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1 Introduction

The term non-zonal approach is applied in Go4Hybrid to refer to hybrid
RANS-LES methods in which the model, not the user, defines the regions in which
RANS and LES modes are active. Such methods are inherently more applicable to
complex geometries than embedded approaches, however they are more susceptible
to the grey area problem.
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This chapter describes the various approaches for grey area mitigation proposed
by the relevant partners for non-zonal hybrid approaches. As far as possible,
detailed descriptions are provided to encourage the implementation of the
approaches in different codes.

All methods have in common the aim to destabilise the early separated shear
layer. Some methods apply stochastic forcing to this end, whereas others seek to
reduce the damping influence of eddy viscosity here. An important secondary goal
has been to develop approaches that are as far as possible generally applicable and
suitable for the simulation of complex geometries.

The grey area mitigation (GAM) strategies are as far as possible decoupled from
the underlying hybrid RANS-LES method. Ideally, this would mean that the GAM
enhancements can be applied as a retro-fit to any existing non-zonal hybrid
RANS-LES approach, however various complications may limit the extent to which
this is achievable in practice.

Each of the following subsections describes the methods proposed by each
Go4Hybrid partner active in the relevant Task 2.1. Where applicable, references to
existing publications of the methods are also listed.

2 Application of Alternative SGS Forms
for Grey Area Mitigation

2.1 Rationale

A novel approach (Mockett et al. 2015) is formulated to improve the behaviour of
DES in the region where an attached boundary layer (handled with RANS) flows
into a separated shear layer (to be resolved using LES). The approach aims to be
generally-applicable and retain the non-zonal nature of DES. Furthermore, the
formulation is local and can be readily implemented in general-purpose solvers. The
approach incorporates alternative SGS model formulations that discern between
quasi 2D and developed 3D flow states. The modification leads to a strong
reduction of eddy viscosity in the early shear layer and consequently a significant
acceleration of RANS to LES transition (RLT).

Additionally, this approach can be combined with the ~Dx vorticity-adaptive grid
scale proposal of NTS, see Sect. 6 (Alternative, Shear Layer Adapted, Subgrid
Length-Scale for Non-Zonal Hybrid RANS-LES Methods), and comprehensive
testing (Fuchs et al. 2014, 2015) of both formulations in isolation and in combi-
nation has been carried out by CFDB, as is reported in later chapters.
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2.2 Formulation

For convenience we adopt a generalised notation for the LES models considered.
For DES models in LES mode, the following form can be derived under the
assumption of local equilibrium (i.e. equality of the dissipation and generation
terms of the underlying transport equations):

msgs ¼ CsgsD
� �2DsgsðuÞ ð1Þ

where different choices of Csgs (the calibrated model parameter), D (the grid scale
measure) and DsgsðuÞ (a differential operator acting on the resolved velocity field)
give different SGS model formulations (see e.g. Table 1).

DES is a modification to an existing RANS model whereby the model’s length
scale, LRANS is substituted by a DES length scale. The “delayed DES” (DDES)
formulation (Spalart et al. 2006) used here includes a shield function that detects
attached turbulent boundary layers and aims to ensure RANS mode there, irre-
spective of the grid resolution. The DDES length scale is

LDDES ¼ LRANS � fdmaxð0; LRANS � LLESÞ; with LLES ¼ WCDESD: ð2Þ

CDES is a model parameter analogous to the Smagorinsky constant and W is a
term designed to compensate for unwanted activity of low-Re terms in LES mode
(Spalart et al. 2006). Both these terms as well as the RANS length scale depend on
the underlying RANS model. For the Spalart–Allmaras (SA) model (Spalart and
Allmaras 1994), LRANS is given by the wall-normal distance dw; CDES � 0:65 has
been calibrated for decaying isostropic turbulence and the low-Re correction term is
given by

W2 ¼ min 102;
1� Cb1

Cw1j2f �w
ft2 þ 1� ft2ð Þfv2½ �

fv1max 10�10; 1� ft2ð Þ

( )
;

with j ¼ 0:41, f �w ¼ 0:4241 and other parameters as defined by the SA model.

Table 1 Summary of model
formulations in LES mode

Model Csgs DsgsðuÞ
Smagorinsky CS

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
WALE CW S�W
r Cr S�r
DES

ffiffiffiffi
A

p
CDESW S�RANS

WALE-DES
ffiffiffiffi
A

p
CDESW BWS�W

r-DES
ffiffiffiffi
A

p
CDESW BrS�r

For definitions of S�W and S�r see Eqs. (4) and (6), respectively.
Coefficient A depends on the underlying RANS model and may
or may not be constant
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The DDES shield function fd is formulated as

fd ¼ 1� tanh Cd1rdð ÞCd2

h i
;

rd ¼ mt þ m

j2d2wmax
ffiffiffiffiffiffiffiffiffiffiffiffi
@Ui
@xj

@Ui
@xj

q
; 10�10

� � ; ð3Þ

which is close to 0 inside the boundary layer and blends rapidly to 1 near the
boundary layer edge. Furthermore, in free shear flows fd ¼ 1 leading to
LDDES ¼ LLES. For standard SA-DDES, the values Cd1 ¼ 8 and Cd2 ¼ 3 were
proposed Nicoud et al. (2011).

As mentioned, DES can be mapped to a Smagorinsky model form in LES mode,
for which several well-established shortcomings are known. Of greatest relevance
here is the Smagorinsky model’s inability to correctly handle laminar-to-turbulent
transition, where its sensitivity to mean flow shear gives rise to high levels of eddy
viscosity that attenuate the (resolved) transition process. Turning to DES, the same
mechanism contributes to the RLT problem, hampering the development of
resolved turbulence arising from the natural shear layer instability.

Several models without this shortcoming have been formulated by the LES
research community, however many of these (e.g. dynamic and high-pass filtered
models) involve non-local terms that are impractical for industrial CFD solvers.

The WALE (Nicoud et al. 1999) and r (Nicoud et al. 2011) models—proposed
by Nicoud and co-workers—however seem particularly promising for further
consideration. In these approaches local velocity gradient information is processed
to distinguish between essentially two-dimensional situations such as plane shear,
for which very low eddy viscosity is generated, and three-dimensional turbulence,
where regular SGS model activity is recovered. This should offer a highly effective
measure for accelerating RANS to LES transition whilst maintaining a practical and
robust local formulation. Note that our goal in adopting the WALE and r
approaches in the LES mode of DES is exclusively targeted at such RLT
improvement—the use of these models in a DES framework renders issues
regarding their near-wall behaviour irrelevant, since the RANS branch of DES is
active there.

The key changes relative to the Smagorinsky model involve the differential
operator acting on the velocity field (DsgsðuÞ in Eq. (1). For the WALE model, this
term is defined as

Dsgs uð Þ ¼ S�W ¼
Sd
ijSd

ij

� �3=2
SijSij
� �5=2 þ Sd

ijSd
ij

� �5=4 ; ð4Þ

where Sij ¼ 1=2 @Ui=@xj þ @Uj=@xi
� �

and Sd
ij is the traceless symmetric part of the

square of the velocity gradient tensor
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Sd
ij ¼

1
2

g2ij þ g2ji
� �

� 1
3
g2kkdij;

g2ij ¼ gikgkj;

gij ¼ @Ui

@xj
:

ð5Þ

For the r model, the corresponding definition is

Dsgs uð Þ ¼ S�r ¼ r3 r1 � r2ð Þ r2 � r3ð Þ
r21

; ð6Þ

where r1 � r2 � r3 � 0 are the three singular values of the velocity gradient tensor
g ¼ gij. We chose the second method proposed by Nicoud et al. (2011) to compute
these, since it is self-contained and involves negligible computational overhead.

