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Definition

The exchange of chemical components between the Earth’s
interior and exterior driven by plate subduction.

Introduction

Subduction zones are not just sites of plate convergence but
regions where the interior and exterior of the Earth chemically
exchange (Fig. 1). Like a factory, raw material from the Earth’s
exterior is fed into the subduction zone and transformed in a
series of chemical reactions driven by increasing pressure
(P) and temperature (T) in the sinking plate. Some of the
products are buoyant and so rise, drive melting in the mantle,
and return back to the Earth’s crust via intrusion and volcanism.
Dense waste products continue to sink into the deep mantle,
perhaps to the boundary with the core. This subduction factory
is ultimately responsible for generating continental crust,
re-enriching the mantle, and redistributing water and carbon
dioxide in the planet. The processes that occur inside the factory
are hidden from view, inferred from comparison of oceanic
input and volcanic output chemical fluxes, laboratory experi-
ments that simulate high P-T reactions, thermodynamic calcu-
lations, and exhumed high-pressure rocks.

Input Materials

The input to the subduction zone is the incoming plate, which
consists of three layers of fundamentally different chemical
compositions: the basaltic oceanic crust created at mid-ocean
ridges, its mantle residuum substrate that moves with the
plate, and marine sediments that deposit on top (Fig. 1).
Each of these layers interacts differently with the ocean as
the plate travels from mid-ocean ridge to deep sea trench.
Most information on the chemical composition of the sub-
ducting plate has come from the international scientific ocean
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drilling programs through direct sampling and borehole
observatories.

The basaltic oceanic crust represents the melt layer segre-
gated from the melting mantle at mid-ocean ridges, and its
initial chemical composition reflects the degree of melting
and history of the upper mantle source region. Hydrothermal
circulation near the active spreading center then decorates the
oceanic crust with secondary minerals such as smectite and Fe
oxides and introduces chemical components such as H,O, S,
U, Li, B, and alkalis (Kelley et al. 2003). Carbonate veins
precipitate at lower temperatures as the plate moves off the
ridge axis (Alt and Teagle 1999). Near the trench, plate
bending opens new fractures that hydrate the oceanic crust.
The sum of these chemical interactions produces an altered
basaltic crust with very different parent-daughter isotope
ratios, such as high 2**U/*°°Pb and *’Rb/*’Sr, which initiate
distinct isotopic evolutionary paths (Kelley et al. 2005; Porter
and White 2009).

The extent to which the mantle peridotite substrate reacts
with the ocean is debated, but critical to the fate of water at the
surface of our planet. The primary mineral in peridotite is
olivine, which may undergo rapid and extensive hydration,
even at ambient temperatures, to the mineral serpentine
(a hydrous mineral with an abundance of H,O, ~12—13 wt%).
The peridotite section of the oceanic plate is thus a sponge to
water if it can be delivered to depth. The primary evidence for
serpentinization of the oceanic plate comes from a reduction in
seismic velocity toward the trench, observed at the Central
American, Andean, and Aleutian margins (Shillington et al.
2015). As little as 2% serpentinization of the top few km of
incoming peridotite holds enough water to subduct the entire
ocean every billion years (Hacker 2008). Although H,O is the
dominant chemical component attending serpentinization,
other diagnostic features include elevated Cl and 0''B (Vils
et al. 2009; Debret et al. 2014).

Sediments deposited on the seafloor constitute the greatest
chemical heterogeneity injected into the subduction zone,
from pure silica chert to nearly pure calcium carbonate chalks
and metal-rich red clays (Plank 2014). Marine sediments are
physical mixtures of variable amounts of continental detritus,
delivered by wind, rivers, and/or volcanic eruption, biogenic
accumulations of primarily carbonate, opal and apatite organ-
ism hard parts, and hydrothermal particulates as the comple-
ments to seafloor alteration. All of these phases may be seeds
for adsorption of chemical complexes from seawater itself, a
hydrogenetic component. Globally, marine sediments are
dominated by continental detritus and so have a composition
very similar to that of average shales and the upper continen-
tal crust. Biogenic phases are largely diluents to most chem-
ical species in the detritus, except for Sr, Ba, and U in
carbonates, rare earth element (REE) in phosphates, and Ba
associated with biogenic opal. In regions of the oceans far
from wind or river inputs, sediments are dominated by
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hydrogenetic or hydrothermal components, rich in Fe-Mn
oxides, REE, Th, Pb, Co, and other metals. Unlike most
planetary reservoirs, marine sediments may have distinctive
Nd-Hf isotopic compositions due to the strong enrichment of
REE in some phases and the lack of the heavy mineral zircon
in sediments far from land (Vervoort et al. 2011). The oceanic
realm also may lead to the distinctive fractionation of Ce
(which is highly particle reactive when 4+) from the other
dominantly trivalent REE. The sedimentary input to different
subduction zones is widely variable, depending on the
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paleogeography and paleoceanography of each site. The
unique geochemical characteristics of each sedimentary sec-
tion is shared by its adjacent volcanic arc (Fig. 2), providing
strong evidence for cycling through the subduction zone.

