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Abstract

OptFlux was launched in 2010 as the first open-source and user-friendly platform containing all the major
methods for performing metabolic engineering tasks in silico. Main features included the possibility of
performing microbial strain simulations with widely used methods such as Flux Balance Analysis and strain
design using Evolutionary Algorithms. Since then, OptFlux suffered a major re-factoring to improve its
efficiency and reliability, while many features were added in the form of novel plug-ins, such as the
BioVisualizer and the over/under expression plug-ins. The current chapter described the main mathemati-
cal formulations of the major methods implemented within OptFlux, also providing a detailed guide on the
usage of those functionalities.
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1 Introduction

In industrial biotechnology processes, microorganisms are usually
used as microbial cell factories to produce chemical compounds of
economic interest, from chemical building blocks, to food ingredi-
ents and bioplastics. In order to increase the yield, productivity, and
specificity of these industrial processes, strain improvement meth-
ods were developed mostly based on random mutagenesis and on
screening strains with naturally enhanced production levels
[1, 2]. These techniques were labor intensive, but they were the
best alternative for strain improvement before advanced genetic
engineering procedures became available [3].

The buildup of knowledge onmicrobial metabolism, combined
with the development of more sophisticated genome engineering
techniques, gave rise to the rational modifications of microorgan-
isms aiming to improve their phenotypical properties toward a
certain goal. This discipline is usually referred to as Metabolic

Marco Fondi (ed.), Metabolic Network Reconstruction and Modeling: Methods and Protocols, Methods in Molecular Biology,
vol. 1716, https://doi.org/10.1007/978-1-4939-7528-0_2, © Springer Science+Business Media, LLC 2018

Isabel Rocha and Miguel Rocha contributed equally to this work.

37

https://doi.org/10.1007/978-1-4939-7528-0_2


Engineering (ME) [3–6]. ME has been applied of a vast number of
tasks over the past 20 years, due to the extraordinary growth in
adoption of industrial biotechnological processes for the produc-
tion of bulk chemicals, pharmaceuticals, food ingredients, enzymes,
among other products [7, 8].

Many different approaches have been used to aid in ME efforts,
from which Systems Biology (SB) deserves to be highlighted
[9, 10]. SB addresses the computational and mathematical model-
ing of complex biological systems with the objective of examining
the structure and dynamics of cells or organisms and understanding
the properties of these systems. In other words, SB is focused on
building and validating in silico models of biological systems that
can be applied to generate novel, testable, and often quantitative
predictions of cellular behavior, thus being able to support the
rational development of optimized cell factories.

More recently, with the remarkable advances on genome
sequencing technologies, culminated by the surge of the next-
generation sequencing technologies [11], as well as semi-
automated annotation techniques, an increasingly large number
of fully annotated microbial genomes are being made available.

The advent of complete genomic sequences allowed the recon-
struction of genome-scale networks that can be employed to gen-
erate models of diverse cellular processes, such as signaling
transduction [12, 13], transcriptional regulation [14], and metab-
olism [15]. A reconstructed network is defined as a list of biochem-
ical reactions occurring in a particular cellular system (such as
metabolism) and the associations between these reactions and rele-
vant proteins, transcripts and genes. A reconstruction can be con-
verted to a mathematical model by including the assumptions
necessary for the computational simulations, such as maximum
reaction rates and nutrient uptake and production rates. An exten-
sive collection of methods for analyzing metabolic genome-scale
models (GSM) have been developed and applied to study a growing
number of biological questions [16, 17].

The collection of the stoichiometry and reversibility of all the
metabolic reactions from an annotated genome is the starting point
for the construction of a GSM. Furthermore, many additional
curation steps are required until models are complete. The full
process of GSM reconstruction has been described in detail in
several publications [18–20] and software tools that can help in
the reconstruction process are also available (seeChapter 1 for more
details) [21–24]. These software tools can be a great help in the
reduction of the total time required to reconstruct a GSM and have
proven extremely valuable for annotating genomes of less studied
organisms.

Besides the stoichiometry and reversibility of all chemical reac-
tions that can occur in a certain organism, GSMs can include
additional details, such as the kinetic parameters for each enzymatic
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reaction. However, the availability of kinetic information is very
scarce, which makes it very challenging to gather these data at the
genome scale [25, 26]. Since the biochemical information included
in most GSMs is limited to the stoichiometry and reversibility of all
reactions, the application of these models is restricted to the steady-
state modeling of intracellular fluxes [27, 28].

Since the advent of GSMs in 1999, when the Haemophilus
influenza GSM was first published [29], the number of available
GSMs grew to more than 100 models [30]. Some repositories
facilitate the access to some of these models in standard formats,
such as www.optflux.org/models or http://systemsbiology.ucsd.
edu/InSilicoOrganisms/OtherOrganisms.

Many different approaches have been used to identify bottle-
necks or targets for genetic engineering that take into account
models together with mathematical tools and/or experimental
data. Some of these techniques, like Metabolic Control Analysis
(MCA), use dynamical representations of the metabolism, while
others like Metabolic Flux Analysis (MFA) or Flux Balance Analysis
(FBA) consider only the stoichiometry of the system to build a
Constraint-Based Model, allowing the study of the phenotype of
microorganisms, under different environmental and genetic
conditions.

While the need for mathematical and computational tools to
aid in ME efforts was already identified by James Bailey in 2001
[31], very few user-friendly software tools were available then and
in the following years. OptFlux was introduced in 2010 [32] as a
proposal to tackle this problem. OptFlux is a user-friendly software
tool that aims to be a reference platform for the ME community,
and it was developed with the objective of collecting several tools
and algorithms that use GSMs in an integrated, extensible, and
easy-to-use platform. Some of the main features of this tool are
the following:

– Open-source—it allows all users to use the tool freely and
invites the contribution of other researchers;

– User-friendly—facilitates its use by users with no/little back-
ground in modeling/informatics;

– Modular—facilitates the addition of specific features by com-
puter scientists, given its plug-in based architecture;

– Compatible with standards—compatibility with the System
Biology Markup Language (SBML) and layout standards
as SBGN.

Optflux accommodates several tools and algorithms that have
been developed to help in the analysis of GSMs. In the next sec-
tions, it will be explained how to apply these resources using
Optflux.
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2 Materials

OptFlux version 3 can be downloaded in www.optflux.org/
downloads. The software is fully implemented in the Java Lan-
guage. However, to perform the optimization of constraint-based
model (CBM) problems, external software is required. Optflux has
embedded two different open source external applications to solve
these problems, CLP1 and GLPK2. By default CLP is configured to
solve Linear Programming (LP) and Quadratic Programming
(QP) problems, while GLPK is configured to solve Mixed-Integer
Linear Programming (MILP) problems. An interface for the com-
mercial solver CPLEX3 was implemented. CPLEX provides native
support for several classes of constraint-based programming pro-
blems, such as LP, QP, and MILP.

Optflux was implemented in such a way that new features are
easily plugged in. It is entirely implemented on the top of AIBench
[33], a development framework that enforces the Model-View-
Controller (MVC) design pattern, incorporating three types of
well-defined artifacts: operations (controller), data types (model),
and views. This leads to units of work with high coherence that can
be easily combined and reused.

Furthermore, it is plug-in based: applications are developed by
incorporating components, called plug-ins, each containing a set of
functionalities, allowing the reuse and integration of functionalities
from past and future developments. The management of OptFlux’s
plug-ins is easily achieved by a repository manager, which provides
an intuitive graphical user interface (GUI), where users can select
which plug-ins are installed or updated at each time.

All the OptFlux’s source code is available in git repositories
located in SourceForge4, where it is also possible to submit support
requests and bug tickets, keeping the developers aware of the
problems reported by the users and helping in the planning of
code development timelines.

Figure 1 depicts how OptFlux looks like and highlights the
global layout of the platform. Most of OptFlux’s main features and
operations are accessible to the user either through theMenu or the
Toolbar. Users can also access many of the operations by right-
clicking in the Clipboard area. All the data types, i.e., projects,
metabolic models, environmental conditions, simulation/optimi-
zation results, layouts for visualization, etc., are always placed in the
Clipboard area, data type names can be changed by right clicking
the object and selecting the “rename” option. The Visualization

1 https://projects.coin-or.org/Clp
2 https://www.gnu.org/software/glpk/
3 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
4 https://sourceforge.net/projects/optflux/
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Area is where the user can examine those data types in greater
detail. When the user clicks in a data type, different views for that
object are displayed in this area.