Although derivedwith very different considerations, both theWALE and rmodels
return very low values of SGS viscosity in plane shear flows and involve negligible
computational overhead. The analysis in Nicoud et al. (2011) however indicates that
the r model possesses greater generality. Both approaches were tested for a range of
complex flows, fromwhich a preference for the r emerged; although returning similar
results for flows approximating planar shear, the r formulation performed far superior
to WALE for the more complex delta wing flow topology (Fuchs et al. 2015), see in
see in Part IV: Chapter “Delta Wing at High Angle of Attack”.

To modify DES to behave like the WALE and r models in LES mode, we leave
the length scale substitution unmodified (Eq. 2) and introduce an additional func-
tion to substitute the corresponding term for DsgsðuÞ in the LES mode region only.
The velocity gradient invariant in the underlying RANS model, S�RANS

1 is substi-
tuted by

S�W ;rð Þ�DDES ¼ S�RANS � fdpos LRANS � LLESð Þ S�RANS � BW ;rS
�
W ;r

� �
; ð7Þ

where the operator used to detect DES97 RANS and LES mode acts as

pos að Þ ¼ 0 if a� 0
1 if a[ 0

�
:

Where the DDES shield function fd is active, the values are blended smoothly
according to the value of fd . As such, the blending occurs at the same location as the
length scale blending of DDES. Note that if the grid is sufficiently coarse that the
interface between RANS and LES would occur outside the boundary layer
(according to DES97), Eq. (7) gives a discontinuous switch between S�RANS on the
RANS side and BW ;rS�W ;r on the LES side of the interface. On the other hand, if we

1For the SA model, S�RANS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2XijXij

p
is substituted (not ~S).
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would not apply the discontinuous pos-function in Eq. (7), the LES mode of the
S�W ;rð Þ�DDES term would be activated as soon as fd deviates from zero, which would

not be desirable considering the coarseness of the grid.
It was found that the fd function needed recalibrating for the WALE and r DDES

variants, since the rapid drop in S�W ;rð Þ�DDES near the boundary layer edge caused

thinning of the shielded region. For SA-based WALE-DDES and r-DDES, setting
the value of Cd1 ¼ 10 in Eq. (3) was found to restore equivalent blending to
standard SA-DDES. Corresponding results are shown in the following section.

For the SA model, the coefficient A is defined as

ASA ¼ Cb1fv1
Cw1fw

~S
S�

: ð8Þ

The resulting form of the model in LES mode is given in Table 1 with reference
to Eq. (1). The factor BW ;r is included in DsgsðuÞ such that Csgs is equivalent
between DES variants, since CDES contributes to the RANS-LES interface deter-
mination and the pure LES models have widely different values of Csgs. In principle
the value of this parameter can be derived as BW ;r ¼ C2

W ;r=C
2
S , which is checked for

isotropic turbulence as shown in the next section. For a given underlying RANS
model and numerical method, a single value of CDES is hence maintained for all
variants. The expression for W is unaltered by the WALE=r modification.

2.3 Calibration for Isotropic Turbulence

Whilst improving RLT behaviour, the proposed modifications give unchanged
functionality in “fully-developed” LES turbulence. This is demonstrated using
decaying isotropic turbulence, for which model and code-specific values of Csgs and
the coefficients BW and Br have been calibrated. The arising calibrated values are
listed in Table 2 and strong similarity for the turbulent spectra is seen in Fig. 1. The
calibrated values are quoted only as a guideline, since recalibration for a different
numerical implementation is considered essential.

2.4 Shield Function Recalibration

As mentioned previously, the boundary layer shielding function fd needed to be
recalibrated for use in conjunction with the WALE-DDES and r-DDES variants.
A flat plate boundary layer on an “ambiguous” grid (Spalart et al. 2006), i.e. one
where D\d is used for this purpose. Note that this exercise has so far only been
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carried out for SA-based DDES variants and that different values could be expected
to be suitable for different underlying RANS models (Gritskevich et al. 2011).

Recalibrating the shield function (Eq. 3) coefficient to Cd1 ¼ 10 whilst leaving
the exponent unchanged at Cd2 ¼ 3 restores functionality equivalent to standard
SA-DDES. Example plots for SA-WALE-DDES are shown in Fig. 2 (identical
behaviour was seen for SA-r-DDES).

Table 2 Values of model parameters calibrated for isotropic turbulence

Parameter Calibrated value

CS 0.20

CW 0.58

Cr 1.68

CDES (for SA-DES) 0.65

BW 8.08

Br 67.8

Fig. 1 Comparison of spectra for decaying isotropic turbulence obtained on a 643 grid from all
model variants using the constant values listed in Table 1. Also shown are spectra obtained using
the ~Dx grid scale definition proposed by NTS (see Sect. 5)
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3 Towards Grey-Area Mitigation Based on Different
Energy Transfer Methods

3.1 Scale Energy Transfer in PANS Methods

In a computational model of turbulent flow with partly resolved turbulence the
primary task for the turbulence model is to dissipate the cascaded energy at the
smallest resolved scales. For an energy-consistent method where we are solving for
the unresolved turbulence kinetic energy, Ku (or KSGS), the dissipated energy at the
resolved scales is added as a production term to the unresolved energy. The
magnitude of the energy dissipation is closely related to the physical equilibrium
spectral energy cascade.

In a computational model of turbulent flow with varying resolution in time and
space, the additional energy transfer associated with the changing resolution must
be considered, which will add new dynamics into the equations for momentum and
unresolved turbulence. The additional energy transfer between resolved and unre-
solved scales is decoupled from the physical energy cascade and is an artefact of the
computational setup.

Girimaji and Wallin (2011, 2013) derived these additional energy transfer terms
in the case of varying computational resolution in the stream-wise direction. The
same approach can be taken also for resolution variation in the cross-stream
direction (Wallin and Girimaji 2014), which is of relevance in e.g. partly resolved
boundary layer flows.

The PANS equations for the unresolved turbulence Ku ¼ fkK when fk is varying
can be written

Fig. 2 Recalibration of boundary layer shielding function of SA-WALE-DDES for a flat plate on
an “ambiguous” grid
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DKu

Dt
¼ Pu � eu þ @

@xk
m
0 @Ku

@xk

� 	
þPTr þDTr ð9Þ

where

PTr ¼ Ku

fk

Dfk
Dt

ð10Þ

DTr ¼ �Ku

fk

@

@xk
mþ mu

r0
k

� 	
@fk
@xk

� 	
ð11Þ

are the energy scale transfer terms mainly in the stream-wise and cross-stream
directions, respectively. These are directly quantified in these relations without any
ad hoc modelling.

The first term, PTr, represents the transfer of turbulence energy from resolved to
unresolved scales when the resolution is decreased when following the flow. That is
when Dfk=Dt is positive. The opposite, increasing resolution, results in a negative
PTr and a transfer of energy from unresolved to resolved scales.

The second term, DTr, represents the redistribution of turbulence energy mainly
in the cross stream direction. This term will result in a flux of unresolved turbulence
from regions with low fk to regions with high fk . Computations of partly resolved
boundary layers would require that fk decreases from 1 near the wall to some low
value in the outer part of the boundary layer. The additional DTr term will then
result in a sharpening of the interface region forcing unresolved turbulence in the
inner part of the transition region. And, more importantly, forcing the resolved
turbulence in the outer part of the transition region.