On the Way Down

As oceanic material enters the subduction zone, it begins a
path of increasing T and P that drives mineral transformations,
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Subduction Zone Geochemistry, Fig. 3 The loss of boron and cesium
during subduction, as recorded in micas from metasedimentary rocks of the
Catalina Schist during increasing P (pressure) — T (temperature) grade from
~200 °C to 600 °C. Circles are lowest grade lawsonite-albite schists;
squares medium grade blueschists; friangles higher-grade amphibolites
(From Bebout (2014))

devolatilization reactions, fluid evolution from aqueous to
solute rich, and an increase in the solubility of many trace-
element-bearing minerals. Mineral reaction and fluid produc-
tion in turn accompany a spectrum of fault slip behavior in the
subduction zone, from slow and silent slip to the world’s
largest intraplate earthquakes.

The lowest P-T conditions involve compaction and dehy-
dration of the sedimentary section as the clay mineral smec-
tite transforms to illite and the light elements Li and B as
well as alkalis Cs and Rb are liberated into a water-rich fluid
(Ishikawa et al. 2008; Bebout 2014; Fig. 3). At higher P-T,
the dominant minerals in the basaltic crust become
lawsonite, garnet, and clinopyroxene (Klimm et al. 2008),
while quartz and mica also form in sediments. A plethora of
accessory mineral phases and their T-dependent solubility
control the behavior of key tracers, such as REE, Th, and
U in monazite and allanite, Nb and Ta in rutile, and Zr, Hf, U,
and HREE in zircon (Hermann and Rubatto 2009; Skora and
Blundy 2010). Serpentine minerals have a maximum stabil-
ity of 600-700 °C (Schmidt and Poli 1998), but may persist
to >200 km depth in the peridotite section because the slab
interior heats up more slowly (Hacker 2008). Deformation
within the subduction zone may create mélange (Marschall
and Schumacher 2012), a mechanical mixture of sediment-
basalt-peridotite that may favor the formation of distinctive
minerals such as chlorite.

At higher temperatures, fluids evolved during the break-
down of lawsonite, amphibole, and mica are more solute rich,
containing Si, Al, and alkalis (Manning 2004). If flushed with
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Subduction Zone Geochemistry, Fig. 4 SiO2 concentration of high
P-T fluids generated in the laboratory (equilibrated with basalt at 6 GPa).
Fluids evolve continuously from low-SiO2 aqueous fluids at low T to
high-Si02 melt-like supercritical fluids at high T (Figure from Kessel
et al. (2005))

water-rich fluids, the top of the plate may melt at T > 700 °C
and P > 3 GPa(Mann and Schmidt2015). At pressures higher
than 5 GPa, sediments no longer melt at a discrete solidus but
instead evolve “supercritical” liquids that span a continuum of
compositions (Kessel et al. 2005; Fig. 4) from dilute aqueous
liquids with little dissolved silicate to melt-like silicate-rich
liquids with dissolved water (Hermann et al. 2006).

The workings within the subduction zone beneath volcanic
arcs are of particular interest because they prime the source of
arc magmatism. The tracers of the slab include large ion
lithophile elements (e.g., alkalis, Ba, Pb) that are thought to
be mobile in lower T fluids and high-field strength elements
(e.g., Nb, Ta, REE, Th) which are thought to be mobile only in
higher T fluids/melts/supercritical liquids (Elliott 2003;
Fig. 5). A range of fluid and solid compositions will exist
for different subduction zone P-T paths. Young slabs (e.g.,
Cascadia) follow higher T/P paths than old, fast subducting
slabs (e.g., Tonga; Syracuse et al. 2010). Different thermal
regimes will lead to different slab fluid compositions that
supply different arcs, for example, REE-poor and high
Ba/La, U/Th, and B/Be at Tonga and low H,O/Ce and high
St/Y at Cascadia (Ruscitto et al. 2012). Sedimentary versus
basaltic slab material supply different '*Nd/***Nd, '°Be/’Be,
and 2%5T12%*T1 compositions, reflecting greater mean age,
cosmogenic contribution, and seawater interaction, respec-
tively (White and Patchett 1984; Morris et al. 2002; Prytulak
et al. 2013). Volcanic arcs often inherit the local subducted
sedimentary fingerprints in their Th/La (Plank 2005) and
207pp/2%*P ratios.
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Subduction Zone Geochemistry, Fig. 5 Subduction zones produce
arc basalts (green field) that are significantly enriched in Ba/Th compared
to mid-ocean ridge basalts (gray field). Line shows expected mixing
between low-temperature/altered oceanic crust fluid (1) and high-
temperature/sediment melt (2) from the subduction zone (Mixing calcu-
lation and figure from Elliott (2003))

