
Chapter 2
Linear Oscillator and a Non-ideal
Energy Source

In the non-ideal oscillator-motor system there is an interaction between the motions
of the oscillator and of the motor: the motor has an influence on the oscillator and
vice versa the motion of the oscillator affects the motion of the motor. It is in contrary
to the ideal system, where only the motor has an influence on the oscillator motion
and the influence of the oscillator on the motor is negligible (Kononenko 1969,
1980; Nayfeh and Mook 1979). In this chapter the linear oscillator coupled to a non-
ideal energy source is considered. A significant number of researches in dynamics
of linear oscillator coupled with the non-ideal energy source is already done (see
overviews Balthazar et al. 2003; Cveticanin 2010; References given in these papers
and, recently published papers Souza et al. 2005a, b; Dantas and Balthazar 2007;
Felix et al. 2009, 2011; Samantaray 2010; Kovriguine 2012; Tusset et al. 2012a, b
etc). In the non-ideal system with linear oscillator the connection of the system with
the fixed element is with an elastic element with linear property. Usually, a motor is
supported on a cantilever beamwhich has linear properties or amotor is settled on the
linear foundation (Dimentberg et al. 1997; Warminski et al. 2001). In the literature
the vibration of the system is determined analytically and the result is compared
with numerically obtained value. Discussing the results the special attention is given
to the phenomenon called ‘Sommerfeld effect’ which is a property of the non-ideal
systems.

The chapter is divided into three sections where three types of oscillator-motor
systems are considered: the one degree-of-freedom linear oscillator connected with a
non-ideal energy source, oscillator with variable mass excited with anon-ideal source
and the oscillator with clearance.

In the Sect. 2.1, a motor supported on a cantilever beam with linear elastic prop-
erties is considered. The system is modelled and an analytical solving procedure
is developed for obtaining of the approximate solutions. The steady-state motion
in the resonant working regime is given and the Sommerfeld effect is explained.
An analog mechanical model is introduced for better explanation of the problem
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(Goncalves et al. 2014). Conditions for motion stability of the non-ideal system with
linear oscillator are determined.

In the Sect. 2.2, the oscillator with variable mass with non-ideal excitation is
investigated. The system is described with two coupled equations with time variable
parameters. The analytical and numerical solution of the problem is considered. The
influence of the parameter variation on the behavior of the system is discussed.

Section2.3 deals with an oscillator with clearance forced with a non-ideal source.
The elastic force in the spring is discontinual and it causes some additional distur-
bances in the motion of the system. Both, the transient and the steady-state motion
of the system are investigated. In this system beside regular motion, chaotic motion
is evident (Lin and Ewins 1993). Conditions for chaos are obtained and a method for
chaos control is developed (Zukovic and Cveticanin 2009).

2.1 Simple Degree of Freedom Oscillator Coupled
with a Non-ideal Energy Source

Let us consider a motor settled on a table where it is supposed that the motor is a
non-ideal energy source while the support represents an oscillator. The model of a
motor - support system is usually modelled as a cantilever beam with a concentrated
mass positioned at its free end (see Fig. 2.1).

The beam is made of steel and its properties are defined by Young’s modulus E ,
density ρ, the length L , the cross-sectional area S and the second moment of area
I . The beam bending stiffness is k = 3E I/L3, and its mass is mb = ρSL . If Mc

represents the mass of the electric motor, the total concentrated mass at the end of
the beam is m1 = Mc + 0.23mb (Goncalves et al. 2014). The motor has moment
of inertia J . It is known that the rotor of the motor suffers from unbalance. Rotor
is never perfectly balanced and the unbalance mass is m2 = mb that rotates at a
distance d from the motor shaft center. For low amplitudes of oscillation when the
higher order modes are neglected, it is possible to write an expression for the first
bending natural frequency ω0 of the beam with concentrated mass as

ω0 =
√

3E I

L3(m1 + m2)
. (2.1)

Fig. 2.1 Cantilever beam
with a concentrated mass and
an unbalanced motor
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Fig. 2.2 Model of a
spring-mass-damper
oscillator and a motor with
unbalanced mass

Due to rigidity and damping properties of the beam, it can bemodified as a spring-
mass-damper oscillator. Then, the cantilever beam - motor system is represented as
a cart with mass m1, connected with a spring and damper to the fixed plane, and
coupled with unbalanced mass (Fig. 2.2).

The system has two degrees of freedom. The cart displacement is defined by x
and the motor angular position is represented by ϕ. The kinetic energy of the system
T is

T = m1

2
ẋ2 + J

2
ϕ̇2 + m2

2
v2
2, (2.2)

where v2 is the velocity of the unbalance mass. For position coordinates of the motor
unbalanced mass m2: x2 = x + d cosϕ and y2 = d sinϕ, the velocity follows as

v2 =
√
ẋ22 + ẏ22 =

√
ẋ2 + d2ϕ̇2 − 2dẋϕ̇ sinϕ. (2.3)

Substituting (2.3) into (2.2) we obtain

T = 1

2
(m1 + m2)ẋ

2 + 1

2
(J + m2d

2)ϕ̇2 − m2dẋϕ̇ sinϕ. (2.4)

If the gravity potential energy is neglected, the systems potential energy is

U = 1

2
kx2. (2.5)
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Equations of motion of the system are obtained by using the Lagrange’s differential
equations of motion

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
= Qϕ, (2.6)

where Qx and Qϕ are generalized forces. The non-conservative force in x direction is
the damping force Qx = −cẋ with the damping coefficient c, while the generalized
force Qϕ corresponds to the torque M(ϕ̇) applied to motor.

Using relations (2.4)–(2.6) and the generalized force, the cart equation ofmotion is

(m1 + m2) ẍ + cẋ + kx = m2d
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.7)

and the motion of the motor shaft is given by

(
J + m2d

2) ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.8)

Equations (2.7) and (2.8) are autonomous and nonlinear.

2.1.1 Analytical Solving Procedure

Let us introduce the dimensionless length and time variables

y = x

d
, (2.9)

τ = ωt, (2.10)

and parameters

εζ1 = c√
k (m1 + m2)

, ε = m2d

X (m1 + m2)
,

εη1 = m2dX

J + m2d2
, M (

ϕ′) = M (ϕ̇)

ω2
(
J + m2d2

) . (2.11)

Dimensionless differential equations of motion of the oscillatory system follow as

y′′ + y = −2εζ1y
′ + ε

(
ϕ′′ sinϕ + ϕ′2 cosϕ

)
,

ϕ′′ = εη1y
′′ sinϕ + ε M (

ϕ′) , (2.12)
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where

ω =
√

k

m1 + m2
, (2.13)

is the frequency of the system, (′) ≡ d/dτ and X is the length characteristic of
the amplitude of the motion of the motor Nayfeh and Mook (1979). Assuming that
the parameter ε is small, Eq. (2.12) are with small nonlinear terms. For computa-
tional reasons it is convenient to rewrite (2.12) into a system of first order equations.
Accordingly, we let

y = a cos(ϕ + ψ), (2.14)

where a, ϕ and ψ are functions of τ . Generally, it cannot be expected that the
frequency of the rectilinear motion (ϕ′ + ψ′) to be the same as the angular speed of
the rotor ϕ′. Hence, ψ is included in the argument.