Corresponding terms in the momentum equation need to be introduced. The
basic requirements on such a model are (i) the model should conserve the additional
energy scale transfer and (ii) the model should interact with the mean flow at the
smallest resolved scales. Different approaches can be taken including stochastic
forcing and test filtering. In Wallin and Girimaji (2011) and Girimaji and Wallin
(2013) the simplest possible approach was taken by introducing an energy transfer
viscosity mTr. Energy conservation will dictate

mTr ¼ PTr þDTr

2SijSij
; Sij ¼ 1

2
@Ui

@xj
þ @Uj

@xi

� 	
ð12Þ

Also energy transfer to the resolved scales can be realized through a negative mTr.
Usually negative viscosity is associated with unbounded exponential growth of
resolved energy, but with the aid of energy conservation the growth is limited by
the unresolved turbulence Ku. This was demonstrated in Girimaji and Wallin
(2013).
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3.2 Some Results

Decaying isotropic turbulence was computed (Girimaji and Wallin 2013) with
changing resolution in time, see Fig. 3. The resolution is controlled by the PANS
parameter fk on a fixed fine grid. The energy scale transfer described above is used.
The case with decreasing resolution where fk is going from 0.3 to 0.7 is well
predicted and the energy is consistently transferred from resolved to unresolved
scales. Also the more difficult case with increasing resolution is at least qualitatively
captured.

Channel flow at Res ¼ 4000 was computed. Here, the cross-stream transfer term
DTr is active. The mean velocity is not well predicted and not shown here. Figure 4
shows the shear stress split into resolved, unresolved and scale transfer. The transfer
term strongly transfers energy to the unresolved scales in the outer part of the
interface region. Interesting to note that the iso-surface of zero total viscosity
¼ mþ mu þ mTrð Þ clearly shows turbulence-like streaks with relatively small length
scales without any explicit structural forcing.

Fig. 3 Decaying isotropic turbulence with decreasing (top) and increasing (bottom) resolution
with energy scale transfer active
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Scale Energy Transfer in Terms of vt
Consider the energy spectrum in Fig. 5. In the inertial range the spectrum is
given by

E jð Þ ¼ C�e2=3j�5=3 ð13Þ

with the Kolmogorov constant C� � 1:5. The physical energy transfer rate, r, from
resolved to unresolved energy, or the energy cascade, is constant within the inertial
range and equals the dissipation rate e for equilibrium turbulence. In a turbulence
resolved simulation the cut-off between resolved and unresolved (sub grid) scales is
given by the cut-off wave number jc. The energy transfer, from resolved to
unresolved scales is given by r and is represented by the SGS dissipation through
the SGS viscosity, mSGS.

For simulations with variable resolution, jc tð Þ, additional energy must be
transferred between resolved and unresolved scales. Let us denote this additional
transfer as rTr. In equilibrium flows (constant spectrum) this is identical to PTr in
the PANS formulation. Now, the additional transfer can be related to the model
spectrum

rTr ¼ �E jcð Þ djc
dt

¼ �C� e
jc

� 	2=3 1
jc

djc
dt

: ð14Þ

With the filter D ¼ p=jc one gets

Fig. 4 Channel flow, Re = 4000, with energy scale transfer active. Shear stress (left) and
iso-surface of zero total viscosity (right)
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rTr ¼ C�

p2=3
eDð Þ2=3 1

D
dD
dt

ð15Þ

Here, e can be estimated from the SGS dissipation, e � mSGSð ÞS2, S2 ¼ 2SijSji,
Sij ¼ Ui;j þUj;i

� �
=2.

The total energy transfer rate from resolved to unresolved scales for variable
resolution (VR) simulations is then given by the sum rVR ¼ rþ rTr. Or
rVR ¼ fVRr, where (with r ¼ e)

fVR ¼ 1þ rTr
r

¼ 1þ C�

p2=3
D2=3

e1=3
1
D
dD
dt

ð16Þ

Decreasing filter width dD=dt\0ð Þ implies reduced SGS dissipation and with
fVR\0 there is a net negative dissipation. Here, one must be clear that this is only a
computational consequence that is not related to physical back scatter.

With an eddy-viscosity model for the SGS stresses the SGS dissipation is given
by e � mSGSS2. The variable resolution is considered simply by replacing SGS
viscosity by mVR ¼ fVRmSGS.

In the expression for fVR, the derivative is evaluated as the advection by the
resolved flow

1
D
dD
dt

¼ dln Dð Þ
dt

¼ @ln Dð Þ
@t

þUk
@ln Dð Þ
@xk

� 	
: ð17Þ

The estimate of the SGS dissipation, or e, might be cumbersome with insufficient
resolution and numerical dissipation. At least the molecular viscosity should be
added to mSGS so that e � mþ mSGSð ÞS2 but better approximations might be needed.
The term D2=3=e1=3 is the time scale of the unresolved turbulence and can be
expanded to (using mSGS ¼ CsDð Þ2S, with CS ¼ 0:12)

D2=3

e1=3
� D2

mþ mSGSð ÞS2
� 	1

3

¼ D2

mþC2
sD

2S
� �

S2

 !1
3

� 1

C2=3
s S

ð18Þ

Fig. 5 Energy spectrum
divided into resolved and
unresolved parts (Kr and Ku)
by the cut-off wave number jc
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For avoiding division by zero when S ! 0 we will limit S by some fraction of a
viscous time scale, max S; c1m=Dð Þ.

The final expression for the variable-resolution correction then becomes

fVR Dð Þ ¼ 1þ CVR

max S; c1m=Dð Þ
@ln Dð Þ
@t

þUk
@ln Dð Þ
@xk

� 	
ð19Þ

where

CVR ¼ C�

p2=3C2=3
s

� 2:9 ð20Þ

Negative fVR would lead to negative mSGS. With mVR\� m the total viscosity
becomes negative and the computation might become numerically unstable. Such
situation can only be permitted when the computational back scatter is connected
with a transport equation for the SGS energy. If not, fVR should be limited to 0, or
possible slightly negative values. Also a similar upper limit should apply, maybe
fVR\2.

Limiting fVR will effectively pile up the rate of change of the filter width. Hence,
the limiting of fVR must be accomplished with diminishing rate of change of the
filter width. Since the flow is transported by the velocity field, the filter width must
be governed by a transport equation. The equation is derived from the following
assumptions.

First, let g0 ¼ ln D0ð Þ; where D0 is the filter width from the present hybrid
method. Then, let g ¼ lnðDÞ be the modified filter with the implicit requirement that
fVR Dð Þ � 1j j\1. Following a stream line

fVR tð Þ ¼ 1þC
dg tð Þ
dt

ð21Þ

where C ¼ CVR=max S; c1m=D
2� �
. Moreover, an equation for g tð Þ could be

dg tð Þ
dt

¼ c
0
g0 tð Þ � g tð Þð Þ ð22Þ

Hence, g tð Þ is driven towards g0 tð Þ. The limitation of fVR Dð Þ (or
fVR � 1j j\CFLim), where CFLim might be slightly different than unity, can be
implied as

C
dg
dt










 ¼ Cc

0
g0 � gð Þ

 

\CFL ð23Þ
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or

c
0 ¼ 1

C
min c

0
0;

CFL

g0 � gj j
� 	

ð24Þ

which gives

dg
dt

¼ 1
C
min c

0
0;

CFLim

g0 � gj j
� 	

g0 � gð Þ

fVR ¼ 1þmin c
0
0;

CFLim

g0 � gj j
� 	

g0 � gð Þ

mVR ¼ fVRmSGS

ð25Þ

where the energy-transfer corrected viscosity mVR replaces the ordinary SGS vis-
cosity mSGS.

The behaviour of g ¼ ln Dð Þ following the transport equation is illustrated in
Fig. 6 for a situation that mimics the mixing layer. The green curve (g0) corre-
sponds to a typical hybrid length scale that falls from a RANS level for x\0 to a
LES level with slightly increasing grid size in the downstream direction until x � 1
where the grid is coarsened. The red curve is the corresponding solution of the
transport equation for g that is relaxed towards the g0 value. The rate of change is
clearly visible and is illustrated by f (or actually f � 1 in this plot) where the
magnitude of the rate of change is limited to 1. Hence, the SGS viscosity with the
energy transfer correction, mTr, will be effectively close to zero for x. 0:3.