3 Methods

3.1 Constraint-

Based Modeling

The formulation of Constraint-based models requires two levels of
metabolic information (Fig. 2a). First, metabolic stoichiometry is
required to write down all chemical reactions that take place in a
metabolic network of interest. The second item is the information
of the demands that are placed on the metabolic system. These
demands include non-growth-associated maintenance require-
ments, biomass synthesis, and nutrients inputs. The non-growth-
associated maintenance requirements can be obtained from strain-
specific experiments [34]. In terms of the biomass synthesis, it is
necessary the inclusion of an artificial reaction in the network that
represents the cellular growth. Such a reaction is built taking into
account the contribution, in millimoles per gram of cell dry weight,
of all macromolecules or building blocks and essential cofactors,
based on the biomass composition. The next Equation represents

Fig. 1 The OptFlux application interface is split into four main parts identified in the figure: (a) Menu—where
the user has access to all the operations existent in OptFlux application; (b) Toolbar—where the user has
access to some important short-cuts for operations related to projects such as create, open, close, delete,
import, and export project. (c) Clipboard—where the data types will be placed after being created by the
operations. (d) Visualization area—where the user will be able to see the data types’ contents when clicked on
the top of those
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the biomass equation, whereM represents the biomass components
and the ∂m represents the contribution of these components for
the biomass in mmol/(g of biomass).
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Fig. 2 In the figure a small network is represented (a) composed by various components commonly used in
constraint-based models such as metabolites, genes, reactions, and drains. The corresponding steady-state
system (b), the bounds of the reactions (c), and gene protein rules (d) are shown
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∂m �M ! biomass

Such an equation is used to calculate the growth rate of the
organism in h�1, and thus the other fluxes on the model are in
mmol/gDW/h units.

In order to define the availability of nutrients and excretion of
products in/to the medium, some special reactions are built and
included in the system, denominated by drains. Drains define which
are the metabolites that could be inputs and/or outputs of the
modeled organism. The next equation illustrates how those special
reactions look like; the reaction is only composed by one metabolite
M which is usually defined as a reactant. Thus, when its flux is
positive, metabolite M is an output of the system, while, if the
flux is negative it is an input of the system.

M $
The mass balance of a specific metabolite M is illustrated in

Fig. 3. In the figure, four different rates that can perturb the
concentration of M are represented. Vdrain represents the rate
responsible for the translocation of metabolite M. Those rates will
be dealing with requirements of the system, i.e., nutrients, as well as
the by-products. Vsyn are the fluxes that synthesize the metabolite
and Vdeg are the fluxes that consume metabolite M. Vuse represents
the rate of utilization of metabolite M for metabolic requirements,
such as growth and maintenance. Thus, the conservation law [35]
can be applied allowing the representation of the accumulation of
metabolite M as

M

Vdrain

VdegVsyn

Vuse
System
Boundary

Fig. 3 Constraint-based models use the balance around each metabolite to represent a metabolic network. In
the figure, all types of transformations that could be present in each CBM metabolite are represented. The
Vdrain represents the fluxes carrying in and out a metabolite to and from the system. These fluxes deal with the
nutrients, as well as the outputs including the by-products of the system. Vuse represents the fluxes required
for the metabolic requirements, such as growth and maintenance. Vsyn are the fluxes that synthesize each
metabolite and Vdeg are the fluxes that represent the consumption of the metabolite
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dM

dt
¼ V syn � V deg � V use � V drain

CBMs are based on the assumption that metabolic transients
are more rapid than both cellular growth rates and the dynamic
changes in the organism’s environment. Metabolism typically has
transients that are shorter than a few minutes, and thus it is reason-
able to place the metabolic system in a steady state when investigat-
ing aspects of metabolism related to growth. At the steady state, the
concentrations of metabolites in a network are constant and the
fluxes that generate a metabolite must be equivalent to the fluxes
that consume that metabolite. So, the accumulation of an internal
metabolite M is zero, as stated in

0 ¼ V syn � V deg � V use � V drain

By applying the same principle to all metabolites, a homoge-
neous system of linear equations can be defined as

S∗v ¼ 0

In the system, S is an m � n stoichiometric matrix, for a set of
m metabolites and a set of n reactions, and v is the vector of
n reaction fluxes. In this representation, it is assumed that all the
reactions are mass balanced (Fig. 2b). For each reaction of a meta-
bolic network, bounds for their minimum andmaximum values can
be configured to reflect thermodynamic feasibility, i.e., reaction
directionality, and flux capacity of the reactions (Fig. 2c):

lb � vi � ub

Further details, such as translational/transcriptional represen-
tation in the form of Gene-Protein-Reaction (GPR) associations,
are also typically included in the models [36]. The representation of
GPR associations usually resorts to Boolean logic, where the rela-
tionships between reactions and their encoding genes are modeled
as logical AND/OR operations. Typically, the AND operator
represents the formation of protein complexes, and the OR opera-
tor usually represents genes encoding isoenzymes. This allows the
identification of which genes are responsible for coding a reaction
in the model (Fig. 2d).

3.1.1 Importing

Constraint-Based Model in

Optflux

Optflux allows several ways of loading a constraint-based model.
Due to the absence of clear standards to collect this type of infor-
mation prior to 2007, each author or CBM platform used its own
specific format. With the release of the Systems Biology Markup
Language (SBML) in 2003 [37] and subsequent availability of
easy-to-use libraries for exchanging models in this format
(libSBML) in 2008 [38], this format started to be adopted and
became the most used standard for collecting CBM models.
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Nonetheless, there are other legacy formats that the community
still uses. Because of that, OptFlux is shipped with readers that
provide support for loading models from several formats, namely:

1. SBML levels 2 and 3, with the option of using the flux balance
constraints plug-in (FBC). OptFlux is able to import models
using the SBML specification from level 2 version 1 onward;

2. Metatool reader specification5 [39];

3. CellDesigner (SBML specification extended with layout infor-
mation from CellDesigner);

4. Table format (useful to ease the burden of importing models
from Excel datasheets—a format commonly used by authors to
publish their new reconstructions).

Furthermore, OptFlux includes access to a model repository—
an internal repository of different models and organisms, which
makes the access to commonly used models much less cumbersome
to OptFlux users. Currently, the repository provides access to
nearly 50 models.

All of these readers are available via the same operation in
OptFlux menu: File/new Project. This operation has four main
steps, also depicted in Fig. 4:

1. Specify the project name and choose one of the available readers;

2. Define reader parameters; this step is different depending on
the chosen reader and can have more than one sub-step;

3. Identify/define drains in the loaded model;

4. Identify biomass reaction.

One of the most important steps in the process of correctly
importing a model is the definition of drains. Until this day, there
are no standards to unambiguously define the drains onCBMmodels.
Some authors opted for adding boundary metabolites in the model
that should be removed during the import process. Other models
have been createdwith nodrains, beingnecessary to create them for all
the external metabolites. Finally, some authors include all the neces-
sary drains in the model, effectively eliminating the need for the user
to do anything other than correctly importing the model matrix.

The user should understand how the drain reactions are dealt
with in the model source file and select the applicable method in
OptFlux:

– Do not create drains—if drains are already present in the
model;

– Remove external metabolites—if it is necessary to delete
boundary metabolites to create the drains;

5 http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.0/ecoli_networks.html
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– Create drains—if it is necessary to create new drain reactions
for the external metabolites.

When selecting either the “Remove external Metabolites” or the
“Create Drains” options, the user must also select the method by
which the external metabolites are detected. OptFlux provides two
different ways of doing this:

– Use compartment heuristic—OptFlux begins by identifying
the external compartment and subsequently mapping all the
metabolites associated with it.

– Use regular expressions—the user is prompted to define a
regular expression that OptFlux uses to compute the matching
metabolite identifiers.

In Fig. 5, three examples are shown. On the first (line 1) the
network already contains drain reactions so the option that should
be chosen is “Don’t create drains.” On the second example (line 2),
the network does not contain drain reactions, but there are

Fig. 4 The process of a project creation in OptFlux includes four main steps: (1) The Reader Selection where
the user selects a specific reader to construct a project. OptFlux comes with readers for several formats such
as SBML, CellDesigner, Table Format, and Model repository. (2) The reader configurations. Different readers
can have different inputs and in this step the user is able to configure those inputs. In the figure, two different
reader configurations are shown: the first one is the configuration for the model repository where the user
selects one of the models present on the database (she/he can inspect the respective paper by clicking in the
second button of the mouse), and the second is the SBML reader where the user only has to select a valid
SBML file. (3) Define drains.—Different formats and different authors of models have different forms to define
the drains on the models so it is necessary to select the method in this step. (4) Biomass selection, where the
user is able to select a reaction to be the biomass artificial reaction; this will help on the usage of several
operations on OptFlux
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reactions in the model that contain artificial metabolites that when
removed will transform these reactions into drains. So, the option
that should be selected in this case is “Remove external metabo-
lites.” Those artificial metabolites are called “boundary metabo-
lites” and for OptFlux to remove them, the user should identify
them first. On those examples, the boundary metabolites are in the
same compartment as external metabolites so the user can use a
regular expression in OptFlux to detect them (in this example
“Ends with” “b”).

In the third example (line 3), the network does not contain
drains and no artificial metabolites are available, thus the drains
need to be created. Since the metabolites where the drains should
be added are the external metabolites, the user can use one of the
two strategies to identify the metabolites: “External compart-
ment,” where all the metabolites that should have a drain are in
the same external compartment, or use a regular expression (“Ends
with” “e” on this example).

