
Chapter 2
Specifications and Modeling

How can we describe the system which we would like to design and how can we rep-
resent intermediate design information?Models and description techniques allowing
us to capture the initial specification as well as intermediate design information will
be presented in this chapter.

2.1 Requirements

Consistent with the simplified design flow (see Fig. 1.8), we will first of all describe
requirements and approaches for specifying embedded systems. Specifications for
embedded systems provide models of the system under design (SUD). Models can
be defined as follows:

Definition 2.1 (Jantsch [256]): “A model is a simplification of another entity, which
can be a physical thing or another model. The model contains exactly those char-
acteristics and properties of the modeled entity that are relevant for a given task. A
model is minimal with respect to a task if it does not contain any other characteristics
than those relevant for the task.”

Models are described in languages. Languages should be capable of representing
the following features1:

• Hierarchy: Human beings are generally not capable of comprehending systems
containing many objects (states, components) having complex relations with each
other. Thedescriptionof all real-life systemsneedsmoreobjects thanhumanbeings
can understand. Hierarchy (in combination with abstraction) is a key mechanism

1Information from the books of Burns et al. [81], Bergé et al. [542], and Gajski et al. [166] is used
in this list.
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28 2 Specifications and Modeling

helping to solve this dilemma. Hierarchies can be introduced such that humans
need to handle only a small number of objects at any time.
There are two kinds of hierarchies:

– Behavioral hierarchies: Behavioral hierarchies are hierarchies containing
objects necessary to describe the system behavior. States, events, and output
signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems are com-
posed of physical components.
For example, embedded systems can be comprised of components such as
processors, memories, actuators, and sensors. Processors, in turn, include reg-
isters, multiplexers, and adders. Multiplexers are composed of gates.

• Component-based design [464]: It must be “easy” to derive the behavior of a
system from the behavior of its components. If two components are connected,
the resulting new behavior should be predictable. For example, suppose that we
add another component (say, some GPS unit) to a car. The impact of the additional
component on the overall behavior of the system (including buses) should be
predictable.

• Concurrency: Real-life systems are distributed, concurrent systems composed
of components. It is therefore necessary being able to specify concurrency con-
veniently. Unfortunately, human beings are not very good at understanding con-
current systems and many problems with real systems are actually a result of an
incomplete understanding of possible behaviors of concurrent systems.

• Synchronization and communication: Components must be able to communi-
cate and to synchronize.Without communication, components could not cooperate
and we would use each of them in isolation. It must also be possible to agree on
the use of resources. For example, it is necessary to express mutual exclusion.

• Timing behavior: Many embedded systems are real-time systems. Therefore,
explicit timing requirements are one of the characteristics of embedded systems.
The need for explicit modeling of time is even more obvious from the term “cyber-
physical system.” Time is one of the key dimensions of physics. Hence, timing
requirements must be captured in the specification of embedded/cyber-physical
systems.
However, standard theories in computer science model time only in a very abstract
way. TheO-notation is one of the examples. This notation just reflects growth rates
of functions. It is frequently used to model run-times of algorithms, but it fails to
describe real execution times. In physics, quantities have units, but the O-notation
does not even have units. So, it would not distinguish between femtoseconds
and centuries. A similar remark applies to termination properties of algorithms.
Standard theories are concerned with proving that a certain algorithm eventually
terminates. For real-time systems, we need to show that certain computations are
completed in a given amount of time, but the algorithm as a whole should possibly
run until power is turned off.



2.1 Requirements 29

According to Burns and Wellings [81], modeling time must be possible in the
following four contexts:

– Techniques for measuring elapsed time:
For many applications, it is necessary to check how much time has elapsed
since some computation was performed. Access to a timer would provide a
mechanism for this.

– Means for delaying of processes for a specified time:
Typically, real-time languages provide some delay construct. Unfortunately,
typical implementations of embedded systems in software do not guarantee
precise delays. Let us assume that task τ should be delayed by some amount �.
Usually, this delay is implemented by changing task τ ’s state in the operating
system from “ready” or “run” to “suspended.” At the end of this time interval,
τ ’s state is changed from “suspended” to “ready.” This does not mean that the
task actually executes. If some higher priority task is executing or if preemption
is not used, the delayed task will be delayed longer than �.

– Possibility to specify timeouts:
There are many situations in which we must wait for a certain event to occur.
However, this event may actually not occur within a given time interval and we
would like to be notified about this. For example, we might be waiting for a
response from some network connection. We would like to be notified if this
response is not received within some amount of time, say�. This is the purpose
of timeouts. Real-time languages usually also provide some timeout construct.
Implementations of timeouts frequently come with the same problems which
we mentioned for delays.

– Methods for specifying deadlines and schedules:
For many applications, it is necessary to complete certain computations in a lim-
ited amount of time. For example, if the sensors of some car signal an accident,
air bags must be ignited within about ten milliseconds. In this context, we must
guarantee that the software will decide whether or not to ignite the air bags in
that given amount of time. The air bags could harm passengers if they go off too
late. Unfortunately, most languages do not allow to specify timing constraints.
If they can be specified at all, they must be specified in separate control files,
pop-up menus, etc. But the situation is still bad even if we are able to specify
these constraints: Many modern hardware platforms do not have a very pre-
dictable timing behavior. Caches, stalled pipelines, speculative execution, task
preemption, interrupts, etc. may have an impact on the execution time which
is very difficult to predict. Accordingly, timing analysis (verifying the timing
constraints) is a very hard design task.

• State-oriented behavior: It was already mentioned in Chap.1 on p. 15 that
automata provide a good mechanism for modeling reactive systems. Therefore,
the state-oriented behavior provided by automata should be easy to describe. How-
ever, classical automata models are insufficient, since they cannot model timing
and since hierarchy is not supported.

http://dx.doi.org/10.1007/978-3-319-56045-8_1
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• Event handling: Due to the reactive nature of embedded systems, mechanisms
for describing events must exist. Such events may be external events (caused by
the environment) or internal events (caused by components of the system under
design).

• Exception-oriented behavior: In many practical systems, exceptions do occur.
In order to design dependable systems, it must be possible to describe actions to
handle exceptions easily. It is not acceptable that exceptions must be indicated for
each and every state (such as in the case of classical state diagrams).

Example 2.1: In Fig. 2.1, input k might correspond to an exception.

Fig. 2.1 State diagram with
exception k
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Specifying this exception at each state makes the diagram very complex. The
situation would get worse for larger state diagrams with many transitions. On
p. 47, we will show how all the transitions can be replaced by a single one (see
Fig. 2.12). ∇
• Presence of programming elements: Popular programming languages have
proven to be a convenient means of expressing computations that must be per-
formed. Hence, programming language elements should be available in the spec-
ification technique used. Classical state diagrams do not meet this requirement.

• Executability: Specifications are not automatically consistent with the ideas in
people’s heads. Executing the specification is a means of plausibility checking.
Specifications usingprogramming languages have a clear advantage in this context.

• Support for the design of large systems: There is a trend toward large and com-
plex embedded software programs. Software technology has found mechanisms
for designing such large systems. For example, object orientation is one such
mechanism. It should be available in the specification methodology.

• Domain-specific support: It would of course be nice if the same specification
technique could be applied to all the different types of embedded systems, since
this would minimize the effort for developing specification techniques and tool
support. However, due to the wide range of application domains including those
listed in Sect. 1.2, there is little hope that one language can be used to efficiently
represent specifications in all such domains. For example, control-dominated, data-
dominated, centralized and distributed application domains can all benefit from
language features dedicated toward those domains.

• Readability: Of course, specifications must be readable by human beings. Oth-
erwise, it would not be feasible to validate whether or not the specification meets

http://dx.doi.org/10.1007/978-3-319-56045-8_1
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the real intent of the persons specifying the system under design. All design docu-
ments should also be machine-readable into order to process them in a computer.
Therefore, specifications should be captured in languages which are readable by
humans and by computers.
Initially, such specifications could use a natural language such as English or
Japanese. Even this natural language description should be captured in a design
document, so that the final implementation can be checked against the original
document. However, natural languages are not sufficient for later design phases,
since natural languages lack key requirements for specification techniques: It is
necessary to check specifications for completeness and absence of contradictions.
Furthermore, it should be possible to derive implementations from the specification
in a systematic way. Natural languages do not meet these requirements.

• Portability and flexibility: Specifications should be independent of specific hard-
ware platforms so that they can be easily used for a variety of target platforms.
Ideally, changing the hardware platform should have no impact on the specifica-
tion. In practice, small changes may have to be tolerated.

• Termination: It should be feasible to identify terminating processes from the
specification. This means that we would like to use specifications for which the
halting problem (the problem of figuring out whether or not a certain algorithm
will terminate; see, for example, [469]) is decidable.

• Support for non-standard I/O devices: Many embedded systems use I/O devices
other than those typically found in a PC. It should be possible to describe inputs
and outputs for those devices conveniently.

• Non-functional properties: Actual systems under design must exhibit a number
of non-functional properties, such as fault tolerance, size, extendability, expected
lifetime, power consumption, weight, disposability, user friendliness, and electro-
magnetic compatibility (EMC). There is no hope that all these properties can be
defined in a formal way.

• Support for the design of dependable systems: Specification techniques should
provide support for designing dependable systems. For example, specification
languages should have unambiguous semantics, facilitate formal verification, and
be capable of describing security and safety requirements.

• No obstacles to the generation of efficient implementations: Since embedded
systems must be efficient, no obstacles prohibiting the generation of efficient real-
izations should be present in the specification.

• Appropriatemodel of computation (MoC): The von-Neumannmodel of sequen-
tial execution combinedwith some communication techniques is a commonly used
MoC. However, this model has a number of serious problems, in particular for
embedded system applications. Problems include the following:

– Facilities for describing timing are lacking.
– Von-Neumann computing is implicitly based on accesses to globally shared
memory (such as in Java). It has to guarantee mutually exclusive access to
shared resources. Otherwise, multi-threaded applications allowing preemptions
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at any time can lead to very unexpected programbehaviors2.Using primitives for
ensuring mutually exclusive access can, however, very easily lead to deadlocks.
Possible deadlocks may be difficult to detect and may remain undetected for
many years.

Example 2.2: Lee [316] provided a very alarming example in this direction. Lee
studied implementations of a simple observer pattern in Java. For this pattern, changes
of values must be propagated from some producer to a set of subscribed observers.
This is a very frequent pattern in embedded systems, but is difficult to implement
correctly in a multi-threaded von-Neumann environment with preemptions. Lee’s
code is a possible implementation of the observer pattern in Java for a multi-threaded
environment:

public synchronized void addListener(listener) {...}

public synchronized void setValue(newvalue)

{

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue) }

}

Method addListener subscribes new observers, and method setValue propa-
gates newvalues to subscribedobservers. In general, in amulti-threaded environment,
threads can be preempted any time, resulting in an arbitrarily interleaved execution
of these threads. Adding observers while setValue is already active could result in
complications, i.e., we would not know if the new value had reached the new listener.
Moreover, the set of observers constitutes a global data structure of this class. There-
fore, these methods are synchronized in order to avoid changing the set of observers
while values are already partially propagated. This way, only one of the two methods
can be active at a given time. This mutual exclusion is necessary to prevent unwanted
interleavings of the execution of methods in a multi-threaded environment. Why is
this code problematic? It is problematic since valueChanged could attempt to get
exclusive access to some resource (say, R). If that resource is allocated to some other
method (say, A), then this access is delayed until A releases R. If A calls (possibly
indirectly) addListener or setValue before releasing R, then these methods will be
in a deadlock: setValue waits for R, releasing R requires A to proceed, and A cannot
proceed before its call of setValue or addListener is serviced. Hence, we will have
a deadlock.

This example demonstrates the existence of deadlocks resulting from usingmulti-
ple threadswhich can be arbitrarily preempted and therefore requiremutual exclusion
for their access to critical resources. Lee showed [316] that many of the proposed
“solutions” of the problem are problematic themselves. So, even this very simple
pattern is difficult to implement correctly in a multi-threaded von-Neumann
environment. This example shows that concurrency is really difficult to understand
for humans and there may be the risk of oversights, even after very rigorous code
inspections. ∇

2Examples are typically provided in courses on operating systems.
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Lee came to the drastic conclusion that “nontrivial software written with threads,
semaphores, and mutexes is incomprehensible to humans” and that “threads as a
concurrency model are a poor match for embedded systems. ... they work well only
... where best-effort scheduling policies are sufficient” [318].

The underlying reasons for deadlocks have been studied in detail in the context
of operating systems (see, for example, [483]). From this context, it is well-known
that four conditions must hold at run-time to get into a deadlock: mutual exclusion,
no preemption of resources, holding resources while waiting for more, and a cyclic
dependency between threads. Obviously, all four conditions are met in the above
example. The theory of operating systems provides no general way out of this prob-
lem. Rare deadlocks may be acceptable for a PC, but they are clearly unacceptable
for a safety-critical system.

We would like to specify our SUD such that we do not have to care about possible
deadlocks. Therefore, it makes sense to study non-von-NeumannMoCs avoiding this
problem. We will study such MoCs from the next section onward. It will be shown
that the observer pattern can be easily implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any
single formal language meeting all these requirements. Therefore, in practice, we
must live with compromises and possibly also with a mixture of languages (each of
which would be appropriate for describing a certain type of problems). The choice
of the language used for an actual design will depend on the application domain and
the environment in which the design has to be performed. In the following, we will
present a survey of languages that can be used for actual designs. These languages
will demonstrate the essential features of the corresponding MoC.

2.2 Models of Computation

Models of computation (MoCs) describe the mechanism assumed for performing
computations. In the general case,wemust consider systems comprising components.
It is nowcommonpractice to strictly distinguish between the computations performed
in the components and communication. This distinction paves the way for reusing
components in different contexts and enables plug-and-play for system components.
Accordingly, we define models of computation as follows [255–257, 315]:

Definition 2.2: Models of computation (MoCs) define

• Components and the organization of computations in such components: Proce-
dures, processes, functions, finite state machines are possible components.

• Communication protocols: These protocols describe methods for communica-
tion between components. Asynchronous message passing and rendez-vous based
communication are examples of communication protocols.

Relations between components can be captured in graphs. In such graphs, we
will refer to the computations also as processes or tasks. Accordingly, relations
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between these will be captured by task graphs and process networks. Nodes in
the graph represent components performing computations. Computations map input
data streams to output data streams. Computations are sometimes implemented in
high-level programming languages. Typical computations contain (possibly non-
terminating) iterations. In each cycle of the iteration, they consume data from their
inputs, process the data received, and generate data on their output streams. Edges
represent relations between components. We will now introduce these graphs at a
more detailed level.

The most obvious relation between computations is their causal dependence:
Many computations can only be executed after other computations have terminated.
This dependence is typically captured independencegraphs. Fig. 2.2 shows adepen-
dence graph for a set of computations.

Fig. 2.2 Dependence graph
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Definition 2.3: A dependence graph is a directed graph G = (τ, E), where τ is the
set of vertices or nodes and E is the set of edges. E ⊆ τ × τ imposes a relation
on τ . If (τ1, τ2) ∈ E with τ1, τ2 ∈ τ , then τ1 is called an immediate predecessor
of τ2 and τ2 is called an immediate successor of τ1. Suppose E∗ is the transitive
closure of E . If (τ1, τ2) ∈ E∗, then τ1 is called a predecessor of τ2 and τ2 is called
a successor of τ1.

Such dependence graphs form a special case of task graphs. Task graphs may
contain more information than modeled in Fig. 2.2. For example, task graphs may
include the following extensions of dependence graphs:

1. Timing information: Tasks may have arrival times, deadlines, periods, and exe-
cution times. In order to show them graphically, it may be useful to include this
information in the graphs. However, we will indicate such information separately
from the graphs in this book.

2. Distinction between different types of relations between computations: Prece-
dence relations just model constraints for possible execution sequences. At a
more detailed level, it may be useful to distinguish between constraints for
scheduling and communication between computations. Communication can also
be described by edges, but additional information may be available for each of
the edges, such as the time of the communication and the amount of information
exchanged. Precedence edges may be kept as a separate type of edges, since there
could be situations in which computations must execute sequentially even though
they do not exchange information.
In Fig. 2.2, input and output (I/O) are not explicitly described. Implicitly, it is
assumed that computations without any predecessor in the graphmight be receiv-
ing input at some time. Also, they might generate output for the successor and



2.2 Models of Computation 35

that this output could be available only after the computation has terminated. It
is often useful to describe input and output more explicitly. In order to do this,
another kind of relation is required. Using the same symbols as Thoen [515],
we use partially filled circles for denoting input and output. In Fig. 2.3, partially
filled circles identify I/O edges.

Fig. 2.3 Graph including
I/O nodes and edges
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3. Exclusive access to resources: Computationsmay be requesting exclusive access
to some resource, for example, to some input/output device or some communi-
cation area in memory. Information about necessary exclusive access should
be taken into account during scheduling. Exploiting this information might, for
example, be used to avoid the priority inversion problem (see p. 206). Information
concerning exclusive access to resources can be included in the graphs.

4. Periodic schedules: Many computations, especially in digital signal processing,
are periodic. This means that we must distinguish more carefully between a task
and its execution (the latter is frequently called a job [332]). Graphs for such
schedules are infinite. Figure2.4 shows a graph including jobs Jn−1 to Jn+1 of a
periodic task.

Fig. 2.4 Graph including
jobs 1-1 n+JnJJ ....... n

5. Hierarchical graph nodes: The complexity of the computations denoted by
graph nodes may be quite different. On the one hand, specified computations
may be quite involved and contain thousands of lines of program code. On the
other hand, programs can be split into small pieces of code so that in the extreme
case, each of the nodes corresponds only to a single operation. The graph node
complexity is also called their granularity. Which granularity should be used?
There is no universal answer to this. For some purposes, the granularity should
be as large as possible. For example, if we consider each of the nodes as one
process to be scheduled by a real-time operating system (RTOS), it may be wise
to work with large nodes in order to minimize context switches between different
processes. For other purposes, it may be better to workwith nodesmodeling just a
single operation. For example, nodes must be mapped to hardware or to software.
If a certain operation (such as the frequently used discrete cosine transform, or
DCT) can be mapped to special purpose hardware, then it should not be buried in
a complex node that contains many other operations. It should rather be modeled
as its own node. In order to avoid frequent changes of the granularity, hierarchical
graph nodes are very useful. For example, at a high hierarchical level, the nodes
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may denote complex tasks, at a lower level basic blocks3, and at an even lower
level individual arithmetic operations. Figure 2.5 shows a hierarchical version of
the dependence graph in Fig. 2.2, using a rectangle to denote a hierarchical node.

Fig. 2.5 Hierarchical task
graph

τ1

τ3

τ2

τ4

τ5

As indicated above, MoCs can be classified according to the models of communi-
cation (reflected by edges in the task graphs) and the model of computations within
the components (reflected by the nodes in the task graphs). In the following, we will
explain prominent examples of such models:

• Models of communication:
We distinguish between two communication paradigms: shared memory and
message passing. Other communication paradigms exist (e.g., entangled states in
quantum mechanics [64]), but are not considered in this book.

– Shared memory:
For shared memory, communication is performed by accesses to the samemem-
ory from all components. Access to shared memory should be protected, unless
access is totally restricted to reads. If writes are involved, exclusive access to the
memory must be guaranteed while components are accessing shared memories.
Segments of program code, for which exclusive access must be guaranteed, are
called critical sections. Several mechanisms for guaranteeing exclusive access
to resources have been proposed. These include semaphores, conditional critical
regions, monitors, and spin locks (see books on operating systems like Stallings
[483]). Shared memory-based communication can be very fast, but is difficult
to implement in multiprocessor systems if no common memory is physically
available.

– Message passing: In this case, messages are sent and received.Message passing
can be implemented easily even if no common memory is available. However,
message passing is generally slower than sharedmemory-based communication.
We distinguish between three kinds of message passing:
· Asynchronousmessage passing, also callednon-blocking communication:
In asynchronousmessage passing, components communicate by sendingmes-
sages through channels which can buffer the messages. The sender does not
need to wait for the recipient to be ready to receive the message. In real life,
this corresponds to sending a letter or an e-mail. A potential problem is the fact
that messages must be stored and that message buffers can overflow. There

3Basic blocks are code blocks of maximum length not including any branch except possibly at their
end and not being branched into.
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are variations of this scheme, including communicating finite state machines
(see p. 58) and data flow models (see p. 64).

· Synchronous message passing or blocking communication, rendez-vous
based communication: In synchronous message passing, available compo-
nents communicate in atomic, instantaneous actions called rendez-vous.
The component reaching the point of communication first has to wait until
the partner has also reached its point of communication. In real life, this
corresponds to physical meetings or phone calls. There is no risk of overflows,
but performance may suffer. Examples of languages following this model of
computation include CSP (see p. 106) and Ada (see p. 107).

· Extended rendez-vous, remote invocation: In this case, the sender is allowed
to continue only after an acknowledgment has been received from the recip-
ient. The recipient does not have to send this acknowledgment immediately
after receiving the message, but can do some preliminary checking before
actually sending the acknowledgment.

• Organization of computations within the components:

– Differential equations: Differential equations are capable of modeling ana-
log circuits and physical systems. Hence, they can find applications in cyber-
physical system modeling.

