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Abstract. This paper proposes a path planning approach for visual ser-
voing with elliptical projections. 3D primitives like circles and spheres
may project onto image plane of a perspective camera as ellipsoids. From
these elliptical projections, moment-based features are constructed. Con-
straints required by the usage of moment-based features will include
camera field of view (FOV) limits and occlusion avoidance of all the
observed 3D primitives, a straight or an obstacle dodging path, global
convergence and etc. We propose to parametrize these constraints into
polynomial inequalities in a common path abscise. They share common
variables in polynomial coefficients and these variables will be reassigned
via a multidimensional nonlinear minimization process until a satisfac-
tory path is obtained. Such a planned path is interpolated into several
segments, at the ends of which elliptical projections are tracked by an
image-based visual servoing controller. Two synthetic scenarios demon-
strate excellent performance of the path-planning algorithm and tracking
scheme.
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1 Introduction

Visual servoing is a useful, image-based technique for guiding a robot end-effector
to a desired location. Established methods include position-based visual servoing
(PBVS) [24] and image-based visual servoing (IBVS) [13]. Both these methods
give, in practice, satisfactory results in the case of a motionless target, a fixed
desired pose, and a six degrees of freedom (6-DoF) robot with an eye-in-hand
camera system [4]. They differ in the error inputs of their control schemes. Input
errors for PBVS are comprised of 3D parameters estimated from image mea-
surements. Theoretically, this allows the camera to follow an optimal trajectory
in Cartesian space but generally not in image space, since small errors in image
measurements can significantly reduce the system accuracy [4]. While in IBVS,
feature errors are directly expressed in the image space, allowing IBVS to be
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remarkably robust to errors in calibration and image noise; however, when the
servoed displacement is large, the camera may reach a local minimum or may
cross an interaction matrix singularity [4], particularly in the case of large rota-
tions.

Other than the singularity problem, there are many other constraints and lim-
itations aroused in IBVS approaches attract attention of a bunch of researchers.
A significant limitation is the transient loss of features caused either by occlu-
sions or by feature departure from the camera field of view (FOV) [10], since
vision feedback plays an essential role in IBVS approaches. Other limitations
addressed included joint limits and end-effector collision avoidance. To over-
come these constraints as many as possible, a great amount of work have been
devoted to design VS controllers, or use different sensors, various kinds of fea-
tures, or explore high-level control strategies such as path-planning techniques.
Typically, navigation functions were presented in [10] in order to overcome local
convergence in Cartesian space and violation of camera FOV limits. Potential
field methods, originally developed for an on-line collision avoidance [14] were
adapted in [16] for robust image-based control while taking into account FOV
constraints and joint limits. Numerical optimization techniques were used for
offline path planning in [6,7] to address joint limits, FOV limits and collision
avoidance. Other useful path-planning methods are presented in a review [15].

The most usual feature errors used in these early work are expressed as
a set of pixel coordinates. Other useful features that have been explored in VS
community include image moments [2] and luminance [9]. Considering the target
consists of generalized objects that can be treated as a combination of some
geometrical primitives (such as segments, circles, spheres and cylinders), image
moments of these primitives are more intuitive features than pixel coordinates
of some representational points, and they have been explored as general and
useful features in visual servoing [3]. In the work of [23], for example, a set of
three-dimensional (3D) features are computed from image moments of a sphere
and used in a classical control law that is proved to perform satisfactorily in a
VS task. These 3D features are structured through spherical projection of the
sphere, and therefore they are applicable to omnidirectional vision systems. High-
level control strategies like path-planning techniques, however, have not yet been
considered to take into account constraints for VS with moment-based feature
errors. This motivates our preliminary work in [19,20] and then formulates the
main focus of this chapter.

The approach of path-planning is here explored for solving constraints prob-
lem that arise in moment-based VS, particularly with feature errors constructed
and extracted from some elliptical projections. Circles and spheres may project
on image plane of a perspective camera as ellipsoids. We first propose some new
moment-based feature errors and adopt them in the estimation of camera dis-
placement via a virtual VS (VVS) method, where the target model and position
are approximated as a prior knowledge. The estimation results serve as two ends
of a path in workspace (Cartesian space). No matter which path is taken between
these two ends, the whole target (consists of usually more than one primitive)
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has to be all the way visible. This requires the maintenance of camera FOV and
also occlusion avoidance of all the observed primitives. Besides, limitations in
workspace such as target depth, obstacle avoidance, or simply a shortest straight
path are also sometimes compulsory considerations. Constraints required by the
usage of moment-based features are much more demanding than that of pixel
coordinates of some representational points. We propose to transform these con-
straints into a group of polynomial inequalities in a common path parameter,
with a few coefficients of them adjustable to achieve a satisfactory path. Such a
planned path is then interpolated to form a set of segments, elliptical projections
at the ends of which are then one by one followed by an IBVS controller.

This chapter is organized as follows. Section 2 introduces some background
and formulates the problem. Section 3 focuses on pose estimation from moment-
based features. Section4 proposes path-planning strategies concerning to these
moment-based features. Section 5 shows some simulation results, respectively,
with two circles and three spheres. Section 6 concludes with some final remarks.

2 Background

Let R denote the real number set, I,, the n x n identity matrix, e, the n-th
column of n X n identity matrix, 0,, the n x 1 null vector, u * v the convolution
of vectors u and v, [v]x the skew-symmetric matrix of v € R3.