OptFlux can also use a heuristic method to identify the correct
drain configuration, and select the best option by default. Being a

Fig. 5 In the figure, three standard examples of how drains could be stored in the models are schematized
(first column), the best option to use in OptFlux to define drains (column 2) and the resulting network after
OptFlux defines the drains (column 3)
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heuristic, this method is not 100% guaranteed to provide the best
result.

Finally, the user is also asked to select a default biomass
(growth) equation from the model. This step is required because
many operations in OptFlux, such as phenotype predictions and
strain optimization, among others, require the biomass equation to
be specified in the objective function. By setting the default biomass
equation, the repeated use of many of these operations becomes
greatly simplified. OptFlux also uses a heuristic to select a reaction
that it believes to be the correct one, but the user should always
confirm this and change it if necessary.

In the end of the “New Project” operation, a new project will
appear in the clipboard section with the name chosen by the user in
step 1. The core data type of the project is named “Metabolic
Model” (Fig. 6). Inside, the user can access detailed information
about reactions, metabolites, and also the stoichiometry of the
system in a human-readable way. Furthermore, genes, gene rules,
and pathway information are shown if available.

3.2 Visualization of

Data Using CBMs

Within the field of Systems Biology, the analysis of different types of
biological networks is an important task in understanding the
underlying biological processes. Data can be associated with the
biological components facilitating its visualization and interpreta-
tion. Visualizing data in this way contextualizes and enriches the
dataset. Data-rich visualizations have been extremely valuable for
viewing, interpreting, and communicating data. Two-dimensional
pathway maps have long been a popular visual representation of
metabolic pathways and other biological pathways.

Fig. 6 The Project data type is composed by several sub-data types. The data type that collects the information
regarding the loaded model is the “Metabolic Model” (the first data type inside the project). Inside, the user
has detailed information about the components present in the model. Each component has a view that opens
in the visual area of OptFlux (by clicking on the right button of the mouse over a specific entity in the table,
OptFlux will search the entity in several databases)
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CBM models are not easy to understand in their mathematical
form, which turns their analysis and interpretation into a very hard
and time-demanding task. To aid in this task, visualization tools
have been developed to complement 2-dimensional pathways maps
with CBM outputs. CellDesigner [40, 41] is one of the most
popular tools for creating, editing, and visualizing biochemical
networks, but it lacks specific methods for CBMs. Alternatively,
Cytoscape [42] became a standard tool for the integrated analysis
and visualization of biological networks, but faces the same prob-
lem of the CellDesigner platform, missing a native CBM specifica-
tion. Regarding these problems, some platforms that integrate
visualization technologies with the CBM methodology have been
developed. The BioVisualizer platform [43], available as a plug-in
for OptFlux, is one of them. BioVisualizer provides a visualization
framework based on a well-defined abstract representation of met-
abolic pathways and CBMs. This plug-in provides a linkage
between the constraint-based models and pathway layouts, natively
understanding how to interact with each other and allowing the
highlight of properties or results based on the use of the CBM.

3.2.1 Optflux

Visualization Capabilities

OptFlux allows the creation of pathway layouts using the BioVi-
sualizer plug-in [43]. In the current version of Optflux, this plugin
comes already pre-installed.

The visualization plug-in provides all the functionalities related
to the visualization and editing of the metabolic layout. One of
these features is the specification of the default colors and shapes of
the nodes. The graphical user interface (GUI) is composed of two
major elements (Fig. 7): the network view, where it is possible to
edit the network and click/drag the nodes (Fig. 7a), and the side
panel where filters, overlaps, node information, zoom, and export
functionalities are available (Fig. 7b). In this way, it is possible for
the user to easily explore the network, using all the features the
interface has to offer. The pathway layout used by the visualizer is
the Force Directed Layout (FDL) [44] with adaptations to support
fixed nodes. This was coupled with the possibility to fix/unfix
nodes, allowing the user to fix a node to the specific position it is
in, or drag it to a desired new position; unfixing a node will remove
the position information of the node, making it susceptible to the
FDL algorithm to adjust its position according to its surroundings.
It is also possible to unfix and fix nodes by type, allowing a user to
fix/unfix all reaction or metabolite nodes at the same time.

BioVisualizer is also able to customize loaded layouts, by click-
ing in the right mouse button over nodes on network view, where
several procedures are available, namely:

1. Changing the node type. It allows the user to mark a metabo-
lite node as a “currency metabolite,” a special type of node.
Often, highly connected metabolite nodes, the so-called
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“currency metabolites,” like energy-carrying molecules (ATP,
NAD(H), NADP(H), etc.) can be marked to clearly identify
this type of node and possibly hide them to unclutter the
pathway visualization.

2. Replicating a node. Highly connected nodes can be replicated
to reduce the number of overlapping connections in the layout.

3. Highlight replicated nodes. Replicated nodes are highlighted
when selected.

4. Merging equivalent nodes. Replicated nodes can be merged
(one to one).

All these features, when combined with the import and export
capabilities, allow the user to create and edit their own layouts,
being able to export them for later use in this or other compatible
software tools.

Filtering and overlaying capabilities are also provided. It is
possible to filter the network, by hiding parts of it, based in the
node type (e.g., hide all currency metabolites) or by reaction
identifier.

Fig. 7 BioVisualizer view. The view is divided into two different areas. The network viewer (a) where the users
can access the nodes of the network and apply some functionality by clicking on the right button of the mouse.
The side panel (b) with functionalities like node/edge filters, overlap selection, zooming options, navigation,
and exporting the layout in several formats
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It is also possible to overlay information over the network. The
visualizer allows altering the visual aspect of the network compo-
nents, supporting the change of the direction, thickness, and colors
of the edges, while for nodes it is possible to change the color and
shape. This feature allows, for instance, overlaying flux distributions
in the metabolic pathway layouts.

3.2.2 Loading/Creating

Layouts

The Biovisualizer plugin supports the creation of layouts using
information existent in a model or the import of layouts in different
formats. There are three different operations to import layouts in
OptFlux (Fig. 8): the “Pathway Layout” operation in menu:File/
Create/Pathway Layout, the “Import Layout” operation in menu:
File/Import/Import Layout, and the “KGML Layouts” in menu:
File/Import/KGML Layout.

Using the “Pathway Layout” operation (Fig. 8a) the user can
build a layout using reaction stoichiometry information present in
the model. This can be done by following two possible strategies:
(1) choosing a list of reactions to be represented in the layout, or
(2) in the case the model provides pathway information, builds the
layout directly with the reactions from a selected set of pathways.

In the “Import Layout” operation (Fig. 8b) it is possible to
select one of the following formats:

1. eXtensible GraphMarkup andModeling Language (XGMML):
a format based on the Graph Modeling Language (GML), used
for graph description using XML tags to describe nodes and
edges. It is used in different tools such as Cytoscape [42].

2. CellDesigner SBML (CD-SBML): graphical notation system
proposed by Funahashi and coworkers [40, 41], where layouts
are stored using a specific extension of SBML.

Fig. 8 Three different ways to create a layout for a model in OptFlux: creating a layout using model information
(a), loading a layout file (b) or importing a KEGG layout (c)
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3. Systems Biology Graphical Notation (SBGN): graphical nota-
tion system to represent networks of biochemical interactions
in a standard and unambiguous way [45].

4. COBRA version 1 layouts: set of maps specifically created for
the COBRAToolbox. Several maps were constructed using this
format for many of the models hosted in the BiGG-v16 [46]
knowledge-base. These layouts have the advantage of being
valid for use with multiple models containing similar pathways,
since they provide a correct mapping of the identifiers between
the pathway layout and BiGG models.

5. Escher7: Escher is a web-based tool for building, viewing, and
sharing visualizations of biological pathways [47]. It uses a
format based on the JavaScript Object Notation (JSON) to
represent the layouts. Those files had been created for some
of the models hosted in the BiGG-v28 [48].

The “KGML Layout” operation (Fig. 8c) allows the user to
import a KEGG pathway9 to OptFlux. To do so, the user can
choose a KGML file that can be downloaded from the KEGG
database or choose directly the pathway name to be retrieved
from KEGG. This interface also provides the tools to map a meta-
bolic model with a pathway layout. It is possible to load a 2-column
file providing the mapping between the metabolic identifiers in the
model and KEGG identifiers. If the model loaded in OptFlux has
already that information, then it is possible to map it automatically.

3.3 Simulation

Using CBM

3.3.1 Simulation

Methods

On the previous chapter, it was presented how a system of homo-
geneous linear equations can be derived, assuming that there is no
accumulation of metabolites, and thus all fluxes leading to their
formation and degradation are mass-balanced [49, 50]. This system
is representative of an entire metabolic phenotypic space of a spe-
cific organism strain. Such systems are typically underdetermined
since the number of reactions (variables of the system) normally
exceeds the number of metabolites (constraints of the system), so, a
plurality of solutions exists, expressed in an infinite number of
possibilities of distribution of metabolic fluxes through available
reactions. These possibilities are constrained by the stoichiometric
matrix and the flux limits, forming a domain of stoichiometrically
feasible behaviors.

