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Abstract This chapter collects the lecture notes of themodule “Elasticity andHered-
itatiness of Lipid Bilayers” delivered at CISM in July 2016. Such material is based
primarily on three papers coauthored by this lecturer, and which have been con-
tributing to shed light on the mechanical behavior of lipid bilayers. In particular,
the breakthrough from this research is that the underlying nonlinear elastic response
of lipid bilayers is fully determined as long as the membrane energy is obtained.
Bending and saddle splay rigidities are shown here to be directly obtainable from
the membranal response, as well as the line tension, holding together domains in
which lipids are in different phases. The power law hereditariness of lipid mem-
branes strikingly shown through rheometric tests has been analyzed in this work
through a suitable energetics obtained by the author and coworkers and penalizing
small perturbations of ground configurations of such systems.
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1 Introduction

In Deseri et al. (2008) we obtained an energetics for biomembranes, such as lipid
bilayers, which accounts for the through-thickness phase transition exhibited by
planar structures and curved closed liposomes, like Giant Unilamellar Vescicles
(GUVs) (see e.g., Lipowsky and Sackmann 1995). As pointed out in other chapters
of this volume, the average thickness of such structures is of the order of 5 nm while
the other two dimensions are several orders of magnitudes higher in size. In the
treatment mentioned above no distinction is done between the leaflets of a bilayer,
thereby inferring that even the energetics of lipidmonolayers is compatible with such
derivation.

Ways for controlling the morphologies in planar lipid systems and in GUVs are
temperature and osmotic pressure based (see e.g., Baumgart et al. 2003; Veatch
et al. 2004). Advanced high-resolution fluorescence imaging techniques employed
in Baumgart et al. (2003) in particular have highlighted the coexistence of regions
(or phases) with completely different features, highlighted in red and blue in Fig. 1
included in the same paper. The main contrast among such zones on the membranes
is in terms of “degree of curliness” of the lipids, namely how curly and, hence,
how short they get relative to their maximum length. This has an impact on the
values of the curvatures in GUVs in regions with different degrees of curliness
and also in the redistribution of the species within a lipid membrane with a given
chemical composition. Because lipid membranes have the molecules free to move
in-plane, namely across the surface, the two phases are called liquid ordered-Lo

and liquid disordered-Ld . In some cases, the presence of “lipid rafts” is detected in
lipid bilayers. Basically, glycosphingolipid-enriched domains do form such rafts. For
instance, the latter occur in the presence of fully saturated chains of sphingomyelin
and glycosphingolipids bond with neighboring active functional glycosyl groups.
Obviously, any model owing the Lo–Ld transition can consistently predict lipid
rafts. The issue is: can a model at the continuum level be more physically based and
predict both the phase transitions and the changes in curvature and shapes? Through
the last four decades this has been one of the main tasks in the field and, obviously,
there no unique answer to this. Among the most prominent works in this direction

Fig. 1 Images experimentally obtained by Baumgart et al. (2003), showing how phase separation
relates to shapes achieved by GUVs. In red and blue respectively liquid-disordered and liquid-
ordered phases. Scale bars 5µm (Images by courtesy of Baumgart et al. 2003)
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one can certainly single out Lipowsky and Sackmann (1995)-Chap.1. There it was
remarked that “here the theory of nonreacting mixtures and the theory of phase
transitions are strictly related to the theory of thin, fluid shells”. Ultimately, this
corroborates the fact that obtaining a physically based model at the continuum level
incorporating information regarding the species forming the bilayer, and rendering
out the phase transition and the geometrical changes experienced by such structures
is an extremely hard task. Contributions focusing on the purely mechanical behavior
of such systems can be related to the pioneering work in Canham (1970), Fung
(1966), Fung and Tong (1968), although the keystone work in biophysics regarding
lipid bilayers can be singled out in Helfrich (1973), where the free energy density per
unit area in the case of pure bending was obtained. This led the Helfrich free energy,
which does coincidewith theKirchhoff–Love bending energy density in the presence
of large curvature changes. The latter is well known in Structural Engineering and
Solid Mechanics.

A piecewise Helfrich’s energy has been employed when different zones of the
surface of the bilayer are already known to be occupied by lipids in different phases.
Spontaneous curvature inGUVshas also been accounted for in someof the extensions
of Helfrich’s model.

Along similar lines, a purely mechanical energy for liquid films has been obtained
in Keller and Merchant (1991), where the bending stiffness of a liquid surface has
been computed. Later, in Steigmann (1999) an expression of the dependence for
two-dimensional fluid films exhibiting such stiffness was singled out, thanks to a
theory of elastic surfaces. Along similar lines of thinking, in Baesu et al. (2004) it
was proposed a stretching–bending energy density.

In all themodels above the bilayerwas always considered a two-dimensional body,
thereby neglecting direct information associated with the thickness of themembrane.
This is certainly not what one must do in order to capture the main mechanism of
the observed phase transition experienced by the lipids. Indeed, they are seen to
be nearly extended in the ordered phase, Lo, whereas they get shorter and curlier
in the disordered phase, Ld . Indeed, it is known that a raise in temperature causes
the hydrocarbon lipid tails of phospholipids to undergo the phase transition just
mentioned above, evidenced by a significant thickness reduction from the liquid-
ordered phase Lo to the liquid-disordered phase Ld (see e.g., Falkovitz et al. 1982;
Goldstein and Leibler 1988, 1989; Jahnig 1981, 1996; Owicki et al. 1978; Owicki
and McConnell 1979; Lipowsky and Sackmann 1995).

The conclusion is that keeping track of thickness changes is essential for lipid
membranes and its changes witness the variations of the lipids order. This key issue
is addressed in Deseri et al. (2008).

Asymptotic approaches delivering the mechanics of nonlinear elastic shells (see
e.g., Koiter 1966) show that the thickness governs the scaling of both the membranal
and the bending contributions to the energy density, being the former linear with the
thicknesswhile the latter is cubic in this quantity.Henceforth, ignoring themembranal
term (asmany formulations do)means to neglect an energy contribution to the overall
energy which is two orders of magnitude more important than the bending term.
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The work done in Deseri et al. (2008) also represents one of the first attempts
toward a better understanding of the correlation among lipid order, membrane shape,
and chemical composition during either temperature changes or osmotic pressure
or both. This has been followed by several contributions in recent years, including
Maleki et al. (2013). A related discussion and a derivation of the line tension, namely
the configurational force arising at between zones of difference phases allowing for
zones of finite size, is presented in Deseri and Zurlo (2013). This agrees with results
obtained in Trejo and Ben Amar (2011).

The final reduced two-dimensional energetics in Deseri et al. (2008) is consistent
with a dimension reduction procedure. This is done in two steps. The first one is
to impose a modified Kirchhoff–Love kinematics which accounts for the thickness
changes and by enforcing a new symmetry group, introduced in Zurlo (2006), proved
Healey et al. (2017) and, eventually in Maleki et al. (2013), thereby delivering a bulk
energy density as a function of solely three invariants of the Cauchy–Green strain
measure. The second step is to perform an asymptotic expansion of the bulk energy
with respect to a reference thickness.

Summing up, the resulting energy density confirms the hierarchy between the
membranal and the bending terms described above, although it delivers a uniquely
and strikingly revealing expression, explained in Sect. 2. This will eventually lead to
deducing the key features of the elastic part of the response of lipid membranes, such
as the areal and bending rigidities and the line tension, namely the configurational
force holding together zones in different phases.

The main feature of the energy derived in Deseri et al. (2008) is the presence of
two turning points in the local stress governing the biological membrane behavior
(see Fig. 7a). They are placed in the spinoidal zone for the local part of the energy.
Henceforth, whenever the external conditions are such that the aerial stretch, i.e., the
reciprocal of the thinning, is enclosed in this region, the responsemay produce a rapid
change of the geometry, i.e., material instabilities can occur. The onset of bifurcated
configurations possibly arising from homogeneous configurations characterized by
an areal stretch lying in the spinoidal region is studied in Sect. 2.5. The total elastic
(Gibbs free) energy expanded upon any ground state in such region will be studied
to determine the bifurcated modes and the relationships between the number of
nucleated spatial oscillations with the critical values of the areal stretches.

In the sequel we will show that this occurrence is exhibited even when the in-
plane viscosity of the lipidmembrane is accounted for. In this regard, the experimental
observations of lipid viscous behavior showed that the loss and storage moduli are
well described by power law functions (Espinosa et al. 2011). This observation
suggests that the behavior of the biological membrane is properly described in the
framework of fractional hereditariness.

An analysis of the appropriate energetics arising because of viscosity will lead to
a new governing functional for studying the influence of the effective viscoelasticity
of the lipid membrane on the material instabilities exhibited by the system which is
studied in Sect. 3. The resulting viscoelastic free energy has a local and a nonlocal
part. There, the power at which stress and hyperstress relax might be different, as
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diffusion mechanisms may occur at different average speeds depending on whether
or not they arise in a boundary layer between different phases or in a given phase.

Exactly like in the purely elastic case, values of the areal stretches for which
unknown time evolving bifurcated configurations could occur are sought. This is to
investigate the role of the hereditariness on such unstable ground states. To this aim, in
full analogy with the elastic case, a variational principle is employed. The Gibbs free
energy density prevailing the space-time varying perturbation is taken from Deseri
et al. (2014), where a hierarchical rheological model yields the Staverman–Schartzl
free energy (extensively studied in Del Piero and Deseri 1996, 1997; Deseri et al.
2006, among many others) as the one for power law materials.

