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Chapter 2 Exercises

1. Consider the following PID control system with the actuator amplitude saturation and rate limiting:

G (s) =
5

s2 + 5s+ 6

with kp = 15, ki = 8, and kd = 5 as the control gains. The actuator has both amplitude and rate limits
between -1 and 1.

a. Compute the characteristic roots of the ideal closed-loop system without consideration for actuator
amplitude saturation and rate limiting.

b. Construct a Simulink model for a sinusoidal input r (t) = sin t. Plot the input, the ideal output without
the actuator amplitude saturation and rate limiting, and the actual output for a simulation time t = 10
sec. Also plot the actuator command signal uc (t) and the control input signal to the plant u (t).

c. Comment on the effect of rate limiting.

Solution:

a. The characteristic equation is

s3 + (2ζωn + bkd) s
2 +

(
ω2
n + bkp

)
s+ bki = 0

s3 + 30s2 + 81s+ 40 = 0

The roots are s1,2,3 = −0.6443, −2.2943, −27.0614.
b. The Simulink model is as shown.
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c. Amplitude saturation causes an amplitude reduction and signal distortion, whereas rate limiting causes
a phase delay in the signal. This phase delay can potentially cause instability if the ideal closed-loop
system does not have a sufficient phase margin.
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2. Given
θ̈ + cθ̇ + 2 sin θ − 1 = 0

a. Find all the equilibrium points of the system for −π ≤ θ (t) ≤ π.
b. Linearize the system and compute the eigenvalues about all the equilibrium points.
c. Classify the types of the equilibrium points on a phase plane and plot the phase portraits of the

nonlinear system.

Solution:

a. Let x1 (t) = θ (t) and x2 (t) = θ̇ (t), then the state-space representation is[
ẋ1

ẋ2

]
=

[
x2

−cx2 − 2 sinx1 + 1

]
The equilibrium points are

x∗1 =
π

6
,

5π

6

x∗2 = 0

b. The Jacobian matrix is

J (x) =

[
0 1

−2 cosx1 −c

]
For the equilibrium point

(
π
6 , 0
)

J
(π

6
, 0
)

=

[
0 1

−
√

3 −c

]
the linearized equation is [

˙̃x1

˙̃x2

]
=

[
0 1

−
√

3 −c

] [
x̃1

x̃2

]
and the eigenvalues are

λ1,2 =
−c±

√
c2 − 4

√
3

2

For the equilibrium point
(

5π
6 , 0

)
J
(π

6
, 0
)

=

[
0 1√
3 −c

]
the linearized equation is [

˙̃x1

˙̃x2

]
=

[
0 1√
3 −c

] [
x̃1

x̃2

]
and the eigenvalues are

λ1,2 =
−c±

√
c2 + 4

√
3

2

c. For the equilibrium point
(
π
6 , 0
)
, consider the following cases:

i. c = 0: the eigenvalues are purely imaginary. So the equilibrium point is a center.

ii. 0 < c < 2
√√

3: the eigenvalues are a complex conjugate pair with negative real part. So the
equilibrium point is a stable focus.

iii. −2
√√

3 < c < 0: the eigenvalues are a complex conjugate pair with positive real part. So the
equilibrium point is an unstable focus.

iv. c ≥ 2
√√

3: the eigenvalues are real and negative. So the equilibrium point is a stable node.

v. c = −2
√√

3: the eigenvalues are real and positive. So the equilibrium point is an unstable node.
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For the equilibrium point
(

5π
6 , 0

)
, the eigenvalues are real and have opposite signs for all values of c.

So the equilibrium point is a saddle.
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3. Repeat Exercise 2.2 for [
ẋ1

ẋ2

]
=

[
−x1 + x1x2

x2 − x1x2

]
Solution:

a. The equilibrium points are (0, 0) and (1, 1).
b. The Jacobian matrix is

J (x) =

[
−1 + x2 x1

−x2 1− x1

]
For the equilibrium point (0, 0)

J (0, 0) =

[
−1 0
0 1

]
the linearized equation is [

˙̃x1

˙̃x2

]
=

[
−1 0
0 1

] [
x̃1

x̃2

]
and the eigenvalues are

λ1,2 = ±1

For the equilibrium point (1, 1)

J (1, 1) =

[
0 1
−1 0

]
the linearized equation is [

˙̃x1

˙̃x2

]
=

[
0 1
−1 0

] [
x̃1

x̃2

]
and the eigenvalues are

λ1,2 = ±i

c. The equilibrium point (0, 0) is a saddle point. The equilibrium point (1, 1) is a center.
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4. Analytically determine the solution of the following nonlinear system:

ẋ = |x|x2

with a general initial condition x (0) = x0.

a. Let x0 = 1. Does the solution have a finite escape time? If so, determine it.
b. Repeat part (a) with x0 = −1.
c. Comment on the effect of initial condition on the stability of the system.

Solution:

a. The equation can be expressed as

ẋ = |x|x2 =


−x3 x < 0

0 x = 0

x3 x > 0

which has a general solution

x (t) =


x0√

1+2x2
0t

x < 0

0 x = 0
x0√

1−2x2
0t

x > 0

The solution for x0 = 1 has a finite escape time at t = 1
2x2

0
.

b. The solution for x0 = −1 does not have a finite escape time.
c. This problem illustrates that the stability of a nonlinear system is highly dependent upon the initial

condition.



Chapter 3 Exercises

1. Verify that the 1-norm of x ∈ Rn

‖x‖1 =

n∑
i=1

|xi|

satisfies the norm conditions.

Solution:
To verify ‖x‖1 is a norm, note that ‖x‖1 can be expressed as

‖x‖1 =

n∑
i=1

|xi| = |x1|+ |x2|+ · · ·+ |xn|

It is obvious that ‖x‖1 ≥ 0 and ‖x‖1 = 0 if and only if xi = 0 ∀i = 1, 2, . . . , n. Thus ‖x‖1 satisfies the
positivity and positive-definiteness conditions.Since

‖αx‖1 = |αx1|+ |αx2|+ · · ·+ |αxn| = |α| (|x1|+ |x2|+ · · ·+ |xn|)

then ‖x‖1 satisfies the homogeneity condition.
Let y ∈ Rn. Then,

‖x+ y‖1 = |x1 + y1|+ |x2 + y2|+ · · ·+ |xn + yn|

But
|x1 + y1| ≤ |x1|+ |y1|

So
‖x+ y‖1 ≤ |x1|+ |y1|+ |x2|+ |y2|+ · · ·+ |xn|+ |yn| = ‖x‖1 + ‖y‖1

Thus, ‖x‖1 satisfies the triangle inequality.

2. Compute analytically the 1-, 2-, infinity, and Frobenius norms of

A =

 1 0 −2
4 0 2
−1 3 2


and verify the answers with Matlab using the function “norm”.
Note: Matlab may be used to compute the eigenvalues.

Solution:
The 1-, 2-, infinity, and Frobenius norms of

9
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A =

 1 0 −2
4 0 2
−1 3 2


are computed as follows

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | = max (1 + 4 + 1, 3, 2 + 2 + 2) = 6

A∗A = A>A =

 18 −3 4
−3 9 6
4 6 12


λmax (A∗A) = 20

‖A‖2 =
√
λmax (A∗A) =

√
20

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | = max (1 + 2, 4 + 2, 1 + 3 + 2) = 6

‖A‖F =
√

trace (A∗A) =
√

18 + 9 + 12 =
√

39

The results agree with Matlab answers using “norm” function.

3. Decompose A into its symmetric part P and anti-symmetric part Q. Write the quadratic function V (x) =
x>Px. Is V (x) positive (semi-)definite, negative (semi-)definite, or neither?

Solution:
A can be decomposed into a symmetric part and anti-symmetric part as

A = P +Q

where the symmetric part is

P =
1

2

(
A+A>

)
=

 1
2 2 − 3

2
2 0 5

2
− 3

2
5
2 2


and the anti-symmetric part is

Q =
1

2

(
A−A>

)
=

 0 −2 − 1
2

2 0 − 1
2

1
2

1
2 0


V (x) = x>Px = x2

1 + 4x1x2 − 3x1x3 + 5x2x3 + 2x2
3

The eigenvalues of P are
λ (P ) = −3.1837, 2.4817, 3.7020

Therefore, P is neither positive or negative definite, and so is V (x).

4. Given a set C ⊂ R2

C =
{
x ∈ R2 : x2

1 + 4x2
2 − 1 < 0

}
Is C a compact set? Write the set notation for the complementary set Cc. Plot and illustrate the region in
R2 that represents C.

Solution:
C is not a closed set so it is not a compact set. Its complementary set is

Cc =
{
x ∈ R2 : x2

1 + 4x2
2 − 1 ≥ 0

}
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Geometrically, C is a region enclosed by an ellipse not including the boundary.

5. For each of the following equations, determine if f (x) is locally Lipschitz at x = x0 or globally Lipschitz:

a. ẋ =
√
x2 + 1, x0 = 0.

b. ẋ = −x3, x0 = 1.
c. ẋ =

√
x3 + 1, x0 = 0.

Solution:

a. ẋ =
√
x2 + 1, x0 = 0.

f (x) =
√
x2 + 1

f
′
(x) =

x√
x2 + 1

f
′
(x) is bounded for all x (t) ∈ R since

lim
x→±∞

x√
x2 + 1

= ±1

So f (x) is globally Lipschitz.
b. ẋ = −x3, x0 = 1.

f (x) = −x3

f
′
(x) = −3x2

f
′
(x) is unbounded as x (t) → ±∞. So f (x) is not globally Lipschitz. Since f

′
(x0 = 1) = −3 is well

defined, therefore f (x) is locally Lipschitz in the neighborhood of x0 = 1.
c. ẋ =

√
x3 + 1, x0 = 0.

f (x) =
√
x3 + 1

f
′
(x) =

3x2

2
√
x3 + 1

f
′
(x) is unbounded as x (t) → ±∞ and for x = −1. So f (x) is not globally Lipschitz. Since

f
′
(x0 = 0) = 0 is well defined, therefore f (x) is locally Lipschitz in the neighborhood of x0 = 1

sufficiently away from x = −1.
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Chapter 4 Exercises

1. Given [
ẋ1

ẋ2

]
=

[
x1

(
x2

1 + x2
2 − 1

)
− x2

x1 + x2

(
x2

1 + x2
2 − 1

) ]
a. Determine all the equilibrium points of the system and linearize the system about the equilibrium

points to classify the types of equilibrium points.
b. Use the Lyapunov candidate function

V (x) = x2
1 + x2

2

to determine the types of Lyapunov stability of the equilibrium points and their corresponding regions
of attraction, if any.

Solution:

a. The equilibrium point is determined from

x1

(
x2

1 + x2
2 − 1

)
− x2 = 0

x1 + x2

(
x2

1 + x2
2 − 1

)
= 0

Multiplying the first equation by −x2 (t) and the second equation by x1 (t) and adding them together
yield

x2
1 + x2

2 = 0

Thus, the equilibrium point is at x∗1 = 0 and x∗2 = 0. There is only one equilibrium point.
The Jacobian is computed as

J (x) =

[
x2

1 + x2
2 − 1 + 2x2

1 2x1x2 − 1
1 + 2x1x2 x2

1 + x2
2 − 1 + 2x2

2

]

J (x∗) =

[
−1 −1
1 −1

]
The eigenvalues are

λ1,2 = −1± i

The equilibrium point is a stable focus.
b. Choose the Lyapunov candidate function

V (x) = x2
1 + x2

2

Then,

13
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V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = 2x1

[
x1

(
x2

1 + x2
2 − 1

)
− x2

]
+ 2x2

[
x1 + x2

(
x2

1 + x2
2 − 1

)]
= 2

(
x2

1 + x2
2

) (
x2

1 + x2
2 − 1

)
V̇ (x) < 0 for all x (t) ∈ RA where RA is the region of attraction

RA =
{
x ∈ R2 : x2

1 + x2
2 − 1 < 0

}
Thus, the equilibrium point is asymptotically stable for all x (t) ∈ RA.

2. Given

ẋ = x

(
−1 +

1

2
sinx

)
subject to x (0) = 1

a. Determine the upper and lower bound solutions.
b. Use the Lyapunov candidate function

V (x) = x2

to determine the type of Lyapunov stability and the upper bound of V (x) as an explicit function of
time.

Solution:

a. Since −1 ≤ sinx ≤ 1, therefore

−3

2
x ≤ x

(
−1 +

1

2
sinx

)
≤ −1

2
x

Thus

−3

2
x ≤ ẋ ≤ −1

2
x

The bounded solutions are with x (0) = 1

e−
3
2 t ≤ x (t) ≤ e− 1

2 t

b. Choose the Lyapunov candidate function

V (x) = x2

Then,

V̇ (x) = 2xẋ = 2x2

(
−1 +

1

2
sinx

)
≤ −x2 = −V (x) < 0

Since V̇ (x) ≤ −V (x), the equilibrium point is exponentially stable. The upper bound solution of V (x)
is

V (t) ≤ V (0) e−t

where V (0) = x2 (0) = 1, so
V (t) ≤ e−t

3. Use the Lyapunov candidate function
V (x) = x2

1 + x2
2

to study stability of the origin of the system
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ẋ1

ẋ2

]
=

[
(x2 − x1)

(
x2

1 + x2
2

)
(x1 + x2)

(
x2

1 + x2
2

) ]

Solution:
V̇ (x) is evaluated as

V̇ (x) = 2x1ẋ1+2x2ẋ2 = 2x1 (x2 − x1)
(
x2

1 + x2
2

)
+2x2 (x1 + x2)

(
x2

1 + x2
2

)
= −2

(
x2

1 − 2x1x2 − x2
2

) (
x2

1 + x2
2

)
V̇ (x) < 0 if

x2
1 − 2x1x2 − x2

2 > 0

This inequality yields two solutions

x1 >
(

1 +
√

2
)
x2

or
x1 <

(
1−
√

2
)
x2

The equilibrium is a saddle point type as illustrated. So it is unstable.

4. Given
ẋ = Ax

a. Calculate analytically P that solves
A>P + PA = −2I

where

A =

[
0 1
−4 4

]
and verify the result using the Matlab function “lyap”.

b. Determine if P is positive or negative (semi-)definite. What can be said about stability of the origin of
this system.