We are considering the motion near resonance and it is convenient to introduce a
detuning parameter � as follows

ϕ′ = 1 + �. (2.15)

Henceψ is used to distinguish between the speed of the rotor and the actual frequency
of the rectilinear motion, while � is used to distinguish between the speed of the
rotor and the natural frequency of the rectilinear motion.

Using the method of variation of parameters, we put

a′ cos(ϕ + ψ) − a(� + ψ′) sin(ϕ + ψ) = 0, (2.16)

so that

y′ = −a sin(ϕ + ψ), (2.17)

and

y” = −a′ sin(ϕ + ψ) − a(1 + � + ψ′) cos(ϕ + ψ). (2.18)

Substituting (2.15), (2.17) and (2.18) into (2.12) leads to

−a′ sin(ϕ + ψ) − a(� + ψ′) cos(ϕ + ψ) (2.19)

= ε�′ sinϕ + ε(1 + �)2 cosϕ + 2εζ1a sin(ϕ + ψ),

and

�′ = −εη1
(
a′ sin(ϕ + ψ) + εa(1 + � + ψ′) cos(ϕ + ψ)

)
sinϕ + εM (2.20)
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where M = M (
ϕ′) . Solving (2.16) and (2.19) for a′ and ψ′ produces

a′ = ε�′ sinϕ − ε(1 + �)2 cosϕ − 2εζ1a sin(ϕ + ψ) sin(ϕ + ψ), (2.21)

ψ′ = −�− ε

a
�′ sinϕ− ε

a
(1+�)2 cosϕ−2εζ1 sin(ϕ+ψ) cos(ϕ+ψ). (2.22)

Equations (2.20)–(2.22) are equivalent to the system (2.12). No approximations have
beenmadeyet. These equations show that�′ anda′ areO(ε).Werestrict our attention
to a narrow band of frequencies around the natural frequency

� = εσ. (2.23)

� and �′ are O(ε), and it follows from (2.22) that ψ′ is also O(ε). As a first
simplification we neglect all terms O(ε2) appearing in (2.20)–(2.22) and we obtain

�′ = ε (M − η1a cos(ϕ + ψ) sinϕ) , (2.24)

a′ = −ε (cosϕ + 2ζ1a sin(ϕ + ψ)) sin(ϕ + ψ), (2.25)

ψ′ = −� − ε

a
(cosϕ + 2ζ1 sin(ϕ + ψ)) cos(ϕ + ψ). (2.26)

To solve the Eqs. (2.24)–(2.26) in exact analytical form is not an easy task. The
approximate solution is obtainedby applyingof the averagingprocedure.Weconsider
a, σ and ψ to be constant over one cycle and average the equations over one cycle.
The result is

�′ = ε

(
M + 1

2
η1a sinψ

)
, (2.27)

a′ = −ε

(
1

2
sinψ + aζ1

)
, (2.28)

ψ′ = −ε

(
σ + 1

2a
cosψ

)
. (2.29)

At this point, let us mention the difference between ideal and non-ideal systems. For
the ideal system relation (2.27) is not a governing equation asσ is specified and (2.28)
and (2.29) are solved for a and ψ. For the non-ideal system the Eqs. (2.27)–(2.29)
are solved for a, � and ψ withM as a control setting.

2.1.2 Steady-State Solution and Sommerfeld Effect

For steady-state responses, a′, �′ and ψ′ are zero, i.e., Eqs. (2.27)–(2.29) transform
into
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M + 1

2
η1a sinψ = 0, (2.30)

1

2
sinψ + aζ1 = 0, (2.31)

σ + 1

2a
cosψ = 0. (2.32)

Combining (2.31) and (2.32) yields

a = 1

2
√

ζ21 + σ2
, (2.33)

while combining (2.30) and (2.31) gives

M = η1ζ1a
2. (2.34)

The phase is given by

ψ = cos−1(−2aσ) = sin−1(−2aζ1). (2.35)

Recalling the definitions of the dimensionless variables, we rewrite these results in
terms of the original physical variables as

Xa = ωm2d√
c2 + 4(ω − ϕ̇)2(m1 + m2)2

, (2.36)

ψ = tan−1

(
−2(m1 + m2)(ω − ϕ̇)

c

)
, (2.37)

and

M(ϕ̇) = cωkm2dX

2
(
c2 + 4(ω − ϕ̇)2(m1 + m2)2

) , (2.38)

where (Xa) is the physical amplitude of the motion and according to (2.35),−π/2 <

ψ < 0. The solving procedure is as it follows: first, the (2.38) is solved for ϕ̇ and
then, the amplitude and phase from (2.36) and (2.37) are obtained.

To solve the Eq. (2.38) it is necessary to know the torque function of the motor.
Namely, the torque of the motor contains two terms: the characteristic of the motor
L (ϕ̇) and the resisting moment H (ϕ̇) due primarily to windage of the rotating parts
outside the motor

M (ϕ̇) = L (ϕ̇) − H (ϕ̇) .
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Generally, L (ϕ̇) and H (ϕ̇) are determined experimentally. Various types of math-
ematical description of the motor property are suggested. One of the most often
applied and the simplest one is the linear mode which is a function of the angular
velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.39)

and depends on two constant parameters M0 and �0 which define the limited source
of power as the angular velocity increases. The expression (2.39) defines the char-
acteristic curve of the motor shown in Fig. 2.3, where for angular velocities greater
than �0 the torque reduces to zero and when the angular velocity is zero the torque
is maximum. Figure2.3 is an illustrative example in which Eq. (2.39) is valid for
positive values of torque and angular velocity.

In this section the calculation is done for the linear torque function (2.39). Solving
(2.36)–(2.38) with (2.39) the frequency - response relation is obtained. In Fig. 2.4 the
corresponding diagram is plotted. For the ideal linear system the frequency-response
diagram is a continual curve presented with a solid line in Fig. 2.4. For the non-ideal
system the curves are obtained by allowing the system to achieve a steady-state
motion while the control was fixed. Then the amplitude of the steady-state response
was calculated. The control was then changed very slightly and held in the new
position until a new steady state was achieved. For increasing of angular frequency
the amplitude increases up to T and jumps toH andmoves in right-hand side direction
along the amplitude curve. For the decreasing frequency the amplitude increases up
to R and suddenly jumps to P and decreases continually along the solid line curve.
We note that there are gaps where no steady-state response exists. The gaps are not
the same in the two directions but there is some overlap. The arrows indicate the
change brought about by slowly increasing or decreasing the control setting in a

Fig. 2.3 Motor torque
characteristic curve
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Fig. 2.4 Frequency-
response curves for ideal
system (_ _ _ _) and non-ideal
system (→→) (Nayfeh and
Mook 1979)

non-ideal system. We note that the non-ideal system cannot be made to respond at a
frequency between T andH by simply increasing the control setting form a low value.
In contrast, the ideal system can respond also at frequencies between T and H.When
the control setting is continually decreased, the system cannot be made to respond
between R and P. In other words, the right side of the resonance spike between T
and R cannot be reached by either continually increasing or continually decreasing
the control setting. Though the system is linear, the non-ideal source causes a jump
phenomenon to occur.

At the left-hand side of the frequency-response curve the input power is relatively
low. As the input power increases, the amplitude of the response increases noticeably
while the frequency changes only slightly, especially along the portion of the curve
between P and T. Here a relatively large increase in power causes a relatively large
increase in the amplitude and practically no change in the frequency.