The variational principle yields a non-classical eigenvalue problem. Spatialmodes
bifurcating from ground states characterized by the areal stretch within the spinoidal
zone are of course oscillatory. The period of spatial oscillation is shown to decrease
with the ratio of generalized local and nonlocal moduli. Henceforth, the number of
oscillations increases with respect to the elastic case. As the ratio just mentioned
above increases, for a given number of oscillations the interval of stretches for
which bifurcation can occur gets larger if compared with the one determined by the
purely elastic behavior. The model then is suggesting that hereditariness increases
the chances of nucleating spatially oscillatory bifurcated modes.

Upon exploring the transfer function of the equation governing the eigenvalue
problemmentioned above, it is found that, for various values of the local and nonlocal
relaxation power, time decay occurs in the response. Hence, spatial oscillations do
slowly relax, exhibiting a long tail type response in time.

2 The New Elastic Energy for Lipid Membranes

In this section we briefly recall the main results obtained in Deseri et al. (2008),
together with a schematic description of the approach followed in this work. The
main result is the derivation of a new surface energy density for the lipid bilayer.
This is shown to give the possibility of deducing bending rigidities, line tension, and
thickness profile inside the boundary layer during the order–disorder transition from
simple experimental data on the stretching behavior of the membrane.

Attention here will be restricted to initially planar membranes, thereby neglecting
the effects of spontaneous curvature. An orthonormal basis (e1, e2, e3) is introduced
to describe material points in the reference configuration and geometrical changes
with respect to that. A simply connected region B0 of constant thickness h0 in the
direction of e3 and with a flat mid-surface � in the plane spanned by (e1, e2) depicts
the reference configuration for the membrane, thereby not distinguishing between
the upper and the lower leaflet of the membrane. Points of B0 are denoted by

x = x + ze3,
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where
x = xe1 + ye2

and z ∈ (−h0/2, h0/2).
In the sequel f represents the deformation map of B0 and F = ∇f its 3 × 3

gradient. The energy E stored in the membrane is symbolically expressed as follows:

E =
∫
B0

W (F) dV =
∫

�

∫ h0/2

−h0/2
W (F) dz d�, (1)

where W is the purely elastic Helmholtz energy density per unit volume. Evidently,
the energy density per unit surface in the reference configuration reads as follows:

ψ =
∫ h0/2

−h0/2
W (F) dz. (2)

In-plane fluidity is the main features of lipid membranes at room-to-body tempera-
ture. This entails the impossibility of sustaining shear stresses in planes perpendicular
to e3, unless viscosity is accounted for. This has been used to restrict the dependence
ofW on three suitable invariants of F (see Zurlo 2006; Healey et al. 2017 andMaleki
et al. 2013), namely

I (x) = { J̄ (x), det F(x), φ̄(x)}, (3)

representing the areal stretch of planes perpendicular to the direction e3, the volume
change and the stretch across the thickness, which ultimately will deliver the order
parameter for the degree of curliness of the lipids, respectively.

With the aim of catching the out-of-plane kinematics as well as thickness changes,
the following ansatz is assumed for the 3D deformation (see Fig. 2):

Fig. 2 Schematic representation of the deformation (4) of a plate-like reference configuration B0
into the current configuration B. The gray box depicts the space occupied by two lipid molecules,
their volume being conserved during the deformation (courtesy of Deseri and Zurlo 2013)
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f (x) = g(x) + z φ(x)n(x), (4)

where g(x) = g(x, y, 0) defines the current mid-surface of the membrane, that is
ω = g(�), where n is the outward normal to ω and where

φ(x) = h(x)/h0

is the thickness stretch, with h the current thickness. Such ansatz permits to make
explicit the dependence of the invariants I on z and, ultimately, to perform the
expansion of (2) in powers of the reference thickness h0.

The molecular volume of biological membranes can be shown to stay almost
constant in a broad rangeof temperature (see e.g.,Goldstein andLeibler 1989;Owicki
et al. 1978). This condition can be made explicit through a quasi-incompressibility
constraint, namely

det F(x, 0) = J̄ (x, 0)φ(x) = 1. (5)

The gray area in Fig. 2 relates with neighboring lipid molecules across the upper
and lower leaflets with respect to the film mid-surface. The constraint (5) is actually
a first-order approximation of the exact incompressibility constraint, as det F(x) =
det F(x, 0) + O(z). In all planar deformations, namely whenever ω deforms in the
plane z = 0, (5) yields that det F(x) = 1 is exact. This is the special case considered
in the sequel, thereby focusing on planar lipid membranes. It is not difficult to show
that the 3D energy density W reduces as follows:

w(J ) = W ( J̄ , det F, φ̄)

∣∣∣
z=0

= W (J, 1, J−1), (6)

where
J (x) = J̄ (x, 0).

The ansatz (4) and the assumption of in-plane fluidity yield the following expan-
sion of (2) up to terms of order h30:

ψ = ϕ(J ) + κ(J )H 2 + κg(J )K + α(J )||gradω Ĵ ||2, (7)

where H and K are, respectively, the mean and Gaussian curvatures of the mid-
surface ω, where

ϕ(J ) = h0 w(J ) (8)

is the stretching energy density of the membrane, scaling with h0, and where bending
rigidities are found to be the following:

k(J ) = h20
6

ϕ′′(J ) = h30
6

w′′(J ), kG(J ) = h20
12J

ϕ′(J ) = h30
12J

w′(J ), (9)
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where ′ = d/d J . It is worth emphasizing that the latter scale with h30, as expected.
The last term in (7) reads as follows:

α(J ) = h20
24J 3

ϕ′(J ), (10)

and it penalizes the gradients of J = h/h0, namely the presence of boundary layers
between zones where the lipids are in either of the two possible phases. It is worth
emphasizing that Ĵ represents the spatial description Ĵ ◦ g = J of J , and gradω is
the spatial gradient, with respect to points of the current mid-surface ω.

Often times the bending energy is calculated relative to the current surface ω and,
hence, bending rigidities must be expressed relative to the same configuration (see
e.g., Baumgart et al. 2003), i.e.,

κ(J ) = h20
6J

ϕ′′(J ), κG(J ) = h20
12J 2

ϕ′(J ). (11)

The expression (7) is consistent with several models previously introduced in the
literature of biological membranes. Indeed, Helfrich’s model

ψ = kH 2 + kGK

is recovered whenever one considers fixed value of J fixed.
The new energy (7) enables one to predict thickness phase transitions even for

planar lipid membranes, including Langmuir films, that remain flat under external
inputs, like temperature changes. Such situations are retrieved by (7) by setting
H = K = 0. This energetics reminds of the resulting energy for cold drawing of
polymeric films obtained in (see e.g., Coleman and Newman 1988). If the term
factoring α is neglected, (7) agrees with the one determined in Baesu et al. 2004.

It is worth noting that the strategy followed in Deseri et al. (2008) and Zurlo
(2006) to deliver (7) accounts for fairly general constitutive assumptions on the 3D
energy W , and also accounts for chemical composition, temperature dependence
and, potentially, for the presence of spontaneous curvature.

2.1 Stretching Energy

As it is clear from the structure of (7) and from (11) and (10), the pivot information
governing the whole energetics is the surface Helmholtz energy ϕ(J ). This regulates
the in-plane stretching behavior of the membrane and allows for predicting the phase
transition phenomena observed in lipid membranes (Fig. 3).

The experimental evidence clearly shows that for a given chemical composition
there may exist a temperature range where the Lo and Ld phases coexist, organiz-
ing themselves in domains called rafts. In closed membranes, these domains are
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Fig. 3 The stretching energy
ϕ(J ) adapted from Goldstein
and Leibler (1989), for a
temperature T ∼ 30◦. The
areal stretch Jo = 1
corresponds to the
unstressed, reference
configuration B0 (courtesy
of Deseri and Zurlo 2013)
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typically detectable by curvature inhomogeneities, reflecting the occurrence of dif-
ferent bending rigidities (Baumgart et al. 2003). The expressions (11) for the bend-
ing moduli enlighten how the order–disorder transition, described by the stretching
energyϕ(J ), is connected with bending behavior of the membrane. Furthermore, we
will prove that the knowledge of ϕ(J ) also determines the line tension occurring at
the phase boundary.

Several works, such as Falkovitz et al. (1982), Goldstein and Leibler (1989),
Komura et al. (2004), Owicki et al. (1978), Owicki and McConnell (1979), show
that in order to provide a suitable expression for ϕ(J ) a Landau expansion in terms
of the powers of either the thinning field φ = h/h0 or the areal stretch J is provided.
This has the advantage that its (temperature dependent) coefficients are connected
to the latent heat and the order parameter jump (e.g., Goldstein and Leibler 1989
and Lipowsky and Sackmann 1995). For the sake of convenience, in the sequel we
assume that the natural planar configuration B0 of the lipid membrane is precisely
the ordered phase Lo, where J = Jo = 1, so that the stretching energy takes the form

ϕ(J ) = a0 + a1 J + a2 J
2 + a3 J

3 + a4 J
4, (12)

where the coefficientsai (i = 0, . . . , 4) depend on temperature and chemical compo-
sition. Lacking of more experimental information leads one to tune such parameters,
thanks to experimentals provided in Goldstein and Leibler (1989), actually also uti-
lized in Komura et al. (2004), to connect with the thinning transition experienced by
the lipids. At room temperature T ∼ 30◦, one record the following coefficients for
ϕ(J ):

a0 = 2.03, a1 = −7.1, a2 = 9.23,
a3 = −5.3, a4 = 1.13.