Solution:
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a. P is computed from the Lyapunov equation as

A>P + PA = −2I[
0 −4
1 −4

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−4 −4

]
=

[
−2 0
0 −2

]
[

−8p12 p11 − 4p12 − 4p22

p11 − 4p12 − 4p22 2p12 − 8p22

]
=

[
−2 0
0 −2

]
p12 =

1

4

p22 =
2p12 + 2

8
=

5

16

p11 = 4p12 + 4p22 =
9

4

P =

[
9
4

1
4

1
4

5
16

]
The Matlab command “lyap(A’,-2*eye(2))” yields the same result.

b. P is computed as [
0 −4
1 4

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−4 4

]
=

[
−2 0
0 −2

]
[

−8p12 p11 + 4p12 − 4p22

p11 + 4p12 − 4p22 2p12 + 8p22

]
=

[
−2 0
0 −2

]
p12 =

1

4

p22 = −2p12 + 2

8
= − 5

16

p11 = −4p12 + 4p22 = −9

4

P =

[
− 9

4
1
4

1
4 −

5
16

]
The eigenvalues of P are

λ1,2 (P ) = −2.2817, −0.2808

Since λ1,2 (P ) < 0, then P is negative definite. Choose a Lyapunov function

V (x) = −x>Px > 0

Evaluating V̇ (x) yields

V̇ (x) = −ẋ>Px− x>Pẋ = −x>A>Px− x>PAx = −x>
(
A>P + PA

)
x = 2x>x > 0

Since V̇ (x) > 0, the equilibrium at the origin is unstable.

5. Given [
ẋ1

ẋ2

]
=

[
x1

(
1− x2

1 − x2
2

)
+ x2

−x1 + x2

(
1− x2

1 − x2
2

) ]
a. Use the Lyapunov candidate function

V (x) = x2
1 + x2

2

to determine the type of Lyapunov stability of the origin.
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b. Find an invariant set.
c. Solve for V (t) as an explicit function of time and plot the trajectories of V (t) for V (0) = 0.01, 0.5, 1, 1.5, 2.

Solution:

a. Choose a Lyapunov function
V (x) = x2

1 + x2
2

Then,

V̇ (x) = 2x1

[
x1

(
1− x2

1 − x2
2

)
+ x2

]
+ 2x2

[
−x1 + x2

(
1− x2

1 − x2
2

)]
= 2

(
x2

1 + x2
2

) (
1− x2

1 − x2
2

)
V̇ (x) < 0 for all x (t) ∈ S where

S =
{
x (t) ∈ R2 : V̇ (x) < 0⇒ x2

1 + x2
2 > 1

}
Since S does not include the origin, therefore the equilibrium is unstable in the sense of Lyapunov.

b. Let R be
R =

{
x (t) ∈ R2 : V̇ (x) = 0⇒ g (x) = x2

1 + x2
2 − 1 = V (x)− 1 = 0

}
Then,

ġ (x) = V̇ (x) = −2V (x) [V (x)− 1] = 0

Therefore, R is an invariant set.
c. Since

V̇ (x) = −2V (x) [V (x)− 1]

Then,
dV

V (V − 1)
= −2dt

Using partial fraction, this can be expressed as(
1

V − 1
− 1

V

)
dV = −2dt

which yields the following general solution

V (t) =
V0

V0 − (V0 − 1) e−2t

As t→∞, V (t) tends to a constant solution

lim
t→∞

V (t) = V (x ∈ R) = 1
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6. Given

A =

 0 1 0
−1 −1 −2
1 0 −1


Determine whether or not A is Hurwitz. If so, compute P using the Euler method to integrate the
differential Lyapunov equation

dP

dτ
= PA+A>P + I

subject to P (0) = 0, where τ is time-to-go. Plot all 6 elements of P on the same plot and verify the result
at the final time-to-go with the Matlab function “lyap”.

Solution:
The eigenvalues of A are

λ1,2,3 (A) = −1.8105, −0.0947± 1.2837i

Thus A is Hurwitz. The numerical solution of P that solves

A>P + PA = −2I

is as shown where the solid lines are the numerical results by integrating the differential Lyapunov equation
backward in time and the dash lines are the results from the Matlab function “lyap”.
The numerical results check with the exact solution of P

P =
1

3

40 13 10
13 16 −11
10 −11 25


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7. Use the Lyapunov’s direct method to determine an ultimate bound of the solution x (t) for the following
equation:

ẋ = −x+ cos t sin t

subject to x (0) = 1. Plot the solution x (t) for 0 ≤ t ≤ 20.

Solution:
Choose a Lyapunov candidate function

V (x) = x2

Then,

V̇ (x) = 2x (−x+ cos t sin t) = −2x2 + x sin 2t ≤ −2 |x|
(
|x| − 1

2

)
V̇ (x) = 2xẋ = −2x2 + x sin 2t ≤ −2 |x|

(
|x| − 1

2

)
V̇ (x) ≤ 0 if |x| > 1

2 . So the ultimate bound is 1
2 .
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8. Given a non-autonomous system
ẋ = (−2 + sin t)x− cos t

a. Show that the system is uniformly ultimately bounded by the Lyapunov theorem for non-autonomous
systems. Also determine the ultimate bound of ‖x‖.

b. Plot the solution by numerically integrating the differential equation and show that it satisfies the
ultimate bound.

Solution:

a. Choose a Lyapunov candidate function
V (x) = x2

Then,
V̇ (x) = 2xẋ = 2x [(−2 + sin t)x− cos t]

Note that
−2 + sin t ≤ −1

−2x cos t ≤ 2 ‖x‖

Therefore,
V̇ (x) ≤ −2 ‖x‖2 + 2 ‖x‖

We see that
V̇ (x) ≤ −2V (x) + 2

√
V (x)

Let W =
√
V = ‖x‖. Then,

Ẇ =
V̇

2
√
V

= −
√
V + 1 ≤ −W + 1

The solution of W (t) is
W (t) ≤ (‖x0‖ − 1) e−t + 1

Thus
lim
t→∞

‖x‖ = lim
t→∞

W (t) ≤ 1 = R

Choose
ϕ3 (‖x‖) = 2 ‖x‖2 − 2 ‖x‖
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Then, it follows that
V̇ (x) ≤ −ϕ3 (‖x‖)

V̇ (x) ≤ 0 for ‖x‖ ≥ 1. Therefore, the solution x (t) is uniformly ultimately bounded with a Lyapunov
ultimate bound of 1.

b. The solution of x (t) is shown in the following plot. The largest value of ‖x‖ is 0.5112 which is less than
the Lyapunov ultimate bound.
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9. Given
ẋ = −

(
1 + sin2 t

)
x+ cos t

a. Use the Lyapunov candidate function
V (x) = x2

to determine the upper bound of V̇ (x) as a function of V (x).
b. Let W =

√
V . Solve for the inequality W (t) as an explicit function of time and determine the ultimate

bound of the system.
c. Show that the system is uniformly ultimately bounded.

Solution:

a. Given the Lyapunov candidate function

V (x) = x2 = ‖x‖2

V̇ (x) is evaluated as

V̇ (x) = 2x
[
−
(
1 + sin2 t

)
x+ cos t

]
= −2x2

(
1 + sin2 t

)
+2x cos t ≤ −2 ‖x‖2+2 ‖x‖ = −2V (x)+2

√
V (x)

Then, V̇ (x) ≤ 0 if ‖x‖ > 1.
b. Let W =

√
V = ‖x‖. Then,

Ẇ =
V̇

2
√
V
≤ −2V + 2

√
V

2
√
V

= −W + 1

The explicit solution is
W (t) ≤ [W (0)− 1] e−t + 1
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The ultimate bound is determined by

lim
t→∞

W (t) = ‖x‖ ≤ 1 = R

Therefore, the ultimate bound is 1.
c. We show that the Lyapunov theorem for uniform ultimate boundedness for non-autonomous systems

is satisfied. Let ϕ1 (‖x‖) = a ‖x‖2 ∈ KR and ϕ2 (‖x‖) = b ‖x‖2KR where a < 1 and b > 1. Then,

ϕ1 (‖x‖) ≤ V (x) ≤ ϕ2 (‖x‖) and V̇ (x) ≤ 0 for ‖x‖ > 1. Furthermore, let ϕ3 (‖x‖) = 2 ‖x‖2 − 2 ‖x‖ ∈
KR. Then, V̇ (x) ≤ −ϕ3 (‖x‖) for ‖x‖ > 1. Therefore, the solution is uniformly ultimately bounded.
Alternatively, the solution is uniformly ultimately bounded since V̇ (x) ≤ 0 outside the compact set
‖x‖ ≤ 1.

10. For the following functions:

a. f (t) = sin
(
e−t

2
)

b. f (t) = e− sin2 t

Plot f (t) for t ∈ [0, 5]. Determine whether or not the limit of f (t) exists as t→∞ and ḟ (t) is uniformly
continuous. If so, use the Barbalat’s lemma to show that ḟ (t) → 0 as t → ∞ and verify by taking the
limit of ḟ (t) as t→∞.

Solution:

a. f (t) = sin
(
e−t

2
)

. The limit of f (t) exists as t → ∞ because limt→∞ sin
(
e−t

2
)

= 0. Taking the

derivative
ḟ (t) = −2te−t

2

cos
(
e−t

2
)

To show that ḟ (t) is uniformly continuous, we need to determine if the limit of ḟ (t) exists as t → ∞
and that its derivative f̈ (t) is bounded. We see that the limit of ḟ (t) exists as t→∞. Evaluating f̈ (t)
yields

f̈ (t) = −2e−t
2

cos
(
e−t

2
)

+ 4t2e−t
2

cos
(
e−t

2
)

+ 4t2e−2t2 sin
(
e−t

2
)

We see that f̈ (t) is bounded as t → ∞. Therefore, ḟ (t) is uniformly continuous. Then, according to
the Barbalat’s lemma, ḟ (t) → 0 as t → ∞. This can easily be verified by taking the limit of ḟ (t) as
t→∞ which gives limt→∞ ḟ (t) = 0.
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b. f (t) = e− sin2 t. The limit of f (t) does not exist. Taking the derivative

ḟ (t) = −2 sin t cos te− sin2 t

The limit of ḟ (t) does not exists. So ḟ (t) is not uniformly continuous.
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11. Consider the following adaptive control system:

ė = −e+ θx

θ̇ = −xe

where e (t) = xm (t)− x (t) is defined as the tracking error between a given explicit reference time signal
xm (t) which is assumed to be bounded; i.e., xm (t) ∈ L∞, and the state variable x (t). Show that the
adaptive system is stable and that e (t)→ 0 as t→∞.

Solution:
Choose a Lyapunov candidate function

V (e, θ) = e2 + θ2

Then,
V̇ (e, θ) = 2e (−e+ θx) + 2θ (−xe) = −2e2 ≤ 0

Since V̇ (e, θ) is negative semi-definite, e (t) ∈ L∞ and θ (t) ∈ L∞, i.e., they are bounded. Since V̇ (e, θ) ≤ 0,
then

V (e (t→∞) , θ (t→∞))− V (e (t0) , θ (t0)) =

ˆ ∞
t0

V̇ (e, θ) dt = −2

ˆ ∞
t0

e2 (t) dt = −2 ‖e‖22

V (e (t→∞) , θ (t→∞)) = V (e (t0) , θ (t0))− 2 ‖e‖22 = e2 (t0) + θ2 (t0)− 2 ‖e‖22 <∞

So, V (e, θ) has a finite limit as t→∞. Since ‖e‖2 exists, therefore e (t) ∈ L2 ∩ L∞.Also

V̈ (e, θ) = −4e (−e+ θx)

Since e (t) ∈ L2∩L∞ and θ (t) ∈ L∞ by the virtue that V̇ (e, θ) ≤ 0, and x (t) ∈ L∞ since e (t) ∈ L2∩L∞
and xm (t) ∈ L∞ by assumption, then V̈ (e, θ) ∈ L∞. Therefore, V̇ (e, θ) is uniformly continuous. It follows
from the Barbalat’s lemma that V̇ (e, θ)→ 0 and hence e (t)→ 0 as t→∞.
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Chapter 5 Exercises

1. Consider a first-order nonlinear SISO system with a matched uncertainty

ẋ = ax+ b [u+ θ∗φ (x)]

where a is unknown but b is known, θ∗ is unknown, and φ (x) = x2.
A reference model is specified by

ẋm = amxm + bmr

where am < 0 and bm are known, and r (t) is a bounded command signal.

a. Design and implement in Simulink a direct adaptive controller that enables the plant output x (t) to
track the reference model signal xm (t), given b = 2, am = −1, bm = 1, and r (t) = sin t. For adaptation
rates, use γx = 1 and γ = 1. For simulation purposes, assume a = 1 and θ∗ = 0.2 for the unknown
parameters. Plot e (t), x (t), xm (t), u (t), and θ (t) for t ∈ [0, 50].

b. Show by the Lyapunov stability analysis that the tracking error is asymptotically stable; i.e., e (t)→ 0
as t→∞.

c. Repeat part (a) for r (t) = 1 (t) where 1 (t) is the unit-step function. Plot the same sets of data as in
part (a). Comment on the convergence of kx (t) and θ (t) to the ideal values k∗x and θ∗.

Solution:

a. Define the ideal gain k∗x that satisfies one of the model matching conditions

a+ bk∗x = am

and the known gain kr that satisfies the other model matching condition

bkr = bm

since b is known. Numerically, k∗x = −1 and kr = 0.5.
The adaptive controller is then given by

u = kx (t)x+ krr − θ (t)x2

with the following adaptive laws:
k̇x = γxxeb

θ̇ = −γx2
θeb

25
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The Simulink model of the adaptive controller is as shown.
The response of the adaptive controller with r (t) = sin t is shown in the following plot. Note that the
parameters kx (t) and θ (t) converge to their ideal values k∗x and θ∗.