– Finite state machines (FSMs): This model is based on the notion of a finite
set of states, inputs, outputs, and transitions between states. Several of these
machines may need to communicate, forming so-called communicating finite
state machines (CFSMs).

– Data flow: In the data flow model, the availability of data triggers the possible
execution of operations.

– Discrete event model: In this model, there are events carrying a totally ordered
time stamp, indicating the time at which the event occurs. Discrete event sim-
ulators typically contain a global event queue sorted by time. Entries from this
queue are processed according to this order. The disadvantage is that this model
relies on a global notion of event queues, making it difficult to map the seman-
tic model onto parallel implementations. Examples include VHDL (see p. 94),
SystemC (see p. 93), and Verilog (see p. 104).

– Von-Neumann model: This model is based on the sequential execution of
sequences of primitive computations.

• Combined models: Actual languages are typically combining a certain model
of communication with an organization of computations within components. For
example, StateCharts (see p. 47) combines finite state machines with shared mem-
ories. SDL (see p. 58) combines finite state machines with asynchronous message
passing. Ada (see p. 107) and CSP (see p. 106) combine von-Neumann execu-
tion with synchronous message passing. Table2.1 gives an overview of combined
models most of which we will consider in this chapter. This table also includes
examples of languages for many of the MoCs.

Let us look at MoCs with a defined model for computations within compo-
nents. For differential equations, Modelica [382], commercial languages such as
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Table 2.1 Overview of MoCs and languages considered

Communication/organiza-
tion of components

Shared memory Message passing

Synchronous Asynchronous

Undefined components Plain text or graphics, use cases

(Message) sequence charts

Differential equations Modelica, Simulink®, VHDL-AMS

Communicating finite
state machines (CFSMs)

StateCharts SDL

Data flow Scoreboarding,
Tomasulo algorithm

Kahn networks, SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE)
modela

VHDL, Verilog, and
SystemC

(Only experimental systems)
Distributed DE in Ptolemy

Von-Neumann model C, C++, Java C, C++, Java, ... with libraries

CSP, Ada
aThe classification of VHDL, Verilog, and SystemC is based on the implementation of these lan-
guages in simulators.Message passing can bemodeled in these languages “on top” of the simulation
kernel.

Simulink® [510], and the extension VHDL-AMS [236] of the hardware description
language VHDL are examples of languages.

Scoreboarding and the Tomasulo algorithm are data flow-driven techniques for
dynamically scheduling instructions in computer architectures. They are described
in books in computer architecture (see, for example, Hennessy and Patterson [205])
and not presented in this book.

SomeMoCshave advantages in certain application areas,while others have advan-
tages in others. Choosing the “best” MoC for a certain application may be difficult.
Being able to mix MoCs (such as in the Ptolemy framework [435]) can be a way out
of this dilemma. Also, models may be translated from one MoC into another one.
Non-von-Neumannmodels are frequently translated into von-Neumannmodels. The
distinction between the different models is blurring if the translation between them
is easy.

Designs starting from non-von-Neumann models are frequently called model-
based designs [400]. The key idea of model-based design is to have some abstract
model of the system under design (SUD). Properties of the SUD can then be studied
at the level of this model, without having to care about software code. Software
code is generated only after the behavior of the model has been studied in detail,
and this software is generated automatically [453]. The term “model-based design”
is usually associated with models of control systems, comprising traditional control
system elements such as integrators and differentiators. However, this view may be
too restricted, since we could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing languages as
examples for demonstrating their features. A related (but shorter) survey is provided
by Edwards [141]. For a more comprehensive presentation, see [180].
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2.3 Early Design Phases

The very first ideas about systems are frequently captured in a very informal way,
possibly on paper. Frequently, only descriptions of the SUD in a natural language
such as English or Japanese exist in the early phases of design projects. They are
typically using a very informal style. These descriptions should be captured in some
machine-readable document. They should be encoded in the format of some word
processor and stored by a tool managing design documents. A good tool would allow
link between the requirements, a dependence analysis aswell as versionmanagement.
DOORS® [221] exemplifies such a tool.

2.3.1 Use Cases

For many applications, it is beneficial to envision potential usages of the SUD. Such
usages are captured in use cases. Use cases describe possible applications of the
SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is the goal of the
so-called UML™standardization effort [161, 199, 413]. UML stands for “Unified
Modeling Language.” UML was designed by leading software technology experts
and is supported by commercial tools. UML primarily aims at the support of the
software design process. UML provides a standardized form for use cases.

For use cases, there is neither a precisely specified model of the computations nor
is there a precisely specified model of the communication. It is frequently argued
that this is done intentionally in order to avoid caring about too many details during
the early design phases.

Example 2.3: For example, Fig. 2.6 shows some use cases for an answering
machine4. There are five use cases for the owner of the answering machine and one
for potential callers. We have to make sure that all six use cases can be implemented
correctly.

Fig. 2.6 Use case example

Owner

Caller

Turn answering machine off

Turn answering machine on

Erase all messages

Erase last message

Play next message

Welcome+beep+voice mail

∇

4We assume that UML is covered in-depth in a software engineering course included in the cur-
riculum. Therefore, UML is only briefly discussed in this book.
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Use cases identify different classes of users as well as the applications to be
supported by the SUD. In this way, it is possible to capture expectations at a very
high level.

2.3.2 (Message) Sequence Charts and Time/Distance
Diagrams

At a more detailed level, we might want to explicitly indicate the sequences of
messages which must be exchanged between components in order to implement
some use of the SUD. Sequence charts (SCs)—earlier called message sequence
charts (MSCs)—provide a mechanism for this. Sequence charts use one dimension
(usually the vertical dimension) of a two-dimensional chart to denote sequences
and the second dimension to reflect the different communication components. SCs
describe partial orders between message transmissions, and they display a possible
behavior of a SUD. SCs are also standardized in UML. UML 2.0 has extended SCs
with elements allowing a more detailed description than UML 1.0.

Example 2.4: Figure2.7 shows one of the use cases of the answering machine as an
example. Dashed lines are so-called lifelines. Messages are assumed to be ordered

transmit voice mail
voice mail

return hand-set
signal end of call

transmit beep

signal pick-up wait

signal call

type numbers

:Caller :Phone :Answering machine

Calling an answering machine

beep

send welcomewelcome

Fig. 2.7 Answering machine in UML™
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according to their sequence along the lifeline. We assume that, in this example,
all information is sent in the form of messages. Arrows used in this diagram denote
asynchronousmessages. Thismeans severalmessages can be sent by a senderwithout
waiting for the receipt to be confirmed. Boxes on top of lifelines represent active
control at the corresponding component. In the example, the answering machine is
waiting for the user to pick up the phone within a certain amount of time. If he or
she fails to do so, the machine signals a pickup itself and sends a welcome message
to the caller. The caller is then supposed to leave a voice mail message. Alternative
sequences (e.g., an early termination of the call by the caller or the callee picking up
the phone) are not shown. ∇

Complex control-dependent actions cannot be described by SCs. Other MoCs
must be used for this. Frequently, certain preconditions must be met for a SC to
apply. Such preconditions, a distinction between sequences which might happen and
those which must happen, as well as other extensions are available in the so-called
Live Sequence Charts [114].

Time/distance diagrams (TDDs) are a commonly used variant of SCs. In time/dis-
tance diagrams, the vertical dimension reflects real time, not just sequence. In some
cases, the horizontal dimension also models the real distance between the compo-
nents. TDDs provide the right means for visualizing schedules of trains or buses.

Example 2.5: Figure2.8 is an example of a TDD. This example refers to trains
between Amsterdam, Cologne, Brussels, and Paris. Trains can run from either

t

ParisBrusselsAmsterdamAachenCologne

Fig. 2.8 Time/distance diagram

Amsterdam or Cologne to Paris via Brussels. Aachen is included as an intermediate
stop between Cologne and Brussels. Vertical segments correspond to time spent at
stations. For one of the trains, there is a timing overlap between the trains com-
ing from Cologne and Amsterdam at Brussels. There is a second train which travels
between Paris and Cologne which is not related to an Amsterdam train. This example
and other examples can be simulated with the levi simulation software [473]. ∇
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Example 2.6: A larger, more realistic example is shown in Fig. 2.9.

Fig. 2.9 Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich), © ETH
Zürich

This example [215] describes simulated Swiss railway traffic in the Lötschberg area.
Different station names are shown along the horizontal lines. The vertical dimension
reflects real time. Slow and fast trains can be distinguished by their slope in the graph.
Slow trains are characterized by steep slopes, possibly also containing significant
waiting time at the stations (vertical slopes). For fast trains, slopes are almost flat.
Trains are stopping only at a subset of the stations.

In the presented example, it is not known whether the timing overlap at stations
happens coincidentally or whether some real synchronization for connecting trains
is required. Furthermore, permissible deviations from the schedule (min/max timing
behavior) are not visible. ∇

SCs and TDDs are very frequently used in practice. For example, they are valuable
for applications of the IoT. One of the key distinctions between SCs and TDDs is
that SCs do not include any reference to real time. TDDs are appropriate means for
representing typical schedules. However, SCs and TDDs fail to provide information
about necessary synchronization.

UML was initially not designed for real-time applications. UML 2.0 includes
timing diagrams as a special class of diagrams. Such diagrams enable referring to
physical time, similar to TDDs. Also, certain UML “profiles” (see p. 117) allow
additional annotations to refer to time [352].
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2.3.3 Differential Equations

Differential equations can be written in the language of mathematics. Inputs for
design tools typically require certain variants of this language. We exemplify such a
variant with Modelica [382], a language aiming at modeling cyber-physical systems.
Modelica has graphical as well as textual forms. Using the graphical form, systems
can be described as sets of interconnected blocks. Each block can be described by
equations. Connections between blocks denote common variables in the sense of
mathematics. The information about each block together with information about
connections can be transformed into a global set of equations. This process is called
flattening of the hierarchy. Just like in mathematics, equations (and connections)
have a bidirectional meaning (in contrast to programming languages).

Example 2.7: The following model5 represents the bouncing ball example intro-
duced on p. 10:

model StickyBall

type Height = Real(unit ="m");

type Velocity = Real(unit = "m/s");

parameter Real s = 0.8 "Restitution";

parameter Height h0=1.0 "Initial hight";

constant Velocity eps=1e-3 "small velocity";

Boolean stuck;

Height h;

Velocity v;

initial equation

v = 0;

h = h0;

stuck = false;

equation

v = der(h);

der(v) = if stuck then 0 else -9.81;

when h <= 0.0 then

stuck = abs(v) < eps;

reinit(v, if stuck then 0 else -s*v);

end when;

end StickyBall;

In the equations part, velocity v is defined as the derivative of the height h. The
derivative of velocity (the acceleration) is set to standard gravity (–9.81), unless the
ball is already sticking to the surface. Equations have a bidirectional meaning. For
this set of equations, there are boundary conditions defined in the initial equation part.
Mathematical equations can be integrated numerically. This procedure is exploited
in the description of the bouncing: when-clauses can be used to define events which
happen while solving the equations. In the particular example, an event is generated

5This model has been derived from the model published by M. Tiller [517].
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when the height becomes less or equal to zero. Whenever this event is generated
while the velocity is still sufficiently large, the velocity is inverted and reduced by a
factor of s, called restitution. s is the square root of the so-called rebound coefficient
r [157]. The reinit-clause effectively defines another boundary condition.

However, if the velocity is smaller than eps, the ball is assumed to become sticky
and the velocity is set to zero, suppressing all future activities. The resulting model
can be simulated, for example, with OpenModelica6.

The mathematical background is as follows: Let v0 = √
2gh0 be the velocity just

before the first bounce [157]. The time until the n-th bouncing is as follows [157]:

tn = 2v0
g

n−1∑

k=0

sk (2.1)

As long as s < 1, this geometric series converges to

t f inal = lim
n→∞

2v0
g

n−1∑

k=0

sk = 2v0
g(1 − s)

(2.2)

This means that there is an upper bound on the time for the bounces, but not on
the number of bounces. This corresponds to the fact that, mathematically speaking,
infinite series may be converging to a finite value7.

Using sets of equations involving derivatives in Modelica brings us close to the
languageofmathematics andphysics.However, events introduce sequential behavior.
The implicit numerical integration procedure also introduces the hazard of numerical
precision problems. In fact, already the test <= 0.0 reflects the fact that we might
miss the case ofhbeing exactly 0.Another hazard is present in the publishedmodel for
the non-sticky ball [517]: Numerical precision problems result in an OpenModelica
solution for which the ball penetrates the floor for large times t. This problem is
caused by not generating events if the time distance between bounces is too small.

This example demonstrates very nicely the advantages and limitations of
Modelica: On the one hand, it is feasible to describe even the physical part
of cyber-physical systems. On the other hand, we are not exactly using the language
of mathematics, and in this way, we are introducing modeling hazards. ∇

2.4 Communicating Finite State Machines (CFSMs)

In the following sections, we will consider the design of digital systems only. Com-
pared to early designphases,weneedmoreprecisemodels of ourSUD.Wementioned
already on p. 15 and on p. 30 that we need to describe state-oriented behavior. State
diagrams are a classical means of doing this. Figure 2.10 (the same as Fig. 2.1) shows
an example of a classical state diagram, representing a finite state machine (FSM).

6See https://openmodelica.org/.
7Note the link to the paradox of Achilles and the turtle [558].

https://openmodelica.org/
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Fig. 2.10 State diagram
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Circles denote states. We will consider FSMs for which only one of their states
is active. Such FSMs are called deterministic FSMs. Edges denote state transitions.
Edge labels represent events. Let us assume that a certain state of the FSM is active,
and that an event happens which corresponds to one of the outgoing edges for the
active state. Then, the FSM will change its state from the currently active state to
the one indicated by the edge. FSMs may be implicitly clocked. Such FSMs are
called synchronous FSMs. For synchronous FSMs, state changes will happen only
at clock transitions. FSMs may also generate output (not shown in Fig. 2.10). For
more information about classical FSMs, refer to, for example, Kohavi et al. [290].

2.4.1 Timed Automata

Classical FSMs do not provide information about time. In order tomodel time, classi-
cal automata have been extended to also include timing information. Timed automata
are essentially automata extended with real-valued variables. “The variables model
the logical clocks in the system, that are initialized with zero when the system is
started, and then increase synchronously with the same rate. Clock constraints, i.e.,
guards on edges, are used to restrict the behavior of the automaton. A transition rep-
resented by an edge can be taken when the clocks’ values satisfy the guard labeled
on the edge. Clocks may be reset to zero when a transition is taken” [46].

Example 2.8: Figure2.11 shows an example. The answering machine is usually in
the initial state on the left. Whenever a ring signal is received, clock x is reset to 0
and a transition into a waiting state is made. If the called person lifts off the handset,
talking can take place until the handset is returned. Otherwise, a transition to state
play text can take place if time has reached a value of 4.

x  <=9
ring

beep record beep
silent

start

play
text

deadtalk

wait

lift-off
return hand-set

x

y

<=5

y
y

x
x

x
y y

y
x
y

  :=0
  >=4    :=0

  <=2  :=0
:=0

  >=1
<=2 >=8

>=1

:=0

end
of  text

Fig. 2.11 Servicing an incoming line in an answering machine
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Once the transition took place, a recorded message is played and this phase is
terminated with a beep. Clock y ensures that this beep lasts at least one time unit.
After the beep, clock x is reset to 0 again and the answering machine is ready for
recording. If time has reached a value of 8 or if the caller remains silent, the next
beep is played. This second beep again lasts at least one time unit. After the second
beep, a transition is made into the final state. In this example, transitions are either
caused by inputs (such as lift-off ) or by so-called clock constraints. ∇

Clock constraints describe transitions which can take place, but they do not have
to. In order to make sure that transitions actually take place, additional location
invariants can be defined. Location invariants x <= 5, x <= 9, and y <= 2 are
used in the example such that transitions will take place no later than one time unit
after the enabling condition became true. Using two clocks is for demonstration
purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [46]: Let C be a set
of real-valued, non-negative variables representing clocks. Let� be a finite alphabet
of possible inputs.

Definition 2.4: A clock constraint is a conjunctive formula of atomic constraints
of the form x ◦ n or (x − y) ◦ n for x, y ∈ C, ◦ ∈ {≤,<,=,>,≥} and n ∈ N.

Note that constants n used in the constraints must be integers, even though clocks
are real-valued. An extension to rational constants would be easy, since they could
be turned into integers with simple multiplications. Let B(C) be the set of clock
constraints.

Definition 2.5 (Bengtson [46]): A timed automaton is a tuple (S, s0, E, I ) where

• S is a finite set of states.
• s0 is the initial state.
• E ⊆ S × B(C) × � × 2C × S is the set of edges. B(C) models the conjunctive
conditionwhichmust hold and� models the inputwhich is required for a transition
to be enabled. 2C reflects the set of clock variables which are reset whenever the
transition takes place.

• I : S → B(C) is the set of invariants for each of the states. B(C) represents the
invariant which must hold for a particular state S. This invariant is described as a
conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed
automata. Timed automata having a large number of clocks tend to be difficult to
understand. More details about timed automata can be found, for example, in papers
by Dill et al. [128] and Bengtsson et al. [46].

Simulation and verification of timed automata is possible with the popular tool
UPPAAL8. UPPAAL supports concurrency and data variables.

8See http://www.uppaal.org for the academic and http://www.uppaal.com for the commercial ver-
sion.

http://www.uppaal.org
http://www.uppaal.com
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Timed automata extend classical automata with timing information. However,
many of our requirements for specification techniques are notmet by timed automata.
In particular, in their standard form, they do no provide hierarchy and concurrency.

2.4.2 StateCharts: Implicit Shared Memory Communication

TheStateCharts language is presented here as a very prominent example of a language
based on automata and supporting hierarchical models as well as concurrency. It does
include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [197] in 1987 and later
described more precisely in [135]. According to Harel, the name was chosen since
it was “the only unused combination of flow or state with diagram or chart.”

2.4.2.1 Modeling of Hierarchy

The StateCharts language describes extended FSMs. Due to this, they can be used
for modeling state-oriented behavior. The key extension is hierarchy. Hierarchy is
introduced by means of super-states.

Definition 2.6: States comprising other states are called super-states.

Definition 2.7: States included in super-states are called sub-states of the super-
states.

Example 2.9: Figure2.12 shows a StateCharts example. It is a hierarchical version
of Fig. 2.10.

Fig. 2.12 Hierarchical state
diagram
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Super-state S includes states A, B, C, D, and E . Suppose the FSM is in state Z
(we will also call Z to be an active state). Now, if input m is applied to the FSM,
then A and S will be the new active states. If the FSM is in S and input k is applied,
then Z will be the new active state, regardless of whether the FSM is in sub-states
A, B, C, D, or E of S. In this example, all states contained in S are non-hierarchical
states. ∇
In general, sub-states of S could again be super-states consisting of sub-states them-
selves. Also, whenever a sub-state of some super-state is active, the super-state
is active as well.
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Definition 2.8: Each state which is not composed of other states is called a basic
state.

Definition 2.9: For each basic state s, the super-states containing s are called ances-
tor states.

The FSM of Fig. 2.12 can only be in one of the sub-states of super-state S at any
time. Super-states of this type are called OR super-states9.

In Fig. 2.12, k might correspond to an exception for which state S has to be left.
The example already shows that the hierarchy introduced in StateCharts enables a
compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems inwhich a system descrip-
tion comprises descriptions of subsystems which, in turn, may contain descriptions
of subsystems. The hierarchy of the entire system can be represented by a tree. The
root of the tree corresponds to the system as awhole, and all inner nodes correspond to
hierarchical descriptions (in the case of StateCharts called super-nodes). The leaves
of the hierarchy are non-hierarchical descriptions (in the case of StateCharts called
basic states).

So far, we have used explicit, direct edges to basic states to indicate the next state.
The disadvantage of that approach is that the internal structure of super-states cannot
be hidden from the environment. However, in a true hierarchical environment, we
should be able to hide the internal structure so that it can be described later or changed
later without affecting the environment. This is possible with other mechanisms for
describing the next state.

The first additional mechanism is the default state mechanism. It can be used in
super-states to indicate the particular sub-states that will become active if the super-
states become active. In diagrams, default states are identified by edges starting at
small filled circles.

Example 2.10: Figure2.13 shows a state diagram using the default statemechanism.
It is equivalent to the diagram inFig. 2.12.Note that thefilled circle does not constitute
a state itself.

Fig. 2.13 State diagram
using the default state
mechanism
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9More precisely, they should be called XOR super-states, since the FSM is in either A, B, C, D,
or E . However, this name is not commonly used in the literature.
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Another mechanism for specifying next states is the history mechanism. With
this mechanism, it is possible to return to the last sub-state that was active before
a super-state was left. The history mechanism is symbolized by a circle containing
the letter H. Please do not confuse circles comprising this letter with states! We will
be using a different font for states and the history mechanism in order to reduce
the risk of confusion. In order to define the next state for the very initial transition
into a super-state, the history mechanism is frequently combined with the default
mechanism.