(13)

It is worth noting that their dimension is [J ][m]−2. The choice (13) has been pursued
with the aim to show the feasibility of the proposed treatment. Specific data on the
bilayer chemical composition and the temperature are required in order to get realistic
pictures of the geometrical changes during the expected phase transition.
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Summing up we conclude that:

• the membrane energy densityϕ(J ) can be completely determined experimentally:
this is a local term within the energy and depends on temperature, chemical com-
position (of the specific lipids), and it scales with the linear power of the reference
thickness of the bilayer;

• bending and spatial changes of either the thickness change gradient or of the related
areal stretch are detected by the energy, thanks to the arising nonlocal terms;

• the latter coincides with the Helfrich’s energy when the gradient term is negligible
with respect to the bending one and the elastic moduli do not significantly change
with areal stretch and concentration;

• like in the case of Coleman and Newman (1988), the penalization of the gradient
of the areal stretch spontaneously arises from the dimension reduction procedure;

• besides prescribing the mean and the Gaussian curvatures, the resulting bending
energy density is completely determined by the sole membrane energy density
ϕ(J ): this relates to the chemical composition of the membrane is the only needed
constitutive information of the model.

2.2 Thinning Transition in Flat Lipid Layers

A planar membrane in the reference configuration B0 is displayed in Fig. 4. Its
homogeneous thickness in the direction of e3 is denoted by h0, while its width in the
direction of e2 is labeled by B and its length is denoted by L . At z = 0 the reference
mid-surface� is set, while the sides of the planar bilayer are situated x = ±L/2 and
y = ±B/2.

Plane strain deformations are considered to explore the main features of the thin-
ning phase transition. Hence, the kinematics reads as follows:

ϕ(x) = g(x)e1 + ye2 + zφ(x)e3, (14)

where x is the variable in the direction e1. The deformation gradient of such ϕ reads
as follows:

Fig. 4 Plane strain lipid
bilayer undergoing phase
transition from the thicker
Lo domain to the thinner Ld
domain under a traction � in
the e1 direction (courtesy of
Deseri and Zurlo 2013)
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F = ∇ϕ =
⎡
⎣ gx 0 0

0 1 0
zφx 0 φ

⎤
⎦ , (15)

where x denotes differentiation with respect to that (only) variable. The displacement
component along e1 is u(x) = g(x) − x . The stretch in direction of the length of the
bilayer is introduced in the sequel

λ(x) = gx (x). (16)

The 3D quasi-incompressibility reduces to φ = λ−1 on �, so that the membrane
deformation is completely determined by λ.

We note that
||gradω Ĵ ||2 = ||gradωλ̂||2 = λ2

xλ
−2, (17)

after setting λ̂ = λ ◦ g−1, representing the spatial description of λ,
The resulting energy density per unit area (7) reads as follows:

ψ(λ,λx ) = ϕ(λ) + h20
24

λ−5ϕ′(λ)λ2
x (18)

where ′ = d/dλ (here J = λ). Upon introducing

γ(λ) = −h20
12

λ−5ϕ′(λ), β(λ) = 1

2
γ′(λ), (19)

(see Coleman and Newman 1988), the energy density above can be rewritten as
follows:

ψ(λ,λx ) = ϕ(λ) − 1

2
γ(λ)λ2

x . (20)

It is worth noting that if γ would be replaced by a negative constant, the energy (20)
coincides to the Cahn–Hilliard functional (Cahn and Hilliard 1958). The fact that the
constant γ < 0 in such a model is required for stability purposes. In (19) the fact that
γ depends on λ makes (20) to resemble the energy density deduced in Coleman and
Newman (1988). Even in this case the condition γ(λ) < 0 is required for nucleating
phase boundaries. This is in fact the case for the energy density (12).

For the sake of argument, opposite tractions � (force per reference length) are
taken to arise on the edges x = ±L/2. Due to the presence of λx hypertractions �

performing work against ux must be accounted for. Henceforth, the work performed
on the bar reads as follows:

W (u, ux ) = B [�u]+L/2
−L/2 + B [�ux ]

+L/2
−L/2 . (21)

Evidently, the total potential energy for any g is the sum of the total strain energy,
obtained by integrating (20) across the membrane, minus the work (21), i.e.,
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E (γ) = B
∫ L/2

−L/2
ψ(λ,λx ) dx − W (u, ux ). (22)

Stationarity of (22) yields the Euler–Lagrange equation for u and the associated
boundary conditions. A perturbation η(x) is imposed on the underlying g, namely

gε(x) := g(x) + εη(x), (23)

to deliver those information from (22). The arbitrariness ofη leads to thefirst variation
δE = dE(gε)/dε|ε=0 of (22), thereby delivering the Euler–Lagrange equation. Upon
integrating such relation, the following condition is obtained:

� = ϕ′(λ) + β(λ)λ2
x + γ(λ)λxx = const., (24)

holding in the open interval (−L/2, L/2), with the boundary conditions

[� + γ(λ)λx ]−L/2 = [� + γ(λ)λx ]+L/2 = 0. (25)

Strain localizations are investigated to explore the possible coexistence of ordered
regions, in the Lo phase, and disordered zones, the thinner Ld phase: this transition
maybe connected through a boundary layer.With the aimof getting rid of edge effects
induced by the boundary (Coleman and Newman 1988), the length L is considered
unbounded relative to the reference thickness h0. Henceforth, −∞ < x < ∞. The
particular case in which� = 0 at the boundaries is explored in the sequel, so that (25)
implies λx → 0 as x → ±∞. Nontrivial and bounded solutions of (24) are sought.
In Coleman and Newman (1988) it is shown that they verify the equation

x − x̄ =
∫ λ(x)

λ(x̄)

( −2

γ(λ)

∫ λ

λa

[
ϕ′(ζ) − �

]
dζ

)− 1
2

dλ, (26)

where x̄ is arbitrary and where λa is either the value of λ at a specific location or a
limiting value at which λx = 0. The derivation of (26) is detailed in Deseri and Zurlo
(2013).

Whenever γ(λ) < 0, nontrivial bounded solutions of (24) have been completely
characterized in Coleman and Newman (1988) for given tractions �. Depending on
the number of locations at which λx = 0, the solutions of the problem are shown to
fall in one of the following classes:

1. λ is strictly monotone, if λx 	= 0 for any finite location;
2. λ exhibits either a bulge or a neck, if there exists precisely one location x at which

λx = 0;
3. λ is periodic, if there is more than one finite value of x at which λx = 0.

Strictly monotone solutions are analyzed in the sequel. In such cases the following
relations hold:
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limx→−∞ λ = λ∗, limx→+∞ λ = λ∗
limx→±∞ λx = 0, limx→±∞ λxx = 0.

(27)

Coleman and Newman (1988) show that such conditions can be attained provided
that the applied traction equals the Maxwell stress �M , which is determined by the
equal area rule

∫ λ∗

λ∗
[ϕ′(λ) − �M ] dλ = 0, (28)

with
ϕ′(λ∗) = ϕ′(λ∗) = �M ,

bearing in mind that these solutions are uniquely determined to within a reflection or
translation. The fact that λ(x) is monotonic allows for determining the location map
x in terms of λ from (26), with λa ≡ λ∗ and x̄ arbitrary, such that λ∗ < λ(x̄) < λ∗.

For the specific energy (12), it turns out that

�M = 5.92mNm−1, λ∗ = 1.025, λ∗ = 1.308, (29)

which is consistent withwhat it is displayed in (see Fig. 5). For the sake of illustration,
onemay take h0 = 45.5Å for the reference thickness of the ordered phase (seeDeseri
and Zurlo 2013) and its reference to Goldstein and Leibler (1989) and by making use
of (12, 19), the numerical integration of (26) yields λ(x) within the range (λ∗,λ∗).

The boundary layer is displayed in Fig. 6 as a result of the solutions of the Euler–
Lagrange equation mentioned above. Evidently, with λ(x) strictly monotonic, the
limit values (λ∗,λ∗) are asymptotic values at infinity. Nonetheless, the solution
depicted in Fig. 6 is characterized by a strong strain localization inside a bound-
ary layer of length �15Å. It is between λ∗ and λ∗ where such a boundary layer
is almost completely localized. As it was expected, the length of the boundary
layer and the membrane thickness are of the same order. This is in agreement with

Fig. 5 The function ϕ′(J )

and the value of the Maxwell
stress �M = 5.92mNm−1,
resulting from the equal area
construction (gray regions)
(courtesy of Deseri and
Zurlo 2013)
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Fig. 6 The function λ(x)
(up) and the thickness profile
h(x) (down) in
correspondence of � = �M .
Lengths expressed in Å
(courtesy of Deseri and
Zurlo 2013)

previously obtained estimates, such as the one obtained in Akimov et al. (2004). It
goes without saying that the stretch is almost constant outside the boundary layer.
The two domains where the stretch is practically equal to λ∗ and λ∗ are the Lo and
Ld phases, respectively. From (24), the (Piola) stress (per reference length) in both
phases equals�M , whereas the Cauchy stress (per current length) in the two domains
amounts to

t Lo = t∗ = �Mλ∗ = 6.07mNm−1

t Ld = t∗ = �Mλ∗ = 7.74mNm−1.
(30)

Of course such values strongly depend on the form of ϕ(J ) taken in (12). Although
this is certainly the case, such values are consistent with estimates of surface stress
in ordered and disordered domains inferred through experimental investigations (see
e.g., Semrau et al. 2008). In the latter paper it is shown that the stress in the disordered
phase is significantly higher than in the ordered one. Furthermore, the values of
surface stress obtained in this analysis are within the range of values of tension
physiologically intrinsic of lipidmembranes, namely (0−15mNm−1). The estimates
above agree with the results in Reddy et al. (2012), where the role played by surface
tension in changes of the lipid conformational order has been investigated.

2.3 Line Tension Holding Zones in a Given Phase

Before introducing the line tension, as the configurational force capable to hold zones
in one phase surrounded by others in a different phase, we prove that (26) is a global
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minimizer of the total potential energyE in the class of smooth solutions fulfilling the
boundary conditions (27). Furthermore, one can also show that this profile delivers
an optimal value of the line tension.

In order to do so,we recall that phase coexistence follows twodifferent approaches:
the gradient theory and the sharp interface approximation.