2.1 Camera Frame

Given two camera frames F° = {R,t} and F* = {I3,03}, the pose transforma-
tion from F° to F* is expressed as {R", —RTt}. Suppose there is a 3D point
with its coordinates to be H = [2,,¥,, 2,] | in frame F*, then its coordinates in
frame F° is computed as R (H — t). Image projection of this point is simply
obtained by a division:

xY]= |22, 2] 1)

More precisely in the case of a camera, we still need to multiply an camera
intrinsic parameters matrix K € R**3 in a way of K[X,Y,1]" with

f10u
K=110fov]. (2)
001
In the above matrix, fi; and fs are approximated values of the camera focal
length, u and v are half values of the size of a projected image, respectively along
the horizontal and vertical direction. We use ¢, = 2u and ¢y = 2v to symbolize
image boundaries, e.g. an image of size (, x ¢, = 800 x 600 pixels. Note that
in the following development, K is usually assumed to be an identity matrix Is
unless otherwise specified.
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2.2 Elliptical Projections

Circle. A circle can be seen as an intersection of a sphere and a plane:

{w—x»?+w—ya%uz—%f=r%

05 — 20) + By — o) + (2 — 20) = 0, ®)

where 0 = [2,, Yo, zo]—r is the sphere center, r the radius, [«, 3, ’y]T normal vector
of the plane with a? + 32 + v = 1. Image projection of this circle, see Fig. 1, is

in the form of an ellipse:

(X-X+EY-Y)?2 (Y-Y-EX-X))? .

A2(1+ E?) M B%(1+ E?) - @

where (X,Y) is the centroid of the ellipse, A and B are half values of the major
and minor diameters, and ¢ describes the angle between the X-axis and the
major axis of the ellipse and they are computed as

X = (K1 K3 — Ky3Ky) /(K2 — KoK,),

Y = (KoKy — Ky K3) /(K3 — KoK)),

42— 2(KoX? + 2K, XY 4+ K1 Y? — K5)
Ko+ K + \/(Kl — K0)2 +4K22

o 2K X 4 25XY + KV - K) (5)
Ko+ K1 — /(K1 — Ko)? + 4K3

B = (K, - Ko+ /(K1 — Ko)? +4K3) /2K,

© = arctan(FE).
K;,1=0,...,5 in the above function is in the sense that

KoX? 4+ K1Y? 4+ 2K, XY + 2K3X 4+ 2K,Y + K5 = 0. (6)

max

¥

min

X X X X

min “ max

Fig. 1. Elliptical projection of a circle or a sphere [20)]
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Their values are related to the model parameters in (3):

Ko =d®>A +1 - 2ax,

K1 =b2A +1 — 2byo, a=a/é,b=p3/6c=~/d,

Ky = abA — bxy — ayo, and A= 33% + y% + zg — 72, M)
K3 = acA — cxg — az, 6 = xoa + yo 8 + 207,

Ky = be\ — cyg — bz, /2 =aX +bY +c.

Ky =c2A+1—2¢z.

Sphere. When we consider a sphere
(x - $0)2 + (y - yo)2 + (Z - Zo)2 =7’ (8)

with the same center coordinates and the same radius as in (3), it also project
onto image plane as an ellipse and shares in the image plane expressions (4)—(6).
The difference lies in the formulation of K;,i = 0,...,5 from model parameters.
For a sphere. they are computed [1] as:

2

0

Ko=1*—y?—2

_ .2 2 2
Ki=r"—z, -z,

Ky = 20yo, (9)
K3 = 2,20,
Ky= YoZo,

_ 2.2 2
Ky =r"—ual—y..

Bring (9) into (5), we induce the computation of elliptical parameters in (4)
directly from sphere center and its radius [19]:

Ve xOZO
X= 22 — 2’
> YoZo
Y= 22 _ g2
y (10)
A= V@ T R+ AP,
B =i/,
© = arccos(Yo/To).

2.3 Image Moments

Features explored in this chapter are composed of image moments of some solid
objects. We assume I(X,Y") are pixel intensities of their projected figures in a
grey-scale image, raw image moments m;; and central image moments u;; of the
pertinent primitive are defined as:

mi; = xSy X'YII(X,Y),
pij = Xx Sy (X — X)W(Y =YY I(X,Y),



Visual Servoing Path-Planning with Elliptical Projections 35

Table 1. Possible features of geometrical primitives [1]

Primitives 3D Primitives 2D Representation possibles
Circle Ellipse (X'7 Y, poo, pa1, 1402)
Sphere Ellipse (X,V, (u20 + po2)/2)

where mgg = TAB calculates the area of the figure, X = mjo/mgo and Y =
mo1/moo are the components of the centroid. The relation between ellipsoid
parameters in (4) and a set of second order central moments are given:

p20 = (A% + B*E?) /(1 + E?),
1 = E(A* = B?) /(1 + E?), (11)
poz = (A*E? + B?)/(1 + E?).

Possible moment-based representations of geometrical primitives [1], mainly
circles and spheres in this chapter, are displayed in Table 1.

Problem. The problem consists of planning trajectories of ellipsoids in order to
steer the camera to a location that gives a desired view of some 3D primitives,
mainly circles or spheres. How to construct moment-based features to enhance
their robustness to errors in image noise? How to maintain target visibility dur-
ing a VS process, including camera FOV and occlusion avoidance of multiple 3D
primitives? How to simultaneously consider constraints in workspace and limita-
tions in image space? How to follow well the planned elliptical trajectories and
finally convergence to the desired camera view?