0 10 20 30 40 50
−1

−0.5

0

0.5

t

e

0 10 20 30 40 50
−2

−1

0

1

2

t

x
, 

x
m

 

 

0 10 20 30 40 50
−1.5

−1

−0.5

0

t

k
x

0 10 20 30 40 50
0

0.5

1

t

θ

x x
m

b. Let k̃x (t) = kx (t) − k∗x and θ̃ (t) = θ (t) − θ∗ be the estimation errors. Then, the closed-loop plant
model is

ẋ =

ax+ bk∗x︸ ︷︷ ︸
am

+bk̃

x+ bkr︸︷︷︸
bm

r − bθ̃x2

The closed-loop tracking error equation is obtained as
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ė = ẋm − ẋ = ame− bk̃xx+ bθ̃x2

Choose a Lyapunov candidate function

V
(
e, k̃x, θ̃

)
= e2 +

k̃2
x

γx
+
θ̃2

γ

Then,

V̇
(
e, k̃x, θ̃

)
= 2e

(
ame− bk̃xx+ bθ̃x2

)
+

2k̃x
˙̃
kx

γx
+

2θ̃
˙̃
θ

γ
= 2ame

2 − 2k̃x

(
xeb−

˙̃
kx
γx

)
+ 2θ̃

(
x2eb+

˙̃
θ

γ

)

Substituting in the adaptive laws k̇x (t) =
˙̃
xk (t) and θ̇ (t) =

˙̃
θ (t) yields

V̇
(
e, k̃x, θ̃

)
= 2ame

2 ≤ 0

Since V̇
(
e, k̃x, θ̃

)
is negative semi-definite, e (t) ∈ L∞, kx (t) ∈ L∞, and θ (t) ∈ L∞, i.e., all signals are

bounded. Also

V (t→∞)− V (t0) =

ˆ ∞
t0

V̇
(
e, k̃x, θ̃

)
dt = 2am

ˆ ∞
t0

e2 (t) dt = 2am ‖e‖22

So, V
(
e, k̃x, θ̃

)
has a finite limit as t→∞. Since ‖e‖2 exists, therefore e (t) ∈ L2 ∩L∞. Differentiating

V̇
(
e, k̃x, θ̃

)
yields

V̈
(
e, k̃x, θ̃

)
= 4ame

(
ame− bk̃xx+ bθ̃x2

)
Since e (t) ∈ L2 ∩ L∞, kx (t) ∈ L∞, and θ (t) ∈ L∞ by the virtue that V̇

(
e, k̃x, θ̃

)
≤ 0, and

x (t) ∈ L∞ since e (t) ∈ L2 ∩ L∞ and xm (t) ∈ L∞ because r (t) ∈ L∞ by assumption, therefore

V̈
(
e, k̃x, θ̃

)
∈ L∞. Therefore, V̇

(
e, k̃x, θ̃

)
is uniformly continuous. It follows from the Barbalat’s

lemma that V̇
(
e, k̃x, θ̃

)
→ 0 which implies e (t) → 0 as t → ∞. Therefore, the tracking error is

asymptotically stable.
c. The response of the adaptive controller with r (t) = 1 (t) is as shown in the following plot. The param-

eters kx (t) and θ (t) do not converge to their corresponding ideal values in this case. This is due to
the fact the the Lyapunov stability proof only shows that e (t) → 0 as t → ∞, but not k̃x(t) or θ̃ (t).
Therefore, MRAC does not guarantee parameter convergence.
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2. Consider the following first-order plant

ẋ = ax+ b [u+ θ∗φ (x)]

where a , b > 0, θ∗ is unknown, and φ (x) = x2. Design an indirect adaptive controller in Simulink by
estimating a, b, and θ∗ so that the plant follows a reference model

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t. For simulation purposes, use a = 1, b = 1, θ∗ = 0.1,

x (0) = xm (0) = 1, â (0) = 0, b̂ (0) = 1.5, γa = γb = γθ = 1. Also assume that a lower bound of b is

b0 = 0.5. Plot the time histories of e (t), x (t) vs. xm (t), â (t), b̂ (t), and θ̂ (t) for t ∈ [0, 50]

Solution:
The adaptive laws are

˙̂a = −γaxe

˙̂
b =

{
−γbūe if

∣∣∣b̂∣∣∣ > b0, or if
∣∣∣b̂∣∣∣ = b0 and

∣∣∣ ˙̂b∣∣∣ ≥ 0

εsgn (b) otherwise, ε ≈ 0 > 0

θ̇ = −γθφ (x) esgn (b)

The adaptive controller is given by

u = kx (t)x+ kr (t) r − θ (t)φ (x)

where

kx =
am − â

b̂

kr =
bm

b̂

The Simulink model and simulation results are as shown.
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3. Derive direct MRAC laws for a second-order SISO system

ÿ + 2ζωnẏ + ω2
ny = b

[
u+Θ∗>Φ (y)

]
where ζ and ωn are unknown, but b is known. Show by applying the Barbalat’s lemma that the tracking
error is asymptotically stable.
Design a direct adaptive controller for a second-order system using the following information: b = 1,
ζm = 0.5, ωm = 2, bm = 4, r (t) = sin 2t, and

Φ (y) =

[
1
y2

]
For simulation purposes, the unknown parameters may be assumed to be ζ = −0.5, ωn = 1, and Θ∗> =[

0.5 −0.1
]
, and all initial conditions are assumed to be zero. Use Γx = ΓΘ = 100I. Plot the time histories

of e (t), x (t) vs. xm (t), Kx (t), and Θ (t) for t ∈ [0, 100].

Solution:
Assuming there exist ideal gains K∗x and k∗r that satisfy the model matching conditions

A+BK∗x = Am

Bk∗r = Bm

where

A =

[
0 1
−ω2

n −2ζωn

]
, B =

[
0
b

]
, Am =

[
0 1
−ω2

m −2ζmωm

]
, Bm =

[
0
bm

]
Since Am and Bm have the same structures as A and B, K∗x and k∗r actually exist. In fact, k∗r can be used
as the command feedforward gain kr where

kr = k∗r =
(
B>B

)−1
B>Bm =

bm
b

Define an adaptive controller as

u = Kx (t)x+ krr −Θ> (t)Φ (x)
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Let K̃x (t) = Kx (t) − K∗x and Θ̃ (t) = Θ (t) − Θ∗ be the estimation errors, then the closed-loop plant
model is

ẋ =

A+BK∗x︸ ︷︷ ︸
Am

+BK̃x

x+ Bkr︸︷︷︸
Bm

r −BΘ̃>Φ (x)

Then, the closed-loop tracking error equation is obtained as

ė = ẋm − ẋ = Ame−BK̃xx+BΘ̃>Φ (x)

Choose a Lyapunov candidate function

V
(
e, K̃x, Θ̃

)
= e>Pe+ K̃xΓ

−1
x K̃>x + Θ̃>Γ−1

Θ Θ̃

where P = P> > 0 solves the Lyapunov equation

PA+A>P = −Q

with Q = Q> > 0.
Then,

V̇
(
e, K̃x, Θ̃

)
= −e>Qe+ 2e>P

[
−BK̃xx+BΘ̃>Φ (x)

]
+ 2K̃xΓ

−1
x

˙̃K>x + 2Θ̃>Γ−1
Θ

˙̃Θ

Since e>PB is a scalar quantity, then

2e>PBK̃xx = 2K̃xxe
>PB

2e>PBΘ̃>Φ (x) = 2Θ̃>Φ (x) e>PB

Thus,

V̇
(
e, K̃x, Θ̃

)
= −e>Qe+ 2K̃x

(
−xe>PB + Γ−1

x
˙̃K>x

)
+ 2Θ̃>

[
Φ (x) e>PB + Γ−1

Θ
˙̃Θ
]

Setting the trace terms to zero yields the adaptive laws for Kx (t) and Θ (t)

K̇>x = Γxxe
>PB

Θ̇ = −ΓΘΦ (x) e>PB

Therefore,

V̇
(
e, K̃x, Θ̃

)
= −e>Qe ≤ −λmin (Q) ‖e‖2 ≤ 0

Since V̇
(
e, K̃x, Θ̃

)
≤ 0, therefore e (t), Kx (t), and Θ (t) are bounded. Then,

V (t→∞) = V (t0)−
ˆ ∞
t0

e>Qedt ≤ V (t0)− λmin (Q) ‖e‖2

So, V
(
e, K̃x, Θ̃

)
has a finite limit as t → ∞. Since ‖e‖ exists, therefore e (t) ∈ L2 ∩ L∞, but ‖ė‖ ∈ L∞.

V̇
(
e, K̃x, Θ̃

)
can be shown to be uniformly continuous by examining its derivative to see if it is bounded,

where

V̈
(
e, K̃x, Θ̃

)
= −ė>Qe− e>Qė = −e>

(
QA+A>Q

)
e− 2e>Q

[
Ame−BK̃xx+BΘ̃>Φ (x)

]
Since e (t), Kx (t), and Θ (t) are bounded by the virtue that V̇

(
e, K̃x, Θ̃

)
≤ 0, x (t) is bounded because

e (t) and xm (t) bounded, r (t) is bounded by the problem statement, and Φ (x) is bounded because x (t) is

bounded, therefore V̈
(
e, K̃x, Θ̃

)
is bounded. Thus, V̇

(
e, K̃x, Θ̃

)
is uniformly continuous. It follows from
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the Barbalat’s lemma that V̇
(
e, K̃x, Θ̃

)
→ 0 and hence e (t)→ 0 as t→∞. Therefore, the tracking error

is asymptotically stable.The Simulink model and simulation results are as shown.
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Notice that with Γx = ΓΘ = 100I, the signals are highly oscillatory and the parameter convergence for
Θ (t) is not obtained. Re-running the simulation with Γx = ΓΘ = 10I, the simulation results are much
more improved as shown in the following plots.
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4. For Exercise 5.3, suppose b is unknown but b > 0 is known. Design an indirect adaptive controller in
Simulink. For simulation purposes, all initial conditions are assumed to be zero, except for ω̂n(0) = 0.8

and b̂ (0) = 0.6. For simplicity, use the unmodified adaptive laws for ω̂n (t) and b̂ (t). Use γω = γζ = γb = 10

and ΓΘ = 10I. Plot the time histories of e (t), x (t) vs. xm (t), ω̂n (t), ζ̂ (t), b̂ (t), and Θ (t) for t ∈ [0, 100].

Solution:
The indirect adaptive laws are

˙̂
b = −γbūe>P̄

˙̂ωn =
γωx1e

>P̄

2ω̂n

˙̂
ζ =

(
γζ ẋ1ω̂n − γωx1ζ̂

)
e>P̄

2ω̂2
n

Θ̇ = −ΓΘΦ (x) e>P̄ sgnb

The adaptive controller is given by

u = Kx (t)x+ kr (t) r −Θ> (t)Φ (x)

where

Â =

[
0 1

−ω̂2
n −2ζ̂ω̂n

]
, B̂ =

[
0

b̂

]
, Am =

[
0 1
−ω2

m −2ζmωm

]
, Bm =

[
0
bm

]
Kx =

(
B̂>B̂

)−1

B̂>
(
Am − Â

)
kr =

(
B̂>B̂

)−1

B̂>Bm

The Simulink model and simulation results are as shown.
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5. Thus far, we have considered adaptive control with a matched uncertainty as a function of x. In physical
systems, an external disturbance is generally a function of t. Adaptive control can be used for disturbance
rejection if the disturbance structure is known. Suppose the matched uncertainty is a function of t, then all
the adaptive laws can still be used by just replacing Φ (x) by Φ (t), assuming Φ (t) is known and bounded.
Consider the following first-order plant:

ẋ = ax+ b [u+ θ∗φ (t)]

where a , b, and θ∗ are unknown, but b > 0 is known, and φ (t) = sin 2t − cos 4t. Design an indirect
adaptive controller in Simulink by estimating a, b, and θ∗ so that the plant follows a reference model

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t. For simulation purposes, use a = 1, b = 1, θ∗ = 0.1,

x (0) = xm (0) = 1, â (0) = 0, b̂ (0) = 1.5, γa = γb = γθ = 1. Also assume that a lower bound of b is

b0 = 0.5. Plot the time histories of e (t), x (t) vs. xm (t), â (t), b̂ (t), and θ̂ (t) for t ∈ [0, 50].

Solution:
The indirect adaptive laws are

˙̂a = −γaxe

˙̂
b =

−γbūe if
∣∣∣b̂∣∣∣ > b0, or if

∣∣∣b̂∣∣∣ = b0 and
d|b̂|
dt ≥ 0

εsgn (b) otherwise, ε ≈ 0 > 0

θ̇ = −γθφ (t) esgn (b)

The adaptive controller is given by

u = kx (t)x+ kr (t) r − θ (t)φ (t)

where

kx =
am − â

b̂

kr =
bm

b̂
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The Simulink model and simulation results are as shown.
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6. Derive direct MRAC laws for a MIMO system

ẋ = Ax+B
[
u+Θ∗>Φ (x)

]
where A is unknown, but B is known. Show by applying the Barbalat’s lemma that the tracking error is
asymptotically stable.

Given x (t) =
[
x1 (t) x2 (t)

]>
, u (t) =

[
u1 (t) u2 (t)

]>
, Φ (x) =

[
x2

1 x
2
2

]>
, and

B =

[
1 1
0 1

]
design a direct adaptive controller in Simulink for the MIMO system to follow a second-order SISO system
specified by

ẋm = Amx+Bmr

where r (t) = sin 2t and

Am =

[
0 1
−4 −2

]
, Bm =

[
0
4

]
For simulation purposes, the unknown parameters may be assumed to be

A =

[
1 1
−1 −1

]
, Θ∗ =

[
0.2 0
0 −0.1

]
and all initial conditions are assumed to be zero. Use Γx = ΓΘ = 10I. Plot the time histories of e (t), x (t)
vs. xm (t), Kx (t), and Θ (t) for t ∈ [0, 100].

Solution:
Assuming that there exist K∗x and Kr that satisfy the model matching conditions

A+BK∗x = Am

BKr = Bm

The adaptive controller is given by

u = Kx (t)x+Krr −Θ> (t)Φ (x)
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Let K̃x (t) = Kx (t) − K∗x and Θ̃ (t) = Θ (t) − Θ∗ be the estimation errors, then the closed-loop plant
model is

ẋ =

A+BK∗x︸ ︷︷ ︸
Am

+K̃x

x+BKr︸ ︷︷ ︸
Bm

r −BΘ̃>Φ (x)

The closed-loop tracking error equation is obtained as

ė = ẋm − ẋ = Ame−BK̃xx+BΘ̃>Φ (x)

Choose a Lyapunov candidate function

V
(
e, K̃x, Θ̃

)
= e>Pe+ trace

(
K̃xΓ

−1
x K̃>x

)
+ trace

(
Θ̃>Γ−1

Θ Θ̃
)

Then,

V̇
(
e, K̃x, Θ̃

)
= −e>Qe+ 2e>PB

[
−K̃xx+ Θ̃>Φ (x)

]
+ 2trace

(
K̃xΓ

−1
x

˙̃K>x

)
+ 2trace

(
Θ̃>Γ ˙̃Θ

)
= −e>Qe+ 2trace

(
K̃x

[
−xe>PB + Γ−1

x
˙̃K>x

])
+ 2trace

(
Θ̃>

[
Φ (x) e>PB + Γ ˙̃Θ

])
The adaptive laws are

K̇>x = Γxxe
>PB

Θ̇ = −ΓΘΦ (x) e>PB

Thus,

V̇
(
e, K̃x, Θ̃

)
= −e>Qe ≤ −λmin (Q) ‖e‖2 ≤ 0

Since V̇
(
e, K̃x, Θ̃

)
≤ 0, therefore e (t), Kx (t), and Θ (t) are bounded. Then,

V (t→∞) = V (t0)−
ˆ ∞
t0

e>Qedt ≤ V (t0)− λmin (Q) ‖e‖2

So, V
(
e, K̃x, Θ̃

)
has a finite limit as t → ∞. Since ‖e‖ exists, therefore e (t) ∈ L2 ∩ L∞, but ‖ė‖ ∈ L∞.