One Man’s Trash Is Another Man’s. ..

The progressive removal of water, fluids, melts, supercritical
liquids, and buoyant solids leaves behind a dense slab that
sinks deeper into the upper mantle, the transition zone, the
lower mantle, and potentially as far as the core-mantle bound-
ary. Such processed slab material contributes to mantle hetero-
geneity. Carbonate and organic carbon are stubborn substances
in subduction zones, some destined to become diamonds in the
mantle (Walter et al. 2011; Sverjensky et al. 2014). Particularly
cold P-T paths can ferry water into the lower mantle in a series
of dense hydrous magnesium silicates, leading to a loss of
water from the surface hydrosphere (Nishi et al. 2014). The
transition zone is capable of containing oceans of water in the
mineral ringwoodite, recently discovered as inclusions in high-
pressure diamonds (Pearson et al. 2014). The subduction zone
can deliver to the deep mantle stable isotope tracers in '%0/'°0,
"Li/°Li, and **S/*?S that bear vestiges of their origin in the
biosphere, hydrosphere, and atmosphere at Earth’s surface
(Eiler 2001; Farquhar et al. 2002; Elliott et al. 2006; Sleep
et al. 2012). Other radiogenic isotope tracers such as
206pp,204py IBTHHIEOHE and 37Sr/*°Sr evolve to anomalous
values due to extreme fractionation of parent from daughter
isotope in subducting slabs (Chauvel et al. 2008). Such distinc-
tive slab material is thought to surface again in rising mantle
plumes, producing volcanism on ocean islands like Hawaii,
Galapagos, and Samoa (Blichert-Toft et al. 1999; Jackson et al.
2007; Hofmann 2014).

Or, What Goes Down Must Come Up

Fluids evolved from the subducting plate may rise up the slab
interface or into the overlying mantle (Wilson et al. 2014). The
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Subduction Zone Geochemistry, Fig. 6 Correlation between the
thickness of the crust and the sodium concentration of basaltic magmas,
averaged for different volcanic arc segments globally. This relationship
is interpreted to reflect lower extents of mantle melting beneath arcs with
thick crust, due to the displacement of the hot mantle wedge core to
greater depths. Na6.0 is the average Na20 concentration (wt%) of
volcanic rock samples with 5.5 > MgO < 6.5 wt% (Data compilation,
figure, and interpretation from Turner and Langmuir (2015a))

exact path of fluid flow from slab to hot core of the mantle
wedge and the extent of reaction along the way are poorly
known (Pirard and Hermann 2015). Weak, low-density sedi-
ment or mélange may become gravitationally unstable and rise
as diapirs into the overlying mantle (Behn et al. 2011). These
materials may interact with and/or drive melting in the overlying
mantle wedge, the source of magmas that feed arc volcanoes.
The mantle wedged between the upper and downgoing
plates may melt in two ways: (1) by the addition of slab
fluid (s.l.) that lowers the mantle melting temperature or
(2) by adiabatic decompression due to an upward component
of plate-driven circulation, primarily in the back-arc region
(Grove et al. 2002). It has also been proposed that the removal
of ice loads during deglaciations may lead to enhanced
decompression melting (Huybers and Langmuir 2009). Slab
diapirs may also melt as they rise through the mantle wedge
and heat up (Castro and Gerya 2008). This sum of processes
leads to zonation in the concentration of H,O and other slab
tracers in volcanism at different distances from the trench
(Pearce et al. 2005; Kelley et al. 2006; Portnyagin et al.
2007). The mantle melting signal is thought to be best
recorded in elements which do not derive primarily from the
downgoing plate, such as the high-field strength elements
(HFSE: Nb, Ta, Hf, Zr, Ti, and Y) and Na. These elements,
in turn, vary with both H,O (Plank et al. 2013) and crustal
thickness (Turner and Langmuir 2015a; Fig. 6), leading to
competing models whereby slab H,O on the one hand and
wedge depth on the other control mantle melting (Turner and
Langmuir 2015b). Some volcanoes erupt magmas with sim-
ilar geochemical heritage (e.g., U/Th, Ba/La) for 100,000’s
year (Wade et al. 2005; Jicha and Singer 2006), while others
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erupt an enormous diversity of primary compositions (Patino
et al. 2000). The primary melts that rise out of the mantle are
thought to be basalts in most cases but in some regions are
high Mg/(Mg + Fe) andesites and dacites (Kelemen 1995).
Such magmas appear to have been more common in the early
Earth (Fig. 7).