3 Pose Estimation from Image Moments

A satisfactory path concerning many constraints and limitations will be planned
in advance of a VS application. We first estimate camera displacement from two
perspective target views to form two ends of the path, which will actually serve
as a prerequisite and an additional limitation in the proposed path-planning
algorithm. There are many existing approaches for pose estimation from two
perspective views [8,12,17,25]. The geometric features considered for pose esti-
mation are often points [5], segments [11], contours, conics [18] or image moments
[21]. These approaches have the advantage of estimation accuracy; however, they
may be subject to local minima and, worse, divergence [22], especially for an eye-
in-hand VS application with large camera displacement. Therefore we usually
observe at least two primitives to reduce the occurrence of local minima. In order
to obtain a large convergence domain and high convergence speed for pose esti-
mation with moment-based features, we estimate the camera displacement [22]
via a virtual VS (VVS) based method, similar to moving a virtual camera from
one pose to the other with instant camera velocities computed as

T = -\ L*(s(t) —s%), (12)
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where T = [vy, Uy, Uy, Wy, Wy, w,] " describes camera velocities in translation and
rotation at time ¢, which decrease along with the falling trends of |s(t) — s*|. A
is a positive gain that controls the iteration progress. s(¢) holds current feature
values at time ¢ and s* the desired feature values. LT is the pseudo-inverse of
the estimated interaction matrix or image jacobian corresponding to the selected
features. This VVS method is equivalent to nonlinear methods that consist in
minimizing a cost function using iterative algorithms.

When elliptical projections is formed from a circle, we proposed to use the
following features instead of the ones in Table 1:

Scircle = [X; Y, Xma?c; Ymara Xmina Ymin] ! ) (13)
where _
Xmae = X + vV 420,
KXmin = X - ’
vV H20 (14)

}/maz = Y + vV H02,

Ymin =Y - V 102
are extreme values of the projected ellipse. The extraction of these features will
obviously import less noise than the computation of g, p11 and pge from (11),
where noise brought by feature extraction of A and B are squared. Interaction
matrices regarding the centroid X, Y are given below:

L)—(:[—l/z 0 )_(/z—l—augo—i—buu XY‘i‘Mll —1—X2—M20 Y/],
Ly:[o —]./Z Y/z—l—a,uu—i—b,uog 1+Y2—/L02 —XY—/Jll —X]

(15)
Interaction matrices of pog, p11 and g2 are respectively
L/LQO = [72(@#20 +ﬁbu11) B 0 2(1/274* GJX),[LQO + QbXp,ll
2(Y 20 + X p11) — 490X 2/111} ,
Lun = [70’/141 - E),UOQ T ap20 — b,Uill (IYCUJQO + (3/2’ — C)Mn + bX‘uOQ
3Y p1 + Xpo2 — Y0 — 3Xpn [102 — 0]
LH02 = [O - 2(&#11 + buo_g) 2£1/Z + bY)/JOQ + 2(1?[1411
4Y o2 —2(Yp11 + Xpioz) —2p11] -
(16)

Therefore interaction matrices corresponding to features in (14) are devel-
oped as the following summation:

1
Ly,  —Lg+——L,
Xmaz X + 2\//720 H20
1
Lx,,, =Lx — | D
X 2\/1720 H20 (17)
1
Lx,. =Ly +——L
Xmin Y+ 2\/!?0 Ho2»
1
Lx,., =Ly —
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Interaction matrix regarding feature set in (13) is a stack of matrices in (15)
and (17). The computation of a, b, c and 1/z in (15)—(17) for a circle, please refer
to (7). Afterwards, we refer to (5) and (11) for the estimation of po, p11 and
o2 in the approximation of these matrices.

When spheres are taken as a target, we consider at least three features for a
sphere. Here we use 1/mqq instead of (ug2 + f120)/2 in the feature set in order
to reduce the influence of image noise:

S T
Ssphere = [X, Y, 1/WLOO] (18)

Interaction matrix for X and Y is the same as (15), while matrix for 1/mgg

is deduced as follows:

Ll/mog = [a/moo b/moo (C— 3/2)/’/7100 —3)7/m00 3X/m00 0] . (19)

Interaction matrix for a sphere is then a concatenation of matrices (15) and
(19). It is noted that sphere is a very special object that projects in the image
plane as an ellipse whose centroid may not correspond to the center of the sphere
but a point on the spherical surface with its depth z as follows:

1 2/
Z:fzzo—r ZO)
aX +bY +¢
2 2)

a=xof(xy+yy+z5—7
b=yo/(z) +ys + 25 —17),

c=2,/(x2 +y2 + 22 —1?).

These computation of z,a,b and ¢ for a sphere will be brought into the
approximation of matrices (15) and (19). For further estimation of image
moments in them, please refer to (10) and expressions in Sect. 2.3. Ultimately,
approximation of the interaction matrix will be brought in (12) to generate
instant camera velocities. Given a time interval, camera will move iteration by
iteration until feature error |s(t) —s*| is smaller than a threshold, usually 1 pixel.
Larger the positive gain, less iterations necessary. The estimation results of cam-
era displacement will serve as pose boundaries for subsequent optimization of a
polynomial parametrized camera path.