The gradient theory does not allow discontinuities in the field. In either case,
the analysis leading to phase transition between two different zones relies upon
minimizing the total potential energy introduced earlier in the text, namely:

E =
∫

�

[
ϕ(J ) + α(J )||gradω Ĵ ||2

]
d� − W . (31)

The sharp interface approximation allows for the order parameter J to be subject to
discontinuities; in this case the total potential energy reads

F =
∫

�

ϕ(J ) d� + σ �(�J�) − W , (32)

where σ is the line tension between the two phases which, from the dimensional
standpoint, is a force.Here � is the length of the interface,which in this approximation
is a jump set, i.e., the union of regions across which J can tolerate jumps.

In Deseri and Zurlo (2013) a rigorous analysis demonstrates the strict connection
between the sharp interface approach and the gradient theory. Indeed, it is proved
that minimizers of E converge (in a suitable sense) to minimizers of F (see e.g.,
Alberti 2000 for explanations). An optimal value for the line tension can be deduced
by evaluating the global minima of E in the class of solutions fulfilling the boundary
conditions (27).

Because of compatibility we recall that ux (x) = λ(x) − 1. Henceforth, the work
can be rewritten as follows:

W = B
∫ L/2

−L/2
�Mλ dx − B�ML . (33)

It is worth noting that the following quantity, essentially representing a Gibbs free
energy density for the lipid membrane, remains constant at the minimizer, i.e.,

ϕ(λ∗) − �Mλ∗ = ϕ(λ∗) − �Mλ∗.

This suggests to consider the energy

ϕ̃(λ) = ϕ(λ) + c,

where
c = �Mλ∗ − ϕ(λ∗) = �Mλ∗ − ϕ(λ∗), (34)
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so that
ϕ̃(λ∗) − �Mλ∗ = ϕ̃(λ∗) − �Mλ∗ = 0. (35)

We also note that away from the characteristic stretches λ∗ and λ∗, i.e., for λ 	= λ∗
and λ 	= λ∗, the following inequality holds:

ϕ̃(λ) − �Mλ ≥ 0. (36)

After discussing the sharp interface approximation, the gradient functional is now
analyzed. Outcomes from the latter will be compared with the former. Indeed the film
is subject to a traction �M , and we consider a monotonic stretch profile λ(x) within
the interval (−L/2, L/2). Assume that λ → λ∗ as x → −L/2 and that λ → λ∗ as
x → L/2. Obviously, �M is the Maxwell value introduced in Sect. 2.2.

Consider the total potential energy per unit length E /L . By utilizing ((33), (35)),
for any thickness profile satisfying the boundary conditions (27), the relation below
follows:

E

L
= B

L

∫ L/2

−L/2

[
(ϕ̃(λ) − �Mλ) − γ(λ)

2
λ2
x

]
dx + d, (37)

where d = B(�M − c) is a constant.
On closing, the profile characterized by (26) and verifying stationarity is now

shown to be a minimizer for E /L . This is based on a result in Alberti (2000). By
ϕ̃(λ) − �Mλ ≥ 0, by −γ(λ)λ2

x ≥ 0, by the monotonicity of λ and by the inequality
a2 + b2 ≥ 2ab, it follows the following inequality:

E

L
≥ B

L

∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ + d, (38)

and equality holds if and only if a = b, namely if and only if

ϕ̃(λ) − �Mλ = −γ(λ)

2
λ2
x . (39)

If one now simply recognizes that

ϕ̃(λ) − �Mλ =
∫ λ

λ∗

(
ϕ′(ζ) − �M

)
dζ (40)

from (35), (26) is obtained in exact form by integrating (39). Finally, we just showed
that the following minimum is actually attained:

min

(
E

L

)
=

= B

L

∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ + d, (41)
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within the functions verifying the boundary conditions (27), provided that λ(x) is
given by (26).

Consider now any configuration characterized by λ = λ∗ for x < x0 and λ = λ∗
for x > x0, so that in x = x0 there is a sharp interface. The location x0 is an arbitrary
finite point. In this configuration, one can show that the total potential energy per
unit length (32) becomes

F

L
= B

L
σ + d. (42)

By comparing (37), (41) and (42) the line tension of the sharp interfacemodel remains
determined as follows:

σ =
∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ. (43)

Numerical data (13) and integration of (43) owe the following number for the line
tension:

σ = 3.88 · 10−13N (44)

which is consistent with the experimentally found value 9 ± 0.3 · 10−13N (see e.g.,
Baumgart et al. 2003; Semrau et al. 2008). The predicted thickness profile and
line tension are then consistent with pre-existing analyses for lipid membranes, that
account for the competition of stretching and tilt elasticity. This latter phenomenon
is due to the fact that lipid molecules can deviate from the mid-surface normal (see
e.g., Akimov et al. 2004; Hamm and Kozlov 2000).

2.4 Elastic Properties of the Lipid Membrane

In the sequel we explore values for the elastic moduli in a lipid bilayer undergoing a
traction�M . Here each pure phase is characterized by a specific value of the stretchλ,
namely λ = λ∗ for the liquid-ordered phase Lo and λ = λ∗ for the liquid-disordered
one Ld .

Area compressibility A tangent area compressibility modulus

KA(λ) := ϕ′′(λ) (45)

is defined as the change of surface stress, ϕ′(λ), induced by a change in stretch. As
themembrane energyϕ(λ) is a fourth-order polynomial, the compressibility stiffness
KA is nonconstant and takes the form

KA(λ∗) = KA(λ
∗) = 181mNm−1, (46)
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in λ∗ and λ∗, and for the unstretched membrane (λ = 1)

KA(1) = 288mNm−1. (47)

Henceforth, KA manifests softening. The obtained values are consistent with mea-
surements available in the literature. In particular, the highest areal stretch is
δA/A0 = λ∗ − 1 = 0.025 and it agrees with the value of rupture stretches found
in Lipowsky and Sackmann (1995).

Bending stiffness Relation (11)1 yields values in agreement with previous results
(see e.g., Bermúdez et al. 2004; Evans 1974; Norouzi et al. 2006; Pan et al. 2009;
Rawicz et al. 2000). Specifically, in the ordered and disordered phases the following
values are obtained:

κLo = κ(λ∗) = 6.10 · 10−19 J, (48)

κLd = κ(λ∗) = 4.78 · 10−19 J. (49)

It is worth noting that the ratio of these rigidities is

κLo

κLd
= 1.27 (50)

in agreement with the experimental findings (see e.g., Baumgart et al. 2003; Semrau
et al. 2008).

Gaussian stiffnessNormally the evaluation of this quantity refers to the spontaneous
curvature of each leaflet (Hu et al. 2012; Siegel and Kozlov 2004), while in Deseri
and Zurlo (2013), Zurlo (2006) these values are not accounted for. There each leaflet
has no spontaneous curvature and the resulting κG is of the order of 10−21J. This is
then turns out to be two orders of magnitude lower than existing estimates available
in Norouzi et al. 2006, Semrau et al. (2008). This discrepancy could be solved either
incorporating those spontaneous curvatures of each monolayer of by incorporating
the lateral (and highly nonconstant through thickness) pressure profile within the
bilayer. This is actually under investigation.

Keeping the approach of Deseri and Zurlo (2013), Zurlo (2006), relations (9)2
and (10) yield

α(J ) = kG(J )

2J 2
, (51)

highlighting the connection between changes of the Gaussian rigidity with changes
in the gradient of thinning and, ultimately, of the areal stretch. This connection is
actually not surprising. Indeed, thanks to the Gauss–Bonnet Theorem, kG emerges
at the boundaries of each region characterized by constant values of J . Namely, kG
appears at the phase boundaries between the Lo and the Ld phases. The role of α(J )

emerges instead while trying to evaluate the line tension inside the boundary layer,
as highlighted in Sect. 2.3. Such instances are consistent with the relation established
in Eq. (51).



Elasticity and Hereditariness 81

2.5 The Onset of Change of Elastic Phase

In this section we obtain the linearized equation of lipid membrane under the plane
strain geometry (14) with gx = J̄ and φ = φ̄ (hence φx = 0). In this regard let us
denote with ε the strain field perturbing uniformly the stretched configuration just
described. The elastic free energy density (20) for the membrane is then evaluated
at the perturbed configuration J = J̄ + ε, and takes the following form:

ψ (ε, εx ) = ϕ
(
J̄ + ε

) + α( J̄ + ε)|| ( J̄ + ε
)
x ||2

≈ ϕ( J̄ ) + ϕ′( J̄ ) ε + ϕ′′( J̄ )

2
ε2 + α( J̄ ) ||εx ||2 ,

(52)

where we neglected higher order contributions in ε2 to define ψDZ . Then the free
energy takes the following form:

�DZ =
∫

�

ψDZ(ε, εx )dx, (53)

where � ∈ [−L/2, L/2], and

ψDZ(ε, εx ) = ϕ( J̄ ) + ϕ′( J̄ ) ε + ϕ′′( J̄ )

2
ε2 + α( J̄ ) ε2x . (54)

The (in-plane) displacement field is expressed through a perturbation v such that
u = ū + v, and ε(x) = vx (x).

Due to the presence of nonlocal terms εx , we recall that the hypertractions �

performwork against displacement gradient vx at the boundary. Henceforth, the total
energy E change in a neighborhood of the “ground” (homogeneous) configuration
reads as follows:

E = B �DZ − W (v, vx ), (55)

where the external work reads now as follows:

W (v, vx ) = B [� × (ū + v) + � × (ūx + vx )]∂� , (56)

where ū = J̄x is zero if the ground configuration is homogeneously stretched. For the
sake of conciseness, nonhomogeneous ground configurations will not be analyzed
here, although the issue is addressed in Deseri et al. (2016). By substituting (52) and
(55) in (56) the total energy change takes the following form:

E = B
∫

�

(
ϕ + ϕ′( J̄ ) vx + ϕ′′( J̄ )

2
v2
x + α( J̄ ) v2

xx

)
dx

− B [� v + � vx ]∂� + Ē ,

(57)
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where

Ē = B
∫

�

ϕ( J̄ )dx − [� ū + � ūx ]∂� . (58)

From now on, every item with the over-bar is calculated on the ground configuration
(e.g., ϕ̄ = ϕ( J̄ ) etc.), and we will denote with ′ the derivative with respect to the
spatial variable x .