The feasible domain of a constraint-based model can be con-
ceptualized as the “metabolic genotype,” i.e., all reactions that can
be catalyzed with enzymes codified by the genes in the genome of

6 http://bigg1.ucsd.edu
7 https://escher.github.io/
8 http://bigg.ucsd.edu/
9 http://www.genome.jp/kegg/pathway.html
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the modeled strain. A particular point in this feasible domain is a
specific flux distribution that can be conceptualized as a “metabolic
phenotype” since this flux distribution is a characteristic of how the
strain responds to an input, as a medium or stress. Therefore,
constraint-based models are able to identify how a strain adjusts
its metabolic distribution to an environmental perturbation, such as
an alternative carbon source, or even to genetic modifications, such
as gene deletions.

A particular solution for the distribution of metabolic fluxes
may be found using constraint-based optimization by stating an
objective and seeking its maximum/minimum value, within the
stoichiometrically defined domain. Such objective encodes a
biological rationale, mimicking how a cell choses the distribution
of metabolic fluxes on the domain of feasible behavior. However,
the mechanisms by which metabolic flux distributions are chosen
by the cell are a complex interplay of enzymes, genetic regulatory,
and signaling events and not all of those events are known in detail.
Nonetheless, in terms of the evolutionary selection process it is
expected that, for a given environment, a given cell chooses to
express and regulate a specific set of metabolic enzymes, which act
in concert to produce an “optimal metabolic flux distribution,”
which may be thought of as the “metabolic phenotype” of that
strain under those conditions. Such “optimal flux distribution”
depends on the objective used by the cell, such that in past years
several phenotype prediction methods have been proposed on the
top of the same steady-state assumptions, but differing on the
objective function and/or additional constraints.

Flux Balance Analysis (FBA) was the first optimization-based
phenotype prediction method developed for predicting the pheno-
types using CBMmodels of metabolism. Briefly, FBA finds a distri-
bution of fluxes that meets a certain objective formulated with
Linear Programming (LP). The most common objective function
used with FBA is the maximization of the specific growth rate,
encoded in a biomass pseudo-equation, assuming that the meta-
bolic phenotype of a wild-type strain is defined by a tendency to
optimize its growth rate. In a practical way, FBA joins the under-
determined system of linear equations with the objective of max-
imizing the growth reaction flux. The growth reaction (explained in
detail above) describes the consumption of biosynthetic precursors
and energy requirements for synthesizing a specific amount of
cellular material [49, 51–53].

One handicap of the flux distributions obtained with FBA is
that they are not unique. The values of the reaction fluxes in the
metabolic network can vary for the same optimal value of the
objective function (i.e., multiple flux distributions can lead to the
same maximum growth rate).

Parsimonious enzyme usage FBA (pFBA) [54, 55] is a two-step
LP optimization problem, which tries to reach the simplest flux
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distribution under the maximum growth rate. In the first step, a
normal FBA is issued to compute the optimal growth rate, while on
the second step a minimization of the sum of the absolute values of
all the reaction fluxes is performed, while the optimal growth rate
calculated in the first level is maintained as a constraint. pFBA
removes some artifacts in the flux distribution that do not contrib-
ute for the maximum growth and/or are physiologically unsound,
such as fluxes related to futile cycles in the network. The assump-
tion of this method is based on the efficiency of metabolic net-
works, which expects the cell to perform a certain task with the
minimal amount of resources (amount of proteins and genes),
thereby predicting the most resource-wise efficient flux distribution
for the maximum growth rate.

While the maximum growth rate assumption has been well
accepted by the scientific community as a good approximation to
mimic the phenotypic behavior of a wild-type strain, the same
cannot be said when the system is subjected to a perturbation,
such as a gene deletion or a stress condition in the environment.
To more accurately predict how a metabolic network reacts to a
genomic perturbation, distinct phenotype prediction methods have
been proposed.

The Minimization Of Metabolic Adjustment (MOMA) [56]
was developed in 2002 and it was the first proposed formulation
with the purpose of simulating the effect of genetic perturbations in
a metabolic network. This methodology assumes that a mutant cell
(i.e., a cell with a perturbation in its genome like a gene deletion)
will try to minimize the adjustments of the flux values in compari-
son with its behavior on the wild-type strain. MOMA is formulated
as a Quadratic Programming problem, assuming its objective func-
tion as the minimization of the Euclidean distance between the
mutant set of fluxes and the reference wild-type fluxes. The growth
predictions of gene knockouts simulated with MOMA are more
conservative than the results obtained with FBA and it has been
shown that MOMA can predict more accurately gene essentiality in
some cases [56, 57].

Shlomi et al. pursued the same concept of minimal metabolic
adjustment, but in a different perspective [58]. Instead of minimiz-
ing the flux differences between the mutant and the wild-type
strains, the methodology entitled Regulatory On/Off Minimiza-
tion of metabolic flux changes after genetic perturbations (ROOM)
minimizes the number of reactions that are activated or deactivated
in a mutant in comparison with a reference flux distribution. This
approach requires the introduction of binary variables in the objec-
tive function, thus converting the problem into a Mixed-Integer
Linear Programming problem, increasing its complexity. The
assumption behind ROOM is that, when faced with a set of knock-
outs, a cell will adjust its internal fluxes by making the minimum
amount of regulatory changes, i.e., the magnitude of the fluxes can
change, but the set of active enzymes should be similar to the wild-
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type organism. The predictions obtained for ROOMwere closer to
FBA than MOMA and revealed that MOMA is better at estimating
transient metabolic adaptations, while FBA and ROOM can better
predict the phenotype of an evolved knockout mutant [58].

In addition to the regular MOMA formulation, two additional
variations are available in the literature: linear MOMA (LMOMA)
[59] and PSEUDO [60]. One common issue usually encountered
in the flux distributions computed with MOMA is that it favors a
large number of small flux changes in detriment of a few large
changes in the metabolic network. This is caused by the quadratic
formulation used to calculate the flux distance in MOMA and can
be solved by using LMOMA, which uses the Manhattan distance
between the reference and perturbed networks to find the flux
phenotype of the knockout mutant. Another issue that might
arise from using MOMA/LMOMA is the importance given to a
reference flux distribution. Usually, the reference set of fluxes is
calculated using FBA or pFBA [61–63] and any error in this flux
distribution will be propagated to all the predictions. The method-
ology developed in PSEUDO can tackle this issue by not using a
single flux distribution as a reference but a region of the flux space
delimited by a minimum threshold imposed on the biomass yield
[60]. The authors of this methodology reported some improve-
ments over MOMA and FBA flux predictions [60].

Another issue encountered in the formulation of MOMA and
LMOMA was the dependence of the mutant phenotype on the
scale of the stoichiometry of the metabolic reactions [64]. By
using different stoichiometric representations of a metabolic net-
work that are biochemically equivalent, Brochado et al. showed that
the simulation outcome of MOMA/LMOMA was sensitive to the
stoichiometric representation chosen for the network [64]. Since
biochemically equivalent networks should produce the same
results, the authors proposed a new methodology entitled Minimi-
zation of Metabolites Balance (MiMBl). The formulation underly-
ing MiMBl solves the stoichiometry dependence of other
algorithms by using the metabolite turnovers as the variables in
the objective function. Instead of minimizing the changes in the
fluxes in comparison with a reference network, MiMBl minimizes
the changes in the turnovers of all metabolites in the network. As a
consequence, MiMBl provides more robust results, which are not
dependent on the numerical stoichiometric representation chosen
to describe a metabolic network.

3.3.2 Flux Variability

Analysis

A key issue that may arise with the use of constraint-based pheno-
type prediction methods is the existence of alternative optimal
solutions within the same maximal objective (e.g., growth rate),
which can be achieved through different flux distributions. Flux
Variability Analysis (FVA) is an efficient LP-based strategy used to
calculate the full range of values of each flux that can be present, to
achieve optimal or suboptimal objective states. This technique is
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one of the most used to investigate the limits of the feasible domain
of a constraint-based model.

FVA can be a useful tool, not only for determining the ranges of
the fluxes that could be achieved using a specific CBM model, but
also to determine how a flux can vary in an optimal or suboptimal
solution determined by a phenotype prediction method. In this
latter case, the value of the objective function used by that specific
phenotype prediction method is computed in a first step, and
afterward its value is set as restriction, followed by two new opti-
mizations to calculate the maximum and the minimum flux values
for a specific reaction given those constraints.

Through the use of FVA it is possible to determine the domain
of all the possible solutions (usually represented by an n-dimen-
sional polyhedron called the flux cone) where each dimension refers
to a flux) and to analyze how two fluxes influence each other.

To do so, it is necessary to select a target flux and a pivot flux.
The operation begins by splitting the range of all possible values of
the pivot flux in multiple steps. Afterward, for each step, the value
of the pivot flux is fixed and the maximum and minimum values for
the target flux are computed. These values can be plotted into a
two-dimensional surface that can be thought of as the projection of
the flux cone into the dimensions of the pivot and the target fluxes.

