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Abstract. Traditionally, the normalized cross correlation (NCC) based
or shape based template matching methods are utilized in machine vision
to locate an object for a robot pick and place or other automatic equip-
ment. For stability, well-designed LED lighting must be mounted to uni-
form and stabilize lighting condition. Even so, these algorithms are not
robust to detect the small, blurred, or large deformed target in industrial
environment. In this paper, we propose a convolutional neural network
(CNN) based object localization method, called C-CNN: cascaded con-
volutional neural network, to overcome the disadvantages of the conven-
tional methods. Our C-CNN method first applies a shallow CNN densely
scanning the whole image, most of the background regions are rejected
by the network. Then two CNNs are adopted to further evaluate the
passed windows and the windows around. A relatively deep model net-4
is applied to adjust the passed windows at last and the adjusted win-
dows are regarded as final positions. The experimental results show that
our method can achieve real time detection at the rate of 14FPS and be
robust with a small size of training data. The detection accuracy is much
higher than traditional methods and state-of-the-art methods.
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1 Introduction

Object localization is an important task in the process of industrial automatic
production, for example, pick and place of an industrial robot, position local-
ization in surface mount technology (SMT) etc. Template matching method is
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mostly adopted for this task in machine vision applications. NCC based template
matching applies normalized cross correlation as the features [1], shape based
template matching adopts edge feature for object localization [2]. In many cases,
this kind of methods performs well, but these methods have drawbacks in that
they are less robust against geometrical distortion including occlusion, deforma-
tion, illumination distortion, motion blur or extreme low contrast.

In recent years, CNN based object detection methods have achieved state-
of-the-art result on classification tasks [3-5] and object detection tasks [6-8].
Current CNN based object detection methods mainly focus on general object
detection in nature sense. As objects have different scales and different aspect
ratios, sliding window based method [9-12] will lead to a very large computation
complexity, so region proposal based and regression based methods are adopted.
This kind of method was first proposed by Girshick et al. [6]. For accelerat-
ing, Fast-RCNN [13] by Girshick and Faster-RCNN [8] by Shaoqing Ren were
proposed. Recently, regression models based methods became a new research
hotspot [14,15] and more rapid methods, like YOLO [16] and single shot multi-
box detector (SSD) [17], are proposed.

There are 3 main challenges for applying current CNN techniques to object
localization in the industrial environments, (1) it’s unrealistic to label a lot
of training data for a single scene in industry; (2) the method should be fast
enough to cope with the large-capacity production line; (3) it should be robust
to deal with the variety of products. Current state-of-the-art methods, like SSD
[7] and Faster-RCNN [8], are rapid, but these methods require a huge amount of
training data and training time, which is not suitable for practical applications
in industry.

In the industrial automatic inspections, objects usually have a fixed scale and
aspect ratio, so we only need to scan the whole image by only one fixed window,
which makes the computation complexity acceptable. What’s more, this kind of
methods have less false negative. But we find if only adoption a signal model,
there are many false alarms in the localization results.

Above all, we design a cascaded convolutional neural network (C-CNN) based
method for object localization in the industrial environment. The proposed C-
CNN can achieve a rapid localization speed and it is robust even we only use a
small size of training data. Our method runs 14 FPS on GTX970. In the following
section, we present the overall framework of proposed method and the details,
and then we introduce our experiments and compare our method to traditional
template matching and current state-of-the-art CNN based methods.

2 Cascaded CNN Detector

For object localization in industry, our object detector is shown in Fig. 1. Given a
testing image, we first resize the image to a small scale and use net-16 to densely
scan the whole image to reject most of the background windows. Then two net-
works, net-32-1 and net-32-2, further reject the remained background windows.
The passed windows are accepted as the rough detection results. We apply a
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Fig. 1. Testing pipeline of our method. First we detect in the scaled image and adjust
in the original image finally.

relatively deep model net-4 to adjust the passed windows. Non-maximum sup-
pression [17] (NMS) is adopted to eliminate highly overlapped detection windows
at the end of part 1 and part 2, seeing in Fig. 1.

2.1 The net-16

Training of the net-16. The structure of net-16 is shown as Fig. 2, which is a
binary CNN classifier for classifying objects and backgrounds. We select Rectified
Linear Units (ReLU) as our active function [18]. ReLU has been widely used in
many work [3], and has been proved that it can improve expression ability of
network and speed up convergence. Softmax loss function is adopted as our cost
function; we also apply weight decay for avoiding overfitting.

max-pooling

convolution fully connected
@@ Softmax
Input 16 /

16x16 ) | object vs
kernel:3 kernel:2 e
stride: 1 stride:2 16 non-object

Fig. 2. CNN structures of net-16.