Extending to a PDE (compressible flow) gives

@qg
@t

þUk
@qg
@xk

¼ q
C
min c

0
0;

CFLim

g0 � gj j
� 	

g0 � gð Þþ @

@xk
lþ lt

rg

� 	
@g
@xk

� 	
ð26Þ

where C ¼ CVR=max S; c1m=D
2
0

� �
and the coupling to the baseline model is con-

cluded here.

• g0 ¼ ln D0ð Þ is given by the length scale of the baseline model (D in the LES
region and DRANS ¼ lRANS=Cs in the RANS region).

• The RANS viscosity is unchanged and the corrected viscosity in the LES region
is given by

mVR ¼ fVRmSGS; fVR ¼ 1þmin c
0
0;

CFLim

g0 � gj j
� 	

g0 � gð Þ ð27Þ

• where CVR ¼ 2:9, c1 ¼ 10, c
0
0 ¼ 2:0, rg ¼ 0:1, CFLim ¼ 1:0.
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3.3 Peng HYB0 with Energy Transfer Correction

The next step is to implement the fVR corrected SGS viscosity for a hybrid model
and we choose Peng HYB0 model to start with. Peng HYB0 model is given here in
a slightly different form. The RANS length scale is~ll ¼ fljd, where j ¼ 0:418 and

d is the wall distance. The wall damping function is fl ¼ tanhðR1=3
t =2:5Þ where

Rt ¼ ~l=l, ~l ¼ q~l2lS, S
2 ¼ 2SijSji and Sij ¼ Ui;j þUj;i

� �
=2. fl ¼ 1 away from walls.

The LES length scale is lSGS ¼ CsD where Cs ¼ 0:12 and

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
max þD2

vol

� �
=2

q
, Dmax ¼ max Dx;Dy;Dz

� �
and Dvol ¼ dV1=3.

The modified RANS length scale considering interface matching is ll ¼ fs~ll
where

fs ¼ 1
2

e�
R0:75s
4:75 þ e�

R0:3s
2:5

� 	
;Rs ¼ ~ll=lSGS

� �2 ð28Þ

The hybrid length scale now becomes

lh ¼ ll;~ll\D
lSGS;~ll �D

�
ð29Þ

and the hybrid viscosity lh ¼ ql2hS.

Fig. 6 Solution of gðxÞ for a
case similar to the mixing
layer with fixed UC ¼ 0:2,
c
0
0 ¼ 2 and c1 ¼ 10
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The energy transfer extension is implemented as following:

1. The equation for g follows Eq. (26).
2. The driving filter width D0 ! g0 is given by D0 ¼ ~ll=Cs in RANS or D0 ¼ D in

LES.
3. Inflow B.C. for g is g1 ¼ ln mT ;1=

ffiffiffiffiffiffiffi
K1

p� �
. Wall B.C. is gwall ¼ �20 (corre-

sponds to D ! 0).
4. The SGS viscosity is modified according to Eq. (27). The RANS viscosity is

kept unchanged.
5. The tentative values for the model coefficients are:

– rg ¼ 0:1 for high smoothing of g
– C� ¼ 1:5
– c

0
0 ¼ 2:0

– CFLim ¼ 1:0

For the first test computations C� ¼ 5:0 was used to exaggerate the effect and
CFlim ¼ 0:8 for avoiding effective viscosities too close to zero.

3.4 DDES with Energy Transfer Correction

The idea is to apply the energy transfer correction in the same way as for the HYB0
model above. In addition to the mT equation (or the K–x equations), the equation for
g is applied.

The energy transfer extension is implemented as following:

1. The equation for g follows Eq. (26).
2. The driving filter width D0 ! g0 is given by D0 ¼ lRANS=Cs in RANS or D0 ¼ D

in LES.
3. Inflow B.C. for g is g1 ¼ ln mT ;1=

ffiffiffiffiffiffiffi
K1

p� �
. Wall B.C. is gwall ¼ �20 (corre-

sponds to D ! 0).
4. The SGS viscosity is modified according to Eq. (27). The RANS viscosity is

kept unchanged.
5. The model coefficients are:

– rg ¼ 0:1 for high smoothing of g
– C� ¼ 1:5
– c

0
0 ¼ 2:0

– CFLim ¼ 1:0 or slightly lower

32 C. Mockett et al.



3.5 Energy-Backscatter Function Incorporated
in the LES Mode

The so-called “grey-area” problem in hybrid RANS-LES modelling is closely
associated to the RANS-LES interface, being usually reflected by a delayed
re-establishment of resolved turbulence in the LES region neighboring immediately
to the RANS region. To improve the prediction, one may either improve the fed-in
turbulence contents from RANS to LES via the interface or enhance the
turbulence-resolving capabilities of the LES mode. Apart from the PANS-based
method described previously, another method to examine is further introduced,
which invokes the energy-backscatter function in the SGS model formulation to
enhance turbulence-resolving capability in the LES region. This means that the SGS
model is of mixed type that is able to induce instantaneous reverse energy transfer
from the SGS to the resolved large-scale turbulence, in conjunction with the con-
ventional energy dissipation based on the SGS eddy-viscosity formulation. The
theoretical analysis and derivation of the SGS modelling formulation was reported
previously by Peng and Davidson (2001) applying the Leonard expansion (Peng
and Davidson 2009) to the SGS residual stress tensor. The SGS stress tensor has
been modelled in a two-term formulation (Peng 2012), namely,

sij � CLfLDð Þ2@�ui
@xk

@�uj
@xk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Leonard Term;Lij

� 2fDmsgs�Sij|fflfflfflfflffl{zfflfflfflfflffl}
Second Term

ð30Þ

The first term is the Leonard term, which is similar to a similarity SGS model
and plays a role in backscattering turbulent energy from SGS to large-scale tur-
bulence, and the second term is the conventional part for energy dissipation based
on SGS eddy viscosity. The SGS viscosity in the second term is determined in the
form of the Smagorinsky model or cast in a formulation of one-equation SGS model
based on the SGS turbulent kinetic energy ksgs. In previous work for modelling
calibration, msgs has been modelled with the Smagorinsky model.

The capability of LES with the two-term SGS model has been well demonstrated
for turbulent channel flow (Peng 2012), as shown in Fig. 7 as an example in
computation for turbulent channel flow at Res ¼ 550.

Note that the Leonard term can be viewed as the leading term in the recon-
struction series of the conventional similarity model with double-filtered residuals
according to Peng and Davidson (2001). In Fig. 8a the modelled turbulent shear
stress by the Leonard term is illustrated in comparison with that by the Smagorinsky
term. In Fig. 8b, the energy-backscatter function due to the Leonard term is further
analyzed. The energy transfer has been approximated with e ¼ �sijSij. It is shown
that the Leonard term has induced about (15–20)% reverse energy transfer of the
total. In general, the two-term SGS model (of mixed type) has shown an overall
reasonable performance. The LES mode is then incorporated into hybrid
RANS-LES modelling.
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3.6 Algebraic Hybrid RANS-LES Formulation
(HYB0M Model)

With appropriate calibration and validation, the SGS model of mixed-type given in
the above equation can be used as the LES mode in hybrid RANS-LES formulation,
in which the function of energy-backscatter can be exploited to enhance the
LES-resolved large-scale turbulent fluctuations. In the FOI work, an algebraic
hybrid RANS-LES model (HYB0) according to Peng (2005, 2006) has been taken
as the baseline model, where the Smagorinsky-type model has been used for energy
dissipation in the LES mode. Using the HYB0 formulation as the platform for
testing, the two-term SGS model is then incorporated in the hybridized LES mode,

Fig. 8 LES with the two-term algebraic SGS model for turbulent channel flow Res ¼ 550.
a Modelled turbulent shear stress for the Leonard term and the Smagorinsky term; b Modelled
energy transfer due to the Leonard term

Fig. 7 LES with the two-term algebraic SGS model for turbulent channel flow Res ¼ 550ð Þ, in
comparison the Smagorinsky model. aMean streamwise velocity; b Resolved velocity fluctuations
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in which the energy-backscatter term is expected to support a more effective
re-establishment of resolved turbulent fluctuations. After entering into the LES
region immediately after the RANS-LES interface, this may to some extent mitigate
so-called “grey area” problem. In conjunction with the Smagorinsky model, the
SGS mixed model takes the form of

sij ¼ sL;ij þ sS;ij ¼ CLDð Þ2fL @
�Ui

@xk

@ �Uj

@xk
� 2fD CSDð Þ2 �Sj jSij ð31Þ

where fL ¼ tanhðRsgsÞ, fD ¼ fwtanhðRsgs=5Þ with fw ¼ 1� ey
þ =10, Rsgs ¼ msgs=m,

CS ¼ 0:12 and CL ¼
ffiffiffiffiffiffiffiffiffiffi
1=12

p
.