The linear Euler–Lagrange equation for the perturbations of planar membranes is
derived through stationarity of E (see Appendix A1 in Deseri et al. 2016 for details).
Such equation together with its boundary conditions reads as follows:

⎧⎨
⎩
2ᾱ v′′′′ − ϕ̄′′ v′′ = 0 in �

either ϕ̄′′ v′ − 2ᾱ v′′′ = � − ϕ̄ or δv = 0 in ∂�

either 2ᾱ v′′ = � or δv′ = 0 in ∂�

(59)

It is worth noting that homogeneous configurations, and hence their corresponding
values J̄ , from which oscillatory perturbations could arise are still not known at this
point. In order to find them, a parameter ω is introduced as follows:

ω2 :=

⎧⎪⎨
⎪⎩

+ ϕ̄′′

2ᾱ
if ϕ̄′′ > 0

− ϕ̄′′

2ᾱ
if ϕ̄′′ < 0,

(60)

where, because of (10) and (9), we have

ϕ̄′′

2ᾱ
= 12

h20

ϕ̄′′

ϕ̄′ J̄
5. (61)

Relation (59) can then be rewritten as follows:

⎧⎪⎨
⎪⎩

v′′′′ ∓ w2 v′′ = 0 in �

either ± ω2v′ − v′′′ = � − ϕ̄

2ᾱ
or δv = 0 in ∂�

either 2ᾱ v′′ = � or δv′ = 0 in ∂�.

(62)

Boundary conditions yield obviously several cases. For the sake of illustration, we
choose the case in which the displacement is constrained and the hypertractions are
imposed at the boundary, i.e., v = 0 and 2ᾱ v′′ = �.

The value of ω2 does determine the type of solution arising from this analysis.
In particular, the phase changes start to be seen from the onset arising, thanks to
the specific value of ω2. In order to investigate such onset, subcases are identified
depending on J̄ relative to the landscape of the membrane energyϕ in Fig. 3. Indeed,
because such a function has at most one stationary point J0 unless the lipid bilayer
is at its transition temperature, inspection of Fig. 7 below shows that there are four
values of J besides J̄ to be accounted for, i.e., J∗ ≤ Jmax ≤ Jmin ≤ J ∗. Here Jmax
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and Jmin are points of turning curvature for ϕ(J ), whereas J∗ and J ∗ are the values
of the two points sharing the value of the tangent to the graph of ϕ(J ).

Two alternative situations may arise depending on the sign of ϕ̄′′, depending on
whether or not the ground state J̄ belongs to the spinoidal, hence unstable, zone of
ϕ(J ).

2.6 Unstable Region: ϕ̄′′ < 0

The case just mentioned is investigated in this section. Here, J̄ is then such that
Jmax < J̄ < Jmin , corresponding to a region of negative tangent for the membrane
stress τ (J ) = ϕ′(J ) (see Fig. 7). The Euler–Lagrange equation (62) takes then the
following form:

v
′′′′ + ω2v

′′ = 0, (63)

Fig. 7 The membrane
energy ϕ(J ) for a
temperature T ∼ 30◦ and
related local stress τ (J ). The
value Jo = 1 corresponds to
the unstressed, reference
configuration B0 (courtesy
of Deseri and Zurlo 2013;
Deseri et al. 2016)
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which general solution reads as follows:

v(x) = A1 cos(ω x) + A2 sin(ω x) + A3 x + A4. (64)

The primary interest here is to investigate the influence of the boundary conditions
below:

v

∣∣∣
∂�−

= 0 v

∣∣∣
∂�+

= 0 2ᾱv′′
∣∣∣
∂�−

= �̂L 2ᾱv′′
∣∣∣
∂�+

= �̂R (65)

where �̂R = �

∣∣∣
∂�+

and �̂L = �

∣∣∣
∂�−

. For the sake of brevity we set

c = cos(ω L/2) and s = sin(ω L/2).

The boundary conditions assume can be then recast in the following form:

⎧⎨
⎩

A1 c − A2 s − A3
L

2
+ A4 = 0

2ᾱω2 (−A1 c + A2 s) = �̂L

at x = − L

2
⎧⎨
⎩

A1 c + A2 s + A3
L

2
+ A4 = 0

2ᾱω2 (−A1 c − A2 s) = �̂R

at x = + L

2

We further choose a constant hyperstress at the boundary, namely �̂L = �̂R = �̂,
leading to the simplified set of algebraic conditions below:

⎡
⎢⎢⎣

0 s L
2 0

c 0 0 1
0 s 0 0

−2ᾱ ω2c 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠ . (66)

We record that the determinant of the coefficient matrix of such system reads as
follows ᾱ c s L ω2. We now characterize the nontrivial modes (64) of the system no
matter what the value of the hyperstress, namely we investigate the solutions of

ᾱ c s L ω2 = 0. (67)

Because of (10) and 1 < Jmax < J̄ < Jmin , we note that ᾱ > 0 for all J̄ > 1. Then,
the orthogonality of the trigonometric functions imposes that the equation is satisfied
if either c = cos(ω L/2) = 0 or s = sin(ω L/2) = 0.

It follows that we are left to study only two subcases.

Case 1. We investigate the case s = 0 and c = ±1. Such instance implies that

ω = 2 n π

L
(68)
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and relation (68) allows for showing that this circumstance occurs whenever the
ground state solves the nonlinear algebraic equation below:

ϕ̄′′

ϕ̄′ J̄
5 = −n2π2

3

(
h0
L

)2

. (69)

It is worth noting that the ratio (h0/L)2 measures the thinness of the bilayer and it
is of the order 10−8 or smaller. Henceforth, from (69) it follows that a large finite
number n of oscillations arise in the onset of bifurcation starting from ground states
solving (69). Indeed this is possible just by noting that for J such that ϕ̄′′ → 0−,
namely right after the change on convexity of ϕ. The solution of the resulting system
permits to get the amplitudes of the nth mode, i.e.,

⎡
⎢⎢⎣

0 0 L
2 0

±1 0 0 1
0 0 0 0

∓2ᾱ ω2 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠

then ⎧⎪⎪⎨
⎪⎪⎩

A1 = ∓ �̂

2ᾱ ω2

A3 = 0
A4 = ∓A1

.

Then, the corresponding buckled solution of order n reads

vn(x) = ± �̂

8 ᾱ n2 π2

[
cos

(
2nπ

x

L

)
− 1

]

+ A2 sin
(
2nπ

x

L

)
.

(70)

It goes without saying that even if no hyperstress �̂ is present at the boundary, (70)
guarantees that a bifurcated mode vn = A2 sin

(
2nπ x

L

)
does occur.

Case 2. We now instead explore the following situation:

s = ±1 and c = 0.

In this case we have

ω = (1 + 2 n)π

L
(71)

and
ϕ̄′′

ϕ̄′ J̄
5 = − (1 + 2n)2π2

12

(
h0
L

)2

, (72)
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which definitely has solutions for J̄ so that ϕ̄′′ → 0− for the same very reason
discussed for case 1. Boundary conditions lead to A2 = A3 = A4 = 0. It follows
that solutions exist if and only if �̂ = 0 and they take the form

vn(x) = A1 cos(ω x) = A1 cos
(
(1 + 2n)π

x

L

)
. (73)

2.7 Stability Region: ϕ̄′′ > 0

If the ground state J̄ is not in the spinoidal zone, namely there ϕ̄′′ > 0, and either
1 < J̄ < Jmax or J̄ > Jmin , the balance equation reduces to

v′′′′ − ω2 v′′ = 0, (74)

and its general solution becomes

v(x) = A1 cosh(ω x) + A2 sinh(ω x) + A3 x + A4, (75)

hence no oscillations arise.

2.8 Singular Ground States: ϕ̄′′ = 0

Singular values for the ground states are J̄ = Jmax and J̄ = Jmin . There, the first
derivative of the local stress with respect to J is zero and, hence, ϕ̄′′ = 0. This
immediately tells that ω = 0, and the resulting governing equation, v′′′′ = 0, admits

v(x) = A0 + A1 x + A2 x
2 + A3 x

3 (76)

as solution. If (65) are imposed at the boundary with �̂R = �̂L = �̂, the constants in
the previous relation become as follows:

A0 = − �̂ L2

16 ᾱ
A1 = 0 A2 = �̂

4 ᾱ
A3 = 0, (77)

thereby leading to a unique solution. In other words, no bifurcations arise from
singular ground states and perturbations do not arise in the absence of hyperstress at
the boundary.
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3 Hereditariness of Lipid Membranes

Available experimental data Harland et al. (2010), Espinosa et al. (2011), Craiem and
Magin (2010) show that lipid bilayers present an anomalous rate-dependent behavior
within broad ranges of temperature. Anomaly means that if the loss and storage
moduli1 in any rheometric test are plotted against frequency, such quantity scale with
a noninteger power of the frequency itself. Indeed, Harland et al. (2010) showed that
the storage and lossmodulus are proportional to the frequency through a power law of
fractional order, i.e.,G

′
(ω) ∝ ωβ andG

′′
(ω) ∝ ωβ+1, where the exponent β depends

on temperature and specific chemical composition of the biological structure. This
justifies the term “fractional” for such a kind of response. Fractional hereditariness is
then an intrinsic feature of lipid membranes. Perturbations of the ground states from
which bifurcations of phases occur are nucleated and then evolve in time according
to such behavior.