V̇
(
e, K̃x, Θ̃

)
can be shown to be uniformly continuous by examining its derivative to see if it is bounded,

where

V̈
(
e, K̃x, Θ̃

)
= −ė>Qe− e>Qė = −e>

(
QA+A>Q

)
e− 2e>Q

[
Ame−BK̃xx+BΘ̃>Φ (x)

]
Since e (t), Kx (t), and Θ (t) are bounded by the virtue that V̇

(
e, K̃x, Θ̃

)
≤ 0, x (t) is bounded because

e (t) and xm (t) bounded, r (t) is bounded by the problem statement, and Φ (x) is bounded because x (t) is

bounded, therefore V̈
(
e, K̃x, Θ̃

)
is bounded. Thus, V̇

(
e, K̃x, Θ̃

)
is uniformly continuous. It follows from

the Barbalat’s lemma that V̇
(
e, K̃x, Θ̃

)
→ 0 and hence e (t)→ 0 as t→∞. Therefore, the tracking error

is asymptotically stable.
The Simulink model and simulation results are as shown.
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Chapter 6 Exercises

1. A process is represented by a set of data (t, x, y) given in the Matlab file “Process Data.mat” where the
output y (t) can be approximated by a 4−th degree polynomial in terms of x (t) with end point conditions
y = 0 and dy

dx = 0 at x = 0. Determine numerically the matrix A and vector B and solve for the coefficients
θi, i = 2, 3, 4. Compare the result with the Matlab function “polyfit”.

Solution:
The output y (x) is approximated as follows:

ŷ = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4

Applying the end point conditions y (0) = 0 and y
′
(0) = 0 results in θ0 = 0 and θ1 = 0. Therefore,

ŷ = θ2x
2 + θ3x

3 + θ4x
4 = Θ>Φ (x)

where Θ =
[
θ2 θ3 θ4

]>
, Φ (x) =

[
x2 x3 x4

]>
.

Θ is solved by the batch least-squares method as

Θ = A−1B

where

A =

N∑
i=1

Φ (xi)Φ
> (xi) =


∑N
i=1 x

4
i

∑N
i=1 x

5
i

∑N
i=1 x

6
i∑N

i=1 x
5
i

∑N
i=1 x

6
i

∑N
i=1 x

7
i∑N

i=1 x
6
i

∑N
i=1 x

7
i

∑N
i=1 x

8
i



B =

N∑
i=1

Φ (xi) y
>
i =


∑N
i=1 x

2
i yi∑N

i=1 x
3
i yi∑N

i=1 x
4
i yi


The solution is θ2 = −0.5, θ3 = 0.1, and θ4 = 0.3. Matlab function “polyfit(x,y,4)” yields the same answer.

2. Write Matlab code to solve Exercise 6.1 using the least-squares gradient method with Θ (0) = 0 and
Γ = 10. Plot θi (t) versus t. Compare the result with that in Exercise 6.1.
Note that the Euler method for the least-squares gradient method is expressed as

Θi+1 = Θi −∆tΓΦ (xi)
[
Φ> (xi)Θi − yi

]
Solution:
The least-squares estimation by the least-squares gradient method is expressed as

43
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Φ (x) =

x2

x3

x4


Θ̇ = −ΓΦ (x)

[
Φ> (x)Θ − y

]
For Γ = 10I, Θ (t) does not quite converge to the correct values. Changing Γ = 30I causes Θ (t) to
converge to the same values as those in Exercise 6.1.
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3. Determine if the following functions are persistently exciting (PE), and if so, determine T and α.

a. φ (t) = e−t. (Hint: find limit of θ̃ (t) as t→∞)

b. Φ (t) =

[
cosπt
sinπt

]
Solution:
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a. φ (t) = e−t. Consider a scalar estimation error equation

˙̃
θ = −γφ2 (t) θ̃

Then,

θ̃ (t) = exp

[
−γ
ˆ t

0

e−2τdτ

]
= exp

[γ
2

(
e−2t − 1

)]
As t→∞, θ̃ (t)→ e−

γ
2 6= 0. Thus, φ (t) is not PE and does not guarantee a parameter convergence.

b. Φ (t) =

[
cosπt
sinπt

]
. Then,

Φ (t)Φ> (t) =

[
cos2 πt sinπt cosπt

sinπt cosπt sin2 πt

]
The PE condition is evaluated as

1

T

ˆ t+T

t

Φ (τ)Φ> (τ) dτ =
1

T

[
T
2 + sin 2π(t+T )−sin 2πt

4π − cos 2π(t+T )−cos 2πt
4π

− cos 2π(t+T )−cos 2πt
4π

T
2 −

sin 2π(t+T )−sin 2πt
4π

]

Let T = 1. Then, Φ (x) is PE since

1

T

ˆ t+T

t

Φ (τ)Φ> (τ) dτ =
1

T

[
T
2 0
0 T

2

]
=

1

2

[
1 0
0 1

]
Thus, α = 1

2 . The estimation error is exponentially stable and parameter convergence is guaranteed.

4. Consider a first-order system with a matched uncertainty

ẋ = ax+ b [u+ θ∗φ (t)]

where a and θ∗ are unknown, but b = 2, and φ (t) = sin t. For simulation purposes, use a = 1 and θ∗ = 0.2.
The reference model is given by

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t.
Implement in Simulink an indirect adaptive control using the recursive least-squares method with nor-
malization. All initial conditions are zero. Use R (0) = 10. Plot e (t), x (t) versus xm (t), â (t), and θ (t),
for t ∈ [0, 40].

Solution:
Let Ω (t) =

[
â (t) bθ (t)

]>
and Ψ (x, t) =

[
x sin t

]>
. Then, the RLS adaptive laws with normalization are

given by
Ω̇ = −RΨ (x, t) ε

Ṙ = − RΨ (x, t)Ψ> (x, t)R

1 + Ψ> (x, t)RΨ (x, t)

where
ε = amx+ bmr − ẋ

ū =
am − â

b
x+

bm
b
r

The adaptive controller is given by
u = ū− θ (t)φ (t)

The Simulink model and simulation results are as shown.
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Chapter 7 Exercises

1. Approximate
y = 0.1 sin 0.4x+ cos2 2x

where x (t) = sin t for t ∈ [0, 60], by a 4th-degree Chebyshev polynomial using the least-squares gradient
method with Γ = 100I and ∆t = 0.001. Initialize Θ (t) with zero. Plot Θ (t) versus t. Plot y (t) and ŷ (t)
versus x (t) on the same plot. Compute the root mean square error between y (t) and ŷ (t).

Solution:
Θ (t) and ŷ are shown in the following plots. The root mean square error is 0.0058.
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2. Implement a sigmoidal neural network

ŷ = f̂ (x) = V >σ
(
W>x x+W0

)
+ V0 = Θ>Φ

(
W>x̄

)
where

σ (x) =
1

1 + e−x

to approximate y (t) in Exercise 7.1 with Θ (t) ∈ R5, W (t) ∈ R2 × R4 and ΓΘ = ΓW = 100I and
∆t = 0.001. The initial conditions Θ (0) and W (0) are to be generated by a random number generator.
Plot Θ (t) and W (t) versus t. Plot y (t) and ŷ (t) versus x (t) on the same plot. Compute the root mean
square error between y (t) and ŷ (t).

Solution:
Θ (t) and ŷ are shown in the following plots. The root mean square error is 0.0051.
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3. Consider a first-order system with a matched unstructured uncertainty

ẋ = ax+ b [u+ f (x)]

where a and f (x) are unknown, but b = 2. For simulation purposes, a = 1 and f (x) = 0.1 sin 0.4x+cos2 2x.
The reference model is given by

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t.
Implement in Simulink a direct adaptive control using a least-squares gradient method to approximate
f (x) by a 4th-degree Chebyshev polynomial. All initial conditions are zero. Use Γ = 0.2I. Plot e (t), x (t)
versus xm (t), kx (t), and Θ (t) for t ∈ [0, 60].

Solution:
Let Ω> (t) =

[
Ω1 (t) Ω>2 (t)

]>
=
[
bkx (t) bΘ> (t)

]
and Ψ (x, t) =

[
−x Φ> (x)

]>
where Φ (x) =[

1 x 2x2 − 1 4x3 − 3x 8x4 − 8x2 + 1
]>

. Then, the least-squares gradient adaptive laws are
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Ω̇ = −ΓΨ (x, t) ε

kx =
Ω1

b

Θ =
Ω2

b

where
ε = amx+ bmr − ẋ

The adaptive controller is then given by

u = kx (t)x+ krr −Θ> (t)Φ (x)

The Simulink model and simulation results are as shown.
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Chapter 8 Exercises

1. Consider a first-order SISO system
ẋ = ax+ bu+ w

where w (t) is a bounded disturbance and u (t) is an adaptive controller defined as

u = kxx

k̇x = −γxx2b

Suppose the solution of x (t) is given by
x = t (1 + t)

p

a. Analyze parameter drift behaviors of the closed-loop system by finding all values of p that result in
unbounded feedback gain kx (t) and all values of p that result in a completely bounded system.

b. Implement the adaptive controller in Simulink using the following information: a = 1, b = 1, γx = 1,
x (0) = 0, and kx (0) = 0 with a time step ∆t = 0.001 sec for two different values of p: one for unbounded
kx (t) and the other for all bounded signals. Plot the time histories of x (t), u (t), w (t), and kx (t) for
each of the values of p for t ∈ [0, 20] sec.

Solution:

a. x (t) is bounded if p ≤ −1. kx (t) is evaluated as

kx − kx (0) = −γxb
ˆ t

0

τ2 (1 + τ)
2p
dτ

Let u = 1 + τ , then

kx − kx (0) = −γxb
ˆ t

0

(u− 1)
2
u2pdu = −γxb

[
(1 + t)

2p+3 − 1

2p+ 3
− 2 (1 + t)

2p+2 − 2

2p+ 2
+

(1 + t)
2p+1 − 1

2p+ 1

]

Thus, kx (t) is bounded if 2p+ 3 < 0 or p < − 3
2 .

w (t) is obtained as

w = ẋ− ax− bkxx = pt (1 + t)
p−1

+ (1 + t)
p − at (1 + t)

p

− b

{
−γxb

[
(1 + t)

2p+3 − 1

2p+ 3
− 2 (1 + t)

2p+2 − 2

2p+ 2
+

(1 + t)
2p+1 − 1

2p+ 1

]
+ kx (0)

}
t (1 + t)

p

w (t) is bounded if 3p+ 3 ≤ −1 or p ≤ − 4
3 and p 6= − 3

2 , p 6= −1, p 6= − 1
2 .

Thus, x (t) and w (t) are bounded but kx (t) is unbounded if − 3
2 < p ≤ − 4

3 . The system is completely
bounded if p < − 3

2 .
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b. The Simulink model and the simulation results are as shown.
Choose p = − 17

12 for unbounded kx (t). Note that kx (t) is unbounded, but x (t), u (t), and w (t)
are bounded. Choose p = −2 for bounded closed-loop signals. The closed-loop system is completely
bounded.
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2. Consider a time delay second-order SISO system

ÿ − ẏ + y = u (t− td)

where td is an unknown time delay.
The unstable open-loop plant is stabilized with a linear derivative controller

u = k∗d ẏ

where k∗d = −7.

a. Calculate analytically the cross-over frequency ω and the time delay margin td that corresponds to
neutral stability of the closed-loop system.

b. Now, suppose an adaptive controller is designed to follow the delay-free closed-loop system with the
linear derivative controller as the reference model

ÿm + 6ẏm + ym = 0

Let x (t) =
[
y (t) ẏ (t)

]> ∈ R2, then the open-loop plant is designed with an adaptive derivative
controller

u = Kxx

K̇>x = −Γxxx>PB

where Kx (t) =
[

0 kd (t)
]

and Γx = diag(0, γx) and γx is an adaptation rate.
Implement the adaptive controller in Simulink using the following information: Q = I, y (0) = 1,
ẏ (0) = 0, and Kx (0) = 0 with a time step ∆t = 0.001 sec. Determine γxmax that causes the closed-loop
system to be on the verge of instability by trial-and-error to within 0.1 accuracy. Calculate kdmin that
corresponds to γxmax . Plot the time histories of x (t), u (t), and kd (t) for t ∈ [0, 10] sec.

Solution:

a. The closed-loop plant is

y =
(s− 1) y (0) + ẏ (0)

s2 − s+ 1 + 7se−tds

Substituting s = jω into the characteristic equation in the denominator yields



56

−ω2 − jω + 1 + 7jω (cosωtd − j sinωtd) = 0

Then, separating the real and imaginary parts yields

−ω2 + 1 + 7ω sinωtd = 0

−ω + 7ω cosωtd = 0⇒ cosωtd =
1

7

The cross-over frequency equation is obtained as

ω4 − 50ω2 + 1 = 0

The cross-over frequency and time delay are computed to be

ω =

√
50

2
+

√
502 − 4

4
=

√
25 + 4

√
39 = 7.0697 rad/sec

td =
1

ω
cos−1 1

7
=

1√
25 + 4

√
39

cos−1 1

7
= 0.2019 sec

b. The open-loop plan is expressed as[
ẏ
ÿ

]
=

[
0 1
−1 1

]
︸ ︷︷ ︸

A

[
y
ẏ

]
+

[
0
1

]
︸︷︷︸
B

u (t− td)

The reference model is expressed as [
ẏm
ÿm

]
=

[
0 1
−1 −6

]
︸ ︷︷ ︸

Am

[
ym
ẏm

]

Let Q = I, then

P =

[
19
6

1
2

1
2

1
6

]
The adaptive law then becomes

K̇>x =

[
0

k̇d

]
= −

[
0 0
0 γx

] [
y
ẏ

] [
y ẏ
] [ 19

6
1
2

1
2

1
6

] [
0
1

]
=

[
0

−γxẏ
(

1
2y + 1

6 ẏ
) ]

So the controller is simplified as
u = kd (t) ẏ

k̇d = −γxẏ
(

1

2
y +

1

6
ẏ

)
The Simulink model and simulation results are as shown with the time delay td = 0.2019 sec injected
at the input.
By trial and error, γxmax is determined to be 4.7, which corresponds to kdmin = −6.8853. Note that
the linear system is unstable at kd = −7. The adaptive control result is in agreement with the result
of the linear system. The plots of x (t), u (t), and kd (t) are as shown.
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3. For the Rohrs’ counterexample, stability of the closed-loop system is affected by the frequency of the
reference command signal r (t). Write the closed-loop transfer function from r (t) to y (t). Then, compute
the cross-over frequency ω for the reference command signal

r = 0.3 + 1.85 sinωt

to give a 60o phase margin. Also compute the ideal feedback gain k∗y corresponding to this phase margin.
Implement in Simulink the Rohrs’ counterexample using the same initial conditions ky (0) and kr (0) with
γy = γr = 1 and ∆t = 0.001 sec. Plot the time histories of y (t), u (t), ky (t), and kr (t) for t ∈ [0, 60] sec.