Example 2.11: Figure2.14 shows an example. The behavior of the FSM is now
somewhat different. If we input m while the system is in Z , then the FSM will enter
A if this is the very first time we enter S, and otherwise, it will enter the last state that
we were in before leaving S. This mechanism has many applications. For example,
if k denotes an exception, we could use input m to return to the state we were in
before the exception. States A, B, C, D, and E could also call Z like a procedure.
After completing “procedure” Z , we would return to the calling state. In this way,
we are adding elements of programming languages to StateCharts.

Fig. 2.14 State diagram
using the history and the
default state mechanism

H A
g

f

B
h

C
i

D
j

E

Z

km

S

Fig. 2.15 Combining the
symbols for the history and
the default state mechanism
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Figure 2.14 can also be redrawn as shown in Fig. 2.15. In this case, the symbols
for the default and the history mechanism are combined. ∇

Specification techniques must also be able to describe concurrency conveniently.
Toward this end, the StateCharts language provides a second class of super-states,
so-called AND states.

Definition 2.10: Super-states S are calledAND super-states if the system contain-
ing S will be in all of the sub-states of S whenever it is in S.
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Example 2.12: An AND super-state is included in the answering machine example
shown inFig. 2.16.Anansweringmachine normally performs two tasks concurrently:
It is monitoring the line for incoming calls and the keys for user input. In Fig. 2.16,
the corresponding states are called Lwait and Kwait. Incoming calls are processed in
state Lprocwhile the response to pressed keys is generated in stateKproc. State Lproc
is left whenever the caller hangs up the phone. Returning to state Lwait due to call
termination by the owner is not modeled. Hence, this model provides no protection
against stalking.

(excl. on/off)

off

line-monitoring

ring

Lwait

on

answering-machine

key pressed

done

KprocKwait

key-offkey-on

hangup
(caller)

key-monitoring

Lproc

Fig. 2.16 Answering machine

For the time being, we assume that the on/off switch (generating events key-off
and key-on) is decoded separately and pushing it does not result in entering Kproc. If
the machine is switched off, the line monitoring state as well as the key monitoring
state is left and reentered only if the machine is switched on. At that time, default
states Lwait and Kwait are entered. While switched on, the machine will always be
in the line monitoring state as well as in the key monitoring state. ∇

For AND super-states, the sub-states entered as a result of entering the super-
state can be defined independently. There can be any combination of history, default,
and explicit transitions. It is crucial to understand that all sub-states will always be
entered, even if there is just one explicit transition to one of the sub-states. Accord-
ingly, transitions out of an AND super-state will always result in leaving all the
sub-states.

Example 2.13: For example, let us modify our answering machine such that the
on/off switch, like all other switches, is decoded in state Kproc (see Fig. 2.17).
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answering-machine

on

line-monitoring

ring

Lwait Lproc

key-on

key-off

done

key pressed

KprocKwait

hangup
(caller)

off

key-monitoring

Fig. 2.17 Answering machine with modified on/off switch processing

If pushing that key is detected in Kwait, transitions are assumed first into state
Kproc and then into the off state. The second transition results in leaving the line
monitoring state as well. Switching the machine on again results in also entering the
line monitoring state. ∇

AND super-states provide the key mechanism for describing concurrency inbreak
StateCharts. Each sub-state can be considered a state machine by itself. These
machines are communicating with each other, forming communicating finite state
machines (CFSMs). This term has been used as the title of this section.

Summarizing, we can state the following: States in StateCharts diagrams are
either AND states, OR states, or basic states.

2.4.2.2 Timers

Due to the requirement tomodel time in embedded systems, StateCharts also provides
timers. Timers are denoted by the symbol shown in Fig. 2.18 on the left.

Fig. 2.18 Timer in
StateCharts

a 20 ms timeout

After the system has been in the state containing the timer for the specified time,
a time-out will occur and the system will leave the specified state. Timers can also
be used hierarchically.
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Timers can be employed, for example, at the next lower level of the hierarchy of
the answering machine in order to describe the behavior of state Lproc. Figure 2.19
shows a possible behavior for that state. The timing specification is slightly different
from the one in Fig. 2.11.

Fig. 2.19 Servicing the
incoming line in Lproc
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Due to the exception-like transition for hang-ups by the caller in Fig. 2.16, state
Lproc is terminated whenever the caller hangs up. For hang-ups (returns) by the
callee, the design of state Lproc results in an inconvenience: If the callee hangs up
the phone first, the telephone will be dead (and quiet) until the caller has also hung
up the phone.

The StateCharts language includes a number of other language elements. For a
full description, refer to Harel [197]. A more detailed description of the semantics
of StateCharts is described by Drusinsky and Harel [135].

2.4.2.3 Edge Labels and StateMate Semantics

Until now, we have not considered outputs generated by our extended FSMs. Gener-
ated outputs can be specified using edge labels. The general form of an edge label is
“event[condition]/reaction.” All three label parts are optional. The reaction part
describes the reaction of the FSM to a state transition. Possible reactions include the
generation of events and assignments to variables. The condition part implies a test
of the values of variables or a test of the current state of the system. The event part
refers to a test of current events. Events can be generated either internally or exter-
nally. Internal events are generated as a result of some transition and are described
in reaction parts. External events are usually described in the model environment.

Examples:

• on-key / on := 1 (Event test and variable assignment),
• [on = 1] (Condition test for a variable value),
• off-key [not in Lproc] / on := 0 (Event test, condition test for a state, variable
assignment. The assignment is performed if the event has occurred and the condi-
tion is true).

The semantics of edge labels can only be explained in the context of the semantics
of StateMate [135], a commercial implementation of StateCharts. StateMate assumes
a step-based execution of StateMate descriptions. Each step consists of three phases:
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1. In the first phase, the impact of external changes on conditions and events is
evaluated. This includes the evaluation of functions which depend on external
events. This phase does not include any state changes. In our simple examples,
this phase is not actually needed.

2. The next phase is to calculate the set of transitions that should be made in the
current step. Variable assignments are evaluated, but the new values are only
assigned to temporary variables.

3. In the third phase, state transitions become effective and variables obtain their
new values.

The separation into phases 2 and 3 is important in order to guarantee a reproducible
behavior of StateMate models.

Example 2.14: Consider the StateMate model of Fig. 2.20.

Fig. 2.20 Mutually
dependent assignments

1 0

swap

/a:=  ; b:=

e/a:=b e/b:=a

In the second phase, new values for a and b are stored in temporary variables, say
a’ and b’. In the final phase, temporary variables are copied into the user-defined
variables:

phase 2: a’:=b; b’:=a;

phase 3: a:=a’; b:=b’

As a result, the values of the two variables will be swapped each time an event e
happens. This behavior corresponds to that of two cross-coupled registers (one for
each variable) connected to the same clock (see Fig. 2.21) and reflects the operation
of a synchronous (clocked) finite state machine including those two registers10.

Fig. 2.21 Cross-coupled
D-type registers

clock

D D
ba

10We adopt IEEE standard schematic symbols [230] for gates and registers for all the schematics
in this book. The symbols in Fig. 2.21 denote clocked D-type registers.
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Without the separation into phases, the same value would be assigned to both
variables. The result would depend on the sequence in which the assignments were
performed. ∇
The separation into (at least) two phases is quite typical for languages that try to
reflect the operation of synchronous hardware. We will find the same separation in
VHDL (see p. 102). Due to the separation, the results do not depend on the order in
which parts of the model are executed by the simulation. This property is extremely
important. Otherwise, there could be simulation runs generating different results,
all of which would be considered correct. This is not what we expect from the
simulation of a real circuit with a fixed behavior and it could be very confusing in
design procedures. There are different names for this property:

• Kahn [266] calls this property determinate.
• In other papers, this property is called deterministic. However, the term “deter-
ministic” is employed with different meanings:

– It is used in the context of deterministic finite state machines, FSMs, which can
be only in one state at a time. In contrast, non-deterministic finite state machines
can be in several states at the same time [212].

– Languages may have non-deterministic operators. For these operators, different
behaviors are legal implementations. Approximate, non-deterministic compu-
tations would be a relevant special case of non-deterministic operators.

– Many authors consider systems to be non-deterministic if their behavior depends
on some input not known before run-time.

– The term “deterministic” has also been used in the sense of “determinate,” as
introduced by Kahn.

In this book, we prefer to reduce possible confusion by following Kahn11. Note
that StateMate models can be determinate only if there are no other reasons for an
undefined behavior. For example, conflicts between transitions may be allowed (see
Fig. 2.22).

Fig. 2.22 Left: conflict
between different nesting
levels; right: conflict at the
same nesting level

>10<20 xxA

A

Consider Fig. 2.22 (left). If event A takes place while the system is in the left
state, we must figure out which transition will take place. If these conflicts would
be resolved arbitrarily, then we would have a non-determinate behavior. Typically,

11In the first edition of the book, we used the term “deterministic” together with an additional
explanation.
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priorities are defined such that this type of a conflict is eliminated. Now, consider
Fig. 2.22 (right). There will be a conflict for x=15. Such conflicts are difficult to
detect. Achieving a determinate behavior requires the absence of conflicts that are
resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determinate
behavior (e.g., if we have a choice to read from two inputs). In such a case, we would
typically like to explicitly indicate that this choice can be taken at run-time (see the
select statement of Ada on p. 107).

Implementations of hierarchical state charts other than StateMate typically do
not exhibit determinate behavior. These implementations correspond to a software-
oriented view onto hierarchical state charts. In such implementations, choices are
usually not explicitly described.

The three phases described onp. 52 have to be repeatedly executed. Each execution
is called a step (see Fig. 2.23).

Fig. 2.23 Steps during the
execution of a StateMate
model

3 phases 3 phases 3 phases

Status Status StatusStatus Step Step Step

Steps are assumed to be executed each time events or variables have changed.
The set of all values of variables, together with the set of events generated (and
the current time), is defined as the status12 of a StateMate model. After executing
the third phase, a new status is obtained. The notion of steps allows us to define
the semantics of events more precisely. Events are generated, as mentioned, either
internally or externally. The visibility of events is limited to the step following the
one in which they are generated. Thus, events behave like single bit values which
are stored in permanently enabled registers at one clock transition and have an effect
on the values stored at the next clock transition. They do not live forever.

Variables, in contrast, retain their values until they are reassigned. According to
StateMate semantics, new values of variables are visible to all parts of the model
from the step following the step in which the assignment was made onward. That
means that StateMate semantics implies that new values of variables are propagated
to all parts of a model between two steps. StateMate implicitly assumes a broad-
cast mechanism for updates on variables. Hence, StateCharts or StateMate can be
implemented easily for shared memory-based platforms but is less appropriate for
message passing and distributed systems. These languages essentially assume shared
memory-based communication, even though this is not explicitly stated. For distrib-
uted systems, it will be very difficult to update all variables between two steps. Due
to this broadcast mechanism, StateMate is not an appropriate language for modeling
distributed systems.

12We would normally use the term “state” instead of “status.” However, the term “state” has a
different meaning in StateMate.
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2.4.2.4 Evaluation and Extensions

StateCharts’ main application domain is that of local, control-dominated systems.
The capability of nesting hierarchies at arbitrary levels, with a free choice of AND
and OR states, is a key advantage of StateCharts. Another advantage is that the
semantics of StateMate is defined at a sufficient level of detail [135]. Furthermore,
there are quite a number of commercial tools based on StateCharts. StateMate [220]
and StateFlow [365] are examples of commercial tools based on StateCharts. Many
of them are capable of translating StateCharts into equivalent descriptions in C or
VHDL (see p. 94). From VHDL, hardware can be generated using synthesis tools.
Therefore, StateCharts-based tools provide a complete path from StateCharts-based
specifications down to hardware. Generated C programs can be compiled and exe-
cuted. Hence, a path to software-based realizations exists as well.

Unfortunately, the efficiency of the automatic translation is sometimes a concern.
For example, we could map sub-states of AND states to processes at the operating
system level. This would hardly lead to efficient implementations on small proces-
sors. The productivity gain from object-oriented programming is not available in
StateCharts, since it is not object-oriented. Furthermore, the broadcast mechanism
makes it less appropriate for distributed systems. StateCharts do not comprise pro-
gram constructs for describing complex computation and cannot describe hardware
structures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mechanisms
for removing the limitations of the model. For example, C code can be used to rep-
resent program constructs and module charts of StateMate can represent hardware
structures.

StateCharts allows timeouts. There is no straightforward way of specifying other
timing requirements.

UML includes a variation of StateCharts and hence allows modeling state
machines. In UML, these diagrams are called state diagrams in version 1 of UML
and state machine diagrams from version 2.0 onward. Unfortunately, the semantics
of state machine diagrams in UML is different from StateMate: The three simulation
phases are not included.

2.4.3 Synchronous Languages

2.4.3.1 Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such
diagrams cannot express complex computations. Standard programming languages
can express complex computations, but the sequence of executing several threadsmay
be unpredictable. In a multi-threaded environment with preemptive scheduling, there
can be many different interleavings of the different computations. Understanding all
possible behaviors of such concurrent systems is difficult. A key reason for this is
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that, in general, many different execution orders are feasible, i.e., the execution order
is not specified. The order of execution may well affect the result. The resulting non-
determinate behavior can have a number of negative consequences, such as problems
with verifying a certain design. For distributed systems with independent clocks,
determinate behavior is difficult to achieve. However, for non-distributed systems,
we can try to avoid the problems of unnecessary non-determinate semantics.

For synchronous languages, finite state machines and programming languages
are merged into one model. Synchronous languages can express complex computa-
tions, but the underlying execution model is that of finite automata. They describe
concurrently operating automata. Determinate behavior is achieved by the following
key feature: “... when automata are composed in parallel, a transition of the product
is made of the ‘simultaneous’ transitions of all of them” [191]. This means that we
do not have to consider all the different sequences of state changes of the automata
that would be possible if each of them had its own clock. Instead, we can assume
the presence of a single global clock. Each clock tick, all inputs are considered, new
outputs and states are calculated, and then the transitions are made. This requires a
fast broadcast mechanism for all parts of the model. This idealistic view of concur-
rency has the advantage of guaranteeing determinate behavior. This is a restriction
if compared to the general communicating finite state machines (CFSM) model, in
which each FSM can have its own clock. Synchronous languages reflect the princi-
ples of operation in synchronous hardware and also the semantics found in control
languages such as IEC 60848 [223] and STEP 7 [463]. See Potop-Butucaru et al.
[433] for a survey on synchronous languages.

2.4.3.2 Examples of Synchronous Languages: Esterel,
Lustre, and SCADE

Guaranteeing a determinate behavior for all language features has been a design goal
for the synchronous languages such as Esterel [63, 148], Lustre [193], and Quartz
[455].

Esterel is a reactive language: When activated with an input event, Esterel models
react by producing an output event. Esterel is a synchronous language: All reactions
are assumed to be completed in zero time and it is sufficient to analyze the behav-
ior at discrete moments in time. This idealized model avoids all discussions about
overlapping time ranges and about events that arrive while the previous reaction
has not been completed. Like other concurrent languages, Esterel has a parallelism
operator, written ||. Similar to StateCharts, communication is based on a broadcast
mechanism. In contrast to StateCharts, however, communication is instantaneous.
Instantaneous in this context means “within the same clock cycle.” This means that
all signals generated in a particular clock cycle are also seen by the others parts of
the model in the same clock cycle and these other parts, if sensitive to the generated
signals, react in the same clock cycle. Several rounds of evaluations may be required
until a stable state is reached. The computation of resulting worst-case reaction times
is performed, for example, by Boldt et al. [59]. The propagation of values during
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the same macroscopic instant of time corresponds to the generation of a next status
for the same moment in time in StateMate, except that the broadcast is now instan-
taneous and not delayed until the next round of evaluations like in StateMate. For
more and updated information about Esterel, refer to the Esterel home page [148].

Esterel and Lustre use different syntactic techniques to denote CFSMs. Esterel
appears as a kind of imperative language, whereas Lustre looks more like a data
flow language (see p. 64 for a description of data flow). SyncCharts is a graphical
version of Esterel. In all three cases, semantics are explained by the closely related
underlying CFSMs. The commercial graphical language SCADE [147] combines
elements of all three languages. The so-called SCADE suite® is used for a number
of safety-critical software components, for example, by Airbus.

Due to the three simulation phases in StateMate, this tool has the key attributes
of synchronous languages and it is determinate if conflicts are resolved. According
to Halbwachs, “StateMate is almost a synchronous language and the only feature
missing in StateMate is the instantaneous broadcast” [192].

2.4.4 Message Passing: SDL as an Example

2.4.4.1 Features of the Language

StateCharts is not appropriate for modeling distributed communicating finite state
machines. For distributed systems, message passing is the better communication
paradigm. Therefore, we present a case of communicating finite state machines with
asynchronous message passing.

We use SDL (specification and description language) as an example. SDL was
designed for distributed applications. It dates back to the 1970s. Formal semantics
have been available since the 1980s. The language was standardized by the ITU
(International Telecommunication Union). The first standards document is the Z.100
Recommendation published in 1980, with updates in 1984, 1988, 1992 (SDL-92),
1996, and 1999. Relevant versions of the standard include SDL-88, SDL-92, SDL-
2000, and SDL-2010 [444, 457].

Many users prefer graphical specification languages, while others prefer textual
ones. SDL pleases both types of users since it provides textual as well as graphical
formats. Processes are the basic elements of SDL. Processes represent components
modeled as extended finite state machines. Extensions include operations on data.
Figure 2.24 shows the graphical symbols used in the graphical representation of SDL.

Fig. 2.24 Symbols used in
the graphical form of SDL

input output

stateidentifies initial state
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Example 2.15: As an example, we will consider how the state diagram in Fig. 2.25
can be represented in SDL. Figure2.25 is the same as Fig. 2.13, except that output
has been added, state Z has been deleted, and the effect of signal k has been changed.

k

E
j/z

D
i/y

CBA
g/w

f/v

h/x

Fig. 2.25 FSM to be described in SDL

Figure 2.26 contains the corresponding graphical SDL representation.

Process P1

A

g

w

B C

x

h

B C
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y

D E
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D E

f

v

A

k

A

Fig. 2.26 SDL representation of Fig. 2.25

Obviously, the representation in Fig. 2.26 is equivalent to the state diagram of
Fig. 2.25. ∇

As an extension to FSMs, SDL processes can perform operations on data. Vari-
ables can be declared locally for processes. Their type can either be predefined or
defined in the SDL description itself. SDL supports abstract data types (ADTs). The
syntax for declarations and operations is similar to that in other languages. Figure
2.27 shows how declarations, assignments, and decisions can be represented in SDL.

Fig. 2.27 Declarations,
assignments, and decisions
in SDL  Date String;

Counter Integer;
DCL Counter := Counter + 3;

Counter

ELSE(11:30)(1:10)
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SDLalso contains programming language elements such as procedures. Procedure
calls can also be represented graphically. Object-oriented features became available
with version SDL-1992 of the language and were extended with SDL-2000.

Extended FSMs are just the basic elements of SDL descriptions. In general, SDL
descriptions will consist of a set of interacting processes, or FSMs. Processes can
send signals to other processes. Semantics of inter-process communication in SDL is
based on asynchronousmessage passing and conceptually implemented through first-
in first-out (FIFO)-queues associatedwith processes. There is exactly one input queue
per process. Signals sent to a particular process will be placed into the corresponding
FIFO queue (see Fig. 2.28).

process 1
process 3

process 2

Fig. 2.28 SDL inter-process communication

Each process is assumed to fetch the next available entry from the FIFO queue
and check whether it matches one of the inputs described for the current state. If it
does, the corresponding state transition takes place and output is generated. The entry
from the FIFO queue is ignored if it does not match any of the listed inputs (unless
the so-called SAVE mechanism is used). FIFO queues are conceptually thought of
as being of infinite length. This means that in the description of the semantics of
SDLmodels, FIFO overflow is never taken into account. In actual systems, however,
infinite FIFO queues cannot be implemented. They must be of finite length. This is
one of the problems of SDL: In order to derive realizations from specifications, safe
upper bounds on the length of the FIFO queues must be proven.

Process interaction diagrams can be used for visualizing which of the processes
are communicating with each other. Process interaction diagrams include channels
used for sending and receiving signals. In the case of SDL, the term “signal” denotes
inputs and outputs of modeled automata.

Example 2.16: Figure2.29 shows a process interaction diagram B1 with channels
Sw1 and Sw2. Brackets include the names of signals propagated along a certain
channel.
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Signal A, B;

process P2process P1

[A]

[A,B]

Sw2

Sw1

BLOCK B1

Fig. 2.29 Process interaction diagram ∇

There are three ways of indicating the recipient of signals:

1. Through process identifiers: by using identifiers of recipient processes in the
graphical output symbol (see Fig. 2.30 (left)).

Counter
VIA Sw1

Counter
TO OFFSPRING

Fig. 2.30 Left: process name identifies recipient; right: channel identifies recipient

The number of processes does not need to be fixed at compile time, since
processes can be generated dynamically at run-time. OFFSPRING represents
identifiers of child processes generated dynamically by a process.

2. Explicitly: by indicating the channel name (see Fig. 2.30 (right)). Sw1 is the
name of a channel.

3. Implicitly: If signal names imply the channel names, those channels are used.
Example: For Fig. 2.29, signal B will implicitly always be communicated via
channel Sw1.