Building Volcanoes and Continents

Magmas continue to be buoyant in the crust, particularly once
they begin to exsolve volatile species (e.g., HO, CO,, SO,,
halogens) to vapor. Some of the magmas born in the subduc-
tion zone will erupt out a volcano, while some will meet their
“viscous death” and crystallize in the crust to become a
plutonic body (Annen et al. 2006). The magma flux through
the crust will affect the extent of cooling, crystallization, and
final composition of the erupted or intruded magma. Magmas
with short residence time in the crust will remain basaltic

Subduction Zone
Geochemistry, Fig. 7 SiO2 and
Mg# (Mg/[Mg + Fe]) in Archean
igneous rocks (dots), bulk
continental crust (orange field)
and typical modern Aleutian arc
lavas (green field). Most modern
subduction lavas are not
compositionally similar to the
continental crust (From Kelemen
(1995))

Subduction Zone
Geochemistry, Fig.8 Th/Nb vs.
La/Nb in arc basalts f rom
subduction zones, compared to
average continental crust (orange
field) and mid-ocean ridge and
oceanic island basalts (green
field). The high Th/Nb (depletion
in Nb) is a feature shared by both
the continental crust and
subduction magmatism. Figure
after Plank (2005)
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(with high MgO, Ni, Cr), and those with the longest residence
time and/or interaction with the crust will evolve to become
rhyolites (with high SiO, and alkalis). As magmas evolve,
they may enrich in Fe (the tholeiitic trend) or deplete in Fe
(calc-alkaline). Calc-alkaline trends, predominant at subduc-
tion zones and distinctive to Earth, are created from high
initial water and oxygen fugacity (Sisson and Grove 1993;
Zimmer et al. 2010). Trace elements that are essential constit-
uents to accessory minerals, such as P in apatite and Zr in
zircon, will show kinks along crystal fractionation paths as
these minerals saturate. Magmas will variably interact, digest,
and disrupt the crust they intrude, leading to decreases in
"Nd/'**Nd as magmas evolve to higher SiO, (Sisson et al.
2014), isotopic heterogeneity within individual crystals
(Davidson et al. 2001), and/or a cargo of foreign crystals
(Dungan and Davidson 2004).

The continental crust and arc magmas share geochemical
fingerprints, such as low La/Nb and Th/Nb (Fig. 8), which
have long provided strong evidence for continent formation at
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subduction zones (Rudnick 1995; Plank 2005). Few modern
arcs, however, provide a good match to the full continental
fingerprint (Gazel et al. 2015), and most arc crust is signifi-
cantly less silicic than bulk continental crust (Rudnick and
Gao 2014). This “silica problem” has several proposed solu-
tions (Tatsumi et al. 2008), generally falling into two catego-
ries: (a) predominance of high-silica primary magmas in the
early Earth or plutonic record (Kelemen 1995; Fig. 7) and
(b) subtraction of low-silica crystals by sinking of dense lower
crust into the mantle (Jull and Kelemen 2001).