Solution:
The open-loop plant is
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y =
2

s+ 1

229u

s2 + 30s+ 229
=

458u

s3 + 31s2 + 259s+ 229

The initial value of the controller is

u = ky (0) y + kr (0) r = −0.65y + 1.14r

Then,

y =
458 (−0.65y + 1.14r)

s3 + 31s2 + 259s+ 229

The closed-loop transfer function is obtained as

y

r
=

522.12

s3 + 31s2 + 259s+ 526.7

The phase margin can be determined from

tanφ =
ω3 −

(
ω2
n − 2aζωn

)
ω

− (2ζωn − a)ω2 − aω2
n

which results in
ω3 +

√
3 (2ζωn − a)ω2 −

(
ω2
n − 2aζωn

)
ω +
√

3aω2
n = 0

Substituting in φ = π
3 , a = −1, 2ζωn = 30, and ω2

n = 229, we get

ω3 + 31
√

3ω2 − 259ω − 229
√

3 = 0

The solution is ω = 5.5714 rad/sec. The feedback gain corresponding to this frequency is computed from

φ = ωtd = sin−1

[
ω3 −

(
ω2
n − 2aζωn

)
ω

bω2
nky

]

This yields

ky =
ω3 −

(
ω2
n − 2aζωn

)
ω

bω2
n sinφ

= −3.2021

The Simulink model and simulation results are as shown.
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By changing the frequency of the reference command signal that corresponds to a 60o phase margin, the
closed-loop system is now stable, although the response is highly oscillatory. Note that ky (t) tends to a
value of -3.2783 at 60 sec which agrees reasonably well with the theoretical value.





Chapter 9 Exercises

1. Consider a time-delay second-order SISO system

ÿ + 2ζωnẏ + ω2
ny = bu (t− td)

where b = 1, td = 1
3 sec, and ζ and ωn are unknown but their actual values are −0.5 and 1 rad/sec,

respectively.
The system is designed to track a second-order reference model

ÿm + 2ζmωmẏm + ω2
mym = bmr (t)

where ζm = 0.5, ωm = 2 rad/sec, bm = 4, and r (t) = 1, with an adaptive controller

u = Kx (t)x+ krr

where x (t) =
[
y (t) ẏ (t)

]>
and Kx (t) =

[
kp (t) kd (t)

]
.

a. Calculate the fixed-gain values of kpmin and kdmin to achieve a phase margin of 60o and a time delay
margin of 1/3 sec.

b. Define a convex set described by an ellipse that contains kp (t) and kd (t)

g (kp, kd) =

(
kp
a

)2

+

(
kd
b

)2

− 1 ≤ 0

where a and b are to be determined from kpmin and kdmin . Design a projection method for the adaptive
controller to ensure robustness in the presence of time delay. Write down the adaptive law. Implement
the adaptive controller in Simulink using the following information: y (0) = 0, ẏ (0) = 0, Kx (0) = 0,
and Γx = 0.2I with a time step ∆t = 0.001 sec. Plot the time histories of y (t), u (t), kp (t) and kd (t)
for t ∈ [0, 600] sec. What happens when the projection method is removed from the adaptive law?

Solution:

a. The closed-loop transfer function is

y

r
=

kre
−tds

s2 + 2ζωns+ ω2
n − kpe−tds − kdse−tds

The characteristic equation with s = jω yields the following:

−ω2 + ω2
n − kp cosωtd − kdω sinωtd = 0

2ζωnω + kp sinωtd − kdω cosωtd = 0

61
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The cross-over frequency is computed to be

ω =
φ

td
= π

Then,

−π2 + 1− 1

2
kp −

π
√

3

2
kd = 0

−π +

√
3

2
kp −

π

2
kd = 0

Solving for kp and kd gives

kpmin = kp =
−π2 + π

√
3 + 1

2
= −1.7141

kdmin = kd =
−π2
√

3− π +
√

3

2π
= −2.9450

b. The constraint function is

g (kp, kd) =

(
kp

kpmin

)2

+

(
kd

kdmin

)2

− 1 ≤ 0

Then,

∇gKx (Kx)∇>gΘ (Θ) =

 2kp
k2pmin

2kd
k2dmin

[ 2kp
k2pmin

2kd
k2dmin

]
=

 4k2p
k4pmin

4kpkd
k2pmin

k2dmin
4kpkd

k2pmin
k2dmin

4k2d
k4dmin


∇>gΘ (Θ)∇gΘ (Θ) =

4k2
p

k4
pmin

+
8kpkd

k2
pmink

2
dmin

+
4k2
d

k4
dmin

= 4

(
kp

k2
pmin

+
kd

k2
dmin

)2

The projection method for the adaptive law is

K̇x =

{
Γxe>PB if g (Kx) < 0 or if g (Kx) = 0 and −

(
xe>PB

)>∇gKx (Kx) ≤ 0

Γ
[
I − ∇gΘ(Θ)∇>gΘ(Θ)

∇>gΘ(Θ)∇gΘ(Θ)

]
xe>PB otherwise

The Simulink model and simulation results are as shown.

The response with the projection method exhibits high frequency chattering as kp (t) and kd (t) are forced
back into the compact set whenever the constraint is violated. This results in the switching behavior in the
kp (t) and kd (t) signals. When the projection method is removed from the adaptive law, the closed-loop
system becomes unstable as kp (t) and kd (t) exceed kpmin and kdmin .
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2. Implement in Simulink the σ modification and e modification for the Rohrs’ counterexample with the
reference command

r = 0.3 + 1.85 sin 16.1t

using the same initial conditions ky (0) and kr (0) with γx = γr = 1, σ = 0.2, and µ = 0.2 and ∆t = 0.001
sec. Plot the time histories of y (t), u (t), ky (t)and kr (t) for t ∈ [0, 100] sec. Experiment with different
values of σ and µ and determine by trial-and-error the values of σ and µ at which the system begins to
stabilize.

Solution:
For the Rohrs’ counterexample, different robust modification schemes can stabilize the closed-loop plant.
The σ modification adaptive laws are given by

k̇y = γx (ye− σky)
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k̇r = γr (re− σkr)

The e modification adaptive laws are expressed as

k̇y = γx (ye− µ |e| ky)

k̇r = γr (re− µ |e| kr)

The Simulink model and simulation results are as shown.

The closed-loop system is stable with the σ modification (σ = 0.2) as shown.
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The system is also stable with the e modification (µ = 0.2) as shown.
The modification parameters at which the closed-loop system begins to become stable are σ = 0.12 and
µ = 0.17 for γx = γr = 1.

3. Consider a first-order SISO system
ẋ = ax+ bu+ w

where a is unknown, b is known, and w is an unknown disturbance.
To prevent the parameter drift, the σ modification is used in an adaptive regulator design

u = kx (x)x

k̇x = −γx
(
x2b+ σkx

)
Suppose x (t) is a sinusoidal response where x (t) = sin t.

a. Derive the general time-varying disturbance w (t) that produces the given response x (t) in terms of a,
b, γx, σ, and kx (0). Let a = 1, b = 1, γx = 10, σ = 0.1, x (0) = 0, and kx (0) = 0. Express w (t).

b. Implement in Simulink the control system with a time step ∆t = 0.001 sec. Plot the time histories of
x (t), u (t), w (t) and kx (t) for t ∈ [0, 20] sec.

c. Repeat part (b) with the standard MRAC by setting σ = 0. Does the system exhibit the parameter
drift?

Solution:

a. kx (t) is evaluated as

d

dt

(
eγxσtkx

)
= −γxbeγxσtx2 = −γxbeγxσt sin2 t

Using the following trigonometric identity

cos 2t = 1− 2 sin2 t⇒ sin2 t =
1− cos 2t

2

The σ modification adaptive law is integrated as
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eγxσtkx − kx (0) = −γxb
2

ˆ t

0

eγxστ (1− cos 2τ) dτ

= − b

2σ

(
eγxσt − 1

)
+
γxb

2

eγxσt (γxσ cos 2t+ 2 sin 2t)− γxσ
γ2
xσ

2 + 4

This results in

kx =

[
kx (0) +

b

2σ
− γ2

xσb

2 (γ2
xσ

2 + 4)

]
e−γxσt − b

2σ
+
γxb (γxσ cos 2t+ 2 sin 2t)

2 (γ2
xσ

2 + 4)

The disturbance that generates x = sin t is then obtained as

w = ẋ− ax− bkxx = cos t− a sin t− b
[
kx (0) +

b

2σ
− γ2

xσb

2 (γ2
xσ

2 + 4)

]
e−γxσt sin t+

b2

2σ
sin t

− γxb
2 (γxσ cos 2t+ 2 sin 2t) sin t

2 (γ2
xσ

2 + 4)

Let a = 1, b = 1, γx = 10, σ = 0.1, and kx (0) = 0. Then, the disturbance is expressed as

w = cos t+ 4 sin t− 4e−t sin t− (cos 2t+ 2 sin 2t) sin t

b. The Simulink model is as shown.

The closed-loop system is stable with the σ modification as shown. The response of x (t) follows exactly
the signal sin t.
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c. The system exhibits parameter drift of kx (t) when the σ modification is removed.
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4. Consider a linear system
ẋ = Ax+Bu

y = Cx

Design a reference model for tracking the output y (t) with a reference command r (t) using the optimal
control approach and the following cost function:

J = lim
tf→∞

1

2

ˆ tf

0

[
(Cx− r)>Q (Cx− r) + u>Ru

]
dt

Derive the expressions for the optimal control gain matrices Kx and Kr for the closed-loop system

ẋ = (A+BKx)x+BKrr
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Given

ẋ =

[
1 2
1 −1

]
+

[
2
1

]
u

y =
[

1 0
]

r = sin t− 2 cos 4t− 2e−t sin2 4t

Implement in Simulink the control system. Let Q = q and R = 1
q . Determine a suitable value of q, Kx,

and Kr such that
√

1
tf

´ tf
0

(y − r)2
dt ≤ 0.05 for t ∈ [0, 10] sec. Initialize with x (0) =

[
−2 1

]>
. Plot the

time histories of y (t) and r (t) on the same plot, and e (t) = y (t)− r (t).

Solution:
The Hamiltonian function is defined as

H (x, u) =
1

2
(Cx− r)>Q (Cx− r) +

1

2
u>Ru+ λ> (Ax+Bu)

The adjoint equation is obtained as

λ̇ = −∇H>x = −C>Q (Cx− r)−A>λ

subject to transversality condition λ (tf ) = 0.
The necessary condition of optimality is established by

∇H>u = Ru+B>λ⇒ u = −R−1B>λ

We assume an adjoint solution of the form

λ = Wx+ V

Then,
λ̇ = Ẇx+W

[
Ax−BR−1B> (Wx+ V )

]
+ V̇ = −C>Q (Cx− r)−A> (Wx+ V )

This yields the following equations for infinite-time horizon optimal control

WA+A>W −WBR−1B>W + C>QC = 0

V =
(
A> −WBR−1B>

)−1
C>Qr

Therefore,
u = Kxx+Krr

where
Kx = −R−1B>W

Kr = −R−1B>
(
A> −WBR−1B>

)−1
C>Q

The Simulink model is as shown.