No process can be defined within any other (processes cannot be nested). However,
they can be grouped hierarchically into so-called blocks. Blocks at the highest hier-
archy level are called systems. A systemwill not have any channels at its boundary if
the environment is also modeled as a block. Process interaction diagrams are special
cases of block diagrams. Process interaction diagrams are one level above the leaves
of the hierarchical description.

Example 2.17: Block B1 of Example 2.16 can be used within intermediate-level
blocks (such as within B in Fig. 2.31).

Fig. 2.31 SDL block

B2
C4

Block B
C2

C3

B1
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At the highest level in the hierarchy, we have the system (see Fig. 2.32).

Fig. 2.32 SDL system

C

C'
B A

System S

Figure 2.33 shows the hierarchy modeled by block diagrams Figs. 2.29, 2.31, and
2.32.

Fig. 2.33 SDL hierarchy
S

P2P1

B2B1

BA C

.......

...

This example demonstrates that process interaction diagrams are next to the leaves
of the hierarchical description, while system descriptions represent their root. ∇

Some of the restrictions of modeling hierarchy are removed in version SDL-2000
of the language. With SDL-2000, the descriptive power of blocks and processes is
harmonized and replaced by a general agent concept.

In order to support the modeling of time, SDL includes timers. Timers can be
declared locally for processes. They can be set using theSET primitive. This primitive
has two parameters: an absolute time and a timer name. The absolute time defines a
time at which the timer elapses. The built-in function now can be used to refer to the
time at which the SET primitive is executed. Once a timer is elapsed, a signal is stored
in the input queue. The name of this signal is obtained from the second parameter
of the SET call. The signal will then typically cause a certain transition to take place
in the FSM. However, this transition may be delayed by other entries in the input
queue which have to be processed first. Hence, this timer concept is designed for soft
timing constraints typically found in telecommunications and inappropriate for hard
timing constraints. A second built-in function expirytime can be used to avoid some
of the limitations of the now function.

Timers can be reset using the RESET primitive. This primitive will stop the count-
ing process and—in case the signal has already been stored in the input queue—
removes the signal from it. An implicit RESET is executed at the very beginning of
executing a SET.
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Example 2.18: Figure2.34 shows the use of a timer T. The diagram corresponds to
that of Fig. 2.26, with the exception that timer T is set to the current time now plus
p during the transition from state D to E . For the transition from E to A, we now

AA

v

f

E

T

RESET(T)

SET(now+p,T)

D

j

ED

y

i

CB

h

x

EB

w

g

A

Process S Timer T;

Fig. 2.34 Using timer T

have a timeout of p time units. If these time units have elapsed before signal f has
arrived, a transition to state A is taken without generating output signal v. Strictly,
periodic processing with a period of p is difficult to achieve this way, due to the
possible delays by other entries in the input queue. ∇

Example 2.19: SDL can be used to describe protocol stacks found in computer
networks, and SDL is very appropriate for this. Figure 2.35 shows three processors
connected through a router. Communication between processors and the router is
based on FIFOs. The processors as well as the router implement layered protocols

C2
C3

C1

Processor A Router Processor B Processor C

System

Fig. 2.35 Small computer network described in SDL

(see Fig. 2.36). Each layer describes communication at a more abstract level. The

layer-1

layer-2

Block Router

.....

layer-n

.....

layer-n

.....

layer-n

layer-1 layer-1layer-1

Block Processor A Block Processor B Block Processor C

Fig. 2.36 Protocol stacks represented in SDL
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behavior of each layer is typically modeled as a finite state machine. The detailed
description of these FSMsdepends on the network protocol and can be quite complex.
Typically, this behavior includes checking and handling of error conditions, as well
as sorting and forwarding of information packets. ∇

Available tools for SDL include interfaces to UML (see p. 117), and SCs (see
page 40). A comprehensive list of tools is available from the SDL forum [458].

Estelle [76] is another language which was designed to describe communication
protocols. Similar to SDL, Estelle assumes communication via channels and FIFO
buffers. Attempts to unify Estelle and SDL failed.

2.4.4.2 Evaluation of SDL

SDL is excellent for distributed applications and has been used, for example, for
specifying ISDN.

SDL is not necessarily determinate (the order, in which signals arriving at some
FIFO at the same time are processed, is not specified).

Reliable implementations require the knowledge of a upper bound on the length
of the FIFOs. This upper bound may be difficult to compute. The timer concept is
sufficient for soft deadlines, but not for hard ones.

Hierarchies are not supported in the same way as in StateCharts.
There is no full programming support (but revisions of the standard changed this)

and no description of non-functional properties.
SDL is very useful as a reference model for asynchronous message passing, but

the interest in SDL is decreasing.

2.5 Data Flow

2.5.1 Scope

Data flow is a very “natural” way of describing real-life applications. Data flow
models reflect the way in which data flows from component to component [140].
Each component transforms the data in one way or the other. The following is a
possible definition of data flow :

Definition 2.11 ([554]):Data flowmodeling “is the process of identifying, modeling,
and documenting how data moves around an information system. Data flow modeling
examines processes (activities that transform data from one form to another), data
stores (the holding areas for data), external entities (what sends data into a system
or receives data from a system), data flows (routes by which data can flow)”.



2.5 Data Flow 65

A data flow program is specified by a directed graph where the nodes (vertices),
called actors, represent computations and the arcs represent communication chan-
nels. The computation performed by each actor is assumed to be functional, that is,
based on the input values only. Each process in a data flow graph is decomposed into
a sequence of firings, which are atomic actions. Each firing produces and consumes
tokens.

Example 2.20: Figure2.37 describes, as an example, the flow of data in a video-
on-demand (VOD) system [287]. Viewers are entering the system via the network

Address

Interface

Network

Network

Control
Storage

Viewer Commands

Data
Video

Video Data

Viewers

Net Viewers

Subsystem
Storage

File System

Scheduler

control
Admission

Queue
Customer

List
Customer

Fig. 2.37 Video-on-demand system

interface. Their admission request is added to the customer queue. Once they are
admitted, their requests are scheduled for the file system. The file system, in coop-
eration with storage control, makes videos available to the customer. ∇

For unrestricted data flow, it is difficult to prove requested system properties.
Therefore, restricted models are commonly used.

A special type of data flow is used for implementing out-of-order execution of
instructions in computer architectures. This type of execution is also known as
dynamic scheduling of instructions. Two algorithms for dynamic scheduling are
well-known: scoreboarding and the Tomasulo algorithm [520]. Both algorithms are
covered in detail in books on computer architecture (see, for example, Hennessy
et al. [205]). Therefore, they are not included in this book. However, there are
variants of these algorithms which are applied at task level (for example, see
Wang et al. [537]).

2.5.2 Kahn Process Networks

Kahn process networks (KPN) [266] are a special case of data flow models. Like
other data flow models, KPNs consist of nodes and edges. Nodes correspond to
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computations performed by some program or task. KPN graphs, like all data flow
graphs, show computations to be performed and their dependencies, but not the
order in which the computations must be performed (in contrast to specifications
in von-Neumann languages such as C). Edges imply communication via channels
containing potentially infinite FIFOs. Computation times and communication times
may vary, but communication is guaranteed to happen within a finite amount of time.
Writes are non-blocking, since the FIFOs are assumed to be as large as needed. Reads
must specify a single channel to be read from. A node cannot check whether data is
available before attempting a read. A process cannot wait for data on more than one
port at a time. Read operations block whenever an attempt is made to read from an
empty FIFO queue. Only a single process is allowed to read from a certain queue,
and only a single process is allowed to write into a queue. So, if output data has to be
sent to more than a single process, duplication of data must be done inside processes.
There is no other way for communication between processes except through FIFO
queues.

In the following example, p1 and p2 are incrementing and decrementing the value
received from the partner:

process p1(in int u, out int v){

int i;

i = 0;

for (;;) {

send(i,v); /* send i via channel v */

i = wait(u); /* read i from channel u */

i = i-1; }

}

process p2(in int v, out int u){

int i;

for (;;) {

i = wait(v);

i = i+1;

send(i,u); }

}

Figure 2.38 shows a graphical representation of this KPN.

Fig. 2.38 Graphical
representation of KPN

FIFO

FIFO
v

u
p2p1

Obviously,we do not really need the FIFOs in this example, sincemessages cannot
accumulate in the channels. This example and other examples can be simulated with
the levi simulation software [471].
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The restrictions are resulting in the key beauty of KPNs: The order in which a
node is reading data from its channels is fixed by the sequence of read operations and
does not depend on the order in which producers are transmitting data over the chan-
nels. This means that the sequence of operations is independent of the speed of the
nodes producing data.For a given set of input data,KPNswill always generate the
same results, independently of the speed of the nodes. This property is important,
for example, for simulations: It does not matter how fast we are simulating the KPN,
the result will always be the same. In particular, the result does not depend on using
hardware accelerators for some of the nodes and a distributed execution will give
the same result as a centralized one. This property has been called “determinate,”
and we are following this use. SDL-like conflicts at FIFOs do not exist. Due to this
nice property, KPNs are frequently used as an internal representation within a design
flow.

Sometimes, KPNs are extended with a “merge” operator (corresponding to Ada’s
select statement, see p. 107). This operator allows for queuing read commands
containing a list of channels. The operator completes execution after the first of
these channels has generated data. Such an operator introduces a non-determinate
behavior: The order of processing inputs is not specified if both inputs arrive at the
same time. This extension is useful in practice, but it destroys the key beauty of
KPNs.

In general, Kahn processes require scheduling at run-time, since it is difficult to
predict their precise behavior over time. These problems result from the fact that we
do not make any assumptions regarding the speed of the channels and the nodes.
Nevertheless, execution times are actually unknown during early design phases, and
therefore, this model is very adequate.

KPNs are Turing complete, which means whatever can be computed by a Turing
machine (the standard model for computability) can also be computed by a KPN.
The proof is based on the fact that KPNs are a superset of so-called Boolean Dataflow
(BDF), and according toBuck [75],BDFcan simulateTuringmachines.However, the
number of processes has to be fixed at design time, which is an important limitation
for many applications.

The question ofwhether or not finite-length FIFOs are sufficient for an actual KPN
model is undecidable in the general case. However, useful scheduling algorithms
[281] or proofs of the boundedness of the FIFOs [100] exist for some special cases.
For example, these bounds can be derived for Polyhedral Process Networks (PPNs).
ForPPNs, the code for eachof the nodes includes loopswith bounds knownat compile
time. Derin [120] exploits knowledge about the code of the nodes for dynamic task
migration.

2.5.3 Synchronous Data Flow

Scheduling becomes significantly easier, and questions regarding buffer sizes can
decidably be answered if we impose restrictions on the timing of nodes and channels.
Synchronous data flow (SDF) [319] is such a model. SDF can best be introduced
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by referring to its graphical notation. SDF models include a directed graph, i.e.,
SDF models contain nodes and directed edges. Nodes are also called actors. Edges
can store tokens, by default an unlimited number of them. In general, some of the
edges will initially contain some tokens. Each edge has an incoming and an outgoing
weight. The execution of an SDF model assumes a clock. For an actor to be enabled,
it is necessary that for each of the edges leading to that actor the number of tokens
on that edge is at least equal to the outgoing weight for that edge.

Example 2.21: Figure2.39 (left) shows a synchronous data flow graph. Actor B is
enabled since there is a sufficient number of tokens on the edges leading to B. Actor
A is not enabled. Input edges like the one shown at the top for actor A are assumed
to supply an infinite stream of tokens. Each clock tick, all enabled actors fire. As a

..

1 2

2

1
1

BA

..

1 2

2

1
1

BA

Fig. 2.39 Graphical representation of SDF: left: initial situation; right: after firing B

result, the number of tokens on the incoming edges get decreased by the incoming
weight and the number of tokens on the outgoing edges are increased by the outgoing
weight. Obviously, the number of tokens produced or consumed in a particular firing
is static (does not vary during the execution of the model). For our example, the
resulting number of tokens is shown in Fig. 2.39 on the right. ∇

In practice, tokens will represent data, actors will represent computations, and
edges should correspond to FIFO buffers.

Buffers on the edges imply that SDF uses asynchronousmessage passing. Instead
of using the default unlimited buffer capacities, we can express limited buffer capac-
ities with backward edges. The initial number of tokens on these backward edges
corresponds to the capacity of the FIFO buffer. This is shown in Fig. 2.40. The two
models shown in Fig. 2.40 are equivalent.
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Fig. 2.40 Replacing explicit FIFO buffers by backward edges

For example, the first firing of A will consume three tokens from the backward
edge, leaving only one token on the backward edge, corresponding to the one empty
FIFO slot after the first firing of A on the left.
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The property of producing and consuming a static number of tokens makes it
possible to determine execution order and memory requirements at compile time.
Hence, complex run-time scheduling of executions is avoided. SDF graphs can be
translated into periodic schedules.

Example 2.22: Let us have a closer look at schedules of SDF models. Consider the
example shown in Fig. 2.41. Suppose that initially there are six tokens for edge e1.

Fig. 2.41 SDF loop 6423

e1

2e

.......

A B

Then, Table2.2 (left) shows the resulting schedule for firings. Due to the limited
number of initial tokens, only sequential firings are feasible.

Table 2.2 Schedules for loop in SDF: left: six initial tokens on e1, right: nine initial tokens on e1

Now, let us assume that there are nine initial tokens for edge e1. Then, the sched-
ule of Table2.2 (right) is produced. Under this assumption, A and B fire synchro-
nously. ∇

During the generation of schedules, we could also consider constraints and objec-
tives such as a limited number of available processors [60].

In this example, using edge labels 2, 3, 4, and 6 resulted in different execution
rates of actors A and B. In general, edge labels facilitate the modeling of multi-rate
signal processing applications, applications for which certain signals are generated
at frequencies that are multiples of other frequencies. For example, in a TV set, some
computations might be performed at a rate of 100Hz while others are performed at a
rate of 50Hz. Ignoring some initial transient phase and considering longer periods,
the number of tokens sent to an edgemust be equal to the number of tokens consumed.
Otherwise, tokens would accumulate in the FIFO buffers and no finite FIFO capacity
would be sufficient. Let ns be the number of tokens produced by some sender per
firing, and let fs be the corresponding rate. Let nr be the corresponding number of
tokens consumed per firing at the receiver, and let fr be the corresponding rate. Then,
we must have

ns ∗ fs = nr ∗ fr (2.3)
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This condition is met in the steady state for the example shown in Table2.2.
SDF graphs may include delays, denoted by the symbol D on an edge (see

Fig. 2.42).

Fig. 2.42 SDF delay
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The observer pattern, mentioned as a problem for modeling with von-Neumann
languages on p. 31, can be easily implemented correctly in SDF (see Fig. 2.43).
There is no risk of deadlocks. However, SDF does not allow adding new observers
at run-time.

Fig. 2.43 Observer pattern
in SDF
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The letter S in SDF initially was meant to stand for the term synchronous, since
enabled nodes fire synchronously. However, the two schedules in Table2.2 demon-
strate that cases of firing all actors synchronouslymay indeed be very rare. Therefore,
the “S” in SDF has also been reinterpreted to denote the term “static” instead of “syn-
chronous.”

SDF models are determinate, but they are not appropriate for modeling control
flow, such as branches. Several extensions and variations of SDF models have been
proposed (see, for example, Stuijk [491]):

• For example, we can have modes corresponding to states of an associated finite
state machine. For each of the modes, a different SDF graph could be relevant.
Certain events could then cause transitions between these modes.

• Homogeneous synchronous data flow (HSDF) graphs are a special case of SDF
graphs. For HSDF graphs, the number of tokens consumed and produced per firing
is always 1.

• For cyclo-static data flow (CSDF), the number of tokens produced and consumed
per firing can vary over time, but has to be periodic.

Complex SUDs including control flowmust be modeled using more general com-
putational graph structures.
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2.5.4 Simulink

Computational graph structures are also frequently used in control engineering. For
this domain, the Simulink® toolbox of MATLAB® [506, 510] is very popular. MAT-
LAB is a modeling and simulation tool based on mathematical models including
partial differential equations. Figure 2.44 shows an example of a Simulink model
[349].
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teta10
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teta_com_select goto
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vc_cmd
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1

elevator
control

sticks

Fig. 2.44 Simulink model

The amplifier and the saturation component on the right demonstrate the inclusion
of analog modeling. In the general case, the “schematic” could contain symbols
denoting analog components such as integrators, differentiators. The switch in the
center indicates that Simulink also allows some control flow modeling.

The graphical representation is intuitive and allows control engineers to focus
on the control function, without caring about the code necessary to implement the
function. The graphical symbols suggest that analog circuits are used as traditional
components in control designs. A key goal is to synthesize software from such
models. This approach is typically associated with the term model-based design.

Semantics of Simulink models reflect the simulation on a digital computer, and
the behavior may be similar to that of analog circuits, but possibly not quite the
same. What is actually the semantics of a Simulink model? Marian and Ma [349]
describe the semantics as follows: “Simulink uses an idealized timing model for block
(node) execution and communication. Both happen infinitely fast at exact points in
simulated time. Thereafter, simulated time is advanced by exact time steps. All values
on edges are constant in between time steps.” This means that we execute the model
time step after time step. For each step, we compute the function of the nodes (in
zero time) and propagate the new values to connected inputs. This explanation does
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not specify the distance between time steps. Also, it does not immediately tell us
how to implement the system in software, since even slowly varying outputs may be
recomputed frequently.

This approach is appropriate for modeling physical systems such as cars or trains
at a high level and then simulating the behavior of these systems. Also, digital signal
processing systems can be convenientlymodeledwithMATLAB® and Simulink®. In
order to generate implementations, MATLAB/Simulink models first must be trans-
lated into a language supported by software or hardware design systems, such as C
or VHDL.

Components in Simulink models provide a special case of actors. We can assume
that actors are waiting for input and perform their operation once all required inputs
have arrived. SDF is another case of actor-based languages. In actor-based lan-
guages, there is no need to pass control to these actors, like in von-Neumann
languages.

2.6 Petri Nets

2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with computational
graphs known as Petri nets. Actually, Petri nets model only control and control
dependencies. Modeling data as well requires extensions of Petri nets. Petri nets
focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal dependen-
cies, which became known as Petri nets [427]. Petri nets do not assume any global
synchronization and are therefore especially suited for modeling distributed systems.

Conditions, events, and a flow relation are the key elements of Petri nets. Con-
ditions are either satisfied or not satisfied. Events can happen. The flow relation
describes the conditions that must be met before events can happen and it also
describes the conditions that become true if events happen. Graphical notations for
Petri nets typically use circles to denote conditions and boxes to denote events.
Arrows represent flow relations.

Example 2.23: Figure2.45 shows a first example. This example describes mutual
exclusion for trains on a railroad track that must be used in both directions. A token
is used to prevent collisions of trains going into opposite directions. In the Petri net,
that token is symbolized by a condition in the center of the model. A partially filled
circle (a circle containing a second, filled circle) denotes that a condition is met (this
means that the track is available). When a train wants to travel to the right (also
denoted by a partially filled circle in Fig. 2.45), the two conditions that are necessary
for the event “train entering track from the left” are met.We call these two conditions
preconditions. If the preconditions of an event are met, it can happen.
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train wanting to go right train going

single-laned
to the left
train going

track available

to the right

train entering track from the left train leaving track to the right

Fig. 2.45 Single-track railroad segment

As a result of that event happening, the token is no longer available and there is
no train waiting to enter the track. Hence, the preconditions are no longer met and
the partially filled circles disappear (see Fig. 2.46).

train wanting to go right

to the left
train going

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.46 Using resource “track”

However, there is now a train going on that track from the left to the right, and
thus, the corresponding condition is met (see Fig. 2.46). A condition which is met
after an event happened is called a postcondition. In general, an event can happen
only if all its preconditions are true (or met). If it happens, the preconditions are no
longer met and the postconditions become valid. Arrows identify those conditions
which are preconditions of an event and those that are postconditions of an event.
Continuing with our example, we see that a train leaving the track will return the
token to the condition at the center of the model (see Fig. 2.47).

train wanting to go right

to the left
train going

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.47 Freeing resource “track”



74 2 Specifications and Modeling

If there are two trains competing for the single-track segment (see Fig. 2.48),
only one of them can enter. In such situations, the next transition to be fired is non-
deterministically chosen.

train wanting to go right

train going
to the left

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.48 Conflict for resource “track” ∇

Analyses of the net must consider all possible firing sequences. For Petri nets, we
are intentionally modeling non-determinism.

A key advantage of Petri nets is that they can be the basis for formal proofs about
system properties and that there are standardized ways of generating such proofs. In
order to enable such proofs, we need a more formal definition of Petri nets. We will
consider three classes of Petri nets: condition/event nets, place/transitions nets, and
predicate transition nets.

2.6.2 Condition/Event Nets

Condition/event nets are the first class of Petri nets that we will define more formally.

Definition 2.12: N = (C, E, F) is called a net iff the following holds:

1. C and E are disjoint sets.
2. F ⊆ (E × C) ∪ (C × E) is a binary relation, called flow relation.

The set C is called conditions and the set E is called events.

Definition 2.13: Let N be a net and let x ∈ (C ∪ E). •x := {y|yFx, y ∈ (C ∪ E)} is
called the preset of x . If x denotes an event, •x is also called the set of preconditions
of x .

Definition 2.14: Let N be a net and let x ∈ (C ∪ E). x• := {y|x Fy, y ∈ (C ∪ E)} is
called thepostset of x . If x denotes an event, x• is also called the set of postconditions
of x .