We crop the object patches as the positive examples, and other regions have
an intersection over union (IOU) less than 40% with objects are regarded as
negative examples. The numbers of negative examples are much more than pos-
itive examples. So we adopt rotating, Gaussian blur and Gaussian noise for data
augmentation. We keep the positive and negative examples have a ratio 1 : 4
while training.
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Testing of the net-16. We adapt fully convolutional network instead of densely
scanning the whole image, which can eliminate redundancy computation and
achieve same results. When testing, the fully connected layer of net-16 is con-
verted to a convolutional layer with 7 x 7 kernel size.

For a W x H testing image with a x a, we first resize the image to w X h.
Here, w = 16/W, h = 16/H. Then input the resized image into the converted
net-16 and obtain a map of confidence. Every confidence refers to one window
on the original image, and the windows with a confidence less than threshold
T1 = 0.9 will be rejected.

2.2 The net-32

The net-32 is divided into two sub-network net-32-1 and net-32-2. Both networks
are binary classifiers.

Training of the net-32. Through our experiments, using only one network
cannot reject fault detection, so we design a deep network net-32-1 and a shal-
low network net-32-2. The two network structures are shown as Fig.3. Deep
network structure will help to extract more semantic information, and the shal-
low structure can retain more details [19].

_ max-pooling max-pooling fully connected
convolution convolution convolution
net-32-1 . . . Softmax
Input Ob]DCt Vs
32x32 non-object
kernel 5 kernel: 2 kernel 3 kernel 3 kernel: 2150
stride: 1  stride:2 stride: 1  stride: 1 stride:2
net-32.2 conv()luti(l;rrllax-poohng fully connected
convolution S oftmax
Input @ .
39x32 object vs
non-object

kernel.S kernel:2 kernel.S

stride:1 stride:2  stride:1 150

Fig. 3. CNN structures of the net-32-1 and net-32-2.

For the training of these two networks, we apply the trained net-16 to carry
out hard negative mining. We use net-16 to scan the images, the windows which
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have confidence higher than 77 and have an IOU less than 0.5 with positive
windows will be regard as negative examples.

Considering the remaining windows of net-16 will be not accurate enough.
We randomly sample windows which have same size with objects and have more
than 70% IOU with ground truth as positive examples. We also employ data
augmentation strategy in this part.

Testing of the net-32. We evaluate the passed windows of net-16 and the 8
windows around them by net-32. Given a passed window (z,y, a,a) centering at
(z,y) of (a,a) size and the size of original image is W x H. Then our evaluated
windows are (2/,y’,a,a), where 2/ = .+ (vS;) , v = y £ (rS,). Here, r €
{-0.75,0,0.75}, S, = 2W/16 and S, = 2H/16. The windows corresponded to a
confidence higher than threshold T, = 0.85 are regarded as detection windows.

2.3 The net-4

The net-16 and net-32 are not accurate enough, so we train another CNN, called
net-4, to adjust the detecting windows. The net-4 is a 9-class classifier for the
object pattern and its eight surrounding patterns.

Training of the net-4. As object region patterns and its surrounding patterns
are similar to each other, we design a relatively large CNN for this task. For an
object of size a X a, the input size of net-4 is a X a, and the outputs of net-4 are
the confidence corresponded to these 9 regions. The structure of net-4 is shown
as Fig.4. net-4 has a similar structure with net-32-1, but the structure of net-4
is wider than net-32-1 for obtaining more information.

max-pooling max-pooling gyjjy connected

" convolution convolution convolution
net- Softmax
Input obcht Vs
axa 30 60 60 non-object

kernel: 5 kernel: 2 kernel: 3 kernel: 3 kernel: 2 3¢
stride: 1 stride:2 stride: 1  stride: 1  stride:2

Fig. 4. net-4 consists of three convolution layers, two pooling layers, one fully connected
layer and a softmax classifier.

For an object window (x,y, a, a), we crop the object windows’ patches and 8
surrounding windows’ patches as our training data. These nine windows can be
expressed as

(x +rpa,y +rya,a,a), (1)



C-CNN for Small Deformable and Low Contrast Object Localization 19

where r, € {—0.15,0,0.15} and r, € {—0.15,0,0.15}. We also apply some data
augmentation measures. It should be noted that the rotated patterns should
be cropped from the rotated images instead of rotating the cropped patterns
directly.

Testing of net-4. The net-4 accepts the passed windows as input and distin-
guishes which pattern of this window should be, then adjusts the center coordi-
nate of the detection windows. The adjusting process is shown as Fig. 5.

adjust_=0
step=0.075 x a net-4
Passed window:
(x.y.a,a)
x=xxtstep
(xy.aa) y=yEstep

step=0.5 Xstep

adjust_=adjust +1

Fig. 5. The adjusting pipeline for a passed window.