4 Polynomial Minimization

4.1 Path Parametrization and Polynomial Model

To describe the camera path with boundaries on both sides, we use a path
abscise w € [0, 1] with its value 0 implying one end of the path F°, and value 1
meaning the other end F*. Between the above two camera frames, camera path
{R(w), t(w)} is going to be planned according to a lot of servo requirements.
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The first requirement is pose boundaries given below:

F°: {R(0),t(0)} = {I3,03},
o {R(1),t(1)} = {R, t},

where R and t denote pose transformation from F° to F*, which can be derived
from the estimation method in Sect.3. When path abscise w changes from 0
to 1, camera rotation R(w) alters from I5 to R while camera translation t(w)
changes from 03 to t. In order to clearly describe and design the altering process
of R(w), we use quaternion representation of R(w) to describe rotational path,
that is

(20)

o) (21)

2
with §(w) € (0,7) and a(w) € R? are, respectively, rotation angle and axis such
that R(w) = e/(W)a(w)lx  Afterwards, we parametrize each coordinate in q(w)
and t(w) as a polynomial in w:

COS

(22)

Polynomial parametrization of quaternions share the same degree of o, and
translational coordinates 7. Matrices U € R**(@+1) and V e R3*(+1) con-
tain their polynomial coefficients. If a straight camera path in workspace is
demanded, degree 7 could be set as 1 leaving only trajectories of quaternion to
be adjusted. In general, we take both of quaternion and translational coordinates
to be quadratic polynomials with ¢ = 2 and 7 = 2. In the following develop-
ment, we assume that the whole camera path is modeled by seven quadratic
polynomials unless otherwise indicated.

Both U and V for quadratic polynomials have totally three columns. Their
last columns are determined by boundaries in (20). Specifically, condition R(0) =
I3 gives q(0) = e4 that constitutes the last column in U, and condition t(0) =
03 generates the last column in V. Let b € R* and d € R? denote the mid
column, respectively, in U and V. Then their first columns are determined by the
other two columns considering conditions {R(1),t(1)} = {R, t} with q(1) = q.
Consequently, U and V for quadratic polynomials are rewritten as:

U:[q—b—e4,b,e4},

V =[t—d,d,o0s. 23)

The above limitation to the entries in U and V matrices, leaving only their
mid columns b and d to be variable, guarantees boundaries in (20). Zero assign-
ment of variables in b and d implies a straight path in workspace and also four
straight quaternion trajectories. Starting from this initial assignment, variables
in b and d will be reassigned and adjusted according to many other requirements
compulsory in a visual servoing application.
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For the convenience of subsequent development, we use u,; € R3, i =
1,...,4 to denote the i-th row of matrix U and V]-T € R'3, 5 =1,2,3 the j-th
row of matrix V, then we have

U= [ul,UQ,U3,U4]T, (24)
V - [VlaVQvV?)}—r

Each row of U constitutes polynomial coefficients of the pertinent coordinate
in gq(w) in the form of

g (w) — g3 (w) — 3 (w) + g (w) 2 (q1(w)gz2(w) — g3(w)qa(w))
R(w) = 2(q (w)gz(w) + g3(w)qa(w)) —gi(w) + g5 (w) — g3 (w) + g3 (w)
2(q (w)g3(w) *qz( )q (w))  2(g2(w)gs(w) + q1(w)ga(w))

It can be seen that every entry in rotation matrix R(w) is also a polynomial
in w. Their degrees are doubled from (22), that is 20. Let r;; € R® (considering
o = 2) carry polynomial coefficients of the entry in the i-th row and the j-th
column of the rotation matrix. They are related to the rows of matrix U in the
following way [20]:

rvi=u; >|<L11—112>)<L12—1,13>|<113—§—L14>|<1147
rio = 2(u; * ug — Uz * uy),
riz3 = 2(u; * us + ug * uy),
ro; = 2(ug * Uy + ug * uy),
oo = —Ujp * U] + U2 * Up — U3 * U3 + Uy * Uy, (25)
rog = 2(ug * uz — uy * uy),
r3; = 2(u; * uz — ug * uy),
rso = 2(ug * uz + uy * uy),
I's3 = —Uj * U] — Ug * Ug + U3 * U3 + U4 * Ug.
As a result, rotation matrix can be rewritten as:
rier5 PI2W5 I'1r3W5
R(w) = rleW5 r;2w5 r2T3W5 ) (26)

T T T
I31 W5 3o W5 Ii33W5

where ws = [w?, ..., w,1]".
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4.2 Constraints and Limitations

For all possible constraints and limitation, priority will be given to the depth
of the target, which is required to be positive all the way along the camera
path. Second, collision in workspace will be prevented by adjusting mainly the
trajectories of camera translation. Third, camera FOV limit is going to be met
by restraining elliptical projections embraced within the image frame. When the
target consists of two or more primitives, occlusion among them will also be
avoided to maintain their visibility in the course of a VS application.

Target Depth. The target needs to be located in front of the camera with a
certain distance. When the target consists of circles or spheres, it is necessary
to have the distance larger than their body size (mainly the radius). At least,
depth of the target center z, is meant to be greater than the radius, that is the
value of

g1 =2o—T (27)

needs to be positive during a servo process.
Depth of the target center z, with respect to a camera is determined by cam-
era pose {R(w), t(w)}, taken as the third item in R(w) (o — t(w)). In Sect. 2.2,
camera frame is assumed to be {I3, 03}, coordinates o could be a circle center
or a sphere center. Building on polynomial parametrization of {q(w),t(w)}, we
wish to express ¢g; into polynomial with some of its coefficients adjustable. Take
a circle for example, it is obvious that its center coordinates and normal vector
in the w-based camera frame are polynomials in the path abscise. To prove it,
we bring (23) into the computation of w-based center coordinates. Firstly, we

have
o —t(w) = {[03,03,0] = V} - w3

= [d — t, —d, 0] - W3. (28)

where w3 = [w? w,1]T. Let h;r € RY™3, j =1,2,3 denote the j-th row of the
associated coefficient matrix for o — t(w). Center coordinates in both of (3) and
(8) can be computed as:

To(w)
Yo(w) | =R(w)" (0~ t(w))
Zo(w)
r{| W5 I'y, W5 I'a; W h]ws
= | rlows rgows rdows | - | hg ws (29)
I{3W5 Tgs W5 Tas Wi h] ws

Th. T ThopT Th. T
Wiérhlrll_lwf’ + Wgrhzr%}Wg, + Wgrhgrgl"lws
nghlrlT2w5 + W3Th2r2T2w5 + w%h3r§r2W5
ws hir{sws + w3 horysws + wg hargsws

The normal vector in (3) is related to camera rotation:
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a(w) a
Bw) | =R(w)" | 3
7(w) g

(30)
r?1w5 co+ I';er5 -6+ r;—2w5 -y

_ T T T
= r1T2w5 co+ r2T2w5 -6+ r§r2w5 -y
Ti3W5 - @+ TogWs - § 4 T3aWs -y

From (29) and (30), we can see that all of them are polynomials in w, with
their polynomial coefficients expressed as [20]:

Pz, = 11 * hy + 121 % hy + 131 * hg,
Py, = ri2 * hy + 12 * hy 4+ r3s * hs,
Pz, = r13 * hy +rog * hy +r33 % hs,
Po = ari + fra; + 9131,
pPs = ariz + fraz + T3,
P, = ariz + fBraz + yra3.

The size of w3z and ws determines the size of the above vectors, that is
Pz,>Py,s Pz, € R and Pa,Ps, Py € R, therefore g1 = z, — r is a six order
polynomial with its coefficient to be

0
Py = <_i> + Pz, (32)

Local minimum of this six order polynomial within the domain of w € (0, 1)
will be found by taking a differential coefficient of p,,_,. Our algorithm aims at
positivity of this local minimum, so that the target is always located in front of
the camera.

A Straight Line or Collision Avoidance. Either a straight line in Cartesian
space or an obstacle dodging path, realization lies in the regulation of z,(w),
Yo(w) and z,(w). If a straight path is required, it can be fulfilled simply by taking
the first order in translational model in (22). Consequently, coefficient matrix V
has only two columns [20] without any variable, letting variables in U adjusted
by other constraints and limitations. In the usual case of quadratic polynomials,
we can simply assign d in (23) to be zeros, which also gives a straight line.

If an obstacle blocks the way of a camera, a dodging path must be achieved.
Let Lps € R? denote the obstacle location in the frame of {I3,03}. Camera path
{R(w), t(w)} will keep a safe distance from the obstacle by the positivity of
expression of

g2 = [R(w) (lops — t(w)]]? — 52, (33)

where S is a tolerated safe distance. R(w) " (1,5s —t(w)) contains obstacle coordi-
nates with respect to camera frame of {R(w), t(w)}. These w-based coordinates
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are, respectively, symbolized as Tops, Yobs and zops. They are also polynomials in
w with coefficients to be

Pz,,. =T11 %11 + 191 x 1o + 131 %13,
Pyoy. = 12 ¥ 11 + oo x 1o + 130 %13, (34)

P:,,, =13 ¥ 11 +1rog 1y + 133 %13,

where le € RYX3,j =1,2,3 is the j-th row of matrix [d — t, —d, 1,5s]. Therefore
go is also a polynomial in w, whose coefficients are included in a vector:

012
pg2 52 + pzob * pzobs + pyobs * pyobs + pzobs * pzob (35)

This is a twelve degree polynomial. Similar to the case in (32), our algorithm
searches for the value of coefficient variables that give positivity to the local
minimum of go within the limited range of w.

Field of View Limit. Taking into account of intrinsic parameters of a camera,
extreme values of elliptical projections, as shown in Fig. 1, have to be restrained
within image size of (, x (,. This limitation is realized by four inequalities:

Cz Xmin > *Cir Ym Cy szn > <y

Xomaz < = <=2, -2
max 2f17 2f17 axr 2f 2f27

(36)

where f1 and f2 are approximated values of focal length in (2). Bringing (5) and
(11) into (14), Xpmazs Ymazs Xmin and Yo, are developed and expressed [20] as
the function of K;,i =0,...,5:

Xnaw = (Ko Ky — K1 K3 +/Gs3) /(KoK — K3),

Xnin = (K2 Ky — K1 K3 — \/G3) /(Ko K1 — K3),

Gs = (K1K3 — K2Ky)? — (KoK — K3) (K1 K5 — K3),

Vinae = (K2 K3 — KoKy +\/Ga) /(KoK — K3),

Yiin = (Ko K3 — KoK4 — /Ga)/(KoK1 — K3),

Gy = (KoK — KoK3)? — (KoK — K3)(KoK5 — K3).