The terms preconditions and postconditions are preferred if these sets actually
denote conditions ∈ C , that is, if x ∈ E .

Definition 2.15: Let (c, e) ∈ C × E . (c, e) is called a loop if cFe ∧ eFc.
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Definition 2.16: Let (c, e) ∈ C × E . N is called pure if F does not contain any
loops (see Fig. 2.49, left).

Fig. 2.49 Nets which are not pure (left) and not simple (center and right)

Definition 2.17: A net is called simple if no two transitions t1 and t2 have the same
set of pre- and postconditions (see Fig. 2.49 (center and right)).

Simple nets with no isolated elements meeting some additional restrictions are
called condition/event nets. Condition/event nets are a special case of bipartite
graphs (graphs with two disjoint sets of nodes). We will not discuss those addi-
tional restrictions in detail since we will consider more general classes of nets in the
following.

2.6.3 Place/Transition Nets

For condition/event nets, there is at most one token per condition. For many applica-
tions, it is useful to remove this restriction and to allow more tokens per condition.
Nets allowing more than one token per condition are called place/transition nets.
Places correspond to what we so far called conditions and transitions correspond to
what we so far called events. The number of tokens per place is called a marking.
Mathematically, a marking is a mapping from the set of places to the set of natural
numbers extended by a special symbol ω denoting infinity.

Let N0 denote the natural numbers including 0. Then, formally speaking, place/
transition nets can be defined as follows:

Definition 2.18: (P, T, F, K , W, M0) is called a place/transition net ⇐⇒
1. N = (P, T, F) is a net with places p ∈ P , transitions t ∈ T , and flow relation F .
2. Mapping K : P → (N0∪{ω})\{0} denotes the capacity of places (ω symbolizes

infinite capacity).
3. Mapping W : F → (N0 \ {0}) denotes the weight of graph edges.
4. Mapping M0 : P → N0 ∪ {ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions can
happen and also identify the number of tokens that are generated if a certain transition
takes place. Let M(p) denote a currentmarking of place p ∈ P , and let M ′(p) denote
a marking after some transition t ∈ T took place. The weight of edges belonging to
preconditions represents the number of tokens that are removed from places in the
preset. Accordingly, the weight of edges belonging to the postconditions represents
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the number of tokens that are added to the places in the postset. Formally, marking
M ′ is computed as follows:

M ′(p) =

⎧
⎪⎪⎨

⎪⎪⎩

M(p) − W (p, t), if p ∈ •t \ t•
M(p) + W (t, p), if p ∈ t• \ •t
M(p) − W (p, t) + W (t, p), if p ∈ •t ∩ t•
M(p) otherwise

Figure 2.50 demonstrates how transition t j affects the current marking.

Fig. 2.50 Generation of a
new marking
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By default, unlabeled edges are considered to have a weight of 1 and unlabeled
places are considered to have unlimited capacity ω.

We now need to explain the two conditions that must be met before a transition
t ∈ T can take place:

• for all places p in the preset, the number of tokens must at least be equal to the
weight of the edge from p to t and

• for all places p in the postset, the capacity must be large enough to accommodate
the new tokens which t will generate.

Transitions meeting these two conditions are called M-activated. Formally, this
can be defined as follows:

Definition 2.19: Transition t ∈ T is said to be M-activated ⇐⇒

(∀p ∈ •t : M(p) ≥ W (p, t)) ∧ (∀p′ ∈ t• : M(p′) + W (t, p′) ≤ K (p′))

Activated transitions can happen, but they do not need to. If several transitions
are activated, the sequence in which they happen is not deterministically defined.

The impact of a firing transition t on the number of tokens can be represented
conveniently by a vector t associated with t . t is defined as follows:

t(p) =

⎧
⎪⎪⎨

⎪⎪⎩

−W (p, t), if p ∈ •t \ t•
+W (t, p), if p ∈ t• \ •t
−W (p, t) + W (t, p), if p ∈ •t ∩ t•
0 otherwise

The new number M ′ of tokens, resulting from the firing of transition t , can be
computed for all places p as follows:

M ′(p) = M(p) + t(p)
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Using “+” to denote vector addition, we can rewrite this equation as follows:

M ′ = M + t

The set of all vectors t form an incidence matrix N . N contains vectors t as
columns.

N : P × T → Z; ∀t ∈ T : N (p, t) = t(p)

It is possible to formally prove system properties by using matrix N . For example,
we are able to compute sets of places, for which firing transitions will not change
the overall number of tokens [445]. Such sets are called place invariants. Let us
initially consider a single transition t j in order to find such invariants. Let us search
for sets R ⊆ P of places such that the total number of tokens does not change if t j

fires. The following must hold for such sets:

∑

p∈R

t j (p) = 0 (2.4)

Figure 2.51 shows a transition for which the total number of tokens does not
change if it fires.

Fig. 2.51 Transition with a
constant number of tokens

tj
3 2
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We are now introducing the characteristic vector cR of some set R of places:

cR(p) =
{
1 iff p ∈ R
0 iff p /∈ R

With this definition, we can rewrite Eq. (2.4) as

∑

p∈R

t j (p) =
∑

p∈P

t j (p) · cR(p) = t j · cR = 0. (2.5)

which denotes the scalar product. Now, we search for sets of places such that firings
of any transitionwill not change the total number of tokens. Thismeans that Eq. (2.5)
must hold for all transitions t j :

t1 · cR = 0

t2 · cR = 0 (2.6)

...

tn · cR = 0
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Equation (2.6) can be combined into the following equation by using the trans-
posed incidence matrix N T :

N T · cR = 0 (2.7)

Equation (2.7) represents a system of linear, homogeneous equations. Matrix N
represents edge weights of our Petri nets. We are looking for solution vectors cR for
this system of equations. Solutions must be characteristic vectors. Therefore, their
components must be 1 or 0 (integer weights can be accepted if we use weighted
sums of tokens). This is more complex than solving systems of linear equations with
real-valued solution vectors. Nevertheless, it is possible to obtain information by
solving equation (2.7). Using this proof technique, we can, for example, show that
we are correctly implementing mutually exclusive access to shared resources.

Example 2.24: Let us now consider a larger example: We are again considering the
synchronization of trains. In particular, we are trying to model high-speed Thalys
trains traveling between Amsterdam, Cologne, Brussels, and Paris. Segments of
the train run independently from Amsterdam and Cologne to Brussels. There, the
segments get connected and then they run to Paris. On the way back from Paris, they
get disconnected at Brussels again. We assume that Thalys trains must synchronize
with some other train at Paris. The corresponding Petri net is shown in Fig. 2.52.

Fig. 2.52 Model of Thalys
trains running between
Amsterdam, Cologne,
Brussels, and Paris
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Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively.
Transitions 2 and 9 model trains driving from these cities to Brussels. After their
arrival at Brussels, places 2 and 9 contain tokens. Transition 1 denotes connecting
the two trains. The cup symbolizes the driver of one of the trains, who will have a
break at Brussels while the other driver is continuing on to Paris. Transition 5 models
synchronization with other trains at the Gare du Nord station of Paris. These other
trains connect Gare du Nord with some other stations (we have used Gare de Lyon
as an example, even though the situation at Paris is somewhat more complex). Of
course, Thalys trains do not use steam engines; they are just easier to visualize than
modern high-speed trains. Table2.3 shows matrix N T for this example.

Table 2.3 N T for the Thalys example

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

t1 1 –1 –1 1

t2 1 –1

t3 1 –1

t4 1 –1 1

t5 1 –1 –1 1

t6 –1 1

t7 1 –1

t8 1 –1

t9 1 –1

t10 1 –1 –1

For example, row 2 indicates that firing t2 will increase the number of tokens on
p2 by 1 and decrease the number of tokens on p3 by 1. Using techniques from linear
algebra, we are able to show that the following four vectors are solutions for this
system of linear equations:

cR,1 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
cR,2 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0)
cR,3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
cR,4 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0)

These vectors correspond to the places along the track for trains from Cologne,
to the places along the track for trains from Amsterdam, to the places along the
path for drivers of trains from Amsterdam, and to the places along the track within
Paris, respectively. Therefore, we are able to show that the number of trains and
drivers along these tracks is constant (something which we actually expect). This
example demonstrates that place invariants provide us with a standardized technique
for proving properties about systems. ∇
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2.6.4 Predicate/Transition Nets

Condition/event nets as well as place/transition nets can quickly become very large
for large examples. A reduction of the size of the nets is frequently possible with
predicate/transition nets.

Example 2.25: We will demonstrate this, using the so-called dining philosophers
problem as an example. The problem is based on the assumption that a set of
philosophers is dining at a round table. In front of each philosopher, there is a plate
containing spaghetti (see Fig. 2.53). Between each of the plates, there is just one

Fig. 2.53 The dining
philosophers problem

fork. Each philosopher is either eating or thinking. Eating philosophers need their
two adjacent forks for that, so they can only eat if their neighbors are not eating.

This situation can be modeled as a condition/event net, as shown in Fig. 2.54.

Fig. 2.54 Place/transition
net model of the dining
philosophers problem
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Conditions t j correspond to the thinking states, conditions e j correspond to the
eating states, and conditions f j represent available forks. Considering the small size
of the problem, this net is already very large. The size of this net can be reduced
by using predicate/transition nets. Figure 2.55 is a model of the same problem as
a predicate/transition net. With predicate/transition nets, tokens have an identity

Fig. 2.55 Predicate/transition
net model of the dining
philosophers problem
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and can be distinguished from each other. Predicate/transition nets have also been
called Colored Petri Nets (CPN). See Jensen [260] for a survey of applications
of CPNs for modeling of IT systems, including communication protocols. We use
this in Fig. 2.55 in order to distinguish between the three different philosophers p1

to p3 and to identify fork f3. Furthermore, edges can be labeled with variables and
functions. In the example, we use variables to represent the identity of philosophers
and functions l(x) and r(x) to denote the left and right forks of philosopher x ,
respectively. These two forks are required as a precondition for transition u and
returned as a postcondition by transition v. This model can be easily extended to
n > 3 philosophers. We just need to add more tokens. In contrast to the net in
Fig. 2.54, the structure of the net does not have to be changed. ∇

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal dependencies.
Standard Petri nets have no notion of time, and all decisions can be taken locally
by just analyzing transitions and their pre- and postconditions. Therefore, they can
be used for modeling geographically distributed systems. Furthermore, there is a
strong theoretical foundation for Petri nets, simplifying formal proofs of system
properties. Petri nets are not necessarily determinate: Different firing sequences can
lead to different results. The descriptive power of Petri nets encompasses that of
other MoCs, including finite state machines.

In certain contexts, their strength is also their weakness. If time is to be modeled,
standard Petri nets cannot be used. Furthermore, standard Petri nets have no notion of
hierarchy and no programming language elements, let alone object-oriented features.
In general, it is difficult to represent data.
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There are extended versions of Petri nets avoiding the mentioned weaknesses.
However, there is no universal extended version of Petri netsmeeting all requirements
mentioned at the beginning of this chapter.Nevertheless, due to the increasing amount
of distributed computing, Petri nets became more popular.

UML includes extended Petri nets called activity diagrams. Extensions include
symbols denoting decisions (like in ordinary flow charts). The placement of symbols
is similar to SDL.

Example 2.26: Figure2.56 shows an activity chart of the procedure to be followed
during a standardization process. Forks and joins of control correspond to transi-

Fig. 2.56 Activity diagram
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tions in Petri nets, and they use the symbols (horizontal bars) that were initially used
for Petri nets as well. The diamond at the bottom shows the symbol used for deci-
sions. Activities can be organized into “swim lanes” (areas between vertical dotted
lines) such that the different responsibilities and the documents exchanged can be
visualized. ∇

Interestingly, Petri nets were initially not a mainstream technique. Decades after
their invention, they have become a popular technique due to their inclusion in UML.
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2.7 Discrete Event-Based Languages

2.7.1 Basic Discrete Event Simulation Cycle

The discrete event-basedmodel of computation is based on simulating the generation
of events and processing them over time. We use a queue of future events, and these
are sorted by the time at which they should be processed. Semantics is defined by
fetching the event at the head of the queue, performing the corresponding actions, and
possibly entering new events into the queue. Time is advanced whenever no action
exists which should be performed at the current time. This is the basic algorithm:

loop

fetch next entry from queue;

perform function (e.g., assignment of variables as listed in the entry)

(this may include the generation of new events);

until termination criterion is met;

Hardware description languages (HDLs) are typically based on the discrete event
model. We will use HDLs as a prominent example of discrete event modeling.

Example 2.27: We demonstrate the application of this general scheme to simulate
an RS latch (see Fig. 2.57). The latch consists of two cross-coupled NOR gates.

nQ

c

b

a

c <= a         b;

(a,b)process

nor
end;

  begin

gate1:S

R

Q
c

b

a

c <= a         b;

(a,b)process

nor
end;

  begin

gate2:

Fig. 2.57 Two cross-connected NOR gates forming an RS latch

The corresponding code in a hardware description language, in this case VHDL,
is included in Fig. 2.57 as well. A representative sequence of values at the inputs and
outputs is shown in Table2.4.

Table 2.4 Sequence of
values at inputs and outputs
of RS latch

t < 0 t = 0 t > 0

R 0 1 1 1 1

S 0 0 0 0 0

Q 1 1 0 0 0

nQ 0 0 0 1 1
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Let us assume that initially, the latch is set and this state is maintained, i.e., output
Q is 1 and R = S = 0. The operation of both NOR gates is described by processes
gate1 and gate2. These processes are initially inactive, waiting for some event on
their inputs a or b. This waiting is expressed by the lists (a, b). gate1 and gate2 are
said to be sensitive to the entries in that list.

Now, suppose that at time 0, input R, the reset input, is changed to 1. We expect
the latch to be reset. In terms of events, this works as follows: The change at input R
is an event, which is stored in the queue of future events.

This event is immediately processed, since it is the only event in the queue.
This event will wake up gate2, since this gate is sensitive to changes on its input
b. gate2 will compute the NOR function, with a result of 0, and will then execute
the assignment c <= expression. This notation indicates a signal assignment. This
means that the new values will initially be stored only in the entries of future events.
The actual assignment to the variable on the left becomes effective only when the
time for processing this entry in the list of future events has been reached. In our
example, an event requesting output c of gate2 to be set to 0 will be created and
stored in the event queue.

This event will be immediately fetched, since it is the only event. The event will
set output c to 0. This wakes up gate1, due to its sensitivity. gate1 will compute the
NOR function as well. This computation results in an event, requesting output c of
gate1 to be set to 1. This event will also be stored in the queue.

This event will also be immediately processed, setting the output as requested.
This change will wake up gate2 again. gate 2 will again compute an output of 0.
Further details will depend somewhat on the mechanism which is used to detect
stable situations not requiring further events to be generated.

We could have added delays in terms of real physical units to each of the signal
assignments, which would have allowed us to keep track of elapsed time. Overall,
this event-based simulation approximates the behavior of a real latch. ∇

2.7.2 Multi-valued Logic

Which values could we use for the signals in the above example? In this book,
we are restricting ourselves to embedded systems implemented with binary logic.
Nevertheless, it may be advisable or necessary to use more than two values for
modeling such systems. For example, our systems might contain electrical signals
of different strengths. It may be necessary to compute the strength and the logic
level resulting from a connection of two or more sources of electrical signals. In
the following, we will therefore distinguish between the level and the strength of
a signal. While the former is an abstraction of the signal voltage, the latter is an
abstraction of the impedance (resistance) of the voltage source. We will be using
discrete sets of signal values representing the signal level and the strength. Using
discrete sets of strengths avoids the problems of having to solve Kirchhoff’s
network equations and enables us to avoid analog models used in electrical
engineering.Wewill alsomodel unknown electrical signals by special signal values.
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In practice, electronic design systems use a variety of value sets. Some systems
allow only two, while others allow 9 or 46. The overall goal of developing discrete
value sets is to avoid the problems of solving network equations and still model
existing systems with sufficient precision.

In the following, we will present a systematic technique for building up value
sets and relating these to each other. We will use the strength of electrical signals as
the key parameter for distinguishing between various value sets. A systematic way
of building up value sets, called CSA theory, was presented by Hayes [200]. CSA
stands for “connector, switch, attenuator.” These three elements are key elements of
this theory. We will later show how the standard value set used for most cases of
VHDL-based modeling can be derived as a special case.

One Signal Strength (Two Logic Values)

In the simplest case, we will start with just two logic values, called ’0’ and ’1’. These
two values are considered to be of the same strength. This means that if two wires
connect values ’0’ and ’1’, we will not know anything about the resulting signal level.

A single signal strength may be sufficient if no two wires carrying values ’0’ and
’1’ are connected and no signals of different strength meet at a particular node of
electronic circuits.

Two Signal Strengths (Three and Four Logic Values)

In many circuits, there may be instances in which a certain electrical signal is not
actively driven by any output. This may be the case, when a certain wire is not
connected to ground, the supply voltage, or any circuit node.

For example, systems may contain open collector outputs (see Fig. 2.58, (left))13.

&

&

enable

PD

enable = '0' -> A disconnected

f

f

A

GROUND

VDD

GROUND

VDD

Input = '0'  -> A disconnected 

Input
Output A

PD

Fig. 2.58 Effectively disconnectable outputs: left: open collector output; right: tristate output

If the “pull-down” transistor PD is non-conducting, the output is effectively dis-
connected. For the tristate outputs (see Fig. 2.58, (right)), an enable signal of ’0’ will

13Schematics should help students to understand signal values, not make it more difficult. Students
unfamiliar with schematics could just study logic values.
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generate a ’0’ at the outputs of the AND gates (denoted by &), and will make both
transistors non-conducting. As a result, outputAwill be disconnected14. Hence, using
appropriate input signals, such outputs can be effectively disconnected from a wire.

The signal strength of disconnected outputs is the smallest strength that we can
think of. We will denote the value at disconnected outputs as ’Z’. The signal strength
of ’Z’ is smaller than that of ’0’ and ’1’. Furthermore, the signal level of ’Z’ is unknown.
If a signal of value ’Z’ is connected to another signal, that other signal will always
dominate. For example, if two tristate outputs are connected to the same bus and if
one output contributes a value of ’Z’, the resulting value on the bus will always be
the value contributed by the second output (see Fig. 2.59).

&

&&

& f'

f'f

f

enable'='1'enable='0'

PD'

bus'Z' ->

PD

VDD

GROUND

Fig. 2.59 Right output dominates bus

In most cases, three-valued logic sets {’0’,’1’,’Z’} are extended by a fourth value
called ’X’. ’X’ represents an unknown signal level of the same strength as ’0’ or ’1’.
More precisely, we are using ’X’ to represent unknown values of signals that can be
either ’0’ or ’1’ or some voltage representing neither ’0’ nor ’1’15.

If multiple signals get connected, we have to compute the resulting value. This
can be done easily if we make use of a partial order among the four signal values ’0’,
’1’, ’Z’, and ’X’. The partial order is depicted in the Hasse diagram in Fig. 2.60.

Fig. 2.60 Partial order for
value set {’0’,’1’,’Z’,’X’}

'Z'

'0' '1'

'X'

14Pull-up transistors may be depletion transistors, and the tristate outputs may be inverting.
15There are other interpretations of ’X’ [67], but ours is the most useful in our context.
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Edges in this figure reflect the domination of signal values. Edges define a
relation >. If a > b, then a dominates b. ’0’ and ’1’ dominate ’Z’. ’X’ dominates
all other signal values. Based on the relation >, we define a relation ≥. a ≥ b holds
iff a > b or a = b.

We define an operation sup on two signals, which returns the supremum of the
two signal values.

Definition 2.20: Let a and b be two signal values from a partially ordered set (S,≥).
The supremum c ∈ S of the two values a and b is the smallest value for which c ≥ a
and c ≥ b hold.

For example, sup (’Z’, ’0’) = ’0’ and sup(’Z’,’1’) = ’1’.

Lemma 2.1: Let a and b be two signals having values from a partially ordered set,
where the partial order has been selected as shown above. Then, the sup function
computes resulting signal values if the two signals get connected.

The supremum corresponds to the connect element of the CSA theory.

Three Signal Strengths (Seven Signal Values)

In many circuits, two signal strengths are not sufficient. A common case that requires
more values is the use of depletion transistors (see Fig. 2.61).

Fig. 2.61 Output using
depletion transistor
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The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltage VDD. The depletion transistor as well
as the “pull-down transistor” PD acts as drivers for node A of the circuit, and the
signal value at node A can be computed using the supremum function. The pull-
down transistor provides a driver value of ’0’ or ’Z’, depending upon the input to PD.
The depletion transistor provides a signal value, which is weaker than ’0’ and ’1’. Its
signal level corresponds to the signal level of ’1’. We represent the value contributed
by the depletion transistor by ’H’, and we call it a “weak logic one.” Similarly, there
can be weak logic zeros, represented by ’L’. The value resulting from the possible
connection between ’H’ and ’L’ is called a “weak logic undefined,” denoted as ’W’. As
a result, we have three signal strengths and seven logic values {’0’,’1’,’L’,’H’,’W’,’X’,’Z’}.
Computing the resulting signal value can again be based on a partial order among
these seven values. The corresponding partial order is shown in Fig. 2.62.
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Fig. 2.62 Partial order for
value set
{’0’,’1’,’L’,’H’,’W’,’X’,’Z’} '0' '1'

'Z'

'L' 'H'

'W'

'X'
strongest

weakest

medium strength

sup is also defined for this partially ordered set. For example, sup(’H’,’0’) = ’0’,
sup(’H’,’Z’) = ’H’ and sup(’H’,’L’) = ’W’.