By trial-and-error, q = 59 results in
√

1
tf

´ tf
0

(y − r)2
dt = 0.0499 ≤ 0.05 for t ∈ [0, 10] sec. The corre-

sponding gain matrices are Kx =
[
−59.5053 −0.9979

]
and Kr = 58.9952. The response of y (t)and the

tracking error e (t) = y (t)− r (t) are shown in the following plot.
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5. Consider a time delay second-order SISO system

ÿ − ẏ + y = u (t− td)

where td = 0.1 sec is a time delay.
The unstable open-loop plant is stabilized with an adaptive controller

u = Kxx

where x (t) =
[
y (t) ẏ (t)

]> ∈ R2 and Kx (t) =
[
kp (t) kd (t)

]
, to achieve an ideal reference model

ÿm + 6ẏm + ym = 0

a. Express the optimal control modification adaptive law for Kx (t). Let Γ →∞ and Q = I, calculate the
equilibrium values of Kx (t) as a function of the modification parameter ν.

b. Determine numerically the value of the modification parameter ν to achieve the maximum time delay
margin to within 0.001. Compute the equilibrium values of Kx (t) corresponding to this modification
parameter ν. Implement the adaptive controller in Simulink with this modification parameter using
the following information: Γ = 10I, y (0) = 1, ẏ (0) = 0, and Kx (0) = 0 with a time step ∆t = 0.001
sec. Plot the time histories of x (t), u (t), and Kx (t) for t ∈ [0, 10] sec.

c. Increase the adaptation rate to Γ = 10000I. Repeat the simulations with a time step ∆t = 0.0001 sec.
Compare the steady-state values of Kx (t) at 10 sec with those results computed in part (b).
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Solution:

a. The optimal control modification adaptive law is

K̇>x = −Γxxx>
(
P − νK>x B>PA−1

m

)
B

As Γ →∞, the equilibrium value of Kx can be found by setting K̇x (t) = 0

PB − νK̄>x B>PA−1
m B ⇒ K̄>x =

1

ν

(
B>PA−1

m B
)−1

PB =
1

ν

[
−1 − 1

3

]>
b. The controller with the equilibrium value of Kx (t) is

u = −1

ν
y − 1

3ν
ẏ + krr

The closed-loop transfer function is

y

r
, G (s) =

krr

s2 − s+ 1 + 1
ν e
−tds + 1

3ν se
−tds

The characteristic equation with s = jω is

−ω2 − jω + 1 +
1

ν
(cosωtd − j sinωtd) +

1

3ν
jω (cosωtd − j sinωtd) = 0

which results in two equations

−ω2 + 1 +
1

ν
cosωtd +

1

3ν
ω sinωtd = 0

−ω − 1

ν
sinωtd +

1

3ν
ω cosωtd = 0

The cross-over frequency and time delay margin are determined from the following equations

ω4 −
(

1 +
1

9ν2

)
ω2 +

(
1− 1

ν2

)
= 0

td =
1

ω
cos−1

[
3ν
(
4ω2 − 3

)
ω2 + 9

]
td varies as a function of ν as shown in the following figure.
The maximum time delay margin is td = 0.1676 sec for ν = 0.096. The ideal equilibrium values of
Kx (t) for the maximum time delay margin is K̄x =

[
−10.4167 −3.4722

]
.
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The Simulink model is as shown.
The closed-loop is completely stable withKx (t) converging to the equilibrium values K̄x =

[
−4.6046 −2.9598

]
.
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c. If Γ increases to a larger value, say 10000I, Kx (t) tends to the equilibrium values of K̄x =[
−10.4356 −3.4727

]
which agree very well with the analytical results in part (b). It is also noted

that the closed-loop system with a large adaptation rate for fast adaptation exhibits no high frequency
response as shown.
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6. Consider a first-order SISO plant as

ẋ = ax+ b (u+ θ∗x+ w)

with a = −1, b = 1, θ∗ = 2, and

w = cos t+ 4 sin t− 4e−t sin t− (cos 2t+ 2 sin 2t) sin t

This disturbance will cause a parameter drift when the standard MRAC is used in a regulator design.
An adaptive controller is designed as
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u = krr − θ (t)x− ŵ (t)

to enable the plant to follow a reference model

ẋm = amxm + bmr

where am = −2, bm = 2, and r (t) = 1.

a. Calculate kr. Express the adaptive loop recovery modification adaptive laws for θ (t) and ŵ (t) using a
modification parameter η = 0.1.

b. Implement the adaptive controller in Simulink using the following information: x (0) = 0, θ (0) = 0,
ŵ (0) = 0, and γ = γw = 100 with a time step ∆t = 0.001 sec. Plot the time histories of x (t), u (t),
θ (t), and w (t) and ŵ (t) together on the same plot for t ∈ [0, 100] sec.

Solution:

a. The adaptive controller with the adaptive loop recovery modification adaptive laws is given by

u = kr − θ (t)x− ŵ (t)

θ̇ = −γ (xeb+ ηθ)

˙̂w = −γweb

where kr = bm
b = 1.

Note that for the adaptive law for ŵ (t), φ (x) = 1 and φx (x) = 0. So it is simply just the standard
MRAC. The adaptive law for θ (t) is just the σ modification since φ (x) = x and φx (x) = 1.

b. The Simulink model is as shown.

The response of the closed-loop system with the adaptive loop recovery modification is stable as shown.
ŵ (t) approximates the disturbance w (t) fairly well. θ (t) is bounded but does not converge to a steady-
state value.
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7. Consider a second-order SISO plant

ÿ + 2ζωnẏ + ω2
ny = bu (t− td)

where ζ = −0.5 and ωn = 1 rad/sec are unknown, b = 1 is known, and td is a known time delay.
Design an adaptive controller using the normalized MRAC without the projection method to allow the
plant to follow a reference model

ÿm + 2ζmωmẏm + ω2
mym = bmr (t)

where ζm = 3, ωm = 1, bm = 1, and r (t) = r0 sin t.

a. Implement the adaptive controller in Simulink using the following information: td = 0, x (0) = 0,
Kx (0) = 0, and Γx = 100I with a time step ∆t = 0.001 sec for the standard MRAC by setting R = 0
with r0 = 1 and r0 = 100. Plot the time histories of y (t) and ym (t), e1 (t) = ym (t) − y (t), u (t), and
Kx (t) for t ∈ [0, 100] sec. Comment on the effect of the amplitude of the reference command signal on
MRAC.

b. Repeat part (a) for the normalized MRAC with R = I and r0 = 100 for td = 0 and td = 0.1 sec.
Comment on the effect of normalization on the amplitude of the reference command signal and time
delay.

Solution:

a. The plant is expressed as
ẋ = Ax+Bu (t− td)

where

A =

[
0 1
−ω2

n −2ζωn

]
=

[
0 1
−1 1

]
, B =

[
0
1

]
The reference model is expressed as

ẋm = Amxm +Bmr

where r (t) = a sin t and

Am =

[
0 1
−ω2

m −2ζmωm

]
=

[
0 1
−1 −6

]
, Bm =

[
0
1

]
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The standard MRAC adaptive controller with normalization is given by

u = Kx (t)x+ krr

K̇>x =
Γxxe

>PB

1 + x>Rx

where kr = 1.
The Simulink model is as shown.

The response of the closed-loop system with the standard MRAC for r0 = 1 and td = 0 is as shown.
The closed-loop plant does not seem to track the reference model very well.
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The response of the closed-loop system with the standard MRAC for r0 = 100 and td = 0 is as shown.
The closed-loop is unstable. Thus, unlike linear systems, the amplitude of the reference command signal
does affect the closed-loop stability.
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b. The response of the closed-loop system with the normalized MRAC (R = I) for r0 = 100 and td = 0 is as
shown. The closed-loop plant is completely stable with the tracking error tending to zero asymptotically.
The adaptive parameters are bounded.
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The response of the closed-loop system with the normalized MRAC (R = I) for r0 = 100 and td = 0.1
sec is as shown. The closed-loop plant is still stable but the tracking error does not tend to zero. The
adaptive parameters are more oscillatory but still bounded.
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In conclusion, the normalization seems to be able to eliminate the effect of the amplitude of the
reference command signal as well as the time delay on the closed-loop stability. It is more robust than
the standard MRAC.

8. For the Rohrs’ counterexample, design a standard MRAC with the covariance adjustment method without
the projection method.

a. Implement the adaptive controller in Simulink using the following information: y (0) = 0, ky (0) =
−0.65, kr (0) = 1.14, γy (0) = γr (0) = 1, and η = 5 with a time step ∆t = 0.01 sec. Plot the time
histories of ky (t), kr (t), γy (t), and γr (t) for t ∈ [0, 100] sec. Note: plot γy (t) and γr (t) with the
logarithmic scale in the y axis for better visualization.

b. Repeat part (a) with t ∈ [0, 1000] sec. Do ky (t) and kr (t) reach their equilibrium values or do they
exhibit a parameter drift behavior?

Solution:

a. The standard MRAC adaptive laws for ky (t) and kr (t) with the covariance adjustment method are

k̇y = γy (t) ye

k̇r = γr (t) re

γ̇y = −ηy2γ2
y

γ̇r = −ηr2γ2
r

The Simulink model is as shown.



78

The response of the closed-loop system for t ∈ [0, 100] sec is as shown. The closed-loop plant is stable
up to t = 100 sec, but kx (t) and kr (t) do not appear to reach their equilibrium values. The adaptation
rates at t = 100 sec are γy (100) = 0.0189 and γr (100) = 0.0011 which are quite small.
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b. The response of the closed-loop system for t ∈ [0, 1000] sec is as shown. The closed-loop plant is still
stable up to t = 1000 sec. kx (t) and kr (t) still do not appear to reach their equilibrium values. The
adaptation rates at t = 1000 sec are γx (1000) = 0.0020 and γr (1000) = 0.0001 which are very small.
Nonetheless, γx (t) and γr (t) will always be positive as they tend to zero as t → ∞. Therefore, kx (t)
and kr (t) will continue to drift forever eventually when kx (t) reaches a limiting value at kx = −17.0306
whereupon the closed-loop system becomes unstable.
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9. Consider a first-order SISO plant

ẋ = ax+ bλ [u (t− td) + θ∗φ (x)] + w

where a = −1 and b = 1 are known, λ = −1 and θ∗ = 0.5 are unknown, but the sign of λ is known,
φ (x) = x2, td = 0.1 sec is a known time delay, and w (t) = 0.02 + 0.01 cos 2t
The reference model is given by

ẋm = amxm + bmr

where am = −2, bm = 2, and r (t) = sin t.

a. Design an adaptive controller using the standard tracking-error based optimal control modification
method. Express the adaptive laws.

b. Implement the adaptive controller in Simulink using the following information: x (0) = kx (0) = kr (0) =
θ (0) = 0 and γx = γr = γθ = 20 with a time step ∆t = 0.001 sec for the standard MRAC with ν = 0
and for the optimal control modification with ν = 0.2. Plot the time histories of x (t) and xm (t) on the
same plot, u (t), kx (t), kr (t), and θ (t) for t ∈ [0, 60] sec.

Solution:

a. The adaptive controller is
u = kx (t)x+ kr (t) r − θ (t)φ (x)

where the optimal control modification adaptive laws are given by

k̇x = γxx
(
esgnλ+ νxkxba

−1
m

)
b

k̇r = γrr
(
esgnλ+ νrkrba

−1
m

)
b

θ̇ = −γθφ (x)
[
esgnλ− νφ (x) θba−1

m

]
b

b. The Simulink model is as shown.
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The response of the closed-loop system with MRAC is as shown. The closed-loop plant begins to
diverge. Note that reducing the adaptation rate will improve performance.
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The response of the closed-loop system with the optimal control modification is as shown. The closed-
loop plant is bounded, but the tracking is not as good. This is expected since the adaptive law achieves
robustness at the expense of tracking. The optimal control modification is more robust than the stan-
dard MRAC.
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10. For Exercise 9.9, suppose λ is completely unknown.

a. Design an adaptive controller using the bi-objective optimal control modification method. Express the
adaptive laws.

b. Implement the adaptive controller in Simulink using γλ = γw = 20, η = 0, and the rest of the
information in Exercise 9.9 along with the initial conditions λ̂ (t) = 1 and ŵ (t) = 0. Plot the time

histories of x (t) and xm (t) on the same plot, u (t), kx (t), kr (t), θ (t), λ̂ (t) and ŵ (t) and w on the
same plot for t ∈ [0, 60] sec.

c. Comment on the results of Exercise 9.9 and Exercise 9.10. Which method seems to work better?

Solution:

a. The bi-objective optimal control modification adaptive laws are

k̇x = γxx
(
e+ νuλ̂ba−1

m

)
bλ̂

k̇r = γrr
(
e+ νuλ̂ba−1

m

)
bλ̂

θ̇ = −γθx2
(
e+ ep + νuλ̂ba−1

m − η
{

[u+ 2θφ (x)] λ̂b+ ŵ
}
a−1
m

)
bλ̂

˙̂
λ = −γλ [u+ θφ (x)]

(
ep − η

{
[u+ 2θφ (x)] λ̂b+ ŵ

}
a−1
m

)
b

˙̂w = −γw
(
ep − η

{
[u+ 2θφ (x)] λ̂b+ ŵ

}
a−1
m

)
where the predictor error ep (t) = x̂ (t)− x (t) is computed from the predictor model

˙̂x = amx̂+ (a− am)x+ bΛ̂ [u (t− td) + θφ (x)] + ŵ

b. The Simulink model is as shown.
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The response of the closed-loop system with bi-objective optimal control modification is as shown.
There are large initial transients as expected due to the control reversal. After 30 sec, the closed-loop
plant begins to follow the reference model. Note that λ̂ (t) converges to the true value. The other
adaptive parameters kx (t), kr (t), and θ (t) also tend to their true values of 1, -2, and 0.5, respectively.
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The response of the closed-loop system with bi-objective MRAC is as shown. The closed-loop plant
begins to diverge.
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c. In general, the bi-objective optimal control modification works better than all the other methods in
Exercise 9.9 and Exercise 9.10 in the presence of input uncertainty. The parameter convergence of the
bi-objective optimal control modification is much better than all the rest.



Chapter 10 Exercises

1. Consider the equation of motion of an inverted pendulum

1

3
mL2θ̈ − 1

2
mgL sin θ + cθ̇ = u (t− td)

a. Expand sin θ using the Taylor series expansion about θ (t) = 0 for the first two terms. Then, express
the equation of motion in the form of

ẋ = Ax+B
[
u (t− td) +Θ∗>Φ (x)

]
where x1 (t) = θ (t), x2 (t) = θ̇ (t), x (t) =

[
x1 (t) x2 (t)

]>
, Φ (x) is comprised of the function in the

nonlinear term of the Taylor series expansion of sin θ and the function in the damping term, and Θ∗ is
a vector of parameters associated with Φ (x) which are assumed to be unknown.

b. Given m = 0.1775 slug, L = 2 ft, c = 0.2 slug-ft2/sec, td = 0.05 sec, and θ (0) = θ̇ (0) = 0. Using the
equation of motion in part (a), design an adaptive controller using the optimal control modification to
enable the closed-loop plant to track a reference model specified by

θ̈m + 2ζmωmθ̇m + ω2
mθm = ω2

mr

where ζm = 0.5, ωm = 2, and r = π
12 . Calculate Kx and kr.

c. Implement the adaptive controller in Simulink using the nonlinear plant with Θ> (0) =
[
θ∗1 0

]
and a

time step ∆t = 0.001 sec for the standard MRAC with Γ = 100 and the optimal control modification
with Γ = 100 and ν = 0.5. Plot the time histories of x (t) and xm (t) on the same plot, u (t), and Θ (t)
for t ∈ [0, 10] sec. Compare the closed-loop response with the optimal control modification to that in
Example 10.1. Does the linear nominal controller design in this problem appear to work as well as the
nonlinear nominal controller design in Example 10.1?

Solution:

a. The Taylor series expansion of sin θ about θ = 0 for the first two terms is

sin θ = θ − θ3

3!