At T the character of the motion suddenly changes. An increase in the input power
causes the amplitude to decrease and the frequency to increase considerably. This
phenomenon is called Sommerfeld effect. It was discovered by Arnold Sommerfeld
in 1902, commented in a book of Kononenko (1969) and described in the book of
Nayfeh andMook (1976). The jumpphenomena in the amplitude-frequency curve for
the non-ideal system is remarked during passage through resonance. In this working
regime special properties of the non-ideal source are caused. Namely, in the region
before resonance as the power supplied to the source increases, the RPM of the
energy source (motor) increases accordingly. But, the closed motor speed moves
toward the resonance frequency the more power the source requires to increase the
motor speed. Near resonance it appears that additional power supplied to the motor
will only increase the amplitude of the response with little effect on the RPM of
the motor, and the amplitude of vibration increases. In non-ideal vibrating systems
the passage through resonance requires more input power than is available. As a
consequence the vibrating system cannot pass through resonance or requires an
intensive interaction between the vibrating system and the energy source to be able
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to do it. Strong interaction leads to fluctuating motor speed and fairly large vibration
amplitudes appear. The motor may not have enough power to reach higher regimes
with low energy consumption as most of its energy is applied to move the structure
and not to accelerate the shaft. In fact, the vibrating response provides a certain
energy sink.

2.1.3 Model Analogy and Numerical Simulation

To explain the motion in non-ideal system a model analogy is introduced. Let us
consider the Eq. (2.38). Substituting (2.39) into (2.8) it is

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M0

(
1 − ϕ̇

�0

)
. (2.40)

Discussion of (2.40) follows.
Let us consider a motor mounted on a rigid base. Motion of the cart is eliminated

(ẍ = 0) and according to (2.40) the mathematical model is

(
J + m2d

2
)
ϕ̈ = M0

(
1 − ϕ̇

�0

)
. (2.41)

The physical model which corresponds to (2.41) is a wheel climbing on a ramp.
The slope of the ramp is related to the motor inertia defining the rate of the angular
velocity.

For a motor with no resistive torque when M = M0, the angular acceleration
is constant and therefore, the angular velocity of the wheel increases by a constant
rate (see Fig. 2.5a). The motor torque should be switched off as the desired angular
velocity �0 is achieved.

When considering the motor with resistive torque, the angular acceleration is no
longer constant and decreases as the angular velocity increases. The system shown in

Fig. 2.5 Analogy by a wheel climbing a ramp: a a motor with no resistive torque, b a motor with
resistive torque (Goncalves et al. 2014)
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Fig. 2.5b is used to represent the motor with resistive torque where it is more difficult
to reach the energy level �0. The rate of velocity changing is no longer linear.

When the motor is mounted on a flexible base, its motion is described with
Eq. (2.40). It is clear that the angular acceleration is also a function of the cart motion
x .Besides, themotion of the cart is a function of the acceleration and angular velocity
of the motor (2.7). In Fig. 2.6 a system which is analog with the motor mounted on
a flexible base is represented. Similar to Fig. 2.5a, wheel must climb a ramp to reach
the level of energy defined by �0. In this case the ramp path is modified by the cart
resonance frequency ω0.

The resonance frequency is represented by the valley in the ramp path. The deep
and the width of the valley in the ramp are related to the amplitude of the motion of
the cart and in some cases the wheel can get stuck inside the valley in the ramp path.
Numerical simulation is done for frequencies around the cart resonance frequency
ω0. Figure2.7 shows that when�0 is slightly bigger thanω0 the angular velocity does
not increase. Setting�0 = 1.1ω0 themotor does not reach the angular velocity 1.1ω0,

instead it will oscillate with angular velocity ω0. As a consequence, the additional
energy increases the amplitude of the displacement of the cart.

Fig. 2.6 Analogy of the
resonance frequency in the
ramp path (Goncalves et al.
2014)

Fig. 2.7 The angular
velocity as a function of
motor constant �0
(Goncalves et al. 2014)
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Fig. 2.8 Root mean square
acceleration as a function of
the motor constant �0
(Goncalves et al. 2014)

Fig. 2.9 The analogy of a
wheel climbing a ramp with
the influence of a resonance
frequency (Goncalves et al.
2014)

In Fig. 2.8 the cart root mean square (RMS) magnitude of the acceleration as a
function of the oscillation frequency rate�0/ω0 is plotted. Based on plots in Figs. 2.7
and 2.8 it is noted that there is a region between C and D without data points. This
region corresponds to a jump phenomenon described by Sommerfeld. The wheel
climbing a ramp is used to explain the jump using the sketch in Fig. 2.9.

The system passing through resonance frequency is represented by the wheel
inside the valley and oscillating between points ABC. There is a region in the ramp
path between points C and D where the wheel does not have grip. The system cannot
stay in energy levels in the region as it will fall in the valley. The width and the
depth of the valley ABC are controlled by the resonance amplitude. The higher the
damping, the shallower the valley.
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2.1.4 Stability Analysis

For a given setting of control there can be one, two or three steady state solutions (see
Fig. 2.4). To determinewhich of these steady-state solutions actually corresponds to a
realizable motion, we need to consider the stability of motion. Namely, we determine
the stability of the steady-state solutions by determining the nature of the singular
points which are the solutions of (2.27)–(2.29). To accomplish this, we let

a = aS + a1, ψ = ψS + ψ1, � = �S + �1. (2.42a)

Substituting (2.42a) into (2.27)–(2.29) and neglecting all but the linear terms in a1,
ψ1 and �1, we obtain

�′
1 = ε

(
dM
dϕ′ ϕ′

S�1 + 1

2
η1a1 sin(ψS) + 1

2
η1aSψ1 cos(ψS)

)
,

a′
1 = −ε

(
1

2
ψ1 cos(ψS) + a1α1

)
,

ψ′
1 = −ε

(
σ1 + 1

2

(
a1
a2S

)
cos(ψS) − 1

2aS
ψ1 sin(ψS)

)
, (2.43)

where εσ1 = �1. Linear equation (2.43) have a solution in the form

(a1,ψ1,�1) = (a10,ψ10,�10) exp(λt),

i.e.,

a1 = a10 exp(λt), ψ1 = ψ10 exp(λt), �1 = �10 exp(λt), (2.44)

where λ is the eigenvalue coefficient matrix and a10,ψ10,�10 are constants. Substi-
tuting (2.44) into (2.43) the characteristic determinant is obtained as

∣∣∣∣∣∣∣∣
εϕ′

S(
dM
dϕ′ )ϕ′

S
− λ ε

2η1 sin(ψS)
ε
2η1aS cos(ψS)

0 λ + εα1
1
2ε cos(ψS)

1 ε
2a2S

cos(ψS) λ − ε
2aS

sin(ψS)

∣∣∣∣∣∣∣∣
= 0,

and the characteristic equation is a cubic one

0 = λ3 + λ2

[
εα1 − ε

2aS
sin(ψS) − εϕ′

S

(
dM
dϕ′

)
ϕ′
S

]
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−λ

[
ε2α1

2aS
sin(ψS) + ε2

4a2S
cos2(ψS) +

(
εα1 − ε

2aS
sin(ψS)

)
εϕ′

S

(
dM
dϕ′

)
ϕ′
S

−ε

2
η1aS cos(ψS)

]

+
(

εϕ′
S

(
dM
dϕ′

)
ϕ′
S

[
ε2α1

2aS
sin(ψS) + ε2

4a2S
cos2(ψS)

]

+ε2

2
η1α1aS cos(ψS) − ε2

8
η1 sin(2ψS). (2.45)

The solutions are stable and hence the corresponding motions realizable, if the real
part of each eigenvalue is negative or zero. Without solving the Eq. (2.45) and using
the Routh–Hurwitz principle we can determine the conditions for the stable solution
up to the small value O(ε2)

[
α1 − ϕ′

S

(
dM
dϕ′

)
ϕ′
S

]
aS sin(ψS) − 1

4
sin(2ψS) − ϕ′

0

(
dM
dϕ′

)
ϕ′
S

η1a
3
S cos(ψS) > 0.

