is used introduce significant different on
number of weight that is used on different filter size. Table 2 shows comparison of
number of weight that is used on different filter size. The difference of number of
weight in a complete architecture shown on Table 3.
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Table 2. Number of weight in an encoder-decoder pair

Kernel size | Number of weights | Number of weights for each
on each Filter encoder-decoder pair

3x3 9 1152

5x5 25 3200

7 x7 49 6272

Table 3. Number of weight in 5 encoder-decoder architecture

Architecture | Total number of weight (using 5 encoder-decoder pair)
3x3 5760
5x5 16000
7 %7 31360

Although that the number of weights grow significantly as small increase done on
the filter size, the networks depth (number of encoder-decoder pair used) shows only a
little change on the number of weight that is used when it is varied. The reason is that
by adding a new encoder-decoder pair on a network, we will only create 128 x (filter
size) new weight. Table 4 shows the number of weight that is used on a four different
architecture with the same filter size.

Table 4. Number of weights on different architectures

Architecture Total number of weight
(using 3 x 3 filter size)

3 Encoder - 3 Decoder | 3456
4 Encoder - 4 Decoder | 4608
5 Encoder - 5 Decoder | 5760
6 Encoder - 6 Decoder | 6912

4.2 Qualitative Result

In this section we shows qualitative result on four different architecture depths, as
shown in Fig. 4. This comparison suggest that as the number of encoder-decoder pair
increased, the network produce better segmentation. The better segmentation can be
identified by smaller false positive and false negative.

The better segmentation result is produced by employing more encoder-decoder
pair. Initial layer on the encoder part tend to learn primitive feature such as edge and
curve. Meanwhile, the later layer tend to learn more complex feature such as geometric
shapes and other lane feature.

However, each encoder layer reduces the its input spatial size to into half of its
original size. In our experiment, we only use up to 6 encoder-decoder pair.

Further addition of encoder-decoder pair will produce segmentation map that is too
small and difficult to upsampled. This limitation is showed in Table 5.
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Fig. 4. Qualitative result over architectures

Table 5. Output size shrinking

Encoders layer | Output size
Encoder 1 310 x 96
Encoder 2 160 x 48

Encoder 3 80 x 24
Encoder 4 40 x 12

Encoder 5 20 x 6
Encoder 6 10 x 3

Not all images in the testing set is well segmented. Figure 4 shows several image
that is difficult to segment. The three images share similar characteristic for having
shadow present in the image. We found that the training set does not contain many
image with such characteristic. This makes the network not able to give a good gen-
eralization for those image, and produce inferior segmentation result.

4.3 Inference Time Evaluation

In order to get a better understanding on how this architecture could process the
segmentation task in short time frame, we conduct a comparative experiment with the
convolutional patch based method as proposed in [6].

In this method, input images are broken down into patches. Each patch is 16 x 16
pixels. The 16 x 16 pixel will be used as context to predict 4 x 4 pixel on its center.
Patches are created starting from top left of an image to its bottom right. The stride of 4
pixel is used when creating patches. Thus, from an input image with size of 640 * 192,
there are 7680 patches created. Summing up all 95 input images resulting 729600
image patches.
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Table 6 shows the comparison of the two architecture in term of pixel accuracy and
its inference time.

Table 6. Output size shrinking

Parameter Convolutional Deconvolutional

patch neural network
Accuracy 47.50% 98.38%
Average inference time 7.936 s 0.028 s
Average training time on each epoch 320 s 15s

On the convolutional patch method, classification is done on each 16 x 16 path. As
the size of each patch is small, the inference time is only 2 ms. However, since there
are 7680 different patches on a single input image that need to be evaluated, the total
inference time of an image is 15 s.

On the other hand, as shown in Table 1 the average inference time for our archi-
tecture is 29 ms for each input image. On our architecture, the inference process only
done once on each input image. This makes the inference time significantly faster.

5 Conclusion

We employ encoder-decoder architecture to solve road lane segmentation problem. The
use of fully convolutional network coupled with gradual upsampling approach produce
segmentation result that is not only accurate but also computationally feasible for
real-time application. Our best model scores 98.38% accuracy on 7 fold cross vali-
dation and able to inference a single image frame in 28 ms.

The segmentation accuracy is related to the network depths, while the inference
time is highly correlated to the filter size used in convolution and deconvolution
operation. Deeper architecture produce better segmentation. However, the larger the
filter size, the longer the time needed to inference a single image.

However, several optimization could be done to achieve better result. The small
number of dataset used for training resulting bad segmentation on several test images.
Our experiment reduce original size of the dataset to its half due to computational
limitation. A better hardware could be used so that the training can be done in its
original size. A skip connection, as introduced in [4] can also be employed so that the
upsampling is not only takes account of its last segmentation map but also the prior
segmentation maps.
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