Timescales of Subduction Geochemistry

Radioactive isotopes and diffusion chronometry constrain the
timescales of subduction geochemistry, from millions of years
to minutes. Geochemical variations and U-Pb zircon geochro-
nology track the evolution and construction of convergent
margins over tens of millions of years (Lee et al. 2007). The
presence of the cosmogenic and radioactive isotope '°Be in
arc volcanic crystals requires Be to travel from shallow sed-
iments on the seafloor down the subduction zone and back to
the surface in less than a few Ma (Morris et al. 2002). Dis-
equilibrium in the activity of U-chain isotopes clocks trans-
port from the slab to the surface in less than a few
100,000 years and perhaps as rapidly as a few 1000 years
(Turner et al. 2003). Ar-Ar geochronology establishes the
lifetime of individual volcanoes to 100600 ka (Carr et al.
2007). Crystals erupted from volcanoes can endure several
freeze-thaw cycles in magma storage regions (Cooper and
Kent 2014), recorded in »**U—>*"Th crystallization ages on
the order of 10,000 years. Diffusion profiles of transition
metals (Ni, Fe, Mg, Cr) in primary olivine crystals are speed-
ometers of rapid magma supply from the mantle to some
volcanoes in months to years (Ruprecht and Plank 2013). The
eruptive process itself may occur in minutes, fueled by the
rapid loss of volatiles from melt to vapor and recorded in
H,O0 diffusion profiles in glass and crystals (Lloyd et al. 2014).

Mass Balances Across the Subduction Zone

Developing meaningful mass balances of different tracers
across subduction zones remains an outstanding challenge.
An example comes from the rare earth element Nd. The
concentration and isotope ratios of Nd in sediments and
basaltic crust entering subduction zones are fairly well
constrained by drilling. The Nd abundance in subducting
peridotite is minor, and Nd is not widely mobilized during
the first 700°C of heating in the subduction zone. Its release
into slab fluids/melts will be governed largely by the
T-dependent solubility of the REE-rich minerals allanite and
monazite. A few percent of sediment is generally sufficient to
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reproduce the '**Nd/'**Nd composition of arc magmas, but
the balance from subducting basaltic crust versus mantle is
not currently well constrained. Other unknowns are the con-
tributions of Nd from the preexisting arc crust, especially if it
is made of young arc volcanics with similar '**Nd/"**Nd to
the intruding magma. The Nd concentrations in arc volcanics
are reasonably well known for many volcanoes, but large
uncertainties in the magma flux rate at arcs (volcanic and
plutonic) lead to minimum uncertainties of a factor of two in
the output flux of any magmaphile element. By comparing the
volcanic output to the subducted input, it is clear that the Nd
contributed from the slab is widely variable from arc to
arc. From 0% to 60% of the Nd in volcanic arcs is derived
from the slab (Porter and White 2009). Still, the net effect of
subduction on the slab is relatively minor for Nd, with
100-70% of the initial slab Nd continuing into the deep
mantle.

Even greater uncertainties exist for the mass balance of
other chemical species, such as carbon, where current esti-
mates are anywhere from ~0% to 80% C entering subduction
zones continuing into the deep mantle (Kelemen and Man-
ning 2015). A similar situation exists for H,O, although the
presence of the surface ocean over most of geological time
places maximum constraints on the amount of water that can
disappear into the mantle (Parai and Mukhopadhyay 2012).
The slow subduction process adds up over geological time; an
ocean of water and a mass equivalent to the entire surface pool
of organic C have disappeared down subduction zones every
few billion years. Variable and inefficient return may have
contributed to the unusually high H/C of our planet’s surface
(Hirschmann and Dasgupta 2009).

Most mass balance estimates to date are like balancing a
checking account that has large uncertainties on the deposits
and withdrawals — this leads to an uncomfortable situation!
A fundamentally different approach is gaining accuracy.
Given a P-T path for a slab, it is possible to calculate where
and how much departing fluid is evolved and its elemental
composition using thermodynamic and partitioning data from
laboratory experiments. With enough accuracy of the under-
lying chemical reactions, the future will see subduction mass
balances predicted from calculation. Such an approach is
underway with the arc basalt simulator (Kimura et al. 2009),
and geochemical-thermomechanical models (Hebert et al.
2009; Baitsch-Ghirardello et al. 2014).

Summary and Conclusions

Subduction geochemistry is a rich topic, spanning from
marine geology to igneous petrology, geodynamics to ther-
modynamics. Accordingly, diverse and multidisciplinary
observations and measurements are needed to understand
the full subduction cycle for any geochemical tracer. These
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include the study of sediments and serpentinite from the
seafloor, study of metamorphic rocks and high-pressure sim-
ulations in the laboratory, modeling of magma and mantle
movement, and study of plutonic and volcanic rocks, glasses,
gases, and crystals. For this reason, subduction geochemistry
has generally advanced through coordinated, international
programs involving hundreds of scientists, with efforts cross-
ing the shoreline and spanning from megascale drilling to
nanoscale chemical analysis. The challenges to our under-
standing are wide and deep, and the stakes are
high — subduction has built the continents, stirred the mantle,
and developed our hydrosphere and carbosphere over Earth
history.
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Definition