(2.46)

Analyzing the relation (2.46) it turns out that the solutions between T and R are
unstable, while all those outside this region are stable (Fig. 2.4). As (2.43)1 indicates
the parameter, that gives the influence of the motor on the stability, is the slope of
the characteristic.

2.2 Oscillator with Variable Mass Excited with Non-ideal
Source

There is a significant number of equipment and machines which can be modelled
as one degree-of-freedom oscillators with time variable mass. Let us mention some
of them: centrifuges, sieves, pumps, transportation devices, etc. For all of them it
is common that their mass is varying slowly during the time. The mass variation
is assumed to be continual. The excitation of the motion of the equipment is ideal
(the excitation force is a harmonic function and the influence of the oscillator on the
source is negligible) or non-ideal, where not only the energy source has an influence
on the oscillator, but vice versa. In this chapter the oscillator with non-ideal excitation
is considered. First the model of the one-degree-of-freedom oscillator with non-ideal
excitation is formed. It is a system of two coupled differential equations with time
variable parameters. Vibrations close to the resonant regime are considered. For the
case when the mass variation is slow the amplitude and frequency of vibration are
determined. The Sommerfeld effect for the system where the parameters depend
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on the slow time is discussed. Analytical solutions are compared with numerically
obtained ones.

2.2.1 Model of the System with Variable Mass

In Fig. 2.10 the model of an oscillator with time variable mass m1 connected with a
motor which is a non-ideal energy source is plotted. The motor is settled on a cart
whose mass m1 is varying in time due to leaking of the contain with velocity u. It is
supposed that the mass variation is slow in time. The connection of the oscillating
cart to the fixed element has the rigidity k and damping c.

The motor has the moment of inertia J, unbalance m2 and eccentricity d. The
excitation torque of the motor, M (ϕ̇), is the function of the angular velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.47a)

where �0 is the steady-state angular velocity. This mathematical model corresponds
to asynchronous AC motor (Dimentberg et al. 1997).

To describe the motion of the system, let us assume the two generalized coor-
dinates: the displacement of the oscillator x and the rotation angle of the motor ϕ.
Variation of the mass of the oscillator is assumed to be slow and to be the function
of the slow time τ = εt , where ε << 1 is a small constant parameter. Equations of
motion of the system with time variable mass is in general (Cveticanin 2015)

Fig. 2.10 Model of the
non-ideal mass variable
system
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d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
= Qx + QR,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
= Qϕ, (2.48)

where Qx and Qϕ are generalized forces and QR is the generalized reactive force
caused by mass variation. If the mass is added or separated with the absolute velocity
u in x direction, the generalized reactive force is the product of the velocity u and
mass variation dm1/dt , i.e.

QR = dm1

dt
u. (2.49)

The non-conservative force in x direction is the damping force Qx = −cẋ with the
damping coefficient c, while the generalized force Qϕ corresponds to the torque
M(ϕ̇) applied to motor. The kinetic energy of the system is according to (2.4)

T = 1

2
[m1(τ ) + m2]ẋ2 + 1

2
(J + m2d

2)ϕ̇2 − m2dẋϕ̇ sinϕ. (2.50)

and the potential energy of the system is according to (2.5)

U = kx2

2
. (2.51)

Using (2.50) and (2.51) and also (2.49) equations of motion are due to (2.48)

[m1(τ ) +m2]ẍ + cẋ + kx = dm1(τ )

dt
(u − ẋ) +m2d

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.52)

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.53)

Assuming that the velocity u is zero, the Eqs. (2.52) and (2.53) transform into

[m1(τ ) + m2]ẍ + cẋ + kx = −dm1(τ )

dt
ẋ + m2d

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.54)

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.55)

Let us rewrite (2.52) and (2.53) into

ẍ + ω2(τ )x = −εζ(τ )ẋ − ε

m1(τ ) + m2

dm1(τ )

dτ
ẋ (2.56)

+ εμ(τ )
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,

ϕ̈ = εηẍ sinϕ + εγM (ϕ̇) , (2.57)
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where

ω2(τ ) = k

m1(τ ) + m2
, εζ(τ ) = c

m1(τ ) + m2
, εγ = 1

J + m2d2

εμ(τ ) = m2d

m1(τ ) + m2
, εη = m2d

J + m2d2
. (2.58)

In the Eqs. (2.56) and (2.57) the right-hand side terms are of the order of small
parameter ε. Analyzing the dimensionless parameters (2.58) it is obvious that the
dimensionless frequency ω , damping ζ and excitation γ are functions of slow time.
Namely, the mass variation affects these values.

2.2.2 Model of the System with Constant Mass

Let us consider the system with constant mass when m1 = const . Then the dimen-
sionless values ω, ζ and γ in (2.58) are also constant. Assuming that the mass of the
system is constant and omitting the terms with the second and higher order of the
small parameter ε, relations (2.56) and (2.57) simplify into

ẍ + ω2x = −εζ ẋ + εμϕ̇2 cosϕ, (2.59)

ϕ̈ = εηẍ sinϕ + εγM (ϕ̇) . (2.60)

Solution of (2.59) and (2.60) is

x = a cos(ϕ + ψ), (2.61)

with time derivatives

ẋ = −aω sin(ϕ + ψ). (2.62)

and

ϕ̇ = �, (2.63)

where a is the amplitude of vibration, ψ is the phase angle and � is the time deriv-
ative of the solution ϕ. Substituting (2.61)–(2.63) and after some modification the
Eqs. (2.59) and (2.60) are rewritten into first order differential equations of motion
in new variables a, ψ and �

ȧ = −εζa sin2(ϕ + ψ) − εμ
�2

ω
sin(ϕ + ψ) cosϕ, (2.64)
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ψ̇ = (ω − �) − εμ
�2

aω
cos(ϕ + ψ) cosϕ

− εζ
sin 2(ϕ + ψ)

2
, (2.65)

�̇ = εγM (�) − εηaω2 cos(ϕ + ψ) sinϕ. (2.66)

Equations (2.64)–(2.66) are three coupled strong nonlinear equations.