Results in Harland et al. (2010) show that lipid membranes are not purely elastic
and this is in fact only an asymptotic condition. Nevertheless, such structures have
been predominantly modeled as hyperelastic surfaces. Physiological conditions of
cells are in fact characterized by intracellular and extracellular viscous fluid com-
partments cooperating to vary the areal stretch several times during cell lifetimes.
The corresponding membrane stress therefore changes in time and can achieve sig-
nificantly higher values than the ones evaluated by utilizing nonlinear elasticity. The
time change of such stress can even evolve to the extent of either causing rupture of
the cell membrane or to modify toward ceramide phase, and then to cell apoptosis,
the lipids across the membrane (Craiem and Magin 2010).

3.1 The Physics of Hereditariness in Lipid Structures

As pointed out before, lipid systems forming cytoplasmaticmembranes present time-
hereditary properties (Espinosa et al. 2011). Storage and lossmoduliG

′
(ω),G

′′
(ω) of

lipidmembrane depend on the type of lipids. The presence of very common lipids like
phosphatidylcholine (PODC) and sphingomyelin (SM) do heavily influence the rate
behavior of lipid layers, thereby showing various morphologies ultimately affecting
the resulting effective viscosity of the membrane. The phases can be either liquid-
ordered or gel-phase, for temperatures over or below the melting temperatures of the
PODC. For SM the liquid-disordered or the solid phase (ceramide) can be involved
depending on the temperature of the system.

From the point of view of modeling, it is obvious that the use ofMaxwell rheolog-
ical elements to describe storage and loss moduli of the material does not provide a
suitable representation for the behavior of lipid membranes for the simple reason that

1For the reader who is not familiar with this standard terminology, we recall that the right-handed
Fourier transform of a given relaxation function represents the “complex modulus” of a viscoelastic
material; its real part is the “storage modulus”, while its imaginary part is its “loss modulus”.
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Maxwell models yield G
′
(ω) ∝ ω and G

′′
(ω) ∝ ω2, never observed in experiments

(see e.g., Espinosa et al. 2011).
It is then obvious that the only way to account for hereditary behavior of lipid

membranes must contain fractional-order features, where creep and relaxation are
described as power laws so that J (t) ∝ tβ and G(t) ∝ t−β , respectively. Small per-
turbations arising from homogeneous ground states must then be studied by making
use of the Boltzmann–Volterra convolution integral. This allows for keeping track
the stress evolution at any x depending on the strain history ε(x, t), namely

σ(x, t) = Cβ

�[1 − β]
∫ t

−∞
(t − τ )−β ε̇(x, τ ) dτ . (78)

The right-hand side of the latter relation relates with the Caputo fractional-order
derivative Dβ

t defined as follows:

Dβ
t f (t) = 1

�(β)

∫ t

−∞
(t − τ )−β ḟ (x, τ )dτ , (79)

introduced in Caputo (1969) and explored in several papers ever since (see e.g.,
Podlubny 1998; Magin 2010; Samko et al. 1987; Kilbas et al. 2006). The springpot
element introduced in Scott-Blair (1974) is a rheological element associated to (79).
This detects an intermediate behavior between a linear elastic spring and a viscous
dashpot, which are then limiting cases obtained for β = 0 and β = 1, respectively.

When it comes to considering more complex studies of nucleations of phase
perturbations in the presence of elasticity and viscosity, one needs to provide an
expression of the free energy, delivering the key element of a variational principle
suitable for the desired investigations. The free energy provided by Deseri et al.
(2014) for power law hereditary systems is then used in the sequel. This can be
further specialized to characterize the non-dissipated part of the power performed
in a given springpot by an underlying stress, thereby allowing for a powerful tool
suitable for handling lipid membrane hereditariness.

3.2 The Free Energy for Small Perturbations of Planar Lipid
Structures

In this section we aim to obtain and solve the balance equations governing the nucle-
ation and evolutionof small perturbations of homogeneous ground states in hereditary
and planar lipid membranes.

The limiting elastic case is well described through (54), containing both the local
term, ε(x t), and a nonlocal one, εx (x, t). Henceforth, when it comes to accounting
for fractional hereditariness of our systems, the expression of the free energy function
is then the sum of contributions related to the local and the nonlocal state variables
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(for the notion of state in hereditary systems see e.g., Del Piero and Deseri 1997;
Deseri et al. 1999, 2006).

It is then reasonable to infer that nucleation and evolution of small perturbations
from homogeneous ground states are determined by the local and nonlocal stresses
σL(x, t) and σN(x, t) respectively, i.e.,

σL(x, t) =
∫ t

0
GL(t − τ )ε̇(x, τ ) dτ , (80a)

σN(x, t) =
∫ t

0
GN(t − τ )ε̇x (x, τ ) dτ , (80b)

where GL and GN represent the local and nonlocal relaxation functions (relative to
the given ground state J̄ ), respectively, defined as follows:

GL(t) = ϕ̄′′ + fL(t),

GN(t) = 2ᾱ + fN(t).

Asymptotically, we require the following relations to hold:

lim
t→∞ fL(t) = lim

t→∞ fN(t) = 0, (81)

as the elastic case must be retrieved as limit. The analytic dependence of both fL(t)
and fN(t) on time can be determined by experimental observations of the evolution
of the phases as well as of their transition zone. The striking experimental evidence
discussed in the section above induces us to utilize a power law relaxation function
to model both local and nonlocal evolution of the constitutive response. In general
two different laws for describing the local and the nonlocal contributions have to be
considered; here we assume

GL(t) = ϕ̄′′ + CL t
−λ, (82a)

GN(t) = 2ᾱ + CN t
−ν, (82b)

where CL and CN are generalized moduli of the local and nonlocal relaxations, λ and
ν are the decay exponents of the relaxations, chosen in the (open) interval (0, 1).
Relations (82) yield a fractional-order rheological element introduced in (79).

The free energy function �(x, t) is chosen to be additive in two distinguished
terms:

�(x, t) = �DZ(x, t) + �V (x, t), (83)

where �DZ(x, t) is defined by (53) and represents the elastic contribution to the
free energy at equilibrium (see Del Piero and Deseri 1996), while �V (x, t) is the
free energy characterizing the hereditary response of the system. The latter has been
obtained in Deseri et al. (2014). There it has been shown that a multiscale procedure
across the spectrum of observation scales of a fractal material does deliver (i) a power
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law relaxation function and (ii) a Staverman–Schartzl free energy, which is indeed
utilized here for �V . Studies on Staverman–Schartzl free energies can be found in
Breuer and Onat (1964), Del Piero and Deseri (1996), Del Piero and Deseri (1997),
among other works. The results in Deseri et al. (2014) and formulas (80), (82) yield
�(x, t) as follows:

�(x, t) = �L(ε(x, t)) + �N(εx (x, t)), (84)

where the subscripts L and NL stand for local and nonlocal, respectively. The former
term depends upon the strain, while the latter one is a functional of its gradient.
Results in Breuer and Onat (1964) and Deseri et al. (2014) suggest to introduce
a kernel K (◦, ◦), symmetric in its arguments, namely such that K (◦, ◦) ≥ 0 and
K (τ1, τ2) = K (τ2, τ1) hold. Specifically, each contribution is taken as follows:

�L(x, t) = 1

2
KL(0, 0)ε(x, t)

2

+ ε(x, t)
∫ t

−∞
K̇L(0, t − τ )ε(x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
K̈L(t − τ1, t − τ2)ε(x, τ1)ε(x, τ2)dτ1dτ2,

(85a)

�N(x, t) = 1

2
KN(0, 0)εx (x, t)

2

+ εx (x, t)
∫ t

−∞
K̇N(0, t − τ )εx (x, τ )dτ +

+ 1

2

∫ t

−∞

∫ t

−∞
K̈N(t − τ1, t − τ2)εx (x, τ1)εx (x, τ2)dτ1dτ2,

(85b)

where

KL(t, 0) = ϕ̄′′ + CL

�(1 − λ)
(t + δ)−λ = Gδ

L(t), (86a)

KN(t, 0) = 2ᾱ + CN

�(1 − ν)
(t + δ)−ν = Gδ

N(t), (86b)

where δ is a preloading time. This comes from the fact that no strain process starts
with abrupt jump and, instead, it does require some time, δ, to reach a desired value.

The relations KL(0, t) = KL(t, 0) and KN(0, t) = KN(t, 0) also do hold. This
result, together with (82) and the considerations addressed in Eqs. (17−22) in Deseri
et al. (2014), permits to write the free energy as follows:
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�L(x, t) = 1

2
Gδ

L(0)ε
2(x, t)

+ ε(x, t)
∫ t

−∞
Ġδ

L(t − τ )ε(x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
G̈δ

L(2t − τ1 − τ2)ε(x, τ1)ε(x, τ2)dτ1dτ2,

(87a)

�N(x, t) = 1

2
Gδ

N(0)ε
2
x (x, t)

+ εx (x, t)
∫ t

−∞
Ġδ

N(t − τ )εx (x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
G̈δ

N(2t − τ1 − τ2)εx (x, τ1)εx (x, τ2)dτ1dτ2,

(87b)

where ε(x, t) = vx (x, t), and v(x, t) is the space-time perturbation process of the
underlying ground state of themembrane. Ultimately, the free energy associated with
the perturbation process v(x, t) becomes the following:

E = B
∫ t2

t1

(∫
�

[�L(x, t) + �N(x, t)] dx

)
dt

− B [� v(x, t) + � vx (x, t)]∂� ,

(88)

where t1 and t2 > t1 are two subsequent times during which the time evolution of
the membrane is investigated.