In order to transform inequalities in (36) into the form of polynomials to
facilitate an uniform optimization of parameterized variables in (23), let

ki =0?K;,i=1,...,5, (38)
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and we will produce polynomial coefficients of all of k; from (7) and (31) as

follows: T

PA = Pa, * Pa, + Py, * Py, + Pz, * Pz, + [015, =],
Ps = Pa * Pz, + Pg * Py, + Py * Pz,
Pky = Pa * Pa * PA + Ps * Ps — 2Pa * Ps * Pa,
Pk, = Pg * P * PA + Ps * Ps — 2Pg * Ps * Py, (39)
Pk; = Pa * P * PA = P3 * P5 * Pz, = Pa * Ps * Py,
Pk; = Pa * Py *PA — Py * P * Pz, — Pa * Ps * Pz,
Pk, = Pp * Py *PA — Py *Ps * Py, — P3 * Ps * Pz,
Pk; = Py * Py ¥ PA + Ps * Ps — 2Py * Ps * Pz, .
All of the above pg, € R are polynomial coefficients of k;, i = 1,...,5, a
eighteen degree polynomial in w. Let

ga = k‘ok‘l - k‘% (40)
substitutes the denominator in (37). We have first

(41)
g1 = (koka — koks)? — ga(koks — k3).

Positivity of g3 and g4 ensures that the maximum and minimum values along
the same axis are unequal. This will avoid the degenerating case: elliptical pro-
jection boils down to a segment. Building on the positivity of g3 and g4, FOV
limits are developed as follows:

2
Xmaz © 95 = 9d |:2C;19d — koks + klk?):l — gags > 0,

2

KXnin © g6 = gd |:2C;.19d + koky — k1k3] —9gags > 0,
. ) (42)

Yiaz © 97 = gd [2;29(1 — koks + koh} — 9dg4 > 0,

e 2

Yimint gs = 9a [2;29(1 + koks — koksa| — gaga > 0.
Since k;, ¢ = 1,...,5 are polynomials, therefore g;, j = 3,...,8 are also
polynomials in w. Their coefficients are computed from py,, ¢ =1,...,5 in (39).

Take g3 for example, polynomial coefficients of g3 is computed as:

Pkiks—koks = Pki * Pks — Pko * Pky>

Pkiks—kaks = Pky * Pks — Pky * Pky» (43)
Pgs = Pko * Pky — Pko * Pko»

Pgs = Pkiks—koks * Phiks—koks — Pga * Pkiks—kaky-
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Similar computation applies to polynomial coefficients of g;, 7 = 4,...,8.
Provided the initial value of b and d in (23), we derive entries of U and V
and bring them into (22), (24), (25), (31), (32) and (39). As a result, p,,, j =
1,...,8 can be computed. We take the derivative of each py, and solve for the
corresponding w € (0,1) that give zero derivatives. If such w exist, then a local
minimum of g; can be found at such w values. We expect these local minimums
to be always positive. Take all of these requirements together, we first find local
minimums for each g;, j = 1,...,n and again the minimum of all of these local
minimums and denote it as g*:

g* = min?:l (minwe(o,l) (gj))7

(;) = min(—g"). ()

b,d

No action will be taken if the value of ¢g* is initially positive, otherwise a
minimization of —g* will be conducted until it converts its sign. We search for
appropriate values of b, d by minimizing —g* with MATLAB tool till g* > 0.
Once the minimization result is obtained, we denote it as b*, d* and bring it
back into (23) and (22). Till this end, a planned path that converges to the
desired camera view while satisfying constraints in both of workspace and image
plane is found.

Target Self-occlusion Avoidance. Here we mainly consider occlusion among
spheres when more than one sphere are taken as a target. One sphere can not
shelter the other from the camera view, otherwise feature extraction will fail to
provide some part of the controller input.

We denote (X1,Y7) and (X2, Y2) the center coordinates of two ellipsoids on
the image plane, as shown in Fig. 2. Line that passes through these two ellipsoid
centers is described as:

Yo -y

Y =(X-X Y, ===
( 1)C¥+ 1 @ X2_X1

(45)

This line is cut by elliptical contours into three segments, the two of which
are embraced within these elliptical contours and depicted as l; and I5 in Fig. 2.

Fig. 2. Two elliptical projections on the image plane [19]
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Lengths of 1 and Iy are developed [19] as

AlBl\/Oé2+]. AQBQ\/QQ +1

I = g Dl = . .
\//lozl + of g0, — 2011, \/H022 + a0, — 2011,

(46)

As a result, occlusion between these two spheres will be avoided by imposing
the following inequality:

V& = Xo)? + (T - Va2 = — Iy > 0. (47)

In order to realize this inequality with the same strategy proposed in (44),
it is necessary to parameterize this condition also in the form of polynomial in
the path abscise, as an additional constraint integrated into the minimization
problem of (44). We first deduce that

oo = kl(kOXz —+ QkQXY + k1Y2 — k5)/gda
pin = ko (ko X2 + 262 XV + k1 V2 = K5) /ga, (48)
fo2 = ko(koX? + 2ko XY + k1 Y2 — ks) /ga.

where gq is given in (40). Bring (48) in (46) will result in

I = \/ (L+a?)vi i=1,2. (49)

koi + a2ky; + 2aks;’

where v; = ko; X? + 2ko; X;Y; + k1;Y;? — ks;. Inequality (47) is then transformed
into

- _ U1 U2
T X2 _ > 0. 50
m \/km + o2ky1 + 2aksy \/koz + a?kig + 2akas ( )

Since 2a? 4 2b% > (a + b)?, we realize (50) by

P Y1 P 2
kor + o2k11 + 2akay ko2 + o2kia + 20kao

(X — Xp)? — > 0. (51)