Averaging Procedure

For simplicity, let us introduce the averaging over the period of the trigonometric
function ϕ for the period 2π. After averaging it is

ȧ = −1

2
εζa − 1

2
εμ

�2

ω
sinψ, (2.67)

ψ̇ = (ω − �) − εμ�2

2aω
cosψ, (2.68)

�̇ = εγM (ϕ̇) + 1

2
εηaω2 sinψ. (2.69)

For the steady state motion, when ȧ = 0, ψ̇ = 0 and �̇ = 0, the Eqs. (2.67)–(2.69)
transform into

εμ�2

2ω
sinψ = −1

2
εζa, (2.70)

εμ�2

2ω
cosψ = (ω − �)a, (2.71)

1

2
εηaω2 sinψ = −εγM (ϕ̇) . (2.72)

Using relations (2.70) and (2.71) the amplitude -frequency relation is obtained

a = εμ�2

ω
√

(εζ)2 + 4(ω − �)2
. (2.73)

Eliminating ψ in the Eqs. (2.70) and (2.72), we have

(εη)(εζ)ω3

2εμ�2
a2 = εγM (ϕ̇) ≡ εγM0

(
1 − �

�0

)
. (2.74)
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2.2.3 Comparison of the Systems with Constant
and Variable Mass

Let us compare the properties of the systems with various values of mass. The char-
acteristic points, which represent the intersection of curves (2.73) and (2.74), will be
analyzed. In Fig. 2.11 the points of intersection of amplitude-frequency and charac-
teristic curve are presented: in Fig. 2.11a the intersection of an amplitude-frequency
curve and various characteristic curves and in Fig. 2.11b for one characteristic curve
and amplitude-frequency curves for various values of mass are plotted.

In Fig. 2.11a the intersection of the amplitude-frequency diagram for m1 = m10

and various values of motor torque are plotted. It can be seen that there may be one or
three points of intersection: two of them are stable and one is unstable. In Fig. 2.11b
only one motor characteristic for m1 = m10 is plotted.

Namely, the influence of the small mass variation on the motor characteristic is
negligible. The intersection of this motor characteristic and of amplitude-frequency
diagrams obtained for various values of mass m1 is plotted in Fig. 2.11b It is seen
that for m1 = m10 there are three intersection points. If the mass is higher than m10,
i.e., m1 = 1.1m10, the amplitude-frequency diagram is moved to left the number of
intersections decreases from three to only one. If the mass is smaller than m10, i.e.,
m1 = 0.9m10, the amplitude-frequency diagram is moved to right in comparison to
the previous one. There exists only one steady state position. It can be concluded that
the value ofmass has an influence on the number and position of characteristic points.
Besides, it can be seen that the maximal amplitude depends on the non-dimensional
damping coefficient, as it is affected with mass value: for the higher value of mass
the maximal amplitude of vibration is smaller than for m10. Otherwise, the smaller
the mass, the higher the value of the maximal amplitude.

In Fig. 2.12a–c the influence of mass increase on the position of the characteristic
point with small amplitude and high frequency is plotted. The amplitude of steady
state position decreases from 1 to 3, while the frequency increases.

Fig. 2.11 a Intersection of the amplitude-frequency diagram and various values of motor torque;
b Intersection of the motor torque and amplitude-frequency diagrams for various values of masses
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Fig. 2.12 The motion of the lower intersection point for increasing mass: a m1 = m10, b m1 =
1.03m10, c m1 = 1.06m10

Fig. 2.13 The motion of the upper intersection point for increasing mass: a m1 = m10, b m1 =
1.03m10, c m1 = 1.06m10

Fig. 2.14 Mass-time
diagrams

The second characteristic point which corresponds to the steady state motion also
moves due to mass increase (see Fig. 2.13a–c). First the intersection point moves
toward higher amplitude and smaller frequency (point 2) and then jumps to the
position 3 with small amplitude and high frequency.

In Fig. 2.14 the mass-time diagrams are plotted: for t ∈ [0, 200] the mass is
constant, while for t > 200 mass is increasing (ε > 0) of decreasing (ε < 0). In
Fig. 2.15 the displacement and frequency time history diagrams for mass increase
are plotted.
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Fig. 2.15 a Frequency-time diagram for upper steady state position, b Displacement-time dia-
gram for upper steady state position, c Frequency-time diagram for lower steady state position,
dDisplacement-time diagram for lower steady state position. Mass is constant (gray line) and mass
is increasing (black mass)

In Fig. 2.15a the frequency-time diagram for upper steady state position is plotted.
For the constant mass after the transient motion the frequency is constant. If the
mass is increasing the frequency increase, too. In Fig. 2.15b the displacement-time
diagram for upper steady state position and constant mass is the gray line. Increasing
the mass the amplitude decreases with mass increase. The same tendency of motion
is evident for the lower steady state position (Fig. 2.15c, d). In Fig. 2.16 the case
when the mass is decreasing is plotted. For the case when the mass is constant the
displacement-time (gray line) and frequency-time diagrams are constant, while for
decreasing mass the frequency-time diagrams decrease (Fig. 2.16a, c). Decrease of
mass causes the displacement-time diagram (black line) for the upper position to
decrease (Fig. 2.16b) while for the lower position to increase (Fig. 2.16d).

Finally, it can be concluded that the mass variation is suitable to be applied as a
method for control of motion in non-ideal systems.
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Fig. 2.16 a Frequency-time diagram for upper steady state position, b Displacement-time dia-
gram for upper steady state position, c Frequency-time diagram for lower steady state position,
d Displacement-time diagram for lower steady state position. Mass is constant (black line) and
mass is decreasing (gray mass)

2.3 Oscillator with Clearance Coupled with a Non-ideal
Source

In the previous sections we discussed the cases when the connection between the
oscillator and the fixed element is continual. Introducing the clearance in the con-
nection between the oscillator and the fixed element, the discontinual elastic force
acts. It has to be mentioned that the elastic property is a linear displacement func-
tion, but due to discontinuity the system may be treated as the nonlinear one. The
mathematical model of the system is given with two coupled nonlinear differential
equations. For the case of small nonlinearity the asymptotic methods are applied for
determining of the transient and steady-state motion and their stability. In the system
the Sommerfeld effect occurs. Beside the regular, the chaotic motion in non-ideal
mechanical systems with clearance exists. It is of interest to obtain conditions for
transformation of the chaotic motion into periodic motion (Zukovic and Cveticanin
2009).
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Fig. 2.17 Model of the
non-ideal mechanical system
with clearance

2.3.1 Model of the System

The non-ideal system with clearance is modeled as an oscillatory system with unbal-
anced motor (Fig. 2.17).

The mechanical model contains the oscillatory mass m1 and the motor with
moment of inertia J, unbalancem2 and eccentricity d. The connection of the oscilla-
tor to the fixed element has the rigidity k, damping c and clearance vk . The excitation
torque of the motor, M (ϕ̇), is the function of the angular velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.75)

where �0 is the steady-state angular velocity. This mathematical model corresponds
to asynchronous AC motor (Dimentberg et al. 1997).

For the generalized coordinates: the displacement of the oscillator x and the
rotation angle of the motor ϕ, the motion of the system is described with a system
of two coupled non-linear differential equations

(m1 + m2) ẍ + cẋ + Fk = m2d
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,(

J + m2d
2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) , (2.76)

where Fk is the elastic force in the spring. The weight of the elements is neglected
as the motion of the system is in horizontal plane.

For the clearance vk , the spring has not an influence on the motion of the system
as the elastic force Fk is zero (Fig. 2.18a).

For the case of spring extension it is assumed that the elastic force is the linear
displacement function

Fk (x) = kx + fk = kx +
⎧⎨
⎩

−k vk
2 if x > vk

2−kx if − vk
2 ≤ x ≤ vk

2
k vk

2 if x < − vk
2

. (2.77)
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Fig. 2.18 Properties of the system: a elastic force distribution, b motor-torque characteristics

where kx is the linear part of the force and fk is different in the interval in front of
and beyond clearance and also in the clearance.