3.3 Time Evolution of Phase Perturbations

The governing equation for the evolution of small perturbations v is sought by impos-
ing the stationarity of E within the class of synchronous variations, i.e., such that
δv(◦, t1) = δv(◦, t2). This leads to the Euler–Lagrange equation in the following
form (see Deseri et al. 2016 for details):

2ᾱ
∂4

∂x4
(
v + C∗

NDν
t v
) − ϕ̄′′ ∂2

∂x2
(
v + C∗

LDλ
t v
) = y(x), (89)

where C∗
L = CL/ϕ̄

′′ and C∗
N = CN/2ᾱ represent the normalized local and nonlocal

moduli of themembrane, respectively, and the forcing term y(x) is defined as follows:

y(x) = 2ᾱ
∂4 v0

∂x4
− ϕ̄′′ ∂

2 v0

∂x2
, (90)

where v0(x) is an initial perturbation induced on the system. This represents the
initial perturbation of the ground state before the relaxation takes place. The balance
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equation (89) is endowed with the boundary conditions to be retrieved from the
following conditions:

⎧⎪⎪⎨
⎪⎪⎩

either
ϕ̄′′ (v′ + C̄LDλ

t v
′) − 2ᾱ

(
v′′′ + C̄NDν

t v
′′′) = � + �0

or
δv = 0

(91a)

⎧⎪⎪⎨
⎪⎪⎩

either
2ᾱ

(
v′′ + C̄NDν

t v
′′) = � + 2ᾱ ε′

0
or
δv′ = 0

(91b)

Here �0 = ϕ̄′′ε0 + 2 ᾱ ε′′
0 is the initial stress arising on the bilayer associated with

the initially perturbed configuration. Obviously, whenever the membrane is initially
perturbation-free then (89) and its boundary conditions give us an eigenvalue prob-
lem: this will be solved in Sect. 3.6.

Separation of variables is employed here to solve (89), namely we seek for solu-
tions in the form

v(x, t) = f (x) q(t), (92)

whereq(t) describes the time change of the perturbation and f (x) describes the shape
of the mode. Substitution of (92) in (89) leads to the following pair of equations

2ᾱ

ϕ̄′′
f

′′′′
(x)

f ′′(x)
= q(t) + C∗

L Dλ
t q(t)

q(t) + C∗
N Dν

t q(t)
= k2, (93)

where k2 is a constant to be determined. We remind that the expression (60) relating
2ᾱ
ϕ̄′′ to the spatial frequency (squared) ω2 does hold. Because here we focus on the
circumstances for which spatial oscillations can occur, the only case of interest is
when ϕ̄′′ < 0. Henceforth, we will solve the following equations:

− 1

ω2

f
′′′′
(x)

f ′′(x)
= q(t) + C∗

L Dλ
t q(t)

q(t) + C∗
N Dν

t q(t)
= k2. (94)

The very same boundary conditions assumed for the elastic case (65) will be con-
sidered for the viscoelastic problem, namely:

⎧⎨
⎩

v

∣∣∣
∂�−

= v

∣∣∣
∂�+

= 0

2ᾱ
[
v′′ + C∗

N Dν
t v

′′] ∣∣∣
∂�−

= 2ᾱ
[
v′′ + C∗

N Dν
t v

′′] ∣∣∣
∂�+

= �̂
(95)
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which by (92) yield the following relations:

⎧⎪⎨
⎪⎩

f (x)
∣∣∣
∂�

= 0

2ᾱ f ′′ [q(t) + C∗
N Dν

t q(t)
] ∣∣∣

∂�
= �̂

(96)

3.4 Spatial Modes for the Perturbations

The spatial mode f (x) verifies (93), namely

f
′′′′
(x) + k2 ω2 f ′′(x) = 0. (97)

the solution of (97) reads as

f (x) = A1 cos (ζ x) + A2 sin (ζ x) + A3x + A4, (98)

after setting
ζ2 = k2 ω2 . (99)

Boundary conditions (96) allow for determining the coefficients Ai , i = 1 ÷ 4. In
particular, the second boundary condition yields

2ᾱ f ′′
∣∣∣
∂�

[
q(t) + C∗

N Dν
t q(t)

] = �̂ ∀ t,

to be satisfied if either �̂ is a prescribed function of time or if it is constant. Whenever
this is the case, then

q(t) + C∗
N Dν

t q(t) = κn, (100)

where κn is a constant. Consequently, the boundary condition under exam reads as
follows:

2ᾱ f ′′
∣∣∣
∂�

κn = �̂. (101)

Moreover, this condition at the edge highlights that the second derivative evaluated

in such location v"(x, t)
∣∣∣
∂�

can be zero for whatever value of κn if and only if no

hyperstress arises at the edges, i.e.,

f ′′
∣∣∣
∂�

= 0 ⇐⇒ �̂ = 0. (102)

For such a case, Eq. (100) is irrelevant. After setting s = sin(ζL/2) and c =
cos(ζL/2), the boundary conditions can be written explicitly in the following form:
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⎧⎨
⎩

A1 c − A2 s − A3
L

2
+ A4 = 0

2ᾱζ2 (−A1 c + A2 s) κn = �̂
at x = − L

2
⎧⎨
⎩

A1 c + A2 s + A3
L

2
+ A4 = 0

2ᾱζ2 (−A1 c − A2 s) κn = �̂
at x = + L

2

Such a system is the analog of (66):

⎡
⎢⎢⎣

0 s L
2 0

c 0 0 1
0 s 0 0

−2ᾱ κnζ
2c 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠ (103)

whose nontrivial solutions can be found by studying the roots of the determinant,
namely after solving:

ᾱ c s L κn ζ2 = 0. (104)

The ground states J̄ from which bifurcations may occur are given by the latter
equation no matter what κn , and because the constants ᾱ, L are always nonzero,
only two possibilities are left.

Case 1. Because ζ2 = k2 ω2 with k > 0 (although still unknown at this stage), if
s = 0 we have

k2 ω2 = 4n2π2

L2
, (105)

and

− ϕ̄′′

ϕ̄′ J̄
5 = n2π2

3 k2

(
h0
L

)2

. (106)

Case 2. If c = 0 then �̂ = 0. As highlighted in (102), this happens if and only if
f ′′ (∂�) = 0.

3.5 Time Evolutions of the Perturbations

The expression of q(t) can be traced back to the solution of the equation coming
from the boundary condition (101).

Whenever in (96) the boundary condition on the second derivative of the dis-
placement is nonzero, the presence of a hyperstress �̂ at the edges implies that the
time-dependent term is constant, assuring that relation (100) holds. This equation is
solved in Deseri et al. (2016) and delivers the following expression:
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q(t) = κn

C∗
N

tνEν,ν+1

(
− 1

C∗
N

tν
)

+ q0Eν

(
− 1

C∗
N

tν
)

, (107)

where Eα,β (z) is the Mittag-Leffler function of two parameters.
Nonetheless, separation of variables imposes (93) to be fulfilled. This, together

with relation (100), delivers the following differential equation:

q(t) + C∗
L Dλ

t q(t) = k2 κn, (108)

again solved in Deseri et al. (2016) by means of the same method, delivering the
following expression for q:

q(t) = k2 κn

C∗
L

tλEλ,λ+1

(
− 1

C∗
L

tλ
)

+ h0Eλ

(
− 1

C∗
L

tλ
)

. (109)

Obviously the two obtained expressions for q must agree at all times. This is certainly
true in the trivial case for which the local and nonlocal terms have both the same
relaxation exponent λ = ν and the same normalized parameters C∗

L = −C∗
N , namely

k2 = 1, recalling that C∗
L < 0 has been rendered nondimensional by taking CL and

dividing it by ϕ̄′′ < 0.

3.6 Eigenvalue Problem Governing the Time Dependence
of the Perturbations

Because Eqs. (93) and (100) both govern the evolution function q a complete study
of such a requirement is needed. Indeed, those two equations deliver the following
fractional-order eigenvalue problem:

C∗
L Dλ

t q(t) − C∗
N k

2 Dν
t q(t) + (1 − k2)q(t) = 0. (110)

The solution method of such a problem is here based on the right-sided Fourier
transform Q(p)

Q(p) :=
∫ +∞

0
e−i p tq(t) dt p ∈ R. (111)

By Fourier transforming both sides of (110) we obtain

[
C∗

L (−i p)λ − C∗
N k

2 (−i p)ν + (1 − k2)
]
Q(p) = 0. (112)

The zeros of the function inside square brackets provide the eigenvalues of the frac-
tional differential equation (110) no matter what Q(p) is. It is worth noting that the
constant k2 appearing in (93) for the first time must be a real number. The algebraic
equation (112) can actually be manipulated by separating the real and the imaginary
parts as follows:
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k2 = 1 + C∗
L pλ (cλ − i sλ)

1 + C∗
N pν (cν − i sν)

=
(
1 + C∗

L pλ cλ

) − i
(
C∗

L pλ sλ
)

(
1 + C∗

N pν cν

) − i
(
C∗

N pν sν
) = a − i b

c − i d

= a − i b

c − i d

c + i d

c + i d
= a c + b d

c2 + d2
+ i

a d − b c

c2 + d2
,

after setting {
a = 1 + C∗

L pλ cλ

b = C∗
L pλ sλ

{
c = 1 + C∗

N pν cν

d = C∗
N pν sν

,

cα = cos(α π/2)

sα = sin(α π/2),

α = λ, ν. Because k is real, the former complex algebraic equation delivers the
following real-valued conditions to be verified, namely,

k2 = a c + b d

c2 + d2
(113a)

a d − b c = 0. (113b)

Equation (113b) can be rewritten as follows:

C∗
N pν sν − C∗

L pλ sλ + C∗
L C

∗
N pλ+ν (sνcλ − cνsλ) = 0

and, through the transformation formulas for the difference of two angles, it becomes

C∗
N pν sin

(
ν

π

2

)
− C∗

L pλ sin
(
λ

π

2

)
+

+ C∗
L C

∗
N pλ+ν sin

(
(ν − λ)

π

2

)
= 0.