’0’ and ’L’ represent the same signal levels, but a different strength. The same holds
for the pairs ’1’ and ’H’. Devices increasing signal strengths are called amplifiers,
devices reducing signal strengths are called attenuators.

Ten Signal Values (Four Signal Strengths)

In some cases, three signal strengths are not sufficient. For example, there are circuits
using charges stored on wires. Such wires are charged to levels corresponding to ’0’
or ’1’ during some phases of the operation of the electronic circuit. This stored charge
can control the (high impedance) inputs of some transistors. However, if these wires
get connected to even the weakest signal source (except ’Z’), they lose their charge
and the signal value from that source dominates.

Example 2.28: In Fig. 2.63, we are driving a bus from a specialized output.

Fig. 2.63 Precharging a bus

pre

f PD

Bus

C

VDD

GROUND

The bus has a high capacitive load C. While function f is still ’0’, we set pre to ’1’,
charging capacitor C. Then, we set pre to ’0’. If the real value of function f becomes
known and it turns out to be ’1’, we discharge the bus. ∇

The key reason for using precharging is that charging a bus using an output such
as the one shown in Fig. 2.61 is a slow process, since the resistance of depletion
transistors is large. Discharging through regular pull-down transistors PD is a much
faster process.
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In order to model such cases, we need signal values which are weaker than ’H’ and
’L’, but stronger than ’Z’. We call such values “very weak signal values” and denote
them by ’h’ and ’l’. The corresponding very weak unknown value is denoted by ’w’.
As a result, we obtain ten signal values {’0’,’1’,’L’,’H’,’l’,’h’,’X’,’W’,’w’,’Z’}. Using signal
strengths, we can again define a partial order among these values (see Fig. 2.64).

Fig. 2.64 Partially ordered
set {’0’,’1’,’Z’,’X’,’H’,’L’,
’W’,’h’,’l’,’w’}
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'X'
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medium strength

weakest

pre-charged

Note that precharging is not without risks. Once a precharged wire is discharged
due to a transient signal, it cannot be recharged during the same clock period.

Five Signal Strengths

So far, we have ignored power supply signals. These are stronger than the strongest
signals we have considered so far. Signal value sets taking power supply signals into
account have resulted in the definition of initially popular 46-valued value sets [106].
However, such models are hardly used anymore.

2.7.3 Transaction-Level Modeling (TLM)

Discrete event simulation allows us to keep track of simulated time. However, it is
not obvious how precisely we will be modeling time. A very precise model reflecting
detailed timing of hardware signals will require long simulation times. In particular,
very long simulation times are needed when we model electrical circuits. Faster
simulation is feasible with cycle-accurate models reflecting the number of clock
cycles in a clocked (synchronous) system implementation. More simulation speed
can be gained from more coarse-grained timing models. In particular, transaction-
level modeling (TLM) has receivedmuch attention. TLMhas been defined as follows
[184]:



90 2 Specifications and Modeling

Definition 2.21: “Transaction-level modeling (TLM) is a high-level approach to
modeling digital systems where details of communication among modules are sepa-
rated from the details of the implementation of functional units or of the communica-
tion architecture. Communication mechanisms such as buses or FIFOs are modeled
as channels, and are presented to modules using SystemC interface classes. Trans-
action requests take place by calling interface functions of these channel models,
which encapsulate low-level details of the information exchange. At the transaction
level, the emphasis is more on the functionality of the data transfers—what data is
transferred to and from what locations—and less on their actual implementation, that
is, on the actual protocol used for data transfer. This approach makes it easier for
the system-level designer to experiment, for example, with different bus architectures
(all supporting a common abstract interface) without having to recode models that
interact with any of the buses, provided these models interact with the bus through
the common interface.”

Amore detailed distinction between different timingmodels was described by Cai
and Gajski [84]. They distinguish between timingmodels for communication and for
computation16, and they consider different cases of timing models, depending upon
how precisely communication and computation are modeled. Six cases are shown in
Fig. 2.65.

Computation

Communication

Untimed

timed
Approximate-

Cycle-timed

Cycle-timedApproximate-Untimed
timed

C

D F

E

A B

Fig. 2.65 Distinction between different timing models

For communication as well as for computations, we distinguish between untimed,
approximately timed, and cycle-timed models. In diagram Fig.2.65, crosses mark
three unbalanced combinations of timing models, which have not been considered
by Cai and Gajski. As a result, we consider six remaining cases [84]:

A Untimedmodels: In this case,wemodel only the functionality and do not consider
timing at all. Such models are appropriate for early design phases. They can be
called specification model.

16This is very much in line with the same distinction which we have made in Table2.1 on p. 39.
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B In the specification model, we can replace pure functionality descriptions by
descriptions of components using rough timing models. For example, we might
know the WCET of some code running on a processor. We would still model
communication by abstract communication primitives. As a result, we obtain
node B in Fig. 2.65. Such a model can be called component assembly model.

C In a model of type B, we could replace abstract communication primitives by
communication models which are approximately timed. This means that we try
to model access conflicts and their impact on the timing, but we do not model the
impact of each and every signal, nor do we model any links to clock cycles. Such
a model can be called bus arbitration model.

D In a model of type C, we could replace rough communication timing models with
cycle-timed models. This implies that we keep track of elapsed clock cycles in
our simulation. We might even consider real, physical time. The resulting model,
denoted as node D in Fig. 2.65, can be called a bus functional model [84].

E In a model of type C, we could also replace rough computation timing models by
cycle-accurate timing models of the computation. This allows us, for example, to
capture memory references in detail. The resulting model can be called a cycle-
accurate computation model.

F Thenode labeledF is obtainedwhen communication and computation aremodeled
in a cycle-accurate way. Such a model can be called an implementation model.

Design procedures need to traverse the diagram in Fig. 2.65 from node A to node F.

2.7.4 SpecC

TheSpecC language [167] provides uswith an nice example for demonstratingTLMs
and a clear separation between communication and computation. SpecC models sys-
tems as hierarchical networks of behaviors communicating through channels. SpecC
descriptions consist of behaviors, channels, and interfaces. Behaviors include ports,
locally instantiated components, private variables and functions, and a public main
function. Channels encapsulate communication. They include variables and func-
tions, which are used for the definition of a communication protocol. Interfaces are
linking behaviors and channels together. They declare the communication protocols
which are defined in a channel.

SpecC can model hierarchies with nested behaviors.

Example 2.29: Figure2.66 [167] shows a component G including sub-components
g1 and g2 as leaves in the hierarchy.
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Fig. 2.66 Structural
hierarchy of SpecC example
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This structural hierarchy is described in the following SpecC model:

01: interface L {void Write(int x); };

02: interface R {int Read(void); };

03: channel H implements L,R

04: {int Data; bool Valid;

05: void Write(int x) {Data=x; Valid=true;}

06: int Read (void)

07: {while (!Valid) waitfor (10); return (Data);}

08: }

09: behavior G1(in int p1, L p2, in int p3)

10: {void main (void) {/* ...*/ p2.Write(p1);} };

11: behavior G2 (out int p1, R p2, out int p3)

12: {void main(void) {/*...*/ p3=p2.Read(); } };

13: behavior G(in int p1, out int p2)

14: {int h1; H h2; G1 g1(p1, h2, h1); G2 g2(h1, h2, p2);

15: void main (void)

16: {par {g1.main(); g2.main();}}

17: };

Concurrent execution of sub-components is denoted by the keyword par in line 16.
As indicated in line 14, sub-components are communicating through integer h1 and
through channel h2. Note that the interface protocol implemented in channel H (see
line 03), consisting of methods for read and write operations (lines 05 and 06), can be
changed without changing behaviors G1 and G2. For example, communication can
be bit serial or parallel and the choice does not affect the models of G1 and G2. This
is a necessary feature for reuse of hardware components or intellectual property (IP).
The presented SpecC model does not include any timing information. Hence, it is a
specification model (model of type A in Fig. 2.65). ∇
The design flow for SpecC was already shown in Fig. 1.9 on p. 20. The path in
Fig. 2.65 is A, B, D, F [84]. At the specification level, SpecC can model any kind
of communication and typically uses message passing. The communication model
of SpecC has inspired the communication model in SystemC 2.0.

http://dx.doi.org/10.1007/978-3-319-56045-8_1
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Note that SpecC is based onC andC++ syntax. The reason for this is the following:
There is the trend of implementing more and more functionality in software and

using C for this purpose. For example, embedded systems implement standards such
as MPEG 1/2/4 or decoders for mobile phone standards such as GSM, UMTS, or
LTE. These standards are frequently available in the form of “reference implementa-
tions,” consisting of C programs not optimized for speed but providing the required
functionality. The disadvantage of design methodologies based on special hardware
description languages (like VHDL or Verilog, see below) is that these standards
must be rewritten in order to generate systems. Furthermore, simulating hardware
and software together requires interfacing software and hardware simulators. Typ-
ically, this involves a loss of simulation efficiency and inconsistent user interfaces.
Also, designers would need to learn several languages.

Therefore, there has been a search for techniques for representing hardware struc-
tures in software languages. Some fundamental problems had to be solved before
hardware could be modeled with software languages:

• Concurrency, as it is found in hardware, has to be modeled in software.
• There has to be a representation of simulated time.
• Multiple-valued logic as described earlier must be supported.
• The determinate behavior of almost all useful hardware circuits should be guar-
anteed.

For the SpecC language, as well as for other hardware description languages,
these problems were solved.

2.7.5 SystemC™

TLMmodeling and the separation between communication and computation are also
available in SystemC™. SystemC (like SpecC) is based on C and C++. Similar to
SpecC, SystemC provides channels, ports, and interfaces as abstract components for
communication. The introduction of these mechanisms facilitates transaction-level
modeling.

SystemC™[416, 498] is a C++ class library. With SystemC, specifications can be
written in C or C++, making appropriate references to the class library.

SystemC comprises a notion of processes executed concurrently. The execution
of these processes is controlled by calls to wait primitives and sensitivity lists (lists
of signals for which value changes start a re-execution of code). The sensitivity list
concept includes dynamic sensitivity lists, i.e., the list of relevant signals can change
during the execution.

SystemC includes a model of time. Earlier, SystemC 1.0 used floating point
numbers to denote time. In the current standard, an integer model of time is pre-
ferred. SystemC also supports physical units such as picoseconds, nanoseconds, and
microseconds.

SystemC data types include all common hardware types: Four-valued logic
(’0’,’1’,’X’ and ’Z’) and bitvectors of different lengths are supported. Writing digital
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signal processing applications is simplified due to the availability of fixed-point data
types.

Determinate behavior (see p. 54) of SystemC is not guaranteed in general, unless
a certain modeling style is used. Using a command line option, the simulator can be
directed to run processes in different orders. This way, the user can check whether
the simulation results depend on the sequence in which the processes are executed.
However, for models of realistic complexity, only the presence of non-determinate
behavior can be shown, not its absence.

Transaction-level modeling with SystemC has been described in aWhite Paper by
Montoreano [384]. The White Paper distinguishes only between two types of TLM
models:

• Loosely timed models: They are described as follows [384]: “These models have
a loose dependency between timing and data, and are able to provide timing infor-
mation and the requested data at the point when a transaction is being initiated.
These models do not depend on the advancement of time to be able to produce
a response. Normally, resource contention and arbitration are not modeled using
this style. Due to the limited dependencies and minimal context switches, these
models can be made to run the fastest and are particularly useful for doing soft-
ware development on a Virtual Platform.”

• Approximately timedmodels: They are described as follows [384]: “These mod-
els can depend on internal/external events firing and/or time advancing before
they can provide a response. Resource contention and arbitration can be modeled
easily with this style. Since these models must synchronize/order the transactions
before processing them, they are forced to trigger multiple context switches in the
simulation, resulting in performance penalties.”

Hardware synthesis starting from SystemC has become available [207, 208]. A
synthesizable subset of the language has been defined [7]. There are also commercial
synthesis offerings. Commercial offerings are expected to support the synthesizable
subset as a minimum. Methodology and applications for SystemC-based design are
described in a book on that topic [390]. At the time of writing, themost recent version
of SystemC is SystemC 2.3.1 [6].

2.7.6 VHDL

2.7.6.1 Introduction

VHDL is another language which is based on the discrete event paradigm. In contrast
to SpecCandSystemC, it does not support a clear distinction between communication
and computation, making reuse of components somewhat more difficult. However,
VHDL is supported by many industrial and academic tools and is in widespread use.
It is an example of a hardware description language (HDL). Having presented an
initial example of event-based modeling already on p. 84, we would like to delve
deeper into VHDL.
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VHDL uses processes for modeling concurrency. Each process models one com-
ponent of the potentially concurrent hardware. For simple hardware components,
a single process may be sufficient. More complex components may need several
processes for modeling their operations. Processes communicate through signals.
Signals roughly correspond to physical connections (wires).

The origin of VHDL can be traced back to the 1980s. At that time, most design
systems used graphical HDLs. The most common building block was the gate. How-
ever, in addition to using graphical HDLs,we can also use textual HDLs. The strength
of textual languages is that they can easily represent complex computations including
variables, loops, function parameters, and recursion. Accordingly, when digital sys-
tems became more complex in the 1980s, textual HDLs almost completely replaced
graphical HDLs. Textual HDLs were initially a research topic at universities. See
Mermet et al. [374] for a survey of languages designed in Europe at that time.
MIMOLA was one of these languages, and the author of this book contributed to its
design and applications [357, 362]. Textual languages became popular when VHDL
and its competitor Verilog (see p. 104) were introduced.

VHDL was designed in the context of the VHSIC program of the Department of
Defense (DoD) in the USA. VHSIC stands for very high-speed integrated circuits17.
Initially, the design of VHDL (VHSIC hardware description language) was done by
three companies: IBM, Intermetrics, and Texas Instruments. A first version of VHDL
was published in 1984. Later, VHDL became an IEEE standard, called IEEE 1076.
The first IEEE version was standardized in 1987; updates were published in 1993,
2000, 2002, and 2008 [229, 231–233, 235]18. VHDL-AMS [236] allows modeling
analog and mixed-signal systems by including differential equations in the language.
The design of VHDL usedAda (see p. 106) as the starting point, since both languages
were designed for the DoD. Since Ada is based on PASCAL, VHDL has some of the
syntactical flavor of PASCAL. However, the syntax of VHDL is muchmore complex
and it is necessary not to get distracted by the syntax. In the current book, we will
just focus on some concepts of VHDL which are useful also in other languages. A
full description of VHDL is beyond the scope of this book. The standard is available
from IEEE (see, for example, [235]).

2.7.6.2 Entities and Architectures

VHDL, like all other HDLs, includes support for modeling concurrent operation
of hardware components. Components are modeled by so-called design entities or
VHDL entities. Entities contain processes used to model concurrency. According
to the VHDL grammar, design entities are composed of two types of ingredients: an
entity declaration and one (or several) architectures (see Fig. 2.67).

Fig. 2.67 Entity consisting
of an entity declaration and
architectures

....Architecture 1 Architecture 2

Entity declaration

Architecture 3

17The design of the Internet was also part of the VHSIC program.
18The next update can be expected for 2017.
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For each entity, the most recently analyzed architecture will be used by default.
The use of other architectures can be specified. Architectures may contain several
processes.

Example 2.30: We will discuss a full adder as an example. Full adders have three
input ports and two output ports (see Fig. 2.68).

Fig. 2.68 Full adder and its
interface signals

carry_out

sum

carry_in
b
a

full_adder

An entity declaration corresponding to Fig. 2.68 is the following:

entity full_adder is -- entity declaration

port (a, b, carry_in: in Bit; -- input ports

sum, carry_out: out Bit); -- output ports

end full_adder;

Two hyphens (--) are starting comments. They extend until the end of the
line. ∇

Architectures consist of architecture headers and architectural bodies. We can
distinguish between different styles of bodies, in particular between structural and
behavioral bodies. We will show how the two are different using the full adder as
an example. Behavioral bodies include just enough information to compute output
signals from input signals and the local state (if any), including the timing behavior
of the outputs.

Example 2.31: The following is an example of this:

architecture behavior of full_adder is -- architecture

begin

sum <= (a xor b) xor carry_in after 10 ns;

carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 ns;

end behavior;

VHDL-based simulators are capable of displaying output signalwaveforms result-
ing from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler
entities. For example, the full adder can be modeled as an entity consisting of three
components (see Fig. 2.69). These components are called i1 to i3 and are of type
half_adder or or_gate.
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Fig. 2.69 Schematic
describing structural body of
the full adder
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In the 1987 version of VHDL, these components must be declared in a so-called
component declaration. This declaration is very similar to (and it serves the same
purpose) as forward declarations in other languages. This declaration provides the
necessary information about the component even if the full description of that compo-
nent is not yet stored in the VHDL database (this may happen in the case of so-called
top-down designs). From the 1992 version of VHDL onward, such declarations are
not required if the relevant components are already stored in the component database.

Connections between local component and entity ports are described in port
maps. The following VHDL code represents the structural body shown in Fig. 2.69:

architecture structure of full_adder is -- architecture head

component half_adder

port (in1, in2: in Bit; carry: out Bit; sum: out Bit);

end component;

component or_gate

port (in1, in2: in Bit; o: out Bit);

end component;

signal x, y, z: Bit; --local signals

begin -- port map section

i1: half_adder -- introduction of half_adder i1

port map (a, b, x, y); --connections between ports

i2: half_adder port map (y, carry_in, z, sum);

i3: or_gate port map (x, z, carry_out);

end structure;

∇

2.7.6.3 Assignments

Example 2.31 contains several assignments. Let us look at assignmentsmore closely!
Assignments are special cases of statements. In VHDL, there are two kinds of assign-
ments:

• Variable assignments: The syntax of variable assignments is

variable := expression

Whenever control reaches such an assignment, the expression is computed and
assigned to the variable. Such assignments behave like assignments in common
programming languages.



98 2 Specifications and Modeling

• Signal assignments: Signal assignments (as mentioned already on pp. 83 and 95)
are evaluated concurrently. Signals and signal assignments are introduced in an
attempt to model electrical signals in real hardware systems. Signals associate
values with instances in time. In VHDL, such a mapping from time to values is
represented by waveforms. Waveforms are computed from signal assignments.
The syntax of signal assignments is

signal <= expression;

signal <= transport expression after delay;

signal <= expression after delay;

signal <= reject time inertial expression after delay;

Whenever control reaches such an assignment, the expression is computed and
used to extend predicted future values of the waveform. In VHDL, each signal
is associated with a so-called signal driver. Computing the value resulting from
the contributions of multiple drivers to the same signal is called resolution, and
resulting values are computed by functions called resolution functions. In this
way, the sup function mentioned in the context of CSA theory is implemented if
signals are connected.
In order to compute future values, simulators are assumed to include a queue of
events to happen later than the current simulated time. This queue is sorted by
the time at which future events (e.g., updates of signals) should happen. Executing
a signal assignment results in the creation of entries in this queue. Each entry
contains a time for executing the event, the affected signal, and the value to be
assigned. For signal assignments not containing any after clause (first syntactical
form), the entry will contain the current simulation time as the time at which this
assignment has to be performed. In this case, the change will take place after an
infinitesimally small amount of time, called δ-delay (see below). This allows us
to update signals without changing macroscopic time.
For signal assignments containing a transport prefix (second syntactical form),
the update of the signal will be delayed by the specified amount. This form of
the assignment is following the so-called transport delay model. This model is
based on the behavior of simple wires:Wires are (as a first order of approximation)
delaying signals. Even short pulses propagate along wires. The transport delay
model can be used for logic circuits, even though its main application is to model
wires.

Example 2.32: Suppose that we model a simple OR gate using a transport delay
signal assignment:

c <= transport a or b after 10 ns;

Such a model would propagate even short pulses (see Fig. 2.70).
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Fig. 2.70 Gate modeled
with transport delay a
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Output signal c includes a short pulse of 5ns, which would be suppressed for a
transport delay model. ∇

Transport delay signal assignments will delete all entries in the queue correspond-
ing to the time of the computed update or later times (if we first execute an assignment
with a rather large delay and then execute an assignment with a smaller delay, then
the entry resulting from the first assignment will be deleted).

For signal assignments containing an after clause, but no transport clause,
inertial delay is assumed. The inertial delay model reflects the fact that real circuits
come with some “inertia.” This means that short spikes will be suppressed. For the
third syntactical form of the signal assignment, all signals changes which are shorter
than the specified delay are suppressed. For the fourth form, all signal changes which
are shorter than the indicated amount are removed from the predicted waveform. The
subtle rules for removals are not repeated here.

Example 2.33: Suppose that we model a simple OR gate using inertial delay:

c <= a or b after 10 ns;

For such a model, short spikes would be suppressed (see Fig. 2.71).