Then, the equation of motion is then approximated as

θ̈ =
3g

2L

(
θ − 1

3!
θ3

)
+

3

mL2
u (t− td)−

3c

mL2
θ̇

or

85
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[
ẋ1

ẋ2

]
︸ ︷︷ ︸
ẋ

=

[
0 1
3g
2L 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸
x

+

[
0
3

mL2

]
︸ ︷︷ ︸

B

u (t− td) +
[
−mgL12 −c

]︸ ︷︷ ︸
Θ∗>

[
x3

1

x2

]
︸ ︷︷ ︸
Φ(x)


Note that the actual plant is[

ẋ1

ẋ2

]
=

[
x2

3g
2L sinx1

]
+

[
0
3

mL2

]
[u (t− td)− cx2]

b. The reference model is expressed as
ẋm = Amxm +Bmr

where

Am =

[
0 0
−ω2

m −2ζmωm

]
, Bm =

[
0
ω2
m

]
The adaptive controller is designed using the approximated equation of motion as

u = Kxx+ krr −Θ> (t)Φ (x)

where
Θ̇ = −ΓΦ (x)

[
e>P − νΦ> (x)ΘB>PA−1

m

]
B

A+BKx = Am

Bkr = Bm

which yield

Kx =
(
B>B

)−1
B> (Am −A) =

[
0 mL2

3

] [ 0 0

−ω2
m −

3g
2L −2ζmωm

]
= −mL

2

3

[
ω2
m + 3g

2L 2ζmωm
]

=
[
−6.6576 −0.4733

]
kr =

(
B>B

)−1
B>Bm =

[
0 mL2

3

] [ 0
ω2
m

]
=
mL2ω2

m

3
= 0.9467

c. The Simulink model is as shown.
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The response of the closed-loop system with MRAC is as shown. The closed-plant tracks the reference
model quite well.
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The response of the closed-loop system with the optimal control modification is as shown. The tracking
is slightly better than that with MRAC.
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The linear nominal controller with adaptive control works as well as the nonlinear nominal controller
in Example 10.1.

2. Implement a longitudinal dynamic model of an aircraft.

ẋ = Ax+B
[
u (t− td) +Θ∗>x

]
where x (t) =

[
α (t) θ (t) q (t)

]>
, u (t) = δe (t), and Θ∗ =

[
θ∗α 0 θ∗q

]>
, with the following information:

V̄ = 795.6251 ft/sec, γ̄ = 0, Zα = −642.7855 ft/sec2, Zδe = −55.3518 ft/sec2, Mα = −5.4898 sec−2,
Mδe = −4.1983 sec−2, Mq = −0.6649 sec−1, Mα̇ = −0.2084 sec−1, θ∗α = 0.5, θ∗q = −0.5, and td = 0.1 sec.

a. Design an adaptive pitch attitude controller using the optimal control modification to enable the closed-
loop plant to follow a second-order reference model of the pitch attitude specified by ζm = 1√

2
and

ωm = 2 rad/sec. Express the adaptive controller with the feedback gain values and the reference model.
b. Implement the adaptive controller in Simulink using the following information: x (0) = 0 and Θ (0) = 0

with a time step ∆t = 0.01 sec for: 1) the nominal controller, 2) the standard MRAC with Γ = 500,
and 3) the optimal control modification with Γ = 500 and ν = 0.5. The reference command signal r (t)
is a pitch attitude doublet specified in the following plot.
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For each controller, plot the time histories of each of the elements of x (t) and xm (t) on the same plot,
and u (t) for t ∈ [0, 30] sec. Plot in units of deg for α (t), θ (t), and δe (t), and deg/sec for q (t). Comment
on the simulation results.

Solution:

a. The longitudinal dynamic model of the aircraft is evaluated numerically as

˙˙ = Ax+B
[
u (t− td) +Θ∗>x

]
x

A =

−0.8079 0 1
0 0 1

−5.3214 0 −0.8733

 , B =

−0.0696
0

−4.1838

 , Θ∗ =

 0.5
0
−0.5


where x (t) =

[
α (t) θ (t) q (t)

]>
, u (t) = δe (t), and Θ∗ =

[
θα 0 θq

]>
.

The adaptive pitch attitude controller is designed as

u = Kxx+ krr −Θ> (t)x

where
Kx =

[
kα kθ kq

]
=
[
−1.2719 0.9561 0.4673

]
kr = −kθ = −0.9561

The optimal control modification adaptive law for Θ (t) is

Θ̇ = −ΓΦ (x)
[
e>P − νΦ> (x)ΘB>PA−1

m

]
B

Then, the reference model is established as

ẋm = Amxm +Bmr

where

Am = A+BKx =

−0.7194 −0.0665 0.9675
0 0 1
0 −4.0000 −2.8284


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Bm = Bkr =

0.0665
0

4.0000


b. The Simulink model is as shown.

The response of the closed-loop system with the nominal controller is as shown.
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The response of the closed-loop system with MRAC is as shown. The tracking is somewhat improved
over that with the nominal controller, but there are some oscillations in the pitch rate.
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The response of the closed-loop system with the optimal control modification is as shown. The tracking
is better than that with MRAC.
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The control signals produced by the nominal controller, MRAC, and optimal control modification are
as shown. The standard MRAC produces the largest elevator control surface deflection, whereas the
amplitude of the control signal due to the optimal control modification is nominally the same as that
due to the nominal controller. The large amplitude of the control signal due to MRAC can lead to
robustness issues.
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Suggested Exam Questions and Solutions

1. For the following systems, determine the equilibrium points. Use the Lyapunov’s direct method to deter-
mine the type of Lyapunov stability for each of the equilibrium points. Determine all the invariant sets
and the values of the Lyapunov function on the sets. If an equilibrium point is stable, conclude if it is
asymptotically stable, and if so, show whether or not it is also exponentially stable.

a. [
ẋ1

ẋ2

]
=

[
(x2 − x1)

(
x2

1 + x2
2 − 1

)
− (x1 + x2)

(
x2

1 + x2
2 − 1

) ]
b. [

ẋ1

ẋ2

]
=

[
x2

2 − x2

−x1 − x2 + 1

]
c. [

ẋ1

ẋ2

]
=

[
x2

−x1 − (1 + sinx1)x2

]
Solution:

a. [
ẋ1

ẋ2

]
=

[
(x2 − x1)

(
x2

1 + x2
2 − 1

)
− (x1 + x2)

(
x2

1 + x2
2 − 1

) ]
The only equilibrium point is the origin at x∗1 = 0 and x∗2 = 0.
Choose a Lyapunov candidate function

V (x) = x2
1 + x2

2

Then,

V̇ (x) = 2x1 (x2 − x1)
(
x2

1 + x2
2 − 1

)
− 2x2 (x1 + x2)

(
x2

1 + x2
2 − 1

)
= −2

(
x2

1 + x2
2

) (
x2

1 + x2
2 − 1

)
V̇ (x) < 0 for all x (t) ∈ S where

S =
{
x ∈ R2 : x2

1 + x2
2 − 1 > 0

}
which does not include the origin. Thus, the equilibrium point is unstable in the sense of Lyapunov.
Let R1 be

R1 =
{
x ∈ R2 : V̇ (x) = 0⇒ g1 (x) = x2

1 + x2
2 = V (x) = 0

}
Then,

ġ1 (x) = V̇ (x) = 0

if and only if x1 (t) = 0 and x2 (t) = 0. Thus, R1 is also an invariant set which only contains the origin.
Then, all trajectories in R1 must remain in R1 at all times. Therefore,
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V (x (t) ∈ R1) = 0

Let R2 be

R2 =
{
x ∈ R2 : V̇ (x) = 0⇒ g2 (x) = x2

1 + x2
2 − 1 = V (x)− 1 = 0

}
Then,

ġ2 (x) = V̇ (x) = 0

Thus, R2 is also an invariant set and

lim
t→∞

V (x (t) ∈ R2) = 1

b. [
ẋ1

ẋ2

]
=

[
x2

2 − x2

−x1 − x2 + 1

]
The equilibrium point is found by

x2
2 − x2 = 0⇒ x∗2 = 0 or x∗2 = 1

x1 + x2 − 1 = 0⇒ x∗1 = 1 or x∗1 = 0

So, there are two equilibrium points: one at x∗1 = 1 and x∗2 = 0, and the other at x∗1 = 0 and x∗2 = 1.
i. Stability of equilibrium point (1, 0) - First, the system must be transformed so that the equilibrium

is at the origin. Let y1 (t) = x1 (t)− 1 and y2 (t) = x2 (t). Then,[
ẏ1

ẏ2

]
=

[
y2

2 − y2

−y1 − 1− y2 + 1

]
=

[
y2

2 − y2

−y1 − y2

]
Choose a Lyapunov candidate function

V (y) = y2
1 + y2

2

Then,

V̇ (y) = 2y1

(
y2

2 − y2

)
+ 2y2 (−y1 − y2) = 2y1y

2
2 − 4y1y2 − 2y2

2 = 2y2 (y1y2 − 2y1 − y2)

V̇ (y) ≤ 0 for all y (t) ∈ S where

S =
{
y (t) ∈ R2 : V̇ (y) ≤ 0⇒ y1 (y2 − 2) ≥ y2 and y2 ≤ 0, or y1 (y2 − 2) ≤ y2 and y2 ≥ 0

}
Since the boundary of S goes through the origin, therefore the equilibrium is a saddle point and is
unstable.
Let R1 be

R1 =
{
y ∈ R2 : V̇ (y) = 0⇒ g1 (x) = y2 = 0

}
Then,

ġ1 (y) = ẏ2 = −y1 − y2 = 0

if and only if y1 (t) = 0. Thus, M1 ⊂ R1 =
{
y (t) ∈ R2 : y1 (t) = 0, y2 (t) = 0

}
is an invariant set

which contains only the origin, and
V (y (t) ∈M1) = 0

Let R2 be

R2 =
{
y (t) ∈ R2 : V̇ (y) = 0⇒ g2 (y) = y1y2 − 2y1 − y2 = 0

}
Then,

ġ2 (y) = (y2 − 2) ẏ1 + (y1 − 1) ẏ2 = (y2 − 2)
(
y2

2 − y2

)
− (y1 − 1) (y1 + y2) 6= 0
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So R2 is not an invariant set.
ii. Stability of equilibrium point (0, 1)- Let y1 (t) = x1 (t) and y2 (t) = x2 (t)− 1. Then,[

ẏ1

ẏ2

]
=

[
y2

2 + y2

−y1 − y2

]
Choose a Lyapunov candidate function

V (y) = y2
1 + y2

2

Then,
V̇ (y) = 2y1

(
y2

2 + y2

)
+ 2y2 (−y1 − y2) = 2y1y

2
2 − 2y2

2 = −2y2
2 (1− y1)

V̇ (y) ≤ 0 for all y (t) ∈ S where

S =
{
y (t) ∈ R2 : V̇ (y) ≤ 0⇒ y1 ≤ 1

}
Since S includes the origin, therefore the equilibrium is stable in the sense of Lyapunov. S is also
the region of attraction.
Let R1 be

R1 =
{
y (t) ∈ R2 : V̇ (y) = 0⇒ g1 (y) = y2 = 0

}
Then,

ġ1 (y) = ẏ2 = −y1 − y2 = 0

if and only if y1 (t) = 0. Thus, M1 ⊂ R1 =
{
y (t) ∈ R2 : y1 (t) = 0, y2 (t) = 0

}
is an invariant set

which contains only the origin, and
V (y (t) ∈M1) = 0

According to the corollary of LaSalle’s invariant theorem, the equilibrium point is asymptotically
stable.
Let R2 be

R2 =
{
y (t) ∈ R2 : V̇ (y) = 0⇒ g2 (y) = 1− y1 = 0

}
Then,

ġ2 (y) = −ẏ1 = −y2
2 − y2 = 0

if and only if y2 (t) = 0 or y2 (t) = −1. Since M1 already includes the origin, therefore M2 ⊂ R2

is another invariant set that contains only the point y1 (t) = 1 and y2 (t) = −1, which in fact is the
first equilibrium point. Then,

V (y (t) ∈M2) = 12 + (−1)
2

= 2

The equilibrium is not exponentially stable because

V̇ (y) = −2y2
2 (1− y1) � −βV (y) , β > 0

c. [
ẋ1

ẋ2

]
=

[
x2

−x1 − (1 + sinx1)x2

]
The origin is the only equilibrium point. Choose a Lyapunov candidate function

V (x) = x2
1 + x2

2

Then,
V̇ (x) = 2x1x2 + 2x2 [−x1 − (1 + sinx1)x2] = −2x2

2 (1 + sinx1) ≤ 0

The equilibrium is stable in the sense of Lyapunov.
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Let R be
R1 =

{
x (t) ∈ R2 : V̇ (x) = 0⇒ g1 (x) = x2 = 0

}
Then,

ġ1 (x) = ẋ2 = −x1 − (1 + sinx1)x2 = 0

if and only if x1 = 0. Thus, M ⊂ R =
{
x (t) ∈ R2 : x1 = 0, x2 = 0

}
is the only invariant set which

contains only the origin, and
V (x ∈M) = 0

From the corollary of the LaSalle’s invariant theorem, the origin is asymptotically stable.
At first, it is tempted to conclude that the equilibrium is not exponentially stable because

V̇ (x) = −2x2
2 (1 + sinx1) ≤ −2x2

2 � −βV (y) , β > 0

However, this nonlinear system needs to be examined further. Notice that the nonlinear system is
bounded from below and above by stable linear systems in all cases where[

x2

−x1 − 2x2

]
≤
[
ẋ1

ẋ2

]
=

[
x2

−x1 − (1 + sinx1)x2

]
≤
[
x2

−x1

]
,∀x2 > 0

[
x2

−x1

]
≤
[
ẋ1

ẋ2

]
=

[
x2

−x1 − (1 + sinx1)x2

]
≤
[

x2

−x1 − 2x2

]
,∀x2 < 0

So, the stability of the original nonlinear system can be determined by the stability of the bounded
linear system. For a linear system

ẋ = Ax

where A is Hurwitz, choose a Lyapunov candidate function

V (x) = x>Px > 0

where P = P> > 0 solves the Lyapunov equation

PA+A>P = −Q

where Q = Q> > 0.
Then,

V̇ (x) = ẋ>Px+ x>Pẋ = x>
(
PA+A>P

)
x = −x>Qx < 0

Now, for any positive definite quadratic function, the following relationships apply

λmin (P ) ‖x‖2 ≤ x>Px ≤ λmax (P ) ‖x‖2

−λmax (P ) ‖x‖2 ≤ −x>Px ≤ −λmin (P ) ‖x‖2

−λmax (Q) ‖x‖2 ≤ −x>Qx ≤ −λmin (Q) ‖x‖2

Therefore,

V̇ (x) ≤ −λmin (Q) ‖x‖2 ≤ −λmin (Q)
λmax (P ) ‖x‖2

λmax (P )
≤ −λmin (Q)

λmax (P )
x>Px = −λmin (Q)

λmax (P )
V (x)

The solution of V (x) as an explicit function of t is

V (t) = V (t0) exp

[
−λmin (Q)

λmax (P )
t

]
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Therefore, the equilibrium point of a linear system with A Hurwitz is exponentially stable with a rate

of convergence of λmin(Q)
λmax(P ) . As a result, the equilibrium point of the original nonlinear system is also

exponentially stable.