For the hybrid RANS-LES modelling formulation, note that the Leonard term
plays only a role in the LES mode. This term is thus shielded in the near-wall
RANS region by introducing a “shielding” function, fb, which complies with fb = 0
for the RANS mode and fb = 1.0 in the LES region. This has led to a formulation
for the hybrid RANS-LES model, which reads

sij � �2lhSij þ CLfLDð Þ2fb @�ui
@xk

@�uj
@xk

ð32Þ

The hybrid eddy viscosity, lh, takes the same formulation as given by the
baseline HYB0 model (Peng 2005, 2006). The shielding function is defined in
terms of the ratio of the RANS length scale, ~ll, and the SGS length scale, D,

namely, fb ¼ tanh Rl=2ð Þ8
h i

with Rl ¼ ~ll=D. The resulting model is termed the

HYB0M model and the details of the modelling formulation can be found in Peng
(2012).

The HYB0M model has been validated and verified in computations of 2D
turbulent hill flow and for the flow over a backward-facing step (Peng 2012). As
shown respectively in Fig. 9 (for 2D hill flow) and Fig. 10 (for the backward-facing
step flow), the incorporation of the energy-backscatter function in the LES mode
has induced some improvement in the prediction, having slightly enhanced the
resolved turbulent energy. The formulation has been further verified and improved
in computations of test cases defined in the project.

For better numerical treatment of the Leonard term, the energy-backscatter
method has been formulated by introducing an effective eddy viscosity, m�.
Equation (32) is written as

sij ¼ CLfLDð Þ2fb @�ui
@xk

@�uj
@xk

� 2mhSij ¼ Lij � 2mhSij ð33Þ

In Eq. (33), the first term on the right-hand side is the Leonard term, which may
induce instantaneous energy backscatter. In the computation it was found that this
term may trigger numerical instabilities when the instantaneous reverse energy
transfer becomes large. This term needs thus t be limited. For an improved
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numerical treatment, the Leonard term is split into two parts, viz. Lij ¼ L�ij þ Ldij,

where L�ij is assumed to be responsible for the energy transfer and Ldij is the devi-
atoric part. The first part, L�ij, is modelled using an effective eddy viscosity in terms

of L�ij ¼ �2m�Sij. Using Sij to contract Lij, and let LdijSij ¼ 0; m� can then be com-
puted by

m� ¼ � LijSij
2SijSij

ð34Þ

Fig. 10 HYB0 M computation (solid line) for turbulent backward-facing step flow in comparison
the baseline HYB0 model (dashed line). a Mean streamwise velocity; b Resolved turbulent
fluctuations of streamwise velocity

Fig. 9 HYB0 M computation for turbulent 2D periodic hill flow, in comparison the baseline
HYB0 model. a Mean streamwise velocity; b Resolved turbulent kinetic energy
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Ldij is then computed by Ldij ¼ Lij � L�ij. With this formulation in the HYB0M
computations, a negative value of m� is limited by m� � � mh þ mð Þ for numerical
stability. This may to some extent have restricted the GAM function. In conjunction
with HYB1 model, this is much alleviated, however, since the Leonard term enters
also into the production term of the k-equation. Being incorporated in the HYB0
model (resulting the HYB0M model), it has been verified that a redefinition of the
SGS turbulence length scale in the HYB0 model can further alleviate the grey-area
problem. This is done by replacing the maximum local cell size, dmax; with the
minimum one, dmin, namely, in the definition of D,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2min þ dV2=3
� �

=2
q

ð35Þ

where dmin has been used to replace dmax used in the original definition. With this
definition of D, both the HYB0 and HYB0M models have shown sensible
improvement for mitigating the grey area in the initial stage of the mixing layer, for
example.

4 Overview of Zonal Detached Eddy Simulation (ZDES)
and Grid Scale Definitions for Modes I and II

4.1 Formulation

The Zonal DES (ZDES) approach was first proposed by Deck (2005a, b) and the
complete formulation has been recently published in Deck (2012). The method is
based on a fluid problem-dependent zonalisation and makes possible the use of
various formulations within the same calculation.

In the framework of ZDES, three specific hybrid length scale formulations [see
Eq. (36)], also called modes, are optimized to be employed on three typical flow
field topologies as illustrated in Fig. 11. Though the method can be adapted to any
turbulence model, in the framework of the underlying SA model (Spalart and
Allmaras 1994), dw is replaced with ~dZDES in the model according to:

~dZDES ¼

dw if mode ¼ 0 ði.e. RANSÞ
~dIDES if mode ¼ 1
~dIIDES if mode ¼ 2
~dIIIDES if mode ¼ 3

8>>>>>>><
>>>>>>>:

: ð36Þ

Mode 1 concerns flows where the separation is triggered by a relatively abrupt
variation in the geometry; mode 2 is retained when the location of separation is
induced by a pressure gradient on a gently curved surface, and mode 3 for flows
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where the separation is strongly influenced by the dynamics of the incoming
boundary layer (see Fig. 11). All these flow cases may be treated by the same
ZDES technique in its different modes. An example where the three modes of
ZDES are used at the same time on a curvilinear geometry can be found in Deck
(2013).

In practice, the formulas of ZDES differ from those of DES97 or DDES in the
definition of the ZDES length scale, the subgrid length scale and the treatment of
the near wall functions in the LES mode as detailed in the following.

• Mode I of ZDES (mode = 1), location of separation fixed by the geometry

~dIDES ¼ min dw;CDES
~D
I
DES

� �
ð37Þ

• Mode II of ZDES (mode = 2), location of separation unknown a priori:

~dIIDES ¼ dw � fdmax 0; dw � CDES
~D
II
DES

� �
ð38Þ

• Mode III of ZDES (mode = 3), Wall-Modelled LES (WMLES):

~dIIIDES ¼
dw if d\dinterfacew

~dIDES otherwise

(
ð39Þ

It is important to note that with mode 2 of ZDES, which clearly borrows ideas
from DDES (Spalart et al. 2006), it is permitted to operate in an “automatic”
manner since ~dIIDES employs the same protection function as DDES to maintain the
RANS behaviour in the attached boundary layer. The improvement lies in the
definition of the subgrid length scale ~D as will be discussed in the following.

Fig. 11 Classification of typical flow problems. I separation fixed by the geometry, II separation
induced by a pressure gradient on a gently-curved surface, III separation strongly influenced by the
dynamics of the incoming boundary layer
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Concerning this latter mode devoted to WMLES (described in detail in Part II
(Chapter “Improved Embedded Approaches”, Sect. 4: ZDES mode 3), the
switching into LES mode occurs at a given altitude dinterfacew prescribed by the user.
In this mode (see Deck et al. 2014; Chauvet et al. 2007), the solution has to be fed
with turbulent inflow content.