Sulfate minerals are mineral species in which the dominant
anionic entity is the sulfate anion, [SO4* (Chang et al. 1996;
Alpers et al. 2000). About 380 valid species of sulfate min-
erals had been described by early 2017 (cf. www.mindat.org),
which are often grouped into a broader “sulfate” anion class
along with the much small number (ca. 50) of chromates,
molybdates, and tungstates. Even rarer related complex
anions are the sulfite ion [S*"05]*™ in scotlandite (PbSO5),
fluorsulfonate ion [SOsFT™ in reederite-(Y)
(Na;5Y»(CO53)o(SO5F)CI), and thiosulfate ([SO3S]*~ or
[S,05]%7) in sidpietersite (Pbs(S,05)0,(OH),).

Introduction

Sulfur is the commonest element in the Earth that occurs in
both negative (S*7) and positive (S*", S°*) oxidation states.
Hexavalent sulfur usually occurs bonded to four oxygen
atoms in a tetrahedral arrangement, forming the sulfate
anion [SO4]*". The complex anion is held together internally
by rather strong, covalent S-O bonds (bond valence = 1.5
valence units), but are bound to other cations to form
a mineral structure through links that are usually lower in
bond valence and more ionic in character. The formation of
sulfate anion requires conditions that are oxidizing relative to
those found in the deep Earth, so sulfate minerals are charac-
teristic of near-surface environments that are oxygenated,
particularly the oxidized zones of sulfide ore bodies, oxidized
hydrothermal and fumarole systems and since sulfate is
a common anion in the ocean and many other water bodies,
in evaporites. Oxidation of sulfides to form sulfuric acid

Sulfate Minerals

and hence sulfate minerals is frequently catalyzed by acido-
phile lithoautotrophic bacteria such as Thiobacillus and
Sulfobacillus in cooperation with iron-oxidizing species
(Nordstrom and Southam 1997; Pésfai and Dunin-Borkowski
2006). This process may be exploited for ore processing
by bioleaching, and it should be noted that other species
utilize the converse reaction of sulfate reduction (Southam
2012). Anhydrite (CaSO,4) may also crystallize as a primary
mineral from oxidized, sulfur-rich magmas, although it is may
not always be preserved in the geological record since it is
sparingly water soluble.

Examples

Sulfate minerals may be simple, anhydrous salts of one or
more cations. However, most are more complex, containing
additional water, hydroxide anion, or other anionic species
such as chloride or carbonate. Sulfate is also an essential but
subordinate constituent in some minerals such as nosean
(Nag[AlgSi50,4](SO4)-H,0O) which do not fall into the sulfate
anion class (nosean is a tectosilicate of the sodalite group).
Most of the anhydrous sulfate minerals are uncommon,
highly water soluble, ephemeral species of fumaroles, and
arid environments. However, baryte (BaSO,) and celestine
(SrSQ,) are extremely insoluble in water and are common
hydrothermal gangue minerals of ore deposits, as well as
occurring as evaporites. The names of these minerals are as
included in the Mineral List of the International Mineralogical
Association (2017); the spellings “barite” and “celestite”
remain common in American usage. They have an ortho-
rhombic crystal structure in which the large Ba and Sr cations
are in 12-fold coordination by oxygen. Anglesite (PbSO,),
which shares the same crystal structure, is a frequent oxida-
tion product of lead sulfide ore minerals such as galena.
Calcium sulfate occurs primarily as orthorhombic anhy-
drite and also as the common monoclinic dihydrate gypsum
(CaS04-2H,0), as well as the rare, metastable hemihydrate
bassanite (CaSO,4-/2H,0), which is a natural analog of
synthetic “plaster of Paris.” Gypsum predominates at the
Earth’s surface, but it is readily dehydrated to anhydrite
through the increase in pressure and temperature associated
with burial, with 21% volume decrease of the solid phase.
Conversely, anhydrite crystallizes directly from water above
55 °C, but is readily hydrated to gypsum by the action of
water at low temperature and pressure. Gypsum formed some
of'the largest single crystals known of any mineral (up to 12 m
long), discovered in 2000 in the “Cave of Crystals” at Naica,
Chihuahua, Mexico (Garcia-Ruiz et al. 2007). Also in
Mexico, the abundance of these calcium sulfate minerals in
evaporitic sediments at the 65-million-year-old Chicxulub
impact site is believed to have filled the atmosphere with
sulfate aerosol that caused a prolonged global cooling,
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