By introducing the dimensionless displacement

y = x

d
, (2.78)

and dimensionless time

τ = ωt, (2.79)

and also (2.77) into (2.76), the dimensionless differential equations of motion of the
oscillatory system are obtained

y′′ + y = −ζ y′ − κ fk + μ
(
ϕ′′ sinϕ + ϕ′2 cosϕ

)
,

ϕ′′ = ηy′′ sinϕ + ξ M (
ϕ′) , (2.80)

where ω =
√

k
m1+m2

is the eigenfrequency of the system, (′) ≡ d/dτ and

ζ = c√
k (m1 + m2)

, κ = 1

dk
, μ = m2

(m1 + m2)
,

η = m2d2(
J + m2d2

) , ξ = 1

ω2
(
J + m2d2

) . (2.81)
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The dimensionless elastic force is

κ fk (y) =
⎧⎨
⎩

− Vk
2 if y > Vk

2−y if − Vk
2 ≤ y ≤ Vk

2
Vk
2 if y < − Vk

2

, (2.82)

where Vk = vk
d is the dimensionless clearance. In dimensionless coordinates the

torque is the function of the dimensionless angular velocity ϕ′

M (
ϕ′) = M0

(
1 − ϕ′

ν0

)
(2.83)

where ν0 = �0
ω
. The parameter M0 has a significant influence on the gradient of the

curve (see Fig. 2.18b): for higher values of parameter the gradient is higher and tends
to vertical position when the power is unlimited and the system is ideal.

2.3.2 Transient Motion of the System

The motion of the system, with small nonlinearity and energy supply close to ideal,
is considered. Due to real properties of the system it can be concluded that the
parameters α, μ, κ, η and ξ in (2.80) are small. The parameters are described as

ζ = εζ1, μ = εμ1, η = εη1, ξ = εξ1, (2.84)

where ε << 1 is a small parameter.
For (2.84) the differential equations of motion (2.80) are transformed into

y′′ + y = −εα1y
′ + εμ1

(
ϕ′′ sinϕ + ϕ′2 cosϕ

) − κ fk,

ϕ′′ = εη1y
′′ sinϕ + εξ1M

(
ϕ′) , (2.85)

where (′) ≡ (d/dτ ) and (′′) ≡ (d2/dτ 2). After some simplification and neglecting
the second order small values in (2.85) the following system of differential equations
of motion is obtained

y′′ + y = −εζ1y
′ + εμ1ϕ

′2 cosϕ − κ fk,

ϕ′′ = −εη1y sinϕ + εξ1M
(
ϕ′) . (2.86)

Substituting (2.82) and (2.83) into (2.86), neglecting the damping term and assuming
that the clearance is small, i.e., y ≷ εVk

2 , it follows
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y′′ + y = εμ1ϕ
′2 cosϕ ± εVk

2
,

ϕ′′ = −εη1y sinϕ + εξ1M0

(
1 − ϕ′

ν0

)
f or y ≷ εVk

2
. (2.87)

Analyzing the first relation in (2.87), it is concluded that for

−εVk

2
≤ y ≤ εVk

2
,

the deflection y is of order O(ε) and that the first term on the right side of the second
equation is a small value of order O(ε2). Neglecting the second order small values,
it follows

y′′ = εμ1ϕ
′2 cosϕ,

ϕ′′ = εξ1M0

(
1 − ϕ′

ν0

)
f or − εVk

2
≤ y ≤ εVk

2
. (2.88)

Introducing the series expansion

y = y0 + εy1 + · · · , ϕ = ϕ0 + εϕ1 + · · · , (2.89)

into (2.87), and separating the terms with the same order of small parameter ε the
following system of differential equations is obtained

ε0 : y′′
0 + y0 = 0, ϕ′′

0 = 0, (2.90)

ε1 : y′′
1 + y1 = μ1

(
ϕ′
0

)2
cosϕ0 ∓ Vk

2
, (2.91)

ϕ′′
1 = −η1y0 sinϕ0 + ξ1M0

(
1 − ϕ′

0

ν0

)
,

...

with initial conditions

ε0 : y0(τ0) = Y0, y′
0(τ0) = Y ′

0, ϕ0(τ0) = �0, ϕ′
0(τ0) = �′

0,

(2.92)

ε1 : y1(τ0) = 0, y′
1(τ0) = 0, ϕ1(τ0) = 0, ϕ′

1(τ0) = 0, (2.93)

...

The solution of (2.90) is

y0 = A0 cos(τ + α0), ϕ0 = B0τ + C0, (2.94)
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and of (2.91)

y1 = A1 cos(τ + α1) ∓ Vk

2
+ μ1B2

0

1 − B2
0

cos(B0τ + C0), (2.95)

ϕ1 = (1 − B0)
2

2
η1A0 sin[(1 − B0)τ + (α0 − C0)]

+ (1 + B0)
2

2
η1A0 sin[(1 + B0)τ

+ (α0 + C0)] + ξ1M0

(
1 − B0

ν0

)
τ 2

2
+ B1τ + C1, (2.96)

where A0, B0, C0 and α0 are integrating constants which have to be determined
according to (2.92), and A1, B1, C1 and α1 according to (2.93). In general, the
solution in the first approximation for the case when the elastic force acts is

y = A0 cos(τ + α0) + εA1 cos(τ + α1)

∓εVk

2
+ εμ1B2

0

1 − B2
0

cos(B0τ + C0), (2.97)

ϕ = (B0 + εB1)τ + (C0 + εC1) + εξ1M0

(
1 − B0

ν0

)
τ 2

2

+ εη1A0

2(1 − B0)2
sin[(1 − B0)τ + (α0 − C0)] (2.98)

+ εη1A0

2(1 + B0)2
sin[(1 + B0)τ + (α0 + C0)],

and

y′ = −A0 sin(τ + α0) −
[
εA1 sin(τ + α0) + εμ1B3

0

1 − B2
0

sin(B0τ + C0)

]
, (2.99)

ϕ′ = B0 + εB1 + εξ1M0

(
1 − B0

ν0

)
τ + εη1A0

2(1 − B0)
cos[(1 − B0)τ + (α0 − C0)]

+ εη1A0

2(1 + B0)
cos[(1 + B0)τ + (α0 + C0)]. (2.100)

For the deflection y = (∓εVk/2) using (2.97) the value of time τV is calculated.
Substituting this value of time τV into (2.98)–(2.100) the position and velocities
ϕ(τv), y′(τv) and ϕ′(τv) are determined. The values

y(τv) = ∓εVk/2, y′(τv), ϕ(τv), ϕ′(τv), (2.101)
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are the initial conditions for themotion of the systemwithout elastic force. According
to (2.88)

ϕ = K0 + ν0τ + ν2
0K1

εξ1M0
exp

(
−εξ1M0τ

ν0

)
(2.102)

≈
(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ ,

ϕ′ = ν0 − ν0K1 exp

(
−εξ1M0τ

ν0

)
≈ ν0(1 − K1) + K1εξ1M0τ , (2.103)

y = −εμ1 cos

[(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ

]
+ K2τ + K3, (2.104)

y′ = K2 + εμ1ν0(1 − K1) sin

[(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ

]
, (2.105)

where the constants K0, K1, K2 and K3 depend on the initial conditions (2.101). The
elastic force acts when y = (±εVk/2) and the motion functions are (2.97)–(2.100)
with initial conditions which correspond to τ and (2.103)–(2.105) at that displace-
ment position.