A second important ingredient of ZDES is the definition of the subgrid length
scale ~D entering Eqs. (37), (38) and (39). Indeed, analogous to the classical LES
exercise ~D controls which wavelengths can be resolved as well as the eddy viscosity
levels. Though physically justified in the frame of DES97/DDES (Spalart et al.
2006) aimed to shield the attached boundary layer from MSD, the slow delay in the
formation of instabilities in free shear layers of DDES has been partly attributed to
the use of the maximum grid extension Dmax = max (Dx, Dy, Dz) as subgrid length
scale. The use of the time-honoured cube root of the cell volume Dvol = (Dx Dy
Dz)1/3 decreases dramatically the level of predicted eddy viscosity because this
latter value is proportional to the square of the filter width. Chauvet et al.
(2007) proposed an efficient flow-dependent definition based on the orientation of
the vorticity vector ~x aimed at solving the slow LES development in mixing layers.
A generalization of Chauvet et al. subgrid length scale has been proposed by Deck
(2012) (especially for unstructured grids) and may read as:

Dx ¼
ffiffiffiffiffiffi
�Sx

p
ð40Þ

where �Sx is the average cross section of the cell normal to ~x. More precisely; it
introduces the notion that at any spatiotemporal point, if the vorticity is not zero,
there exists one particular direction indicated by the vorticity ~x (Fig. 12).

The subgrid length scale that enters Eqs. (37) and (38) is respectively given by:

~D
I
DES Dx;Dy;Dz;Ui;j
� � ¼ Dvol andDx ð41Þ

and

~D
II
DES ¼

Dmax if fd � fd0
DvolorDx if f [ fd0

(
ð42Þ

~D
II
DES clearly borrows ideas from DDES in the sense that the fd sensor is

employed to determine whether Dmax or Dvol (or Dx) is used. Equations (41) and
(42) are not a minor adjustment in the DES framework since the modified ~D length
scales depend not only on the grid but also on the velocity and eddy viscosity fields.
It is important to emphasize that the shielding of the boundary layer is still ensured
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by the function fd which behaves as standard DDES (D = Dmax) as long as fd < fd0.
The improvement lies in Dx (or Dvol) becoming the new subgrid length scale when
fd > fd0 which solves the delay in the formation of instabilities (see Deck 2012).

5 NLR Approaches to Grey-Area Mitigation
for Non-zonal Methods

5.1 Introduction

Two types of approaches are proposed to mitigate the grey-area issue for non-zonal
DES methods, in particular the X-LES method:

• Triggering instabilities by introducing a stochastic subgrid-scale (SGS) model.
• Reducing the level of SGS stresses in initial shear layers, caused by high gra-

dients of the mean velocity.

For both types, the baseline methods previously incorporated in X-LES, and
used with some success to improve the capturing of free shear layers, are described
below as well as a new method that has been investigated within the Go4Hybrid
project. The baseline methods consist of a stochastic eddy-viscosity model (Kok
and van der Ven 2009) and a high-pass filtered SGS model (Kok and van der Ven
2012), respectively. The new method incorporates a stochastic backscatter model
(Kok 2016). Note that the approaches described can also be applied to other
non-zonal DES methods.

Fig. 12 Definition of the
subgrid length scale

Dx ¼
ffiffiffiffiffiffi
�Sx

p
. �Sx is the average

cross section of the cell normal
to the vorticity vector ~x
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5.2 The X-LES Method

In non-zonal DES methods such as X-LES (Kok et al. 2004), a single set of
turbulence-model equations is used to model both the Reynolds stresses in RANS
zones and the subgrid-scale (SGS) stresses in LES zones. An eddy-viscosity model
is used for these stresses, which are then given by the Boussinesq hypothesis:

sij ¼ 2mt Sij � 1
3
@kukdij

� 	
� 2
3
kdij;

with mt the eddy viscosity, Sij ¼ 1
2 @jui þ @iuj
� �

the rate-of-strain tensor, and k the
turbulent or subgrid-scale kinetic energy.

The X-LES method in particular is based on the TNT k–x model. The method
switches to LES when the RANS length scale l ¼ ffiffiffi

k
p

=x
� �

exceeds the LES length
scale (C1D, with D the filter width and C1 ¼ 0:08). The RANS length scale is then
replaced by the LES length scale in the expression for the eddy viscosity as well as
in the expression for the dissipation of turbulent kinetic energy e:

mt ¼ min l;C1Df g
ffiffiffi
k

p
;

and

e ¼ bk3=2

minfl;C1Dg ;

with b ¼ 0:09. The filter width D is defined at each grid point as the maximum of
the mesh width in all directions. Note that effectively a k-equation SGS model is
used in LES zones (where l[C1D), as x drops out of the expressions for mt and e.

5.3 Stochastic SGS Models

The current baseline stochastic eddy-viscosity SGS model (Kok and van der Ven
2009) attempts to destabilize shear layers by introducing a stochastic variable n in
the expression for the eddy viscosity in LES mode. The stochastic variable has a
standard normal distribution with zero mean and unit variance: n ¼ Nð0; 1Þ. For the
X-LES method, the expression for the eddy viscosity then becomes:

mt ¼ k=x; if l�C1D;
n2C1D

ffiffiffi
k

p
; if l[C1D:

�

At each time step, a new, uncorrelated value of n is drawn for every grid cell.
The stochastic term is not included in the expression for the turbulent dissipation e.
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This stochastic eddy-viscosity model was not aimed at modelling energy
backscatter. Furthermore, when this model is combined with the high-pass filtered
SGS models of the next section, then its effect is diminished due to (much) lower
values of the rate-of-strain tensor.

As an alternative approach, a new stochastic SGS model (Kok 2016) is con-
sidered that models backscatter at the theoretically correct rate. It is based on the
models of Leith (1990) and Schumann (1995). Its formulation is presented in detail
here, but a more extensive explanation is given by Kok (2016). The subgrid stress
tensor is defined as

sij ¼ 2mt Sij � 1
3
@kukdij

� 	
� 2
3
kdij � Rij;

with Rij a random stress tensor that is responsible for the backscatter. This tensor is
not modelled directly, but, following Leith, its gradient is modelled as the rotation
of a stochastic vector potential:

r � R ¼ r	 CBknð Þ;

with CB a model constant (CB ¼ 1 by default) and n a vector of three independent
stochastic variables ni ¼ Nð0; 1Þ. The stochastic variables are assumed to be
uncorrelated in space over distances larger than the filter width D and uncorrelated
in time over time intervals larger than the subgrid time scale s
D=

ffiffiffi
k

p
.

The additional stochastic term r � R is effectively a random acceleration that is
added to the momentum equation. As it is solenoidal, it does not induce pressure
fluctuations and therefore will not function as a noise source.

Note that the value of k in the initial shear layer will be high if the upstream
boundary layer is turbulent, whereas it will be practically zero if the upstream
boundary layer is laminar. In the former case, the stochastic model may destabilize
the shear layer, whereas in the latter case the stochastic model will be effectively
switched off, allowing a natural laminar-to-turbulent transition of the shear layer.