2. Linearize the systems in problem 2 and determine the types of equilibrium points. Plot phase portraits.

Solution:

a. [
ẋ1

ẋ2

]
=

[
(x2 − x1)

(
x2

1 + x2
2 − 1

)
− (x1 + x2)

(
x2

1 + x2
2 − 1

) ]
The Jacobian matrix is

J (x) =

[
−
(
x2

1 + x2
2 − 1

)
+ 2x1 (x2 − x1)

(
x2

1 + x2
2 − 1

)
+ 2x2 (x2 − x1)

−
(
x2

1 + x2
2 − 1

)
+ 2x1 (x1 + x2) −

(
x2

1 + x2
2 − 1

)
+ 2x2 (x1 + x2)

]

J (x∗1 = 0, x∗2 = 0) =

[
1 −1
1 1

]
λ1,2 = 1± i

The equilibrium is an unstable focus.
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b. [
ẋ1

ẋ2

]
=

[
x2

2 − x2

−x1 − x2 + 1

]
The Jacobian matrix is

J (x) =

[
0 2x2 − 1
−1 −1

]
i. Stability of equilibrium point (1, 0)

J (x∗1 = 1, x∗2 = 0) =

[
0 −1
−1 −1

]

λ1,2 =
−1±

√
5

2
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The equilibrium point is a saddle point.
ii. Stability of equilibrium point (0, 1)

J (x∗1 = 0, x∗2 = 1) =

[
0 1
−1 −1

]

λ1,2 =
−1± i

√
3

2

The equilibrium is a stable focus.
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c. [
ẋ1

ẋ2

]
=

[
x2

−x1 − (1 + sinx1)x2

]
The Jacobian matrix is

J (x) =

[
0 1

−1− cosx1x2 −1− sinx1

]
J (x∗1 = 0, x∗2 = 0) =

[
0 1
−1 −1

]
λ1,2 =

−1± i
√

3

2

The equilibrium is a stable focus.
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3. Given the following system[
ẋ1

ẋ2

]
=

[
−2 + sin2 x1 1− sinx1 cosx2

−1 + sinx1 cosx2 −2− cos2 x2

] [
x1

x2

]
Determine the stability of this system about the origin using the Lyapunov candidate function

V (x) =
1

2
x>x

If asymptotically stable, determine if the origin is exponentially stable and find the rate of convergence

of ‖x‖ where x (t) =
[
x1 (t) x2 (t)

]>
.

Solution:
Choose a Lyapunov candidate function

V (x) =
1

2
x>x =

1

2

(
x2

1 + x2
2

)
Then,

V̇ (x) = x>ẋ = −
(
2− sin2 x1

)
x2

1 + (1− sinx1 cosx2)x1x2 − (1− sinx1 cosx2)x1x2 −
(
2 + cos2 x2

)
x2

2

= −
(
2− sin2 x1

)
x2

1 −
(
2 + cos2 x2

)
x2

2 ≤ −x2
1 − 2x2

2 ≤ −x2
1 − x2

2 = −2V (x) < 0

Thus, the origin is asymptotically stable. It is also exponentially stable.

V (t) ≤ V (0) e−2t ⇔ 1

2
x>x =

1

2
‖x‖2 ≤ 1

2
‖x (0)‖2 e−2t

So the rate of convergence is 1.

4. Given a linear system
ẋ = Ax+Bh (t)

where x (t) =
[
x1 (t) x2 (t)

]> ∈ R2 and
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A =

[
−1 2
−4 −2

]
, B =

[
1
1

]
, h (t) =

(
1 + e−t

)
(sin t+ cos t)

a. Compute P that solves the Lyapunov equation

PA+A>P = −I

and also compute the eigenvalues of P to verify that P is positive definite.
b. Use the following Lyapunov candidate function

V (x) = x>Px

to compute V̇ (x). Establish an upper bound on V̇ (x) in terms of ‖x‖, and then determine a lower
bound on ‖x‖ that satisfies V̇ (x) ≤ 0 using the L∞ norm and the Cauchy-Schwartz inequality

‖CD‖ ≤ ‖C‖ ‖D‖

c. Find an analytical solution of an upper bound of the Lyapunov function V (t) as an explicit function of
t from V̇ (x) in part (b), given V (0) = 2, by utilizing the following relationship for a positive definite
function

λmin (P ) ‖x‖2 ≤ V (x) = x>Px ≤ λmax (P ) ‖x‖2

and the following variable transformation

W (t) =
√
V (t)

d. Find the ultimate bound of ‖x‖ by finding the limit of V (t) as t → ∞. If an ultimate bound exists,
then the solution of x (t) is uniformly ultimately bounded.

Solution:

a.
PA+A>P = −I

The solution yields

P =

[
1
2 0
0 1

4

]
λ1,2 (P ) =

1

2
,

1

4
> 0

So, P > 0.
b. Choose a Lyapunov candidate function

V (x) = x>Px =
1

2
x2

1 +
1

4
x2

2

Then,

V̇ (x) = x>
(
PA+A>P

)
x+ x>PBh (t) = −x>x+ 2x>PBh (t) ≤ −‖x‖2 + 2 ‖x‖ ‖PB‖ ‖h (t)‖

But

‖PB‖ =

∥∥∥∥[ 1
2 0
0 1

4

] [
1
1

]∥∥∥∥ =

∥∥∥∥[ 1
2
1
4

]∥∥∥∥ =
1

2

‖h‖ =
∥∥(1 + e−t

)
(sin t+ cos t)

∥∥ = 2
√

2

So,

V̇ (x) ≤ −‖x‖2 + 2
√

2 ‖x‖ = −‖x‖
(
‖x‖ − 2

√
2
)
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V̇ (x) ≤ 0 if

‖x‖ ≥ 2
√

2

c. Since

λmin (P ) ‖x‖2 ≤ V (x) = x>Px ≤ λmax (P ) ‖x‖2 ⇔ 1

4
‖x‖2 ≤ V (x) ≤ 1

2
‖x‖2

Then,
‖x‖2 ≤ 4V (x)⇒ ‖x‖ ≤ 2

√
V (x)

Also,

−λmax (P ) ‖x‖2 ≤ −V (x) ≤ −λmin (P ) ‖x‖2 ⇔ −1

2
‖x‖2 ≤ −V (x) ≤ −1

4
‖x‖2

Then,
−‖x‖2 ≤ −2V (x)

Then, V̇ (x) can be expressed as

V̇ (x) ≤ −‖x‖2 + 2
√

2 ‖x‖ ≤ −2V (x) + 4
√

2V (x)

Let
W (x) =

√
V (x) > 0

Then,

Ẇ (x) =
V̇ (x)

2
√
V (x)

=
V̇ (x)

2W (x)

Upon substitution, one gets

2W (x) Ẇ (x) ≤ −2W 2 (x) + 4
√

2W (x)

Dividing both sides by 2W (x) > 0 yields

Ẇ (x) ≤ −W (x) + 2
√

2

The solution of W (x) is

W (t) ≤W (0) e−t + 2
√

2

Substituting back in terms of V (x) gives√
V (t) ≤

√
V (0)e−t + 2

√
2

Given V (0) = 2, then √
V (t) ≤

√
2
(
e−t + 2

)
or

V (t) ≤ 2
(
e−t + 2

)2
d. The limit of V (t) is

lim
t→∞

V (t) ≤ 8

So the largest of V (t) is equal to
Vmax = 8

But

Vmax = λmax (P ) max
x
‖x‖2 =

1

2
max
x
‖x‖2

Therefore,
1

2
max
x
‖x‖2 = 8
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or
max
x
‖x‖ =

√
16 = 4

Thus, the ultimate bound of ‖x‖ is 4. Then, ‖x‖ is upper- and lower-bounded by

2
√

2 ≤ ‖x‖ ≤ 4

5. Consider a first-order nonlinear SISO system with a matched uncertainty

ẋ = ax+ b
(
u+ θ∗x2

)
where a is unknown but b is known, and θ∗ is unknown.
A reference model is specified by

ẋm = amxm + bmr

where am < 0 and bm are known, and r (t) is a bounded command signal.

a. Design a direct adaptive controller that enables the plant output x (t) to track the reference model
signal xm (t). Show by Lyapunov stability analysis that the tracking error is asymptotically stable; i.e.,
e (t)→ 0 as t→∞.

b. Implement the adaptive controller in Simulink, given b = 2, am = −1, bm = 1, and r (t) = sin t. For
adaptation rates, use γx = 1 and γ = 1. For simulation purposes, assume a = 1 and θ∗ = 0.2 for the
unknown parameters. Plot e (t), x (t), xm (t), u (t), and θ (t) for t ∈ [0, 50].

c. Repeat part (b) for γx = 10 and γ = 10. Plot the same sets of data as in part (b). Comment on the
simulation results for parts (b) and (c) regarding the tracking of the reference model, the quality of
the signal in terms of the relative frequency content, and the convergence of kx (t) and θ (t) as the
adaptation rates increase.

d. Repeat part (b) for r (t) = 1 (t) where 1 (t) is the unit-step function. Plot the same sets of data as in
part (b). Comment on the convergence of kx (t) and θ (t) to the ideal values k∗x and θ∗.

Solution:

a. Define the ideal gain k∗x that satisfies one of the model matching conditions

a+ bk∗x = am

and the known gain kr that satisfies the other model matching condition

bkr = bm

since b is known.
The adaptive controller is given by

u = kx (t)x+ krr − θ (t)x2

Let k̃x (t) = kx (t) − k∗x and θ̃ (t) = θ (t) − θ∗ be the estimation errors. Then, the closed-loop plant
model is

ẋ =

ax+ bk∗x︸ ︷︷ ︸
am

+bk̃

x+ bkr︸︷︷︸
bm

r − bθ̃x2

The closed-loop tracking error equation is obtained as

ė = ẋm − ẋ = ame− bk̃xx+ bθ̃x2

Choose a Lyapunov candidate function
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V
(
e, k̃x, θ̃

)
= e2 +

k̃2
x

γx
+
θ̃2

γ

Then,

V̇
(
e, k̃x, θ̃

)
= 2e

(
ame− bk̃xx+ bθ̃x2

)
+

2k̃x
˙̃
kx

γx
+

2θ̃
˙̃
θ

γ
= 2ame

2 − 2k̃x

(
xeb−

˙̃
kx
γx

)
+ 2θ̃

(
x2eb+

˙̃
θ

γ

)

The adaptive laws are then obtained as
k̇x = γxxeb

θ̇ = −γx2
θeb

Then,

V̇
(
e, k̃x, θ̃

)
= 2ame

2 ≤ 0

Since V̇
(
e, k̃x, θ̃

)
is negative semi-definite, e (t) ∈ L∞, kx (t) ∈ L∞, and θ (t) ∈ L∞, i.e., they are

bounded. Also,

V (t→∞)− V (t0) =

ˆ ∞
t0

V̇
(
e, k̃x, θ̃

)
dt = 2am

ˆ ∞
t0

e2 (t) dt = 2am ‖e‖22

So, V
(
e, k̃x, θ̃

)
has a finite limit as t→∞. Since ‖e‖2 exists, therefore e (t) ∈ L2 ∩ L∞.

Differentiating V̇
(
e, k̃x, θ̃

)
yields

V̈
(
e, k̃x, θ̃

)
= 4ame

(
ame− bk̃xx+ bθ̃x2

)
Since e (t) ∈ L2 ∩L∞, kx (t) ∈ L∞, and θ (t) ∈ L∞ by the virtue that V̇

(
e, k̃x, θ̃

)
≤ 0, and x (t) ∈ L∞

since e (t) ∈ L2 ∩ L∞ and xm (t) ∈ L∞ because r (t) ∈ L∞, therefore V̈
(
e, k̃x, θ̃

)
∈ L∞. Thus,

V̇
(
e, k̃x, θ̃

)
is uniformly continuous. It follows from the Barbalat’s lemma that V̇

(
e, k̃x, θ̃

)
→ 0 which

implies e (t)→ 0 as t→∞. The tracking error is asymptotically stable.
b. The Simulink model of the adaptive controller is as shown.
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The ideal, unknown feedback gain is k∗x = −1.
The response of the adaptive controller for γx = 1 and γθ = 1 is as shown.
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c. The response of the adaptive controller for γx = 10 and γθ = 10 is as shown.
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As the adaptation rates γx and γθ increase, the tracking error reduces more rapidly and the plant model
tends to the reference model at a faster rate. However, there is an increase in the frequency content
as the adaptation rates increase. The parameters kx (t) and θ (t) also converge more rapidly to their
corresponding ideal values as the adaptation rates increase.

d. The response of the adaptive controller for γx = 10 and γθ = 10 is as shown.
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The parameters kx (t) and θ (t) do not converge to their corresponding ideal values in this case. This is
due to the input signal r (t) not possessing a quality known as “persistent excitation”, which is required
for parameter convergence. A persistently exciting signal possesses a sufficient frequency content in
order to excite the plant, so that there is a sufficient response of the plant output for the adaptive law
to correctly estimate the plant parameters.

6. Given a first-order nonlinear system
ẋ = ax+Bu+ cx2

where x (t) ∈ R, u (t) ∈ R2, a is an unknown constant, B =
[

1 2
]

is known, and c is an unknown constant.
The reference model is specified as
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ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t.
Express the system in the form of a matched uncertainty

ẋ = ax+B
[
u+Θ∗>Φ (x)

]
Determine K∗x, K∗r , and Θ∗. Write down the adaptive laws for Kx (t) and Θ (t). Implement the controller
in Simulink. Use γx = γΘ = 1. Assume all initial conditions to be zero and a = 1, c = 0.2 for simulation
purpose. Plot e (t), x (t) versus xm (t), Kx (t), and Θ (t) for t ∈ [0, 40].

Solution:
The plant can be written as

ẋ = ax+Bu+BB>
(
BB>

)−1
cx2 = ax+B

[
u+Θ∗>x2

]
where

Θ∗> = B>
(
BB>

)−1
c =

[
0.04
0.08

]
The ideal control gains can be computed from the model matching conditions as

a+BK∗x = am ⇒ K∗