3 Experiments and Analysis

In this section, we evaluate the performance of the proposed approach and com-
pare our method to other methods. We adopt precision rate (Prqt) and recall
rate (R,qte) to measure the performance of these algorithms. P, and Ryqte
are defined as Eq. (2).

Prate = Lr
{ R _ThET 2)
rate — TPIFN

where TP is true positive; F'P is false positive; F'N is false negative.

3.1 Experiments Results

For evaluating our proposed algorithm, we test our method in different image
sets. Each of image sets are compose of 100-200 images with resolution of 640 x
480. Figure 6 demonstrates some sample images from the testing image data sets.
We can see that there are lots of interferences and the backgrounds are also very
complex, and the targets are very small, blur and deformed, which make the
detection task very difficult.

We only picked out and annotate about 20-30 images of them as the training
data and the testing result is shown as Table 1. We find our method is robust
although the training set is only composed of 20-30 images. All of P4 and
Ry qtes are higher than 97% in our experiments.
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Fig. 6. Some sample images from testing image data sets, the top left called semi
images, the top right called flower images, the bottom left called candy images, and
the bottom right called screw images.

Table 1. Results of our proposed method

Object | Background | Prate | Rrate
Semi images | Positive | 369 12 96.85% | 98.66%
Negative 5 0
Flower images | Positive | 208 0 100% | 97.1%
Negative 6 0
Candy images | Positive | 98 2 98.0% |98%
Negative 2 0
Screw images | Positive |279 3 98.93% | 99.64%
Negative 1 0

3.2 Comparisons Results and Analysis

We compare our method with the shape based template matching in Mvtech
Halcon [21] (from a Germany based machine vision company) and SSD [7]
method. For template matching algorithm, only one template image is needed.
For SSD [7], We also pick out about 20-30 images as training data. We com-
pare these three methods in different image sets. The results are similar, so we
only show the result of candy images in Table 2. In the candy images, the candy
wrapping paper is reflecting, deformable, distorted and low contrast with the
background. The result is shown as Fig. 7.

The results show that our method has a better performance than the template
matching and SSD, the yellow box in Fig. 7. When the objects have large various
visual changes and the shape features of objects are not obvious, the template
matching nearly fails to detect the objects. Although we adopt 4-CNN models in
our method, we apply multi-scale detecting and fully convolutional network to
accelerate the algorithm. As we adopt the CNN in our detector, our method is
easy to be parallelized on GPU. When using a moderate GPU card, GTX970, our
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Table 2. Results of template matching and SSD

Object | Background | Prate | Rrate
Template matching | Positive | 11 89 1% | 11%
Negative | 89 0
SSD Positive | 91 0 100%  91%
Negative 9 0

L.,‘f.
(¢) Results from SSD

Fig. 7. Object localization results of our proposed method (top), template matching
(middle) and SSD (bottom). (Color figure online)

method can achieve about 14 FPS which is comparable to traditional template
matching methods. The runtime comparison illustrates in Table 3.

We also compare our method with a commercial software ViDi Suite [22],
a deep learning based industrial image analysis software, developed by a Swiss
software firm to solve industrial vision challenges. We also provide 20-30 images
as training data for ViDi. The result is shown in Table4 and Fig. 8.

As the results shown in Table4 and Fig. 8, the ViDi has a higher P,y .. But
our method can obtain a better recall rate in three of these four image sets.
Particularly, ViDi only has 75% R, in Candy images. As the background is
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Table 3. Runtime comparison

Methods Runtime for one image
Template matching (on CPU) 43 ms
SSD (on GTX970) 45 ms

Proposed method (on CPU) 633 ms
Proposed method (on GTX970) | 72ms

Table 4. Results of ViDi object localization method

Object | Background | Prate | Rrate
100% | 98.66%

Semi images | Positive | 369

Negative| 5

Flower images | Positive | 203 100% | 95.75%
Negative | 25
Candy images | Positive | 75
Negative | 25
Screw images | Positive | 257

Negative | 23

100% | 75%

100% | 91.79%

o|lo|o|o|o|o|Oo O

Fig. 8. The first row shows the results of proposed method and the second shows the
localization results of ViDi.

usually stationary in industrial machine vision applications, the object local-
ization is different from the wild object detection. There is not any publicly
available dataset to compare.

4 Conclusion

Object localization is an important task in the industrial machine vision appli-
cations. Traditional template matching methods will completely fail to detect
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objects in some extreme cases and current CNN based methods are focused on
general object detection in nature sense. We propose a cascaded CNN detector,
C-CNN, specifically for object detection in industrial sense. The C-CNN method
is proved to be robust through our experiments and can locate the objects in
extremely poor quality images. It can outperform the traditional methods and
the state-of-the-art methods with small number of the training images. Further-
more, the real time performance of our method is achieved on a moderate GPU.
It can be utilized in practical machine vision systems.
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