This technique can be very useful to understand how an input/
output of the system influences the biomass flux (phase plane
analysis), or to analyze the robustness of a production strain (pro-
duction envelope analysis).

To help illustrate the first point (phase plane analysis), Fig. 9 is
put in place, where the relationship between a pivot and a target

pivot

target

B

D

C

A

Phase

Fig. 9 Surface plot. The range of values of a pivot flux is split and the minimum
and maximum values of the target flux are calculated generating in this way a
poligon. In such poligon it is easy to identify the minimum and the maximum that
the pivot flux could achieve (a and d) the maximum value of the target flux
(b) and where there are changes in the phase (c)
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flux are represented. In a closer inspection of the plot, it is possible
to identify four different points—A, B, C, and D. Points A and D
represent the minimum and maximum values of the pivot flux,
point B represents the maximum achievable value of the target
flux for the corresponding and optimal pivot flux value (b0). Finally,
point C represents a phase change and c0 the corresponding pivot
flux threshold value (prompting the phase change). Phase changes
can be detected by analyzing the first derivatives of the points of the
plot (i.e., the slope of the line) and correspond to the reduced cost
of the pivot flux. The reduced costs are associated with the LP
variables and represent the change in the objective function of the
LP problem, promoted by a small change in the pivot flux. A
positive reduced cost translates into an increase in the value of the
objective function, while a negative one represents a decrease.
These values are important, since they allow us to identify pheno-
typic phase changes. While no change is observed in the reduced
cost, it can be assumed that the system does not need to change its
behavior to comply with its restrictions. Alternatively, when a
change in the reduced cost is observed, it can be assumed that a
phase limit has been reached where the system needs to change its
behavior to keep complying with its set of restrictions. These
system behavior changes are translated to phenotypic changes. As
an example, a phase change can be detected when simulating E. coli
with oxygen limitations. By gradually reducing the oxygen uptake,
it is possible to detect a phase where E. coli starts producing acetate
and another where E. coli produces ethanol, formate, and acetate
(via mixed-acid fermentation).

Another informative analysis that can be achieved via FVA is the
robustness analysis of a production strain (production envelope
analysis). In this case, FVA is also used to generate a plot similar
to the one previously explained, usually called the production
envelope. The production envelope is used to analyze the pheno-
type of a strain that is already producing a target product. The
procedure to calculate this plot is the same as before, but in this
case the pivot is usually the biomass flux and the target is the
product flux. In a typical production envelope, there are three
important points to keep in mind; A—the theoretical maximum
production rate of the target metabolite, B—the maximum pro-
duction rate of the target when the biomass is in its maximum
value, and C—the threshold point of the pivot flux, where the
minimum value of the target flux reaches 0. As exemplified in
Fig. 10, analyzing the position of these three points in the plot
allows the characterization of the solution robustness as:

1. Non-robust—when points B and C are aligned in the maxi-
mum of biomass. This means that there is a range of possible
values for the target product, including 0 (no production).
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2. Robust solution—when point C is not aligned with B, meaning
that there is a range of biomass values between C and B, where
there is a guaranteed minimum production of the target
compound.

3. Robust and fully (biomass) coupled solution—when point C is
overlapped with 0 in the biomass axis and not aligned with
point B, meaning that the production of the target compound
if guaranteed for the whole range of possible pivot (biomass)
values.

The analysis of the results can reveal the best tradeoff between
biomass formation and target product secretion.

In conclusion, FVA can be used to study the entire range of
achievable metabolic functions, as well as the redundancy in opti-
mal phenotypes [65].

3.3.3 OptFlux Operations

Environmental Conditions

When a project is loaded into OptFlux, the metabolic model is
created with default lower and upper flux bounds that are defined
in source information (e.g., SBML file). Those values can be ana-
lyzed in the reactions data type within the metabolic model. To
override these default values, an environmental condition (EC) can
be created. The EC is typically used to define the mediumwhere the
organism is growing, by defining lower/upper bounds in the drains
available in the system. An EC could be also used to block reactions,
change reversibilities or impose maximum capacities for some reac-
tions. There are two different ways to create an EC in OptFlux
(Fig. 11): importing a pre-existent environmental condition from
file or creating it from scratch.

Importing Environmental conditions using text files can be
performed using the operation on menu:File/Import/Environmen-
tal conditions (Fig. 11a). In this operation the user needs to select
the project where the EC will be imported using a tabular data file.
A tabular data file is a plain text file, where each line is a data record
consisting of one or more fields separated by a delimiter character
such as commas or tabs. In EC tabular files, each record is expected
to have three fields, the first one is the reaction identifier (id), the
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target
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target
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Non robust Robust solution Robust and fully
coupled solution

Fig. 10 Surface plots used to characterize productive phenotypes
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second the lower bound and the third the upper bound. The file
separator can also be defined in the operation.

To create an EC from scratch the user must access the opera-
tion viamenu:File/create/Environmental conditions (Fig. 11b). The
operation allows the user to select reactions, one by one and define
their limits. By default the checkbox for “Show Only Drains” is
selected making only the drains visible, assuming that the user only
has to define a growth medium. However, the user is able to define
the bounds of any reaction in the model by unchecking that box.
The upper part of the operation allows the selection of the reactions
(easing its search), while the bottom part allows adding these
constraints to the EC, specifying the lower and upper bounds.
The user can also add all reaction bounds contained in a previously
defined EC.

Phenotype Simulation Optflux has implemented five operations to perform phenotype
simulations each one with different assumptions to perform genetic
modifications:

1. Wild-Type Simulations accessible in the menu:simulation/wild
type (Fig. 12a).

2. Reaction Knockout simulations accessible in the menu:simula-
tion/knockouts/reaction (Fig. 12b).

Fig. 11 Two different ways to create an environmental condition in OptFlux. Loading environmental conditions
from a file (a), or creating an environmental condition by setting reaction bounds individually (b)
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3. Reaction Under/Over-expression simulations accessible in the
menu:simulation/Under-Over Expression/reaction (Fig. 12d).

4. Gene Knockout simulations accessible in themenu:simulation/
knockouts/gene (Fig. 12c).

5. Genes Over/Under-expression simulations accessible in the
menu:simulation/Under-Over Expression/gene (Fig. 12e).

For all of these operations it is possible to select the OptFlux
project that will be used, an environmental condition (if it is

Fig. 12 Five different types of phenotype simulations to simulate in Optflux. Wild type (a), reaction knockouts
(b), gene knockouts (c), reaction under/over-expression (d), and gene under/over-expression (e). In all the
operations, the user is able to also select a simulation method, the biomass reaction, and the environmental
condition
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necessary to override the default bounds existing in the model), the
phenotype simulation method and some parameters for the objec-
tive function (method specific).

In terms of wild-type simulations, two simulation methods are
available, FBA and pFBA; for the objective function it is required to
specify a target reaction for optimization (by default the biomass
equation is selected) and an objective function sense, i.e., maximiz-
ing or minimizing the selected flux (maximization is selected by
default).

For other types of phenotype simulations (such as reaction/
gene knockout/over-under expression—seeNote 1), in addition to
the FBA and pFBA methods, the user can also select MOMA,
LMOMA, ROOM, and MiMBl. These additional methods share
the common characteristic of requiring a reference flux distribution
to run, and the way this reference is selected depends on the user
preference. There are two possibilities; (1) the default option,
where OptFlux performs a pFBA simulation and uses the resulting
flux distribution as the reference; and, (2) select a previously com-
puted phenotype prediction as the reference flux distribution.

The major difference between these operations is the type of
genetic changes that will be simulated. When performing the wild-
type simulation operation, no genetic changes are imposed upon
the model, while for all the other operations perturbations at the
reaction or at the gene level are allowed. For knockouts, two
operations are available, allowing the selection of either a set of
reactions or a set of genes to knockout. Finally, for over/under
expression operations, a pFBA flux distribution is assumed as the
reference and a set of reactions or genes is selected. For each entity
(reaction or gene) the user is asked to define an expression value
(over/under) relative to that of the reference flux distribution. For
additional information consult the sections above and Note 1.

The result of any phenotype simulation operation is an object
created in the clipboard, placed within the Simulation Results list,
under the Simulations data type. The phenotype simulation result
data type collects multiple information regarding the performed
operation, which is displayed in several tabs (Fig. 13):

1. Simulation solution: In this tab, OptFlux presents some of the
selected inputs for the simulation, such as the method name
and the selected ECs, as well as the value for the objective
function obtained with the selected phenotype prediction
method, the biomass value, and the net conversion of the
system. The net conversion represents the net rates of the
metabolites that are consumed and produced, providing an
overall perspective of the predicted consumptions and secre-
tions for the current simulation.
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2. The values of the fluxes are split between two views: one dis-
plays the drain reaction values and the other displays the Inter-
nal/Transport reaction values. In these views, the information
is presented in a tabular format, allowing the user to search for
specific information (via an intelligent search bar), hide the
rows containing zero values, as well as exporting the informa-
tion to a table format file.