Fig. 2.71 Gate modeled
with inertial delay a

b

c

8070605040302010

No pulse of 5 ns

t [ns]

For output signal c, there is no short pulse of 5ns, but the 15ns pulse arrives at
the output. ∇
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2.7.6.4 VHDL Processes

Assignments are just a shorthand for VHDL processes. More control over signal
evaluations is availablewith processes. The general syntax for processes is as follows:

label: -- optional

process

declarations --optional

begin

statements --optional

end process;

In addition to assignments, processes may contain wait statements. Such state-
ments can be used to explicitly suspend a process. There are the following kinds of
wait statements:

wait on signal list; --suspend until one of the signals in the list changes;

wait until condition; --suspend until condition is met, e.g., a =’1’;
wait for duration; --suspend for a specified period of time;

wait; --suspend indefinitely.

As an alternative to explicit wait statements, a list of signals can be added to the
process header. In that case, the process is activated whenever one of the signals in
that list changes its value.

Example 2.34: The following model of an AND gate will execute its body once and
will restart from the beginning every time one of the inputs changes its value:

process(x, y) begin

prod <= x and y ;

end process;

This model is equivalent to

process begin

prod <= x and y ;

wait on x,y;

end process;

where there is an explicit wait statement at the end. ∇

2.7.6.5 The VHDL Simulation Cycle

According to the original standards document [229], the execution of a VHDLmodel
is described as follows: “The execution of a model consists of an initialization phase
followed by the repetitive execution of process statements in the description of that
model. Each such repetition is said to be a simulation cycle. In each cycle, the values
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of all signals in the description are computed. If as a result of this computation an
event occurs on a given signal, process statements that are sensitive to that signal
will resume and will be executed as part of the simulation cycle.”

The initialization phase takes signal initializations into account and executes each
process once. It is described in the standards as follows19:

“At the beginning of initialization, the current time, Tc, is assumed to be 0 ns. The
initialization phase consists of the following steps20:

• The driving value and the effective value of each explicitly declared signal are
computed, and the current value of the signal is set to the effective value. This
value is assumed to have been the value of the signal for an infinite length of time
prior to the start of the simulation. ...

• Each ... process in the model is executed until it suspends. ...
• The time of the next simulation cycle (which in this case is the first simulation

cycle), Tn , is calculated according to ... step e of the simulation cycle, below.”

Each simulation cycle starts with setting the current time to the next time at which
changes must be considered. This time Tn was either computed during the initializa-
tion or during the last execution of the simulation cycle. Simulation terminates when
the current time reaches its maximum, T I M E ′ H I G H . The standard describes the
simulation cycle as follows: “A simulation cycle consists of the following steps:

(a) The current time, Tc, is set equal to Tn . Simulation is complete when Tn =
T I M E ′ H I G H and there are no active drivers or process resumptions at Tn .

(b) Each active explicit signal in the model is updated. (Events may occur as a
result.)” ...
In the cycle preceding the current cycle, future values for some signals have been
computed. If Tc corresponds to the time at which these values become valid, they
are now assigned. Values of newly computed signals are not assigned before the
next simulation cycle, at the earliest. Signals that change their value generate
events which, in-turn, may release processes that are sensitive to that signal.

(c) “For each process P , if P is currently sensitive to a signal S and if an event has
occurred on S in this simulation cycle, then P resumes.

(d) Each ... process that has resumed in the current simulation cycle is executed
until it suspends.

(e) Tn (the time of the next simulation cycle) is set to the earliest of

1. TIME’HIGH (this is the end of simulation time).
2. The next time at which a driver becomes active (this is the next instance in

time, at which a driver specifies a new value), or
3. The next time at which a process resumes (as computed from wait for

statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.”
The iterative nature of simulation cycles is shown in Fig. 2.72.

19We leave out the discussion of implicitly declared signals and so-called postponed processes.
20Some sections of the standard are omitted in the citation (indicated by “...”).
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Fig. 2.72 VHDL simulation
cycles
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Delta (δ) simulation cycles have been the source of discussions. They introduce
an infinitesimally small delay if the user did not specify any.

Example 2.35: Let us come back to our latch example and look more closely at tim-
ing. Figure 2.73 shows the latch again, this time using standard schematic symbols.

Fig. 2.73 RS Flip-flop
>1

>1

S

R
Q

nQ

The flip-flop is modeled in VHDL as follows:

entity RS_Flipflop is

port (R: in BIT; -- reset

S: in BIT; -- set

Q: inout BIT; -- output

nQ: inout BIT; ); -- Q-bar

end RS_Flipflop;

architecture one of RS_Flipflop is

begin

process: (R,S,Q,nQ)

begin

Q <= R nor nQ; nQ <= S nor Q;

end process;

end one;

Ports Q and nQ must be of mode inout since they are also read internally, which
would not be possible if they were of mode out. Table2.5 shows the simulation
times at which signals are updated for this model. During each cycle, updates are

Table 2.5 δ cycles for RS
flip-flop

<0ns 0ns 0ns+δ 0ns+2∗δ 0ns+3∗δ

R 0 1 1 1 1

S 0 0 0 0 0

Q 1 1 0 0 0

nQ 0 0 0 1 1

propagated through one of the gates. Simulation terminates after three δ cycles. The
last cycle does not change anything, since Q is already ’0’. ∇
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δ cycles correspond to an infinitesimally small unit of time, which will always
exist in reality. δ cycles ensure that simulation respects causality.

The results do not depend on the order in which parts of the model are executed
by the simulation. This feature is enabled by the separation between the computation
of new values for signals and their actual assignment. In a model containing the lines

a <= b;

b <= a;

signals a and bwill always be swapped. If the assignments were performed imme-
diately, the result would depend on the order in which we execute the assignments
(see also p. 53). VHDL models are therefore determinate. This is what we expect
from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily many δ cycles before the current time Tc is advanced.
This possibility of infinite loops can be confusing. One of the options of avoiding
this possibility would be to disallow zero delays, which we used in our model of the
flip-flop.

The propagation of values using signals also allows an easy implementation of
the observer pattern (see p. 31). In contrast to SDF, the number of observers can vary,
depending on the number of processes waiting for changes on a signal.

What is the communication model behind VHDL? The description of the seman-
tics of VHDL relies heavily on a single, centralized queue of future events, storing
values of all signals in the future. The purpose of this queue is not to implement
asynchronous message passing. Rather, this queue is supposed to be accessed by the
simulation kernel, one entry at a time, in a non-distributed fashion. Attempts to per-
form distributed VHDL simulations are typically suffering from a poor performance.
All modeled components can access values of signals and variables which are in their
scope without any message-based communication. Therefore, we tend toward asso-
ciating VHDL with a shared memory-based implementation of the communication.
However, FIFO-based message passing could be implemented in VHDL on top of
the VHDL simulator as well.

2.7.6.6 IEEE 1164

In VHDL, there is no predefined number of signal values, except for some basic
support for two-valued logic. Instead, the used value sets can be defined in VHDL
itself and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this capa-
bility of VHDL was applied in this way. In order to simplify exchanging VHDL
models, a standard value set was defined and standardized by the IEEE. This stan-
dard is called IEEE 1164 and is employed in many system models. IEEE 1164 has
nine values: {’0’,’1’,’L’,’H’,’X’,’W’,’Z’, ’U’,’-’}. The first seven values correspond to the
seven signal values described from pp. 84 to 89. ’U’ denotes an uninitialized value.
It is used by simulators for signals that have not been explicitly initialized.
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’-’ denotes the input don’t care. This value needs some explanation. Frequently,
hardware description languages are used for describing Boolean functions. The
VHDL select statement is a very convenient means for doing that. The select
statement corresponds to switch and case statements found in other languages, and
its meaning is different from the select statement in Ada (see p. 107).

Example 2.36: Suppose that we would like to represent the Boolean function

f (a, b, c) = ab + bc

Furthermore, suppose that f should be undefined for the case of a = b = c =’0’.
A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation

’1’ when "10-" -- corresponds to first term

’1’ when "-11" -- corresponds to second term

’X’ when "000"

This way, functions given above could be easily translated into VHDL. Unfor-
tunately, the select statement denotes something completely different. Since IEEE
1164 is just one of a large number of possible value sets, it does not include any
knowledge about the “meaning” of ’-’. Whenever VHDL tools evaluate select state-
ments such as the one above, they check if the selecting expression (a & b & c in
the case above) is equal to the values in the when-clauses. In particular, they check
if, e.g., a & b & c is equal to "10-". In this context, ’-’ behaves like any other value:
VHDL systems check if c has a value of ’-’. Since ’-’ is never assigned to any of
the variables, these tests will never be true. ∇

Therefore, ’-’ is of limited benefit. The non-availability of convenient input don’t
care values is the price that one has to pay for the flexibility of defining value sets in
VHDL itself21.

The nice property of the general discussion on pp. 84 to 89 is the following:
It allows us to immediately draw conclusions about the modeling power of IEEE
1164. The IEEE standard is based on the seven-valued value set described on p. 85,
and therefore, is capable of modeling circuits containing depletion transistors. It is,
however, not capable of modeling charge storage22.

2.7.7 Verilog and SystemVerilog

Verilog is another hardware description language. Initially, it was a proprietary lan-
guage, but it was later standardized as IEEE standard 1364, with versions called IEEE

21This problem was corrected in VHDL 2006 [326].
22As an exception, if the capability of modeling depletion transistors or pull-up resistors is not
needed, one could interpret weak values as stored charges. This is, however, not very practical since
pull-up resistors are found in most actual systems.
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standard 1364–1995 (Verilog version 1.0) and IEEE standard 1364–2001 (Verilog
2.0). Some features of Verilog are quite similar to VHDL. Just like in VHDL, designs
are described as a set of connected design entities, and design entities can be described
behaviorally. Also, processes are used to model concurrency of hardware compo-
nents. Just like inVHDL, bitvectors and time units are supported. There are, however,
some areas in which Verilog is less flexible and focuses more on comfortable built-in
features. For example, standard Verilog does not include the flexible mechanisms for
defining enumerated types such as the ones defined in the IEEE 1164 standard. How-
ever, support for four-valued logic is built into the Verilog language, and the standard
IEEE 1364 also provides multiple-valued logic with eight different signal strengths.
Multiple-valued logic is more tightly integrated into Verilog than into VHDL. The
Verilog logic system also provides more features for transistor-level descriptions.
However, VHDL is more flexible. For example, VHDL allows hardware entities to
be instantiated in loops. This can be used to generate a structural description for, e.g.,
n-bit adders without having to specify n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the USA.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [237, 494]:

• additional language elements for modeling behavior,
• Cdata types such as int and type definition facilities such as typedef and struct,
• definition of interfaces of hardware components as separate entities,
• standardized mechanism for calling C/C++ functions and, to some extent, to call
built-in Verilog functions from C,

• significantly enhanced features for describing an environment (called test bench)
for the hardware circuit under design (called CUD), and for using the test bench
to validate the CUD by simulation,

• classes known from object-oriented programming for use within test benches,
• dynamic process creation,
• standardized inter-process communication and synchronization, including sema-
phores,

• automatic memory allocation and deallocation,
• language features that provide a standardized interface to formal verification (see
p. 2 31).

Due to the capability of interfacing with C and C++, interfacing to SystemC models
is also possible. Improved facilities for simulation- as well as for formal verification-
based design validation and the possible interfacing to SystemC will potentially
create a very good acceptance. Verilog and SystemVerilog have been merged into
one standard, IEEE 1800–2009 [234].
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2.8 Von-Neumann Languages

The sequential execution and explicit control flow of von-Neumann languages
are their common characteristics. Also, such languages allow an almost unre-
stricted access to global variables and we may need explicit communication and
synchronization. Model-based design using CFSMs and computational graphs is
very appropriate for embedded system design. Nevertheless, the use of standard
von-Neumann languages is still widespread. Therefore, we cannot ignore these lan-
guages.

Also, the distinction between models such as KPNs and properly restricted von-
Neumann languages is blurring. For KPNs, we do also have sequential execution of
the code for each of the nodes. We are still keeping the distinction between KPN and
von-Neumann languages since the KPN style of modeling has its advantages like
determinate execution.

For the first two languages covered next, communication is built into the lan-
guages. For the remaining languages, focus is on the computations and communica-
tion can be replaced by selecting different libraries.

2.8.1 CSP

CSP (communicating sequential processes) [209] is one of the first languages com-
prising mechanisms for inter-process communication. Communication is based on
channels.

Example 2.37: Consider input/output for channel c in this example:

process A process B

..... ......

var a .. var b ...

a := 3; ...

c!a; -- output to channel c c?b; -- input from channel c

end; end;

Both processes will wait for the other process to arrive at the input or output
statement. This is a case of rendez-vous-based, blocking, or synchronous message
passing. ∇

CSP is determinate, since it relies on the commitment to wait for input from a
particular channel, like in Kahn process networks.

CSP has laid the foundation for the OCCAM language that was proposed as
a programming language of the transputer [378]. The focus on communication
channels has been picked up again in the design of the XS1 processor [575].
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2.8.2 Ada

During the 1980s, the Department of Defense (DoD) in the USA realized that the
dependability and maintainability of the software in its military equipment could
soon become a major source of problems, unless some strict policy was enforced.
It was decided that all software should be written in the same real-time language.
Requirements for such a language were formulated.

No existing languagemet the requirements, and, consequently, the design of a new
one was started. The language which was finally accepted was based on PASCAL. It
was calledAda (afterAdaLovelace, regarded as being thefirst (female) programmer).
Ada’95 [81, 274] is an object-oriented extension of the original standard.

One of the interesting features of Ada is the ability to have nested declarations of
processes (called tasks in Ada). Tasks are started whenever control passes into the
scope in which they are declared.

Example 2.38: The following code has been adopted from Burns et al. [81]:

procedure example1 is

task a;

task b;

task body a is

-- local declarations for a

begin

-- statements for a

end a;

task body b is

-- local declarations for b

begin

-- statements for b

end b;

begin

-- body of procedure example1

end;

Tasks a and b will start before the first statement of the code of example1. ∇
The communication concept of Ada is another key concept. It is based on the

synchronous rendez-vous paradigm. Whenever two tasks want to exchange infor-
mation, the task reaching the “meeting point” first has to wait until its partner has
also reached a corresponding point of control. Syntactically, procedures are used for
describing communication. Procedures which can be called from other tasks must
be identified by the keyword entry.
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Example 2.39: This code has also been adopted from Burns et al. [80]:

task screen_out is

entry call (val : character; x, y : integer);

end screen_out;

Task screen_out includes a procedure named call which can be called from
other processes. Some other task can call this procedure by prefixing it with the
name of the task:

screen_out.call(’Z’,10,20);

The calling task has to wait until the called task has reached a point of control,
at which it accepts calls from other tasks. This point of control is indicated by the
keyword accept:

task body screen_out is

...

begin

...

accept call (val : character; x, y : integer) do

...

end call;

...

end screen_out;

Obviously, task screen_out may be waiting for several calls at the same time.
The Ada select statement provides this capability:

task screen_output is

entry call_ch(val:character; x, y: integer);

entry call_int(z, x, y: integer);

end screen_out;

task body screen_output is

...

select

accept call_ch ... do...

end call_ch;

or

accept call_int ... do ..

end call_int;

end select;

...

In this case, task screen_out will be waiting until either call_ch or call_int
is called. ∇

Due to the presence of the select statement, Ada is not determinate. Ada has been
the preferred language for military equipment produced in the Western hemisphere
for some time. Information about Ada is available from a number of Web sites (see,
for example, [275]).
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2.8.3 Java

For Java, communication can be selected by choosing between different libraries.
Computation is strictly sequential.

Java was designed as a platform-independent language. It can be executed on any
machine for which an interpreter of the internal byte-code representation of Java pro-
grams is available. This byte-code representation is a very compact representation,
which requires less memory space than a standard binary machine code representa-
tion. Obviously, this is a potential advantage in system-on-a-chip applications, where
memory space is limited.

Also, Java was designed to be a safe language. Many potentially dangerous fea-
tures of C or C++ (like pointer arithmetic) are not available in Java. Java supports
exception handling, simplifying recovery in case of run-time errors. There is no dan-
ger of memory leakages due to missing memory deallocation, since Java provides
automatic garbage collection. This feature avoids potential problems in applica-
tions that must run for months or even years without ever being restarted. Java also
meets the requirement to support concurrency since it includes threads (lightweight
processes).

In addition, Java applications can be implemented quite fast, since Java supports
object orientation and since Java development systems come with powerful libraries.

However, standard Java is not really designed for real-time and embedded sys-
tems. A number of characteristics which would make it a real-time and embedded
programming language are missing:

• The size of Java run-time libraries has to be added to the size of the application
itself. These run-time libraries can be quite large. Consequently, only really large
applications benefit from the compact representation of the application itself.

• For many embedded applications, direct control over I/O devices is necessary (see
p. 30). For safety reasons, no direct control over I/O devices is available in standard
Java.

• Automatic garbage collection requires some computing time. In standard Java,
the instance in time at which automatic garbage collection is started cannot be
predicted. Hence, the worst-case execution time is very difficult to predict. Only
extremely conservative estimates can be made.

• Java does not specify the order in which threads are executed if several threads are
ready to run. As a result, worst-case execution time estimates must be even more
conservative.

• Java programs are typically less efficient than C programs. Hence, Java is less
recommended for resource constrained systems.

Proposals for solving the problems were made by Nilsen [402]. Proposals include
hardware-supported garbage collection, replacement of the run-time scheduler, and
tagging of some of the memory segments.

Currently (2017), relevant Java programming environments include the Java
Enterprise Edition (J2EE), the Java Standard Edition (J2SE), the Java Micro
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Edition (J2ME), and CardJava [492]. CardJava is a stripped-down version of Java
with emphasis on security for SmartCard applications. J2ME is the relevant Java
environment for all other types of embedded systems. Two library profiles have been
defined for J2ME: CDC and CLDC. CLDC is used for mobile phones, using the
so-called MIDP 1.0/2.0 as its standard for the application programming interface
(API). CDC is used, for example, for TV sets and powerful mobile phones. Cur-
rently, relevant sources for Java real-time programming include book by Wellings
[549], Dibble [126] and Bruno [73] as well as Web sites [16, 258] and the annual
JTRES on “Java Technologies for Real-time and Embedded Systems” (see http://
jtres2016.compute.dtu.dk/ for the latest edition).

2.8.4 Communication Libraries

Standard von-Neumann languages do not come with built-in communication primi-
tives. However, communication can be provided by libraries. There is a trend toward
supporting communication within some local system as well as communication over
longer distances. The use of Internet Protocols is becoming more popular.

2.8.4.1 MPI

Multi-core programming with imperative programs is possible with the message
passing interface MPI. MPI is a very frequently used library, initially designed for
high-performance computing. It allows a choice between synchronous and asynchro-
nous message passing. For example, synchronous message passing is possible with
the MPI_Send library function [376]:

MPI_Send(buffer,count,type,dest,tag,comm) where

• buffer is the address of data to be sent,
• count is the number of data elements to be sent,
• type is the data type of data to be sent (e.g., MPI_CHAR, MPI_SHORT, MPI_INT),
• dest is the process id of the target process,
• tag is a message id (for sorting incoming messages),
• comm is the communication context (set of processes for which destination field is
valid) and

• function result indicates success.

The following is an asynchronous library function:

MPI_Isend(buffer,count,type,dest,tag,comm,request) where

• buffer, count, type, dest, tag, comm are same as above, and
• the system issues a unique “request number.” The programmer uses this system
assigned “handle” later (in a WAIT type routine) to determine completion of the
non-blocking operation.

http://jtres2016.compute.dtu.dk/
http://jtres2016.compute.dtu.dk/
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ForMPI, the partitioning of computations among various processorsmust be done
explicitly and the same is true for the communication and the distribution of data.
Synchronization is implied by communication, but explicit synchronization is also
possible. As a result, much of the management code is explicit and causes a major
amount of work for the programmer. Also, it does not scale well when the number
of processors is significantly changed [530].

In order to apply the MPI style of communication to real-time systems, a real-
time version of MPI, called MPI/RT, has been defined [476]. MPI/RT does not cover
issues such as thread creation and termination. MPI/RT is conceived as a potential
layer between the operating system and standard (non-real-time) MPI.

MPI is available on a variety of platforms and also considered for multiple proces-
sors on a chip. However, it is based on the assumption thatmemory accesses are faster
than communication operations. Also, MPI is mainly targeting at homogeneous mul-
tiprocessors. These assumptions are not true for multiple processors on a chip.

MPI has recently been extended to cover shared memory-based communication
as well.

2.8.4.2 OpenMP

OpenMP is a compiler-based solution for sharedmemory-based communication. For
OpenMP, parallelism is mostly explicit, whereas computation partitioning, commu-
nication, synchronization, etc. are implicit. Parallelism is expressed with pragmas:
For example, loops can be preceded by pragmas indicating that they should be par-
allelized.

Example 2.40: The following program demonstrates a small parallel loop [417]:

void a1(int n, float *a, float *b)

{int i;

#pragma omp parallel for

for (i=1; i<n; i++) /* i is private by default */

b[i] = (a[i] + a[i-1]) / 2.0;

}

Note that a simple pragma is sufficient to indicate parallel programming. ∇
This means that OpenMP requires a relatively small amount of effort for paral-

lelization for the user. However, this also means that the user cannot control parti-
tioning [530]. There are some applications for MPSoCs (see, for example, Marian
et al. [350]).