An essential modification that has been investigated for the stochastic
backscatter model is to include non-zero spatial and temporal correlations of the
stochastic variables ni. These correlations are obtained by solving stochastic dif-
ferential equations that are defined below, leading essentially to the following
correlations of ni—see Kok (2016) for more details:

E ni x; tð Þnj y; sð Þ� � ¼ dije
�d2=2e t�sj j=s;

with d2 ¼ x� yk k2= CDD
2� �

and s ¼ CsD=
ffiffiffi
k

p
. For the model to be Galilean

invariant, this correlation should be interpreted in Lagrangian sense, i.e., x and y are
the time-dependent coordinates of fluid particles. The default values for the model
constants are CD ¼ 0:1 and Cs ¼ 0:05.
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To obtain temporal correlations, a stochastic Langevin-type differential equation
is solved for each component ni, given by

qnidtþ s
@qni
@t

þr � qunið Þ
� 	

dt ¼
ffiffiffiffiffi
2s

p
qdWi;

with dWiðx; tÞ the differential of a Wiener process Wiðx; tÞ with the properties

dWi x; tð Þ ¼ N 0; dtð Þ

and

E dWi x; tð ÞdWj y; sð Þ� � ¼ dije
�d2=2d t � sð Þdtds:

This equation is discretized with second-order central schemes both in space and
time (second-order finite-volume in space and mid-point rule in time):

qnð Þni;j;k þ
s
dt

qnð Þnþ 1=2
i;j;k � qnð Þn�1=2

i;j;k

� �
þ sri;j;k � quð Þnnnð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2s=dt

p
qni;j;kg

n
i;j;k;

with f n ¼ 1
2 f nþ 1=2 þ f n�1=2
� �

, dt the time step, n the time-step index, ði; j; kÞ the
grid-cell indices, and ri;j;k the second-order central finite-volume discretization of
the gradient operator. Thus, at each time step n, first a new value of the stochastic
variable gni;j;k must be determined and then a new value of the stochastic variable
nni;j;k can be determined by solving the equation above. The stochastic variable gni;j;k
should be uncorrelated in time and should have, at each grid cell, three independent
components with zero mean, unit variance, and spatial correlation exp �d2=2ð Þ.

Note that the stochastic variable n is a 3-component vector and therefore three
temporal equations need to be solved. This can be done simultaneously with the
main flow and turbulence-model equations. These three equations are solved in the
complete flow domain, with gni;j;k ¼ 0 in the RANS zones and at all external
boundaries.

The variable gni;j;k can be obtained by applying a spatial smoother to a stochastic
variable fni;j;k ¼ Nð0; 1Þ that is drawn independently at each grid cell i; j; kð Þ and at
each time step n. To obtain the desired spatial correlation of gni;j;k on a structured
grid, three implicit smoothing operators per computational direction are applied to
the spatially uncorrelated variable fni;j;k:

I � bid
2
i

� �
I � bjd

2
j

� �
I � bkd

2
k

� �
g

0
i;j;k ¼ fni;j;k;

with I the identity operator, bi ¼ CD D=dixð Þ2 the smoothing coefficient in i-direc-
tion, dix the mesh size in i-direction, and d2i the second-order difference operator in
i-direction. To ensure a unit variance, the smoothed variable is scaled as
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gni;j;k ¼
1þ 4bið Þ3=4 1þ 4bj

� �3=4
1þ 4bkð Þ3=4

1þ 2bið Þ1=2 1þ 2bj
� �1=2

1þ 2bkð Þ1=2
g

0
i;j;k:

The implicit smoothing requires solving a tridiagonal system per computational
direction, which can be done efficiently using the Thomas algorithm. At the
boundaries, Dirichlet boundary conditions g0 ¼ 0ð Þ are applied.

5.4 High-Pass Filtered SGS Models

As shear layers are initially very thin, they contain high gradients of the (mean)
velocity, and therefore of the rate of strain, which leads to high values of the subgrid
stresses. Any instability of the initial shear layer may then be damped by these high
stresses, thus delaying the development of resolved turbulence. The approach to
grey-area mitigation considered in this section attempts to reduce these high values
of the stresses.

A high-pass filtered (HPF) SGS model (Kok and van der Ven 2012) has been
included in X-LES to remove the dependency of the stresses on (high) mean
velocity gradients. The SGS stresses are computed from the velocity fluctuations u0

instead of the instantaneous velocity u:

sij ¼ 2mt S
0
ij �

1
3
@ku

0
kdij

� 	
� 2
3
kdij; if l[C1D;

with Sij ¼ 1
2 @ju0i þ @iu0j
� �

. The velocity fluctuations u0 are obtained by applying a

temporal high-pass filter to the velocity field. This high-pass filter consists of
subtracting the running time average of the velocity from the instantaneous
velocity:

u
0
x; tð Þ ¼ u x; tð Þ � �u x; tð Þ;

with the running time average given by

�u x; tð Þ ¼ 1
t

Z t

0

u x; sð Þds;

which is discretized as (dropping dependency on x)

�u tnð Þ ¼ n� 1
n

�u tn�1ð Þþ 1
n
u tnð Þ:
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A possible disadvantage of this particular high-pass filter is that the running time
average contains the complete time history, with equal weight, including the
transient. In practice, however, this does not appear to lead to a significant
slow-down of the statistical convergence or to a lengthening of the transient.

The baseline high-pass filter is less suitable when the flow contains some
non-turbulent unsteadiness at a low frequency that should also be filtered out.

Alternatively, high-pass filters that filter out all frequencies below a certain
cut-off frequency may be considered to overcome this disadvantage. In order to
limit memory requirements, time-discrete (or digital) filters that can be computed
recursively may be chosen, such as the Butterworth-type filters. A disadvantage of
these filters is that the cut-off frequency must be chosen a priori. The cut-off
frequency should be lower than the frequency of the smallest resolved turbulent
structures and higher than the frequency of any non-turbulent unsteadiness. For the
test cases considered in Go4Hybrid, which do not contain any non-turbulent
unsteadiness, the baseline high-pass filter was found to be sufficient.

6 Alternative, Shear Layer Adapted, Subgrid
Length-Scale for Non-zonal Hybrid RANS-LES
Methods

6.1 Introduction

A new definition of the subgrid length scale is proposed, which aims at a rapid
destabilising the separated shear layers and accelerating RANS-to-LES transition
within non-zonal RANS-LES hybrid methods. In a sense, the proposed approach
which underlying physics is outlined in detail in a recent publication of Shur et al.
(2015), is similar to that of CFDB (see Sect. 2, above), since both approaches take
advantage of the peculiarities of the flow and/or grid topology in the early shear
layers. However, implementation of this idea in the two approaches is quite dif-
ferent: the CFDB approach relies upon an alternative SGS model formulation that
discerns between quasi 2D and developed 3D flow states, whereas NTS uses for this
purpose an alternative subgrid length-scale definition. This definition includes two
ingredients, both involving specially designed kinematic criteria accounting for the
abovementioned peculiarities of the early shear regions. Although so far this def-
inition has been applied only with the Delayed DES (DDES) approach (Spalart
et al. 2006), it is expected to be transferrable to any non-zonal hybrid RANS-LES
method employing the grid scale as the LES filter width definition and to pure LES
models as well. Below we outline both ingredients of the proposed definition and
present its final formulation.
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6.2 Formulation of Vorticity-Adaptive Grid Scale Measure

In the following, we consider, e.g., jet shear layers or trailing edges and define x,
y and z to be aligned with the streamwise direction, across the shear layer, and in the
spanwise or azimuthal direction, respectively. In such situations, efficient grids are
fine in the y direction and perhaps also in x, but coarse in z. This creates “pencil” or
“ribbon” grid cells. The maximum cell size definition of D normally used with DES
is

Dmax ¼ maxðDx;Dy;DzÞ: ð43Þ

Although this is a rational and robust choice for archetypal LES in the inertial
range with near-cubic cells, it turns out to be too “conservative” in the initial region
of shear layers resolved by such anisotropic grids.