In Fig. 2.19 the y − τ , y′ − τ , ϕ − τ and ϕ′ − τ time history diagrams for ζ1 = 0,
μ1 = 1, η1 = 1, ξ1 = 0.5, ν0 = 1.1, ε = 0.1. and initial conditions y(0) = 0.5,

Fig. 2.19 Time-history diagrams: a y − τ , b y′ − τ , c ϕ − τ , d � − τ , for Vk = 0.1, μ1 = 1,
η1 = 1, ξ1 = 0.5, ν0 = 1.1, ε = 0.1 and initial conditions y (0) = 0.5, y′ (0) = 0, ϕ (0) = 0,
ϕ′ (0) = 1



2.3 Oscillator with Clearance Coupled with a Non-ideal Source 37

y′(0) = 0, ϕ(0) = 0, ϕ′(0) = 1 are plotted. Analytical solutions obtained by solving
Eqs. (2.87) and (2.88) are shown. Due to small parameter values and a short time
period the differences between the solutions are negligible.

2.3.3 Steady-State Motion of the System

The system of non-linear equations (2.86) is approximately solved by applying of
the well known Krylov–Bogolyubov method of slow variable amplitude and phase
(Bogolyubov and Mitropolskij 1974). For ε = 0 the solution is

y = a cos(ϕ + ψ), ϕ′ = � = const., (2.106)

where a, ϕ and ψ are the amplitude, frequency and phase of vibration and � is the
constant angular velocity. Based on (2.106) the approximate solution is

y (τ ) = a(τ ) cos (ϕ(τ ) + ψ(τ )) , ϕ′ = �(τ ), (2.107)

where the amplitude a = a (τ ), phase ψ = ψ (τ ) and excitation frequency ϕ′(τ ) are
functions of slow time τ . The first time derivative of (2.107) is

y′ (τ ) = −a sin (ϕ + ψ, ) (2.108)

when

ψ′ = (1 − �) + a′

a

cos (ϕ + ψ)

sin (ϕ + ψ)
. (2.109)

The time derivative of (2.108) is

y′′ = −a′ sin (ϕ + ψ) − a� cos (ϕ + ψ) − aψ′ cos (ϕ + ψ) . (2.110)

Substituting (2.107)–(2.110) into (2.86) the differential equations with new vari-
ables A, ψ and � are obtained

a′ = −
(
εζ1a sin (ϕ + ψ) + εμ1�

2 cosϕ
)
sin (ϕ + ψ) + ε κ1 fk sin (ϕ + ψ) ≡ gA,

ψ′ = (� − 1) − cos (ϕ + ψ)

a

(
εζ1a sin (ϕ + ψ) + εμ1�

2 cosϕ
)

+ cos (ϕ + ψ)

a
εκ1 fk

≡ gψ,

�′ = −εη1a cos (ϕ + ψ) sinϕ + εξ1 M (�) ≡ g�. (2.111)
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To solve the systemof coupled equations (2.111) is not an easy task.Due to the fact
that the functions gA, gψ and g� are periodical, the averaging procedure is introduced.
The averaged differential equations (2.111) are

a′ = 1

2π

2π∫
0

gAdϕ = −1

2

(
εζ1a + εμ1�

2 sinψ
) + GA,

ψ′ = 1

2π

2π∫
0

gψdϕ = 1 − � − εμ1

2a
�2 cosψ + Gψ, (2.112)

�′ = 1

2π

2π∫
0

g�dϕ = 1

2
εη1a sinψ + εξ1M (�) .

For a > Vk/2

GA = 1

2π

2π∫
0

(ε (sin (ϕ + ψ)) (κ1 fk)) dϕ = 0,

Gψ = 1

2π

2π∫
0

(
ε
1

a
(cos (ϕ + ψ)) (κ1 fk)

)
dϕ (2.113)

= 1

π

⎛
⎝−Vk

2a

√
1 −

(
Vk

2a

)2

+ arccos
Vk

2a

⎞
⎠ +

(
−1

2

)
,

and for a ≤ Vk/2 when the elastic force is zero

GA = 0, Gψ = −1

2
. (2.114)

For the steady-state motion, when a = const., ψ = const. and � = const., the
differential equations (2.112) simplify to

εζ1a + εμ1�
2 sinψ = 0, (2.115)(

1 − � − εμ1

2a
�2 cosψ

)
+ Gψ = 0, (2.116)

1

2
εη1a sinψ + εξ1M (�) = 0. (2.117)
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From (2.115) and (2.116) the A - � relation is obtained

A = εμ1�
2√

ε2α2
1 + 4

(
1 − � + Gψ

)2 . (2.118)

For a > Vk/2 the amplitude-frequency function depends on the clearance, i.e.,

a = εμ1�
2√

ε2ζ21 +
(
1 − 2� − Vk

aπ

√
1 − ( Vk

2a

)2 + 2
π
arccos Vk

2a

)2
. (2.119)

For a = Vk/2, the amplitude-frequency function is

a = εμ1�
2√

(1 − 2�)2 + ε2ζ21

. (2.120)

The relation is independent on the value of the clearance.
The amplitude has the extreme value for

� = 1 − p

4

⎛
⎝3 ±

√
1 − 8ε2ζ21

(1 − p)2

⎞
⎠ , (2.121)

where

p = 2

π
arccos

Vk

2a
− Vk

aπ

√
1 −

(
Vk

2a

)2

. (2.122)

If a = Vk/2 and

� = 1

4
(3 ±

√
1 − 8ε2ζ21 ), (2.123)

the maximal amplitude is

a = εμ1

(5 − 3
√
1 − 8ε2ζ21 − 4ε2ζ21 )

4

√
2 − 2

√
1 − 8ε2ζ21 − 4ε2ζ21

≈ εμ1
1 + 4ε2ζ21
4
√
2ε2ζ21

. (2.124)

The maximal amplitude depends on the damping properties of the system and mass
distribution in the system. For extremely small ζ1, when the damping is negligible,
the maximal value of the amplitude a tends to infinity for � = 1/2.
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Fig. 2.20 Amplitude-
frequency curves for various
values of clearance

Fig. 2.21 Frequency-
response curve and
characteristics of the motor:
stable (——) and unstable
(- - -) solutions

In Fig. 2.20 the amplitude-frequency diagrams for various values of clearance Vk

are plotted. The parameters of the system are εζ1 = 0.02, εμ1 = 0.1, εη1 = 0.1,
εξ1 = 0.05, ν0 = 1.1 and ε = 0.1.

Using the characteristics of the motor (2.83) and the relations (2.115) and (2.117),
we obtain the following relation

M0

(
1 − �

ν0

)
�2 = 1

2

ζ1η1

μ1ξ1
a2. (2.125)

Solving the Eqs. (2.118) and (2.125), we obtain the approximate values of the
steady-state amplitude a and angular velocity of motor �.

In Fig. 2.21, for parameter values ζ1 = 0.2, μ1 = 1, η1 = 1, ξ1 = 0.5, ν0 = 1.1,
ε = 0.1 and Vk = 0.1, the frequency-response curve is plotted. The intersection
between the motor characteristic (A, B, C) and the curve defines the number of the
steady-state motions. For the two boundary curves A and C the number of steady-
state solutions is two. Inside the boundary curves A and C there are three steady-
state solutions (for example for the curve B). Outside the boundary curves only one
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steady-state solution exists: for small values of M0 (below the curve A), and for very
high values of M0 (above curve C).