3. Genetic conditions: allows inspecting the genetic conditions
(including knockouts, over-under expression) applied. In the
wild-type operations, no genetic conditions are shown.

4. Variables and restrictions extra information: extra information
associated with the variables and the restrictions, such as
shadow prices and reduced costs.

5. Solver output: textual output of the solver used in the
constraint-based optimization problem.

Flux Variability Analysis As previously mentioned to investigate the limits of the feasible
domain of a CBMmodel or the alternative optimal solutions of the
phenotype prediction methods, an FVA operation can be
performed.

OptFlux provides two different operations concerning FVA
analysis (Fig. 14):

Fig. 13 Results for phenotype simulation in an example where three reactions were knocked out (R_ACKr,
R_SUCDi, and R_G6PDH2r) using an E. coli core model [51]. (a) Phenotype simulation method and the net
conversion showing the inputs and outputs of the system; (b) Drain reactions’ fluxes; (c) Internal reactions’
fluxes; (d) Genetic alterations; (e) Extra information regarding the variables and restrictions of the problem like
shadow prices and reduced costs; (f) Raw solver output
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1. Determine flux limits in menu:Analysis/Flux Variability Anal-
ysis/Determine flux limits (Fig. 14).

2. Flux-variation plot in the menu:Analysis/Flux Variability
Analysis/Flux-variation plot (Fig. 14).

The “Determine flux limits” operation is used to determine the
domain of all fluxes present in the CBM model, by restricting the
system to a defined level of the biomass flux. Such a level is a
percentage of the wild-type value (maximum biomass value). In
the configuration of the operation, the user selects the project, the
biomass level used as a restriction, and can also select an EC. The
result of the operation is a new object in the clipboard, placed
within the “Analysis Results” list, under the “Flux Limits” data
type. The result contains the minimum and maximum values possi-
ble for all the fluxes (Fig. 15).

The “Flux variation plot” operation is used to build a
2-dimentional projection of the solution space. To perform this
operation the user must select a pivot and a target flux, and (option-
ally) can also impose a genetic perturbation (gene/reaction knock-
out or gene/reaction under/over expression). Using this operation
the user is able to compute a phase plane analysis or an envelope
production analysis depending on the chosen fluxes to pivot and
the target (see above for more details). The result of the operation is

Fig. 14 OptFlux GUIs for accessing the two different ways of analyzing flux variability: determine all fluxes’
ranges (a); determine a surface selecting a pivot and a target flux (b)
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a new object in the clipboard, placed within the “Analysis Results”
list, under the “FVA Simulations” data type. The information of the
new data type is displayed in several tabs:

1. “FVA Chart,” where the user can visualize a plot that repre-
sents the projection of the two selected fluxes (pivot and
target).

2. “FVA values,” where the user can see the maximum and mini-
mum values of the target flux restricted to a value of pivot flux,
as well as the reduced costs of the pivot variable for the mini-
mum and maximum simulations.

3. “FVA information,” here the user can inspect the
pre-configured parameters used to perform the operation.

In Figs. 16 and 17, an example of a phase plane analysis and an
example of an envelope production analysis are represented,
respectively.

Fig. 15 Results of performing a “Determine flux limits” operation using E. coli core model using 100% of wild-
type simulation as biomass restriction. On the result the user can inspect the minimum and maximum limits of
all fluxes
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Critical Genes/Reactions A reaction or gene is considered critical (or essential) when its
knockout leads to an unviable phenotype strain. Critical informa-
tion is usually used not only to validate the models, but also to
restrict the search when the objective is to construct a mutant strain
to overproduce a compound of interest. In OptFlux, there are two
operations that are able to build a critical reactions/genes set
(Fig. 18):

1. menu:Analysis/Determine Critical Genes/Reactions—where
OptFlux will perform a single knockout to genes or reactions
assuming as critical all those where their knockout leads to a
value of biomass less that 5% of the referenced value calculated

Fig. 16 Results of performing a flux-variation plot operation using E. coli core model, with the oxygen drain as
pivot flux and the biomass as target flux. In the FVA chart view (a), the user is able to see the shape of the
phase plan generated by the operation. In the FVA values view (b), the user is able to see all the steps
calculated for the pivot flux, the minimum and maximum values of the target and also the reduced costs for
the pivot target. In this example, by analyzing the reduced costs (last column) it is possible to detect four
different phases: Phase 1 [�60, �21] mmol/gDWh of the oxygen input flux, where oxygen is decreasingly
harmful for growth; Phase 2 [�21, �12] mmol/gDWh of the oxygen input flux, where E. coli produces Acetate
as a co-product; Phase 3 [�12,�9] mmol/gDWh of the oxygen input flux, where E. coli produces Acetate and
Formate as by-products and Phase 4 [�6, 0] mmol/gDWh of the oxygen input flux, where E. coli produces
Acetate, Formate and Ethanol as by-products of the mixed-acid fermentation process. In the FVA information
view (c), the user is able to see a summary of the configured parameters to reach the result.
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using wild-type simulation. On this operation, the user can also
select an environmental condition.

2. menu:Analysis/add manual critical genes/reactions—where the
user has the freedom to create a specific set of critical informa-
tion. This operation is useful to the users that know that a given
reaction or gene is essential or when the user wants to exclude
some entities from the potential genetic alteration targets in
strain optimization processes (i.e., ATPm is not a critical reac-
tion but should not be considered as target of strain optimiza-
tion process).

The result of both the operations is a new data type in the
clipboard containing all critical genes or reactions.

Fig. 17 Production Envelope for succinate using E. coli core model with reactions R_ACKr (Acetate kinase),
R_SUCDi (succinate dehydrogenase), and R_G6PDH2r (G6P-dehydrogenase) suppressed. Production envelope
plot (a); values for the biomass steps, minimum/maximum values of succinate and reduced costs to biomass
(b); summary of the parameters used in the FVA operation (c); view overlapping the envelope production of
wild type and mutant (d)
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3.4 Constraint-

Based Strain

Optimization Methods

While the in silico simulation of phenotypes can be of great help for
analyzing the phenotype/genotype of a few rationally designed strains,
it would take too long to manually discover combinations of genetic
modifications that meet a certain metabolic engineering objective. In
order to search for interesting genetic targets, several Computational
StrainOptimizationMethods (CSOM) have been developed to search
among the large number of different strain engineering strategies for
the ones that result in the desired phenotype [66].

CSOM links the abstraction of the constraint-based metabolic
models and the assumptions of the constraint-based simulation
methods to reveal insights into the best genetic design strategies
to rationally address a ME objective.

In 2016,Maia and coworkers proposed a new taxonomy for the
existent CSOMs, organizing them in three big clusters:

1. Bilevel mixed-integer programing methods;

2. Metaheuristics methods;

3. Elementary Mode Analysis based methods.

The bi-level mixed-integer programming methods are pro-
blems where two objective functions are simultaneously accounted
for, usually the maximization of metabolite production and the
maximum cellular growth. Such methods are formulated taking
into account two distinct constraint-based optimization problems,

Fig. 18 Two different ways to create critical information on Optflux. (a) Determining by phenotype simulation
approach, (b) Manual creation
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the inner problem and the outer problem. The inner problem is
typically concerned with the cellular objective, while the outer
problem is focused on the engineering goal, i.e., the search for
the best combination of genetic alterations that favor the overpro-
duction of a desired compound. This mathematical formulation is
based on the strong duality property, which states that if the primal
and the dual optimal solutions are bounded, then, at optimality, the
gap between the objective function values must be zero [67]. This
property allows the bi-level formulation to be transformed into a
single-level MILP by setting the primal and dual objectives equal to
one another and accumulating their respective constraints.

OptKnock [68] was the first method to use such methodology
representing a breakthrough in the field and establishing the frame-
work used by many of the developed CSOMs until today. Opt-
Knock uses FBA as the inner problem to calculate the phenotype of
a certain combination of knockouts by assuming maximum bio-
mass formation. The result returned by OptKnock is the best
combination of knockouts that maximize the overproduction of a
desired compound, while taking into account a maximum number
of knockouts and a minimum biomass formation rate.

One important drawback of the target discovery methods that
search for a global optimum solution like OptKnock is that, as the
number of allowed genetic modifications increases, the total search-
able space of strain designs grows exponentially, which makes the
computation time required to solve the problem impractical.

This severely limits the maximum number of genetic modifica-
tions that can be included in the strain designs computed with
OptKnock and similar methods. One of the possibilities to solve
this limitation is to use metaheuristic methods, such as evolutionary
algorithms or other nature-inspired heuristics to find strain designs
with desired phenotypes.

Heuristic methods are usually computationally less expensive
approaches for a myriad of optimization problems. Although, due
to their nature, they do not guarantee that the overall optimal
solutions are found, they allow the definition of optimization fra-
meworks with an enriched set of objective functions, fostering a
clear separation of the strain optimization from the phenotype
simulation layers, while allowing optimization over larger search
spaces (e.g., a higher number of genetic modifications). In Fig. 19,
a generic workflow for a typical metaheuristic CSOM is presented.