Chauvet et al. (2007) introduced the promising concept of sensitising D to the
orientation of the vorticity vector with the grid. The formulation was subsequently
generalised for unstructured meshes by Deck (2012). In regions where the flow is
essentially 2D with the vorticity axis aligned with the coarse z direction, their Dx

quantity reduces to
ffiffiffiffiffiffiffiffiffiffi
DxDy

p
, thus removing the dominance of Dz. Although this is

helpful, we consider the strong influence of the smallest grid direction in this
formulation troublesome. This is the same as our objection to the commonplace use
of the cubic root of the cell volume, which was introduced by Deardorff (1970)
without logical justification. We therefore propose an alternative concept that
reduces to max Dx;Dy

� �
:

Considering a cell with its centre at r and vertices at rnðn ¼ 1; . . .; 8 for hexa-
hedra), the proposed definition reads as:

~Dx ¼ 1ffiffiffi
3

p max
n;m¼1;8

In � Imð Þj j; ð44Þ

where ln ¼ nx 	 rn � rð Þ and nx is the unit vector aligned with the vorticity vector.
Thus, the quantity ~Dx is the diameter of the set of cross-product points ln divided byffiffiffi
3

p
.
As intended, in the shear layer situations outlined above it reduces to

1ffiffi
3

p D2
x þD2

y

� �1=2
, i.e. is O max Dx;Dy

� 
� �
. In 3D cases, ~Dx is of the order of Dmax

except for the situation when the vorticity vector is aligned with one of the grid
coordinate directions (e.g., k), when it reduces to O max Di;Dj

� 
� �
. Therefore, the

smallest grid-spacing never rules.
Another improvement over the original proposal (Chauvet 2007; Deck 2012)

occurs when the shear layer is skewed so that the vortex cores are not aligned with
the z direction. In such a case, the Kelvin–Helmholtz instability cannot be resolved
well, yet the original definition does not recognise this situation rapidly enough and
keeps D excessively small.
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Testing for isotropic turbulence on an isotropic grid has shown that ~Dx indeed
adopts on average 97.5% of the value of Dmax. To balance this, ~Dx can be multi-
plied by a factor 1.025. The influence of this is however very minor.

6.3 Testing for Backward-Facing Step

In order to evaluate a performance of the length-scale and ~Dx versus the conven-
tional DES length-scale Dmax, DDES has been conducted of the flow over a
backward-facing step with the use of both length-scales. The grid resolution in the
homogeneous spanwise direction has furthermore been varied between Dz=H ¼ 0:1
and Dz=H ¼ 0:05, where H is the step height.

The grid used in the simulations and visualisation of the activity of the ~Dx

quantity are shown in Fig. 13a, b, respectively. In the very early shear layer, where

(a) / plane of grid (b) Ratio  ( ) 

(c) Eddy viscosity ratio,  (  ( ) 

(e) Vorticity magnitude,  (

) (d) Eddy viscosity ratio,

) (f) Vorticity magnitude,  ( ) 

(g) Mean skin friction, (h) Mean skin friction,

Fig. 13 Visualisation and results for SA-DDES comparing the Dmax and ~Dx grid scale measures
for backward-facing step flow; experimental data of Vogel and Eaton (1985)
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the grid cells are highly anisotropic and the vorticity vector is aligned with the
z direction, ~Dx gives significantly reduced values relative to Dmax. Further down-
stream, where three-dimensional resolved turbulence has developed, values of
between around 70 and 85% of Dmax are seen. Correspondingly, eddy viscosity
levels (Fig. 13c, d) are strongly reduced in the early shear layer, enabling a sig-
nificantly accelerated development of resolved structures (Fig. 13e, f). Note also,
that owing to the DDES shield function, the eddy viscosity levels in the attached
boundary layers (treated with RANS) are unaffected, as intended.

As seen from the distributions of mean skin friction coefficient on the lower wall
(Fig. 13g, h), the agreement with experiment is improved significantly by the ~Dx

formulation for the coarser Dz=H ¼ 0:1 mesh. Furthermore, the strong sensitivity of
the Dmax results to the spanwise mesh resolution is dramatically reduced using the
~Dx expression, which is a highly desirable result.

6.4 Extension of Formulation with “Vortex Tilting
Measure” (VTM)

On a nearly isotropic (cubic) grid the effect of replacing Dmax with ~Dx is marginal.
So, provided that the isotropic grid is not sufficiently fine to ensure a proper
resolution of the initial nearly-2D region of a shear layer,2 one needs an additional,
purely kinematic, measure allowing the identification of quasi-2D flow regions in
which nearly Implicit LES treatment is desirable for facilitating the
Kelvin-Helmholtz instability and accelerating transition to developed turbulence.

Such a measure called Vortex Tilting Measure (VTM) has been proposed. The
measure presents a normalized upper bound of the cross product of the
vortex-changing term Sijxj and the vorticity vector xi and reads as:

VTM �
ffiffiffi
6

p ðŜ � xÞ 	 x


 



x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3trðŜ2Þ � ½trðŜÞ�2

q ð45Þ

where Ŝ is the strain tensor, x is the vorticity vector and trð�Þ means trace.
Thus defined measure varies in the range [0, 1.0], is small (close to zero) in the

quasi-2D flow regions (where the vorticity vector is an eigenvector of the strain
tensor), and mostly close to 1.0 in the developed 3D turbulence.

With the use of the VTM quantity, the length-scale ~Dx (Spalart et al. 2006) may
be further modified as:

2Note that this is the case in all practically meaningful simulations, since “fine enough” actually
means unaffordable.
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DSLA ¼ ~DxFKH VTMh ið Þ: ð46Þ

Here the subscript SLA stands for Shear Layer Adapted, VTMh i denotes the
average of the VTM quantity over neighboring cells, which is needed to eliminate
strong downward excursions experienced by the local values of VTM in the
developed turbulence flow regions, and the function FKH is aimed at unlocking
Kelvin-Helmholtz instability in the initial part of shear layers.

To achieve this, the function should be designed so that it remains small at the
VTMh i values less than some prescribed threshold value and then rapidly increases
up to 1.0 with the VTMh i increase. One possible type of such a function is a simple
piecewise-linear function defined as:

FKH VTMh ið Þ ¼ max Fmin
KH ;min Fmax

KH ;Fmin
KH þ Fmax

KH � Fmin
KH

a2 � a1
VTMh i � a1ð Þ

� �� �
ð47Þ

Here Fmax
KH ¼ 1:0 and Fmin

KH , a1 and a2 are adjustable empirical parameters which
were set equal to 0.1, 0.15, and 0.3 respectively.

Considering that in the inviscid flow regions the quantity VTMh i strongly
oscillates in space, in order to avoid possible numerical issues this may cause, the
definition of VTM (Chauvet et al. 2007) is further modified as follows:

VTM �
ffiffiffi
6

p
Ŝ � x
� �

	 x



 




x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3tr Ŝ

2
� �

� tr Ŝ
� �h i2r max 1;

0:2m
maxf mt�mt;1

� �
10�6mt;1

( )
ð48Þ

which results in large values of VTM in the inviscid flow region and, therefore,
deactivation of the FKH , (at large values of VTM, FKH VTMh ið Þ ¼ 1:0).

Finally, in the DDES approach the FKH function (1) has to be deactivated also in
attached boundary layers, where DDES should work in RANS mode. So, for the
wall-bounded flows the function is further modified as follows Shur et al. (2015):

Flim
KH ¼ 1:0; if fd\ð1� eÞ

FKH ; if fd �ð1� eÞ
�

ð49Þ

where fd is the delay function of DDES (Spalart et al. 2006) and e is an empirical
constant.

Based on the numerical experiments carried out in Shur et al. (2015) for the zero
pressure gradient boundary layer, this constant was set equal to 0.01.

Thus, a final relation for the proposed length-scale reads as:
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DSLA ¼ ~DxFlim
KH \VTM[max 1;

0:2m
max ðmt � mt;1Þ; 10�6mt;1

� 
( ) !
ð50Þ

Results of simulations illustrating a high efficiency of the thus modified subgrid
length-scale within SA DDES of the spatially evolving plane shear layer (test case
F.2), wall-mounted 2D hump (test case I.4), and round jet (test case I.5), and are
presented in Part III (Chapter “Free Shear Layer”), Part IV (Chapter “2D Wall-
Mounted Hump”) and Part IV (Chapter “Single-stream Round Jet at M = 0.9”),
respectively.
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