The left hand side of (51) can be further developed as function of k;,i =
0,...,51n (38), therefore it is also a polynomial in w. Since it involves parameters
of two elliptical projections, it is quite tedious to derive polynomial coefficients
for the above expression. In order to illustrate it can be polynomial parametrized,
however, we take a simpler form by taking the larger one of I; and Iy (take I3
for example) instead of the smaller one, then we will have:

U1

X1 —X5)? —4
= 2) ko1 + o2ky1 + 20kay

> 0. (52)

This will be realized by the positivity of

9o = 9o gaa[(X1 — Xo)?ko1 + (Y1 — Ya)2kyy + 2koy (X1 — Xo)(V1 — V2)],
910 = 9o — 4951932 (ko1 X7 + 2k21 X1 Y1 + k11 Y2 — k1),
(53)
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where ga1 = k91k11 — k%l and gaz2 = k‘ogk‘lg _,k%Q' Considering Xl = (k21k41 —
'Zink?,l)/gdh Xo = (kazkaz — ki2ks2)/gaz, Y1 = (k21ks1 — koika1)/gar and
Yo = (kaoksa — kooka2)/gaz, we can further develop (53) as:

9o = ko102 + k1o + 2ka1 a0y,

910 = go — 493 (ko1 (ka1 ka1 — k11ks1)?

(54)
+ 2ko1 (ko1kar — ki1ksr)(ka1ks1 — ko1kar)
+ k11 (ko1ks1 — k01k‘41)2 - k51921)a
with
ap = gaz(ka1kar — k11k31) — gar (kookaz — k12ks2), (55)
Ay = gd2(k'21k31 - k01k41) - gdl(k22k32 - k02k42)~

It is obvious that gg and g;¢ are also polynomials in w based on the expres-
sions in (39) and (43). Therefore they can be brought into the minimization
problem in (44) with n = 10 to provide additional requirement of occlusion
avoidance.

4.3 Tracking the Planned Elliptical Projections

The planned camera path and the associated elliptical projections are going to
be tracked by an IBVS controller:

T=-MLT(s(t) —s}), i=1,...,numse. (56)

Here, A1 is a positive gain, usually \; = 0.1. The desired feature values
in s} are values extracted from the planned elliptical projections. Actually, we
equally divide the planned camera path into num_seg segments, and extract
feature values from elliptical projections at the ends of these segments and assign
sequentially these values into s}. For every s}, controller (56) guides the camera
motion with updated s(¢) until the largest element in feature error s(t) — s} is
bellow a threshold, usually set as 1 pixel. In details, we compute the length of
the planned camera path and denoted it as path_length, select a segment length
to be denoted as segment_length, and then derive the value of num_seg in (56)
as the nearest integer to the division of path_length/segment_length.

Actually, the planned camera path is interpolated with several intermediate
values and then produce a few segments, the end of which corresponds to the
path abscise value computed as w; = i/num_seg,i = 1, ..., num_seg. At different
stages of visual servoing, planned feature values at w; are computed and treated
as s;. Overall, the tracking performance is mainly dependent on the selection of
segment_length and the derived number of segments.
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5 Evaluation Examples

Synthetic scenes are generated using MATLAB. One aims to follow a straight
line in the Cartesian space while keeping camera FOV of two circles. The other
deals with FOV limits and occlusion avoidance of three spheres. In either case,
a reference view and an initial view of the target are generated with camera
calibration errors and image noises. Image noises conforming to uniform distri-
bution on the interval [—1,1] are piled onto the selected features. Rotational
camera path recorded in iterations is expressed as three trajectories of coordi-
nates in r = [ry,79,73] ", which is Cayley representation of a rotation matrix R
in the sense that R = ellx. Translational camera path is presented along x, y
and z coordinates.

5.1 Following a Straight Line with Two Circles

The first example aims to follow a straight line in the Cartesian space while
keeping camera FOV of two intersected circles, see Fig.3a. A desired camera
view of these circles is given in Fig. 3b as a reference. There are more than one
camera frames, at least two in this case, will produce the desired view. Fig. 3a
draws one possibility, that is camera frame F*. Frame F° labels the one that
gives an initial view, as plotted in Fig. 3c. Image noises and camera calibration

x [cm] z[cm]

(a) Two circles and two camera frames

600 600
500 500 §
400 400
300 @D 300
200 200
100 100
O0 200 400 600 800 0o 200 400 600 800

(b) Desired view in camera frame F™* (c) Initial view in camera frame F*°

Fig. 3. Scenery with two circles
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x [em] z [em]

(a) Virtually servoed camera path

1

10 -mX
kJ\ o
T oo zZ 5 0
s -1o0f RN S
_ K =
§ -207 g ---T,
= ! -0.5¢ —,
-30} .
-40 -1
0 200 400 600 0 200 400 600
iteration iteration
(b) Virtually servoed translation (c) Virtually servoed rotation

Fig. 4. Virtual visual servoing process with two circles

errors are considered with:

448 0 399
K= 0 453 302
0 0 1

From two views of these circles (position and model are approximated to
be known as priori), a virtual visual servoing process is performed to move the
camera frame from F° to the one that produces the desired view. Fortunately,
the camera converges to the pose of F*. Figure4 shows the virtually servoed
camera path in the Cartesian space. It fluctuates obviously near the end of the
path F*, mainly along the y-axis and r; coordinate, as shown in the iteration
records plotted in Fig. 4b, c. The estimated camera displacement is:

(r1,72,73)" = (0.2630,0.6949, —0.5228) " rad,
(z,y,2)" = (—34.9791,10.0063,3.9968) " cm.