More techniques for multi-core programming will be described in the section on
system software (see p. 225).
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2.8.5 Additional Languages

Pearl [122] was designed for industrial control applications. It does include a large
repertoire of language elements for controlling processes and referring to time. It
requires an underlying real-time operating system. Pearl has been very popular in
Europe, and a large number of industrial control projects have been implemented in
Pearl. Pearl supports semaphores which can be used to protect communication based
on shared buffers.

Chill [564] was designed for telephone exchange stations. It was standardized by
the CCITT and used in telecommunication equipment. Chill is a kind of extended
PASCAL.

IEC60848 [223] andSTEP7 [49] are specialized languages that are used in control
applications.Both provide graphical elements for describing the system functionality.

2.9 Levels of Hardware Modeling

In practice, designers start design cycles at various levels of abstraction. In some
cases, these are high levels describing the overall behavior of the system to be
designed. In other cases, the design process starts with the specification of electrical
circuits at lower levels of abstraction. For each of the levels, a variety of languages
exists, and some languages cover various levels. In the following, we will describe a
set of possible levels. Some lower end levels are presented here for context reasons.
Specifications should not start at those levels. The following is a list of frequently
used names and attributes of levels:

• System-levelmodels: The term system level is not clearly defined. It is used here to
denote the entire embedded system and the system intowhich information process-
ing is embedded (“the product”), and possibly also the environment (the physical
input to the system, reflecting, e.g., the roads and weather conditions). Obviously,
such models include mechanical as well as information processing aspects and it
may be difficult to find appropriate simulators. Possible solutions include VHDL-
AMS (the analog extension to VHDL), Verilog-AMS, SystemC, Modelica, COM-
SOL(see https://www.comsol.com/), orMATLAB/Simulink.MATLAB/Simulink
and VHDL-AMS support modeling partial differential equations, which is a key
requirement for modeling mechanical systems. It is a challenge to model infor-
mation processing parts of the system in such a way that the simulation model
can also be used for the synthesis of the embedded system. If this is not possible,
error-prone manual translations between different models may be needed.

• Algorithmic level: At this level, we are simulating the algorithms that we intend
to use within the embedded system. For example, we might be simulating MPEG
video encoding algorithms in order to evaluate the resulting video quality. For such
simulations, no reference is made to processors or instruction sets.

https://www.comsol.com/
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Data types may still allow a higher precision than the final implementation. For
example, MPEG standards use double precision floating point numbers. The final
embedded system will hardly include such data types. If data types have been
selected such that every bit corresponds to exactly one bit in the final implementa-
tion, the model is said to be bit-true. Translating non-bit-true into bit-true models
should be done with tool support (see p. 344).
Models at this level may consist of single processes or of sets of cooperating
processes.

• Instruction set level: In this case, algorithms have already been compiled for
the instruction set of the processor(s) to be used. Simulations at this level allow
counting the executed number of instructions. There are several variations of the
instruction set level:

– In a coarse-grained model, only the effect of the instructions is simulated and
their timing is not considered. The information available in assembly reference
manuals (instruction set architecture (ISA)) is sufficient for defining such mod-
els.

– Transaction-level modeling: In transaction-level modeling (see also p. 89),
transactions, such as bus reads andwrites, and communication between different
components are modeled. Transaction-level modeling includes fewer details
than cycle-truemodeling (see below), enabling significantly superior simulation
speeds [105].

– In amore fine-grainedmodel, wemight have cycle-true instruction set simula-
tion. In this case, the exact number of clock cycles required to run an application
can be computed. Defining cycle-true models requires a detailed knowledge
about processor hardware in order to correctly model, for example, pipeline
stalls, resource hazards, and memory wait cycles.

• Register-transfer level (RTL): At this level, we model all the components at the
register-transfer level, including arithmetic/logic units (ALUs), registers, memo-
ries, multiplexers, and decoders. Models at this level are always cycle-true. Auto-
matic synthesis from such models is not a major challenge.

• Gate-level models: In this case, models contain gates as the basic components.
Gate-level models provide accurate information about signal transition probabili-
ties and can therefore also be used for power estimations. Also delay calculations
can be more precise than for the RTL. However, typically no information about the
length of wires and hence no information about capacitances is available. Hence,
delay and power consumption calculations are still estimates.
The term “gate-level model” is sometimes also employed in situations in which
gates are only used to denote Boolean functions. Gates in such a model do not
necessarily represent physical gates; we are only considering the behavior of the
gates, not the fact that they also represent physical components. More precisely,
such models should be called “Boolean function models23,” but this term is not
frequently used.

23These models could be represented with binary decision diagrams (BDDs) [546].
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• Switch-level models: Switch-level models use switches (transistors) as their basic
components. Switch-level models use digital values models (refer to p. 84 for a
description of possible value sets). In contrast to gate-level models, switch-level
models are capable of reflecting bidirectional transfer of information. Switch-level
models can be simulated with ternary simulation [74].

• Circuit-level models: Circuit theory and its components (current and voltage
sources, resistors, capacitances, inductances, and frequently possible macro-
models of semiconductors) form the basis of simulations at this level. Simulations
involve partial differential equations. These equations are linear if and only if
the behavior of semiconductors is linearized (approximated). The most frequently
used simulator at this level is SPICE [533] and its variants.

• Layout models: Layout models reflect the actual circuit layout. Such models
include geometric information. Layout models cannot be simulated directly, since
the geometric information does not directly provide information about the behav-
ior. Behavior can be deduced by correlating the layout model with a behavioral
description at a higher level or by extracting circuits from the layout, using knowl-
edge about the representation of circuit components at the layout level.
In a typical design flow, the length of wires and the corresponding capacitances
are extracted from the layout and back-annotated to descriptions at higher levels.
This way, more precision can be gained for delay and power estimations. Also,
layout information may be essential for thermal modeling.

• Process and device models: At even lower levels, we can model fabrication
processes. Using information from such models, we can compute parameters
(gains, capacitances, etc.) for devices (transistors). Due to a growing complex-
ity of the fabrication process, these models are also becoming more complex.

2.10 Comparison of Models of Computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For example,
Stuijk [491] compares MoCs according to the following criteria:

• Expressiveness and succinctness indicate which systems can be modeled and
how compact they are.

• Analyzability relates to the availability of schedulability tests and scheduling
algorithms. Also, analyzability is affected by the need for run-time support.

• The implementation efficiency is influenced by the required scheduling policy
and the code size.
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Figure 2.74 classifies data flow models according to these criteria.

Homogeneous SDF (HSDF)

Expressiveness and succinctness

Analyzability Implementation efficiency

Kahn process networks
SDF

Fig. 2.74 Comparison between data flow models

This figure reflects the fact that Kahn process networks are expressive: They are
Turing complete, meaning that any problem which can be computed on a Turing
machine can also be computed in a KPN. Turing machines are used as the standard
model of universal computers [206]. However, termination properties and upper
bounds on buffer sizes ofKPNs are difficult to analyze.WhileKahn process networks
are Turing complete, cyclo-static data flow (CSDF, see p. 70) is not Turing complete.
Also, SDF graphs are not Turing complete. The underlying reason is that they cannot
model control flow. However, deadlock properties and upper bounds on buffer sizes
of SDF graphs are easier to analyze. Homogeneous SDF (HSDF) graphs (graphs for
which all rates are equal to one) are even less expressive, but also easier to analyze.

We could compare MoCs also with respect to the type of processes supported:

• The number of processes can be either static or dynamic. A static number of
processes simplifies the implementation and is sufficient if each process models a
piece of hardware and if we do not consider “hot-plugging” (dynamically changing
the hardware architecture). Otherwise, dynamic process creation (and termination)
should be supported.

• Processes can either be statically nested or all declared at the same level. For
example, StateCharts allows nested process declarations while SDL (see p. 58)
does not. Nesting provides encapsulation of concerns.

• Different techniques for process creation exist. Process creation can result from
an elaboration of the process declaration in the source code, through the fork and
joinmechanism (supported for example inUnix), and also through explicit process
creation calls.

The expressiveness of different data flow-oriented models of computation is also
shown in Fig. 2.75 [43]. MoCs not discussed in this book are indicated by dashed
lines.
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Fig. 2.75 Expressiveness of
data flow models

HSDF

SDF

CSDF

KPN

None of the MoCs and languages presented so far meets all the requirements for
specification languages for embedded systems. Table2.6 presents an overview over
some of the key properties of some of the languages.

Table 2.6 Language comparison

Language Behavioral
hierarchy

Structural
hierarchy

Programming
language
elements

Exceptions
supported

Dynamic
process
creation

StateCharts + – – + –

VHDL + + + – –

SDL +– +– +– – +
Petri nets – – – – +
Java + – + + +
SpecC + + + + +
SystemC + + + + +
Ada + – + + +

Interestingly, SpecC and SystemC meet all listed requirements. However, some
other requirements (like a precise specification of deadlines) are not included. It is not
very likely that a singleMoC or language will ever meet all requirements, since some
of the requirements are essentially conflicting. A language supporting hard real-time
requirements may well be inconvenient to use for less strict real-time requirements.
A language appropriate for distributed control-dominated applications may be poor
for local data flow dominated applications. Hence, we can expect that we will have
to live with compromises and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly language
programming was very common in the early years of embedded systems program-
ming. Programswere small enough to handle the complexity of problems in assembly
languages. The next step was the use of C or derivatives of C. Due to the increasing
complexity of embedded system software, higher level languages are to follow the
introduction of C. Object-oriented languages and SDL are languages which provide
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the next level of abstraction. Also, languages like UML are required to capture spec-
ifications at an early design stage. The trend is to move toward model-based designs
[453]. In practice, languages can be used like shown in Fig. 2.76.

Hardware

Net list

VHDL

(RT-) UML or equivalent

SDL

C-programs

Assembly programs

(RT-) UML or equivalent

(RT-) Java

Object code Object code

Fig. 2.76 Using various languages in combination

According to Fig. 2.76, languages like SDLor StateCharts can be translated intoC.
These C descriptions are then compiled. Starting with SDL or StateCharts also opens
the way to implementing the functionality in hardware, if translators from these lan-
guages to VHDL are provided. Both C and VHDL will certainly survive as inter-
mediate languages for many years. Java does not need intermediate steps but does
also benefit from good translation concepts to assembly languages. In a similar way,
translations between various graphs are feasible. For example, SDF graphs can be
translated into a subclass of Petri nets [491]. Also, they correspond to a subclass
of the computation graph model proposed by Karp and Miller [270]. Linking the
various models of computation is facilitated by formal techniques [96].

Several languages for embedded system design are covered in a book edited by
M.Radetzki [439]. Popovici et al. [432] use a combination of Simulink and SystemC.

We have skipped the discussion of algebraic languages such as LOTOS [246] and
Z [480]. These languages enable precise specifications and formal proofs, but they
are not executable.

2.10.2 UML™

UML™ is a language including diagrams reflecting severalMoCs. Table2.7 classifies
the UML diagrams mentioned so far with respect to our table of MoCs.
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Table 2.7 Models of computation available in UML™

Communication/
organization of components

Shared memory Message passing

Synchronous Asynchronous

Undefined components Use cases

Sequence charts, timing diagrams

Differential equations –

Finite state machines State diagrams – –

Data flow – Data flow diagrams

Petri nets (Not useful) Activity charts

Distributed event model – –

Von-Neumann model – –

This figure showshowUMLcovers severalmodels of computation,with a focus on
early design phases. Semantics of communication is typically imprecisely defined.
Therefore, our classification cannot be precise in this respect. In addition to the
diagrams already mentioned, the following diagrams can be modeled:

• Deployment diagrams: These diagrams are important for embedded systems,
and they describe the “execution architecture” of systems (hardware or software
nodes).

• Package diagrams: Package diagrams represent the partitioning of software into
software packages. They are similar to module charts in StateMate.

• Class diagrams: These diagrams describe inheritance relations of object classes.
• Communication diagrams (called Collaboration diagrams in UML™1.x):
These graphs represent classes, relations between classes, and messages that are
exchanged between them.

• Component diagrams: They represent the components used in applications or
systems.

• Object diagrams, interaction overview diagrams, composite structure dia-
grams: This list consists of three types of diagrams which are less frequently
used. Some of them may actually be special cases of other types of diagrams.

Available tools provide some consistency checking between the different diagram
types. Complete checking, however, seems to be impossible. One reason for this is
that the semantics ofUML initiallywas left undefined. It has been argued that thiswas
done intentionally, since onedoes not like to bother about the precise semantics during
the early phases of the design. As a consequence, precise, executable specifications
can only be obtained if UML is combined with some other, executable languages.
Available design tools have combined UML with SDL [219] and C++. There are,
however, also some first attempts to define the semantics of UML.

Version 1.4 of UMLwas not designed for embedded systems. Therefore, it lacks a
number of features required formodeling embedded systems (see p. 27). In particular,
the following features are missing [368]:
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• the partitioning of software into tasks and processes cannot be modeled,
• timing behavior cannot be described at all,
• the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gaining
importance for embedded systems as well. Hence, several proposals for UML exten-
sions to support real-time applications have been made [132, 368]. These extensions
have been considered during the design of UML 2.0. UML 2.0 includes 13 diagram
types (up from nine in UML 1.4) [12]. Special profiles are taking the requirements of
real-time systems into account [352]. Profiles include class diagramswith constraints,
icons, diagram symbols, and some (partial) semantics. There are UML profiles for
the following [352]:

• Schedulability, Performance, and Time Specification (SPT) [409],
• Testing [412],
• Quality of Service (QoS) and Fault Tolerance [412],
• a Systems Modeling Language called SysML [410],
• Modeling and Analysis of Real-Time Embedded Systems (MARTE), [411]
• UML and SystemC interoperability [446],
• the SPRINT profile for reuse of intellectual property (IP) [481].

Using such profiles,we can—for example—attach timing information to sequence
charts. However, profiles may be incompatible. Also, UML has been designed for
modeling and frequently leaves too many semantical issues open to allow automatic
synthesis of implementations [352].

2.10.3 Ptolemy II

The Ptolemy project [435] focuses on modeling, simulation, and design of het-
erogeneous systems. Emphasis is on embedded systems that mix different tech-
nologies and, accordingly, also MoCs. For example, analog and digital electronics,
hardware and software, and electrical and mechanical devices can be described.
Ptolemy supports different types of applications, including signal processing, con-
trol applications, sequential decision making, and user interfaces. Special attention
is paid to the generation of embedded software. The idea is to generate this soft-
ware from the MoC which is most appropriate for a certain application. Version 2 of
Ptolemy (Ptolemy II) supports the followingMoCs and corresponding domains (see
also p. 37):

1. Communicating sequential processes (CSP)
2. Continuous time (CT): This model is appropriate for mechanical systems and

analog circuits. Hence, this model supports differential equations. Tools include
extensible differential equation solvers.
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3. Discrete event model (DE): This is the model used by many simulators, e.g.,
VHDL simulators.

4. Distributed discrete events (DDE). Discrete event systems are difficult to simulate
in parallel, due to the inherent centralized queue of future events. Attempts to
distribute this data structure have not been very successful so far. Therefore, this
special (experimental) domain is introduced. Semantics can be defined such that
distributed simulation becomes more efficient than in the DE model.

5. Finite state machines (FSM)
6. Process networks (PN), using Kahn process networks (see p. 65).
7. Synchronous dataflow (SDF)
8. Synchronous/reactive (SR) MoC: This model uses discrete time, but signals do

not need to have a value at every clock tick. Esterel (see p. 57) is a language
following this style of modeling.

This list clearly shows the focus on differentmodels of computation in the Ptolemy
project.

2.11 Problems

We suggest solving the following problems either at home or during a flipped class-
room session:

2.1: What is a (design) model?

2.2: Prepare a list of up to six requirements for specification/modeling languages
for embedded systems!

2.3: Why could our specification lead to deadlocks?

2.4: What is a “model of computation (MoC)”?

2.5: What is a “job” and how is it different from “tasks”?

2.6: Which are the two key techniques for communication in computers?

2.7: Which description techniques can be used for capturing initial ideas about the
system to be designed?

2.8: Simulate trains between Paris, Brussels, Amsterdam, and Cologne, using the
levi simulation software [473]! Modify the examples included with the software
such that two independent tracks exist between any two stations and demonstrate an
(arbitrary) schedule involving 10 trains!
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2.9: Download the OpenModelica simulation software. Develop a simulation
model forNewton’s cradle (see, for example, https://en.wikipedia.org/wiki/Newton%
27s_cradle).

2.10: Modify the answering machine of Example 2.8 such that the owner can
intervene at any time during the playing of precorded text or the recording of the
message.

2.11: Model your daily schedule with a timed automaton. Hours are reflected by
a variable h, days by a variable d. d = 1 means Monday, d = 7 means Sunday.
On a weekend (d = 6 or d = 7), you leave the sleeping state between h = 10 and
h = 11, spend 1–2h getting yourself ready for the day, stay with your friend until
some time in the range h = 20 to h = 21, walk back home and enter the sleeping
state between h = 22 and h = 23. During the week (d = 1 or ... or d = 5), you leave
the sleeping state between h = 7 and h = 8, spend 1–2h getting yourself ready for
the day, study until some time in the range h = 20 to h = 21, walk back home and
enter the sleeping state between h = 22 and h = 23. Model your schedule! Do not
forget to increase the day d at the end of each day.

2.12: Suppose the StateCharts model in Fig. 2.77 (left) model is given.
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Fig. 2.77 StateCharts example: left: graphical model; right: table of states

Also, suppose that we have the following sequence of input events: b c f h g h e
a b c. In the diagram in Fig. 2.77 (right), mark all the states the StateCharts model
will be in after a particular input has been applied! Note that H denotes the history
mechanism.

2.13: Are StateCharts determinate models if we follow the StateMate semantics?
Please explain your answer!

2.14: Is SDL a determinate language? Please explain your answer!

https://en.wikipedia.org/wiki/Newton%27s_cradle
https://en.wikipedia.org/wiki/Newton%27s_cradle
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2.15: Let us assume that you have been asked to help modeling the flow of visitors
in the hypothetical Museum of Fine Future Information Nuggets (MUFFIN). We
consider a steady state with no visitors entering or exiting the museum. The museum
will have three exhibition halls. In front of each hall, there is space for a waiting line.
The exit of this space is connected to the entry of the hall. Each of the hall exits is
connected to each entry of the waiting spaces. Visitors leaving one of the halls are
free to chose any of the other halls as their next one. We assume that each hall can
be described as a process in a meaningful way, with some randomness of the time
that a visitor stays in a hall. Assume that you would like to model this situation is
SDL. Show a diagram with explicit processes and FIFO queues!

2.16: Download the levi simulation software for KPNs [471] and develop a KPN
model computing Fibonacci numbers in a distributed fashion (i.e., just using a single
KPN node is illegal).

2.17: Which three types of Petri nets did we discuss in this book?

2.18: One of the types of Petri nets allows several non-distinguishable tokens per
place. Which components are used in a mathematical model of such nets? Hint: N
= (P, .......... )

2.19: Draw the following condition/event system: N = (C, E, F), given

• Conditions: C = {c1, c2, c3, c4},
• Events: E = {e1, e2, e3},
• Relation:

F = {(c1, e1), (c1, e2), (e1, c2), (e1, c3), (e2, c2), (e2, c3), (e2, c4), (c2, e3),

(c3, e3), (c4, e3), (e3, c1), (e3, c4)}

Specify the precondition of e3 as well as the postcondition of e1. Is N simple or/and
pure? Given it is not, which edge(s) need(s) to be removed in order to turn N into a
pure net? Substantiate or prove your answers concisely.

2.20: What does a compact model of the dining philosophers problem look like?

2.21: CSA theory leads to 2, 3, and 4 logic strengths, corresponding to 4, 7, and
10 logic values. How many strengths and values are we using in IEEE 1164? Please
show the partial order among the values of IEEE 1164 in a diagram! Which of the
values of IEEE 1164 are not included in the partial order and what is the meaning of
these values?

2.22: Suppose that a bus as shown in Fig. 2.78 is given. Rectangles containing an
&-sign denote AND gates.
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Fig. 2.78 Bus driven by
tristate outputs
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Which of the IEEE 1164 values will be on the bus if both enable inputs are set to
’0’ (ena1 = ena2 = ’0’)?

Which of the IEEE 1164 values will be on the bus if ena1 = ’0’, ena2 = ’1’ and
f 2 = ’1’?

2.23: Which of the following circuits can be modeled with IEEE 1164: comple-
mentary CMOS outputs, outputs with a depletion transistor, open collector outputs,
tristate outputs, precharging on buses (if depletion transistors are used as well)?

2.24: Which of the following languages use asynchronous message passing: Stat-
eCharts, SDL, VHDL, CSP, Petri nets, MPI?

2.25: Which of the following languages use a broadcast mechanism for updating
variables: StateCharts, SDL, Petri nets?

2.26: Which of the following diagram types are supported by UML: sequence
charts, record charts, Y-charts, use cases, activity diagrams, circuit diagrams?

2.27: UML™ is a frequently used modeling technique. In the table below, enter
models of computation for the components in the left column and for communication
in the top row. Then, enter asmanyUMLdiagram types as feasible into the remaining
table cells.

Communication/organiza-
tion of components
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