Which of steady-state motion will be realized depends on the stability and initial
conditions. For stability analysis the perturbed amplitude, phase and frequency, a =
aS +a1,ψ = ψS +ψ1 and� = �S +�1, are considered, where aS ,ψS and�s are the
steady-state values and a1, ψ1 and �1 the perturbations. The linearized differential
equations with perturbed values are

a′
1 = −1

2
εζ1a1 − 1

2
εμ1�

2
S cos(ψS)ψ1 − εμ1�S sin(ψS)�1,

ψ′
1 =

(
1

2
εμ1�

2
S

cos(ψS)

a2S
+

(
∂Gψ

∂a

)
S

)
a1 + 1

2

ε

aS
μ1�

2
S sin(ψS)ψ1

+
(
−1 − εμ1

a
�S cos(ψS)

)
�1,

�′
1 = a1

2
εη1 sin(ψS) + ψ1

2
εη1aS cos(ψS) + εξ1�1

(
∂M (�)

∂�

)
S

, (2.126)

where ∂Gψ

∂a = 1
π
Vk
a2

√
1 − ( Vk

2a

)2
and ∂M(�)

∂�
= −M0

ν0
, and (·)S is the notation for steady-

state condition. Using the Routh–Hurwitz procedure the stability is investigated. In
Fig. 2.21, the stability regions in frequency-response diagram are plotted. The dot
line is used for the unstable solutions.

To prove the correctness of the previous mentioned analytical procedure the
approximate analytical solutions are compared with ‘exact’ numerical solutions.
The system of two differential equations (2.80) is transformed into four first order
differential equations

y′
1 = y2,

y′
2 = 1(

1 − μη sin2 y3
) (−y1 − ζ y2 + μ

(
ξM (y4) sin y3 + y24 cos y3

) − κ fk
)
,

y′
3 = y4, (2.127)

y′
4 = η sin y3

(−y1 − ζ y2 + μ
(
ξM sin y3 + y24 cos y3

) − κ fk
)

(
1 − μη sin2 y3

) + ξ M,

where y1 = y, y2 = y′, y3 = ϕ, y4 = ϕ′ and M = M (y4) . The system of
differential equations (2.127) is numerically solved by applying the Runge–Kutta
method. The analytical and numerical solutions are plotted in Fig. 2.22.

It can be seen that the system cannot be made to respond at a frequency between
�T and �H (grey points) and also �R and �P (black points) by increasing and
decreasing of the control parameter M0, respectively. This phenomena is called the
Sommerfeld effect.
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Fig. 2.22 Comparison of
numerical (o o o) and
analytical (______)
frequency-response curves
for increasing and
decreasing �

2.3.4 Chaotic Motion

Changing the control parameter M0 the influence of motor properties on the system
motion are numerically analyzed. The constant parameters of the system are: ζ =
0.04, μ = .9375, η = 0.1, ξ = 0.5, ν0 = 0.2 and Vk = 0.01.

For M0 = 0.35 the motion of the system is periodical with period equal to exci-
tation period (Fig. 2.23a). For control parameter M0 = 0.43 the motion is periodic
with period equal to double excitation period (Fig. 2.23b). Increasing the control
parameter M0 causes periodic motions with period doubling, as shown in bifurcation
diagram (Fig. 2.24).

The multiplied bifurcations give the chaotic motion. It is concluded that for high
values of control parameter (M0 > 75), when the system tends to ideal one, the
motion is chaotic. In Fig. 2.25 the phase plane for M0 = 100 is plotted.

Fig. 2.23 Periodic motion: a period 1, b period 2
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Fig. 2.24 Bifurcation
diagram for control
parameter M0

Fig. 2.25 Phase portrait for
M0 = 100: before chaos
control (grey line) and after
chaos control (black line)

To prove the existence of the chaotic motion the Lyapunov exponent is calculated.
Using the procedures suggested by Wolf (1984) and Wolf et al. (1985), and also by
Sandri (1996) the maximal Lyapunov exponent for chaotic motion is λ = 0.0284
(see Fig. 2.26).

The parameter k represents the number of periods of vibrations.
For the casewhen the control parameter is the clearanceVk the bifurcation diagram

is plotted (see Fig. 2.27).
The parameters of the system are: α = 0.04, μ = .9375, η = 0.1, ξ = 0.5,

ν0 = 0.2 and M0 = 10. For the small values of clearance (Vk � 0.005) and for high
values of clearance (Vk � 0.2) the period one motion occurs. In some regions of the
interval 0.005 < Vk < 0.2 even chaotic motion appears.
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Fig. 2.26 Distribution of
Lyapunov exponent

Fig. 2.27 Bifurcation
diagram for control
parameter Vk

2.3.5 Chaos Control

Based on the known methods of chaos control (Ott et al. 1990; Pyragas 1992, 1996;
Alvarez-Ramirez et al. 2003; Tereshko et al. 2004; Balthazar and Brasil 2004), the
following control function is introduced

g
(
y′) = −h tanh

(
χ y′) , (2.128)

where y′ is dimensionless velocity of oscillator, h is the amplitude and χ the gradient
of the control function.

Solving the systemof coupled differential equations ofmotion (2.80)with addition
of the control function (2.128)

y′′ + y = −αy′ − κ fk + μ
(
ϕ′′ sinϕ + (

ϕ′)2 cosϕ
)

− h tanh
(
χ y′) ,

ϕ′′ = ηy′′ sinϕ + ξ M (
ϕ′) , (2.129)

the properties of the controlled system are obtained. The black line in Fig. 2.25 shows
the motion of the system after chaos control. The chaotic attractor is transformed
into periodic attractor for χ = 0.15 and h = 0.02.
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Fig. 2.28 Bifurcation
diagram after chaos control

It is worth to say that the applied control function is not an unique one, i.e., the
chaos control is possible for various parameters of control function. In Fig. 2.28,
the bifurcation diagram for the constant value of parameter value χ = 0.15 and
variable value of parameter h is plotted. It is obvious that the control of chaos and its
transformation to periodic solution is possible for h > 0.014, and to periodic motion
with period 1 for h > 0.019.

2.4 Conclusion

The most important results of the chapter can be expressed as:

1. In the non-ideal mechanical system which contains a non-ideal source and a
linear oscillator or an oscillator with clearance the Sommerfeld effect is evident.
In amplitude-frequency diagram the jump phenomena occurs. For certain values of
frequencies there are no steady-state positions.

2. In spite of the fact that the elastic force is linear, the clearance causes the bending
of the amplitude-frequency curve: the higher the value of the clearance, the bending
is more significant.

3. Due to clearance the motion is continual but divided into intervals with and
without elastic force. It causes the disturbance of the periodic motion.

4. For certain system parameters chaotic motion occur. The type of the steady-
state motion depends not only on the torque but also on the value of the clearance in
the system.

5. The chaos control based on the function which depends on the velocity of oscil-
lator vibration is very convenient for non-ideal mechanical systems with clearance.
The control is directed onto the oscillator and not on the motor as it is usually done.

6. Analog model is very appropriate to give an explanation of the dynamics of the
resonance capture effect and can help students and young researchers to understand
this phenomenon.
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