A straight path is planned when variables in (23) are initialized as zeros.
The corresponding image trajectory is plotted in Fig. 5b. In this figure, elliptical
projections travel from their initial view ultimately to the desired view with their
trajectories, however, obviously go across image boundary of (, x ¢, = 800 x 600.
Figure 5b displays this boundary with a rectangle. This severe violation of camera
FOV limits motivates polynomial optimization in (44) with d kept as zeros
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z [cm]

(a) Planned straight path in the Cartesian space
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(b) Planned image trajectories satisfying
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translation [cm]

translation [cm]

101~~~

0 50 100 150 200

iteration
(d) Planned iteration of translation
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(f) Servoed camera translation
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(c) Planned image trajectories satisfying
FOV limits and a straight path
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rotation [rad]
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iteration

(e) Planned iteration of rotation

rotation [rad]

0 500

1000
iteration

1500

(g) Servoed camera rotation

Fig. 5. Visual servoing path-planning with two circles
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and b varying until appropriate b* is achieved to give satisfactory trajectories.
Figure 5¢ shows these well planned image trajectories, which still correspond to a
straight camera path shown in Fig. 5a. Planned iterations of camera translation
and rotation are respectively plotted in Fig. 5d and e. Compared to the virtually
servoed iterations in Fig. 4b, c, the planned ones have no oscillation and have all
of the translational coordinates converge linearly to their destinations.

The proposed strategy calculates the length of the planned camera path in
Fig. 5a, and equally divides it into several segments. Image projections formed at
the end of these segments are inserted and treated as the desired feature value in
(56). Ultimately, the tracking algorithm in Sect. 4.3 with path_length = 36.6011
and segment_length = 0.2000 results in servoed paths in Fig. 5f, g. Although
it is an image-moment based visual servoing process, the servoed translational
path follows the planned one very well.

5.2 Occlusion Avoidance Among Three Spheres

The scenario for visual servoing path-planning with three spheres is illustrated
in Fig.6a. Occlusion avoidance among these spheres and the maintenance of
camera view of them are expected to enable a VS application. In Fig. 6a, there
are two exemplary camera frames that give, respectively, a reference and an
original view. Figure 3b shows the desired image projection of these spheres in
F*, and Fig. 3c the initial one in F°. Image noises are piled and approximated
camera intrinsic parameters are given as:

y [em]

(a) Three spheres and two camera frames

600 600

500 500 O
400 @ 400 O O
300 OO 300

200 200

100 100
o0 200 400 600 800 OO 200 400 600 800
(b) Desired view in camera frame F'™* (¢) Initial view in camera frame F°

Fig. 6. Scenery with three spheres
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8
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z [cm] 20 X fem]
(a) Virtually servoed camera path
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500 500
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200 200
100 100
0 0
0 200 400 600 800 0 200 400 600 800
(b) Virtual image trajectories (¢) Occlusion occurrence

Fig. 7. Virtual visual servoing process with three spheres

412 0 411
K= 0 386 295
0 0 1

Given the locations and 3D models of spheres and their two views, camera
pose of F° is estimated using a virtual VS method based on features extracted
from two views. The estimated results are:

(r1,72,73)" = (0.0087,0.8442, —0.5209) " rad,
(z,y,2)" = (—20.0225,7.0415,18.1116) " cm.

In the virtual servo process, F'° moves towards F'* and leaves its track plotted
in Fig. 7a. The related elliptical projections have their tracks displayed in Fig. 7b.
We cut out a small part of these tracks in Fig. 7c with elliptical projections in
a certain step emphasized by their thicker contour lines, it is obvious that, in
this step, there are two spheres have their projections overlap with each other.
This situation will prevent feature extraction of the occluded sphere and fail
immediately a real VS application.

The proposed path-planning strategy aims at a path that avoids image
boundary of (, x {, = 800 x 600 as well as occlusion among these spheres.
The resulting camera path is displayed in Fig. 8a, with its translational and rota-
tional iterations plotted in Fig. 8d, e. Related elliptical projections in Fig. 8b and
a selected few of them in Fig. 8¢ show perfect occlusion avoidance and satisfac-
tion of camera FOV limits. We use the strategy in Sect. 4.3 with path_length =
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Fig. 8. Visual servoing path-planning with three spheres
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36.1924 and segment_length = 1.4477 to track the planned trajectories in Fig. 8b
and plot the recorded servo data in Fig. 8f, g. Compared to the planned ones
in Fig.8d, e, it can been seen that the servoed camera path follow closely the
planned one. Therefore, the servoed image trajectories will also follow up the
planned ones in Fig. 8b, satisfying all of the considered constraints.

6 Conclusions

This chapter proposes a path planning approach for visual servoing with ellip-
tical projections. The problem consists of planning a trajectory that ensures
the convergence of elliptical projections to their desired/reference view while
satisfying target visibility and workspace constraints. Moment-based features
are constructed from these elliptical projections. Constraints required by the
usage of moment-based features are much more demanding than that of pixel
coordinates of some representational points. We propose to parametrize these
constraints into polynomial inequalities with some common variable coefficients
to be optimized. Based on a well-planned path, we introduce a new scheme to
follow closely the planned elliptical trajectories. Simulation results of two main
situations validate the proposed approach. In the first situation, two intersected
circles are observed. In the second situation, it is supposed that at least three
spheres are observed. Both of them demonstrate excellent performance. In the
future, it is also worth exploring other primitives such as cylinders. Another
possibility is to compare the robustness of different moment-based features to
errors in calibration and image noise.
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