The first effort to move in this direction was OptGene [69],
presented by Patil and coworkers, which appeared shortly after the
publication of OptKnock. Inspired by the Darwinian natural evo-
lution theory, OptGene formulates a bi-level decoupled approach,
supported by the use of a genetic algorithm [70]. The idea is to
encode solutions as individuals in an evolving population. Here,
each solution is represented as binary variables encoding the meta-
bolic genome or a set of integer values encoding reaction deletions.
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The algorithm starts by the random generation of an initial set of
candidate solutions (the initial population), and each is decoded
into a set of reaction deletions, which are translated into con-
straints. Each of these candidate solutions is simulated by means
of one of the phenotype simulation methods described above,
followed by the assignment of a fitness value by a user-defined
objective function. Subsequently, the algorithm enters an iterative
stage, starting with a selection step that chooses solutions as pri-
mary candidates for the reproduction in a stochastic way that
depends on their assigned fitness (fitter individuals have a higher
probability of generating offspring solutions). Finally, by combin-
ing these individuals via crossover or mutation operators, a new
population is attained and re-evaluated. This cycle is repeated until
a desired phenotype is achieved or another user-defined termina-
tion criterion is met (typically, a defined maximum number of
generations or solutions evaluated).

The original implementation of OptGene was extended by the
authors to support an optimized representation, which represents
solutions as variable sized sets of deletions. Also, another nature
inspired meta-heuristic—Simulated Annealing (SA)—was
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Designing Cell Factories with OptFlux 69



proposed, which evolves a single solution instead of a population,
by mimicking the process of thermal annealing usually found in
metallurgy and affine areas [71]. Later, an approach based onmulti-
objective evolutionary algorithms, in particular the Strength Pareto
Evolutionary Algorithm 2 (SPEA2), allowing for the optimization
of multiple criteria, possibly including conflicting objectives, was
developed and applied to various case studies [72]. Finally, an
integrated framework that homogenized these three heuristics
(EAs, SAs, and SPEA2) was proposed, providing the current opti-
mization back-end available in OptFlux [73].

Although these methods still follow a bi-level design, in this
case, the bioengineering and the biological optimization tasks are
clearly decoupled and are performed independently. This decou-
pling of the outer and inner optimization problems results in some
very powerful properties. For example, the inner phenotype evalu-
ation method can easily be swapped to any phenotype simulation
method. Another important advantage is the flexibility in the defi-
nition of the objective function in the outer problem, which is here
not bounded by linearity. Nonlinear objective functions (even dis-
continuous) can easily be included, as is the case with the biomass-
product coupled yield (BPCY), which resembles productivity [69],
allowing the definition of more meaningful and powerful functions.
The flexibility gained by the decoupling of the two layers also allows
the easier switch of the optimization heuristic used to search for
metabolic engineering strategies and allows the different optimiza-
tion tasks to be addressed with a similar framework.

3.4.1 Strain Optimization

Using Optflux

OptFlux allows performing strain optimization operations using
metaheuristic methods. This operation can be accessed on menu:
optimization/evolutionary (Fig. 20). To perform this operation a
user needs to define the following inputs:

1. Select the project that will be used to perform the
optimization.

2. Select the outer-layer optimization method that will perform
the ME optimization process. In this selection, the user is able
to choose among one of the three available optimization algo-
rithm: SPEA2, EA or SA, as well as the genetic modifications
targets (genes or reactions) and strategy (knockouts or over/
under expressions).

3. Select the objective functions. The objective functions will
encode the objectives of the desired ME process. There are
several objective functions available in OptFlux, including
biomass-product coupled yield (BPCY), product yield with
minimum biomass (YIELD), maximization/minimization of
a flux value or maximization/minimization of the number of
genetic modifications. Each objective function requires its own
configuration, selecting which fluxes are used in the
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computation of the function value. A constraint-based strain
simulation method must also be selected and associated with
each objective function. This simulation configuration is simi-
lar to the simulation operation and allows selecting one of the
implemented methods (FBA, pFBA, ROOM, MOMA,
LMOMA, and MiMBl) and an objective function reaction,
usually the biomass equation. This means that an optimization
process can have multiple objective functions, each of them
evaluated using different phenotype simulation configurations.

4. Select the environmental condition to be used.

5. It is also possible to select the essential information (genes or
reactions), which excludes them from the optimization pro-
cess, effectively reducing the search space.

6. The optimization basic setup allows the user to define the
maximum number of solution evaluations (which is the num-
ber of phenotype simulations that will be performed—a termi-
nation condition), as well as the maximum number of genetic
modifications. The user can also choose whether the solution
sizes are fixed or if the algorithm is allowed to find solutions
with different sizes. When the user decides for variable size
solutions, this number will be used as the maximum possible
size of the solutions.

Fig. 20 Optflux Evolutionary strain optimization operation and some different objective functions setups
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By default the optimization is configured to find designs of
up to six modifications, within a maximum of 5000 solution
evaluations. These configurations are conservative and must be
adapted for different models/conditions (e.g., by increasing the
number of function evaluations, number of modifications,
among others).

The result of the Evolutionary Algorithms is a new object in the
clipboard, placed within the Optimization Results list, under the
Evolutionary data type. The Optimization Result data type has two
views associated (Fig. 21):

1. Strain optimization summary: where all the inputs used to
produce the result are provided.

2. Strain optimization results, where the computed solutions are
described. On this view, the user is also able to extract a specific
simulation result to the clipboard for further analysis.

4 Notes

1. Representation of Genetic modifications in CBMs
The suppression of a given metabolic function can be accom-
plished in vivo by disrupting the functioning of specific genes
by targeted modifications through homologous recombination
[74] or intron introduction [75]. With in silico CBMs, this task
is commonly accomplished by imposing constraints that force
the flux of the disabled reactions to zero, deterring the occur-
rence of flux over those reactions, followed by the evaluation of
the effect of that perturbation.

Constraint-based phenotype prediction methods can take
advantage of gene-reaction rules information contained within

Fig. 21 Views of an evolutionary operation result performed with E. coli core model using BPCY objective
function for the production of succinate using glucose as carbon source. (a) resume of all the parameters
configured to run the operation. (b) view showing all the mutant strains computed by the method
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the models to perform gene deletions instead of reactions
deactivations. To attain that, it is necessary to use the Boolean
rules to derive the off genes and understand which reactions
must be deactivated. Such deactivation is performed by setting
the reaction bounds of those reactions to 0. This type of gene
deletions provides a closer resemblance to the in vivo scenario,
since they inherently account for the occurrence of multifunc-
tional and multimeric proteins, as well as isoenzymes.

Gonçalves and coworkers [76] suggested an alternative to
use constraint-based phenotype prediction methods to repre-
sent over or under regulation of certain fluxes in the network.
This methodology uses a wild-type flux distribution as a refer-
ence and a set of “mutated” reactions, where each reaction is
associated with an expression level (p). If the expression value is
smaller than 1, the reaction is under-expressed constraining its
flux to be lower than the reference value, which will be multi-
plied by p. If the expression value is >1 the reaction will be
overexpressed, and its flux is constrained to be higher than the
reference value. The knockouts are formulated with an expres-
sion level of zero.
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Fig. 22 Schema explaining how to represent genetic modifications within CBMs. In the left side, knockouts are
shown (G2, G4, and G5), then the GPRs were applied to verify which reactions should be knocked out, and
finally the bounds associated to deactivated reactions were set to 0. In the right side, under/over expressions
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To apply this methodology on the gene level, it was neces-
sary to convert Boolean operators to functions able to handle
numerical expression values by using the available GPR infor-
mation. Typical examples of AND situations are the formation
of protein complexes, where the expression of all the genes is
necessary to produce the enzyme. With this in mind, the
authors decided to translate the AND operator to the mini-
mum value between the two expression values, implying that
the expression of all the genes is necessary to produce the
enzyme, and the gene for which the minimum number of
copies are expressed will act as a bottleneck for the activity of
the corresponding enzyme. On the other hand, typical exam-
ples of OR situations are genes encoding isoenzymes, where
the genes involved work independently, so OR operators were
transformed to the mean of all expression values. Thus, by
using the converted GPR, it is possible to convert a set of
genes associated with an expression value to a set of reactions
associated with an expression value, allowing the flux bounds
transformation explained before.

Figure 22 shows an example of how a genetic transforma-
tion is translated to the reactions bounds.