(114)

Finally, a relationship for k2 is found in the following form:

k2 =
(
1 + C∗

L pλ cλ

) (
1 + C∗

N pν cν

) + (
C∗

L pλ sλ
) (
C∗

N pν sν
)

(
1 + C∗

N pν cν

)2 + (
C∗

N pν sν
)2 . (115)

Whenever the trivial case λ = ν and C∗
L = C∗

N is considered, Eq. (114) has solution
p = 0, that implies k2 = 1, as noticed qualitatively above. The solution of (115) can-
not be found in closed form. In Figs. 8 and 9 some numerical results are represented
whenever the moduli C∗

L , C
∗
N and both the exponents are known.

The ratio
R = −C∗

L /C
∗
N
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Fig. 8 Locus of the real values of p and correspondent eigenvalues k2 as function of the ratio
R = −C∗

N/C∗
L whenever λ = 0.9 and ν = 0.3 (see (114) and (115)) (courtesy of Deseri et al.

2016)

Fig. 9 Locus of the real values of p and correspondent eigenvalues k2 as function of the ratio
R = −C∗

N/C∗
L whenever λ = 0.7 and ν = 0.4 (see (114) and (115)) (courtesy of Deseri et al.

2016)

shows that the eigenvalues are bijections of p. Hence, there is also a one-to-one
correspondence between R and k2. Of course, each bifurcation is characterized by a
value of k2 which modifies the left and right branch of the ratio ϕ̄′′/ϕ̄′:

− k2
ϕ̄′′

ϕ̄′ J̄
5 = n2π2

3

(
h0
L

)2

, (116)

which is the viscoelastic analog of (69).
A numerical example based on the very same energetics utilized in the elastic

case is displayed in Fig. 10. This diagram shows that k2 acts as a rescaling parameter,
thereby amplifying the ratio ϕ̄′′/ϕ̄′ as k increases. While the values of Jn are not
modified by such rescaling, the upper bound of the curve is highly influenced by
such parameter. This has an impact on the maximum number of oscillations, nmax ,
as displayed in Fig. 10. Henceforth, by plotting in Fig. 11 the values of the critical J in
terms of the number of oscillations, one can notice that the left (blue color) and right
(red color) branches do have different shapes, thereby modifying their intersections
with any given J̄ .
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Fig. 10 Left-hand side of
Eq. (116) in terms of J . It is
highlighted the influence of
of k2 and the corresponding
maximum number of spatial
oscillations nmax is
displayed (courtesy of
Deseri et al. 2016)

Fig. 11 Modification of the
left and right intersections
depending on k2 (courtesy
of Deseri et al. 2016)

3.7 Influence of the Initial Conditions

The “full” fractional differential equation (110) with inhomogeneous initial condi-
tions is analyzed in this section, namely,

{
C∗

L Dλ
t q(t) − C∗

N kDν
t q(t) + (1 − k2)q(t) = 0,

q(0) = q0.

The right-handed Fourier transform is again employed here to account the initial
condition, i.e.,

C∗
L

[
(i p)λ Q̂ − (i p)λ−1q0

]
− C∗

N k
2
[
(i p)ν Q̂+

− (i p)ν−1q0
]

+ Q̂ (1 − k2) = 0,
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Fig. 12 Time-dependent
transfer function for two
chosen values of C∗

L = −C∗
N

and h0 = 1.5. Here

t∗ = ν

√
tν

C∗
N

is a

dimensionless time
(courtesy of Deseri et al.
2016)

Fig. 13 Transfer function
Ĝk(p): real and imaginary
parts (courtesy of Deseri
et al. 2016)
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whose solution Q̂(p) reads as follows:

Q̂k(p) = Ĝk(p) q0
(
C∗

L (i p)λ−1 − C∗
N k

2 (i p)ν−1
)
, (117)

where

Ĝk(p) = 1

C∗
L (i p)λ − C∗

N k
2 (i p)ν + (1 − k2)

(118)

is the transfer function for this problem. It is worth noting that this function strictly
depends on the order of the eigenvalue, k2.

From Podlubny (1998), Eqs. 5.22–5.25, p. 155 (where a = C∗
L , β = λ, b =

−C∗
N k

2, α = ν and c = 1 − k2), we find the anti-right-handed Fourier transform
of such a function, which reads as follows:

Gk(t) = F−1
{
Ĝk(p); t

}
=

= 1

C∗
L

∞∑
z=0

(−1)z
(
1 − k2

C∗
L

)z+1

tλ(z+1)−1E (z)
λ−ν,λ+zν

(
C∗

N

C∗
L

k2 tλ−ν

)
.

(119)

The obtained result is then represented by a series of Mittag-Leffler functions with
two parameters. This plays the role of modulating the membrane response no matter
what the initial data is. For the sake of illustration, the transfer function is numerically
explored inFig. 12whenever two subcases ofC∗

L = −C∗
N are considered, by assuming

several values of the exponential decay λ = ν. Similarly, in Fig. 13 the real and
imaginary parts of the transfer function are analyzed whenever different exponents
of the decay λ 	= ν are chosen for some values of k2. The Mittag-Leffler function
drives the evolution of themembrane stretch, determining changes in the amplitude of
the membrane response, as expected from the analysis with a separation of variables.

4 Conclusions

The mechanical behavior of biological membranes is regulated by the interaction
of an extremely rich list of features, such as their thinness, their special constitutive
naturewhich enables them to sustain bendingmoments but not in-plane shear stresses
unless their viscosity is accounted for, their chemical composition and, furthermore,
their capability of undergoingordering–disorderingphenomena.The resulting effects
of this interaction are evidenced by a strong variety of configurations that can be
achieved and kept by biological membranes at equilibrium for given values of overall
chemical composition, controlled temperature, or applied osmotic pressure.

Within this framework, a remarkable issue is the analysis of line tension at the
boundary of ordered–disordered domains: it is now recognized that, together with
bending rigidities, line tension plays a major role in maintaining nonspherical con-
figurations observed in experiments (see e.g., Akimov et al. 2004). In the effort of
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deducing a physically based model of lipid membranes where the bending behavior,
the order–disorder transition, and the chemical composition are consistently consid-
ered, in Deseri et al. (2008), Deseri and Zurlo (2013), Zurlo (2006) the expression of
the energetics regulating the thermo-chemo-mechanical behavior of biological mem-
braneswasderived,within the frameworkof a formal asymptotic 3D-to-2D reduction,
based on thinness assumptions. This model reveals the possibility of describing the
geometrical (shape) and conformational (state of order) behavior of the lipid bilayer
on the basis of one single ingredient: the in-plane membrane stretching elasticity,
regulating the material response with respect to local area changes on the membrane
mid-surface. A confirmation of these possibilities is given in Choksi et al. (2012),
where a model energy obtainable from the one deduced in Deseri et al. (2008) is
proved to exhibit two-phase global minimizers resembling observed configurations
in Baumgart et al. (2003). In essence, the major point in Deseri et al. (2008), Deseri
and Zurlo (2013), Zurlo (2006) is that the bilayer stretching elasticity is enough to
describe its order–disorder transition (together with the influence of chemical com-
position), to determine the profile and the length of the boundary layer where the
membrane thickness passes from a thicker domain (ordered phase) to a thinner one
(disordered phase), to evaluate the corresponding line tension andfinally to determine
the bending rigidities in both phases.

A prototypical planar problem has been studied in Deseri and Zurlo (2013) with
the aim of elucidating the potentials of themodel described above and summarized in
the present work. On the basis of a Landau expansion of the stretching energy density,
calibrated, thanks to the experimental results inGoldstein and Leibler (1989), the line
tension, the thickness profile inside the boundary layer and the area compressibility
and bending moduli are obtained. Those calculated quantities show a satisfactory
comparison with the data known in the literature.

Lipid phase transition arising in planar membrane and triggered by material insta-
bilities and their linearized evolution are studied in Deseri et al. (2016) and summa-
rized in this work. There, the effective viscoelastic behavior inherited by their exhib-
ited power law in-plane viscosity (Espinosa et al. 2011) is accounted for. At first it
is shown that the critical set of areal stretches is determined in the limiting case of
elasticity and for two sets of boundary conditions. Spatial oscillations corresponding
to the nucleated configurations arising from any of such critical stretches are investi-
gated. Perturbations of the phase ordering of lipids are predicted to form bifurcated
shapes, sometimes of large periods relative to the reference thickness of the bilayer.
The corresponding membrane stress changes are also oscillatory. Then, the influence
of the effective viscoelasticity of the membrane on its material instabilities is investi-
gated. A variational principle based on the search of stationary points of a Gibbs free
energy in the class of synchronous perturbation is employed for such analysis. The
resulting Euler–Lagrange equation is a fractional-order partial differential equation
yielding a non-classical eigenvalue initial boundary value problem. The eigenvalues
are found to be amplified with respect to their elastic counterpart. Spatial modes
and transfer functions characterizing the resulting admissible perturbations of the
underlying ground configurations are determined. It is found that while the range of
critical areal stretches not get affected, the number of oscillations per given critical
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stretch significantly increases, thereby drastically reducing the period of oscillations
of the bifurcated configurations. Nevertheless, a “long tail” type relaxation of the
bifurcated configurations is shown to occur. Furthermore, whenever the same power
law applies both for the local and the nonlocal response, the explicit time decay is
displayed, while in all of the other cases the frequency dependence of the real and
imaginary parts of the transfer function reveal that fading memory in time occurs as
well (see Fig. 13).
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