References

1. Jackson DA, Symons RH, Berg P (1972) Bio-
chemical method for inserting new genetic
information into {DNA} of Simian Virus 40:
circular {SV40} {DNA} molecules containing
lambda phage genes and the galactose operon
of Escherichia coli. Proc Natl Acad Sci U S A
69:2904–2909

2. Lobban PE, Kaiser AD (1973) Enzymatic end-
to-end joining of {DNA} molecules. J Mol Biol
78:453–471

3. Stephanopoulos G, Aristidou AA, Nielsen J
(1998) Metabolic engineering: principles and
methodologies. Academic press, New York, NY

4. Bailey J (1991) Toward a science of metabolic
engineering. Science 252:1668–1675

5. Woolston BM, Edgar S, Stephanopoulos G
(2013) Metabolic engineering: past and future.
Annu Rev Chem Biomol Eng 4:259–288

6. Bailey JE, Birnbaum S, Galazzo JL et al (1990)
Strategies and challenges in metabolic engi-
neering. Ann N Y Acad Sci 589:1–15

7. GavrilescuM,Maria G, Yusuf C (2005) Biotech-
nology—a sustainable alternative for chemical
industry. Biotechnol Adv 23:471–499

8. Hatti-Kaul R, Rajni H-K, Ulrika T et al (2007)
Industrial biotechnology for the production
of bio-based chemicals – a cradle-to-grave
perspective. Trends Biotechnol 25:119–124

9. Kitano H (2002) Systems biology: a brief over-
view. Science 295:1662–1664

10. Bork P (2005) Is there biological research
beyond Systems Biology? A comparative analy-
sis of terms. Mol Syst Biol 1:E1–E2

11. Schuster SC (2007) Next-generation sequenc-
ing transforms today’s biology. Nat Methods
5:16–18

12. Papin JA, Tony H, Palsson BO et al (2005)
Reconstruction of cellular signalling networks
and analysis of their properties. Nat Rev Mol
Cell Biol 6:99–111

13. Samaga R, Regina S, Steffen K (2013) Model-
ing approaches for qualitative and semi-quanti-
tative analysis of cellular signaling networks.
Cell Commun Signal 11:43

14. Covert MW, Knight EM, Reed JL et al (2004)
Integrating high-throughput and computa-
tional data elucidates bacterial networks.
Nature 429:92–96

15. Reed JL, Iman F, Ines T et al (2006) Towards
multidimensional genome annotation. Nat Rev
Genet 7:130–141

16. Fong SS, Palsson BØ (2004) Metabolic gene–
deletion strains of Escherichia coli evolve to
computationally predicted growth phenotypes.
Nat Genet 36:1056–1058

17. Papin JA, Joerg S, Price ND et al (2004) Com-
parison of network-based pathway analysis
methods. Trends Biotechnol 22:400–405

74 Paulo Vilaça et al.



18. Rocha I, Förster J, Nielsen J (2008) Design and
application of genome-scale reconstructed met-
abolic models. Methods Mol Biol 416:409–431

19. Thiele I, Palsson BØ (2010) A protocol for
generating a high-quality genome-scale meta-
bolic reconstruction. Nat Protoc 5:93–121

20. Hamilton JJ, Reed JL (2014) Software platforms
to facilitate reconstructing genome-scale meta-
bolic networks. EnvironMicrobiol 16:49–59

21. Notebaart RA, van Enckevort FHJ, Francke C
et al (2006) Accelerating the reconstruction of
genome-scale metabolic networks. BMC Bio-
informatics 7:296

22. Agren R, Liu L, Shoaie S et al (2013) The
{RAVEN} toolbox and its use for generating a
genome-scale metabolic model for Penicillium
chrysogenum. PLoS Comput Biol 9:e1002980

23. Henry CS, DeJongh M, Best AA et al (2010)
High-throughput generation, optimization
and analysis of genome-scale metabolic mod-
els. Nat Biotechnol 28:977–982

24. Dias O, Rocha M, Ferreira EC et al (2015)
Reconstructing genome-scale metabolic models
with merlin. Nucleic Acids Res 43:3899–3910

25. Smallbone K, Kieran S, Messiha HL et al
(2013) A model of yeast glycolysis based on a
consistent kinetic characterisation of all its
enzymes. FEBS Lett 587:2832–2841

26. Smallbone K, Kieran S, Evangelos S et al
(2010) Towards a genome-scale kinetic model
of cellular metabolism. BMC Syst Biol 4:6

27. Bordbar A, Monk JM, King ZA et al (2014)
Constraint-based models predict metabolic
and associated cellular functions. Nat Rev
Genet 15:107–120

28. Gombert AK, Jens N (2000) Mathematical
modelling of metabolism. Curr Opin Biotech-
nol 11:180–186

29. Edwards JS, Palsson BO (1999) Systems proper-
ties of the haemophilus influenzaeRd metabolic
genotype. J Biol Chem 274:17410–17416

30. Monk J, Nogales J, Palsson BO (2014) Opti-
mizing genome-scale network reconstructions.
Nat Biotechnol 32:447–452

31. Bailey JE (2001) Reflections on the scope and
the future of metabolic engineering and its
connections to functional genomics and drug
discovery. Metab Eng 3:111–114

32. Rocha I,Maia P, Evangelista P et al (2010) {Opt-
Flux}: an open-source software platform for in
silicometabolic engineering.BMCSystBiol4:45

33. Glez-Peña D, Reboiro-Jato M, Maia P et al
(2010) {AIBench}: a rapid application develop-
ment framework for translational research in
biomedicine. Comput Methods Programs
Biomed 98:191–203

34. Schulze KL, Lipe RS (1964) Relationship
between substrate concentration, growth rate,
and respiration rate of Escherichia coli in con-
tinuous culture. Arch Mikrobiol 48:1–20

35. Bowen JH (1968) Basic principles and calcula-
tions in chemical engineering. Chem Eng Sci
23:191

36. Reed JL, Vo TD, Schilling CH, Palsson BO
(2013) An expanded genome-scale model of
Escherichia coli K-12 (i JR904 GSM/GPR).
Genome Biol 4(9):R54

37. Hucka M, Finney A, Sauro HM et al (2003)
The systems biology markup language
({SBML)}: a medium for representation and
exchange of biochemical network models. Bio-
informatics 19:524–531

38. Bornstein BJ, Keating SM, Jouraku A et al
(2008) {LibSBML}: an {API} library for
{SBML}. Bioinformatics 24:880–881

39. von Kamp A, Schuster S (2006) Metatool 5.0:
fast and flexible elementary modes analysis.
Bioinformatics 22:1930–1931

40. Funahashi A, Morohashi M, Kitano H et al
(2003) {CellDesigner}: a process diagram edi-
tor for gene-regulatory and biochemical net-
works. BioSilico 1:159–162

41. Funahashi A, Matsuoka Y, Jouraku A et al
(2008) {CellDesigner} 3.5: a versatile model-
ing tool for biochemical networks. Proc IEEE
96:1254–1265

42. Cline MS, Smoot M, Cerami E et al (2007)
Integration of biological networks and gene
expression data using Cytoscape. Nat Protoc
2:2366–2382

43. Noronha A, Vilaça P, Rocha M (2014) An
integrated network visualization framework
towards metabolic engineering applications.
BMC Bioinformatics 15:420

44. Fruchterman TMJ, Reingold EM (1991)
Graph drawing by force-directed placement.
Softw Pract Exp 21:1129–1164

45. Le Novere N, Hucka M,Mi H et al (2009) The
systems biology graphical notation. Nat Bio-
technol 27(8):735–741

46. Schellenberger J, Park JO, Conrad TM et al
(2010) {BiGG}: a Biochemical Genetic and
Genomic knowledgebase of large scalemetabolic
reconstructions. BMC Bioinformatics 11:213

47. King ZA, Dr€ager A, Ebrahim A et al (2015)
Escher: a web application for building, sharing,
and embedding data-rich visualizations of
biological pathways. PLoS Comput Biol 11:
e1004321

48. King ZA, Lu J, Dr€ager A et al (2016) BiGG
models: a platform for integrating, standardiz-
ing and sharing genome-scale models. Nucleic
Acids Res 44:D515–D522

Designing Cell Factories with OptFlux 75



49. Varma A, Palsson BO (1994) Metabolic flux
balancing: basic concepts, scientific and practi-
cal use. Nat Biotechnol 12:994

50. Papoutsakis ET (1984) Equations and calcula-
tions for fermentations of butyric acid bacteria.
Biotechnol Bioeng 26:174–187

51. Orth JD,Thiele I,PalssonBØ(2010)What isflux
balance analysis? Nat Biotechnol 28:245–248

52. Feist AM, Palsson BO (2010) The biomass
objective function. Curr Opin Microbiol
13:344–349

53. Schuetz R, Kuepfer L, Sauer U (2007) System-
atic evaluation of objective functions for pre-
dicting intracellular fluxes in Escherichia coli.
Mol Syst Biol 3:119

54. Ponce de León M, Cancela H, Acerenza L
(2008) A strategy to calculate the patterns of
nutrient consumption by microorganisms
applying a two-level optimisation principle to
reconstructed metabolic networks. J Biol Phys
34:73–90

55. Lewis NE, Hixson KK, Conrad TM et al (2010)
Omic data from evolved E. coli are consistent
with computed optimal growth from genome-
scale models. Mol Syst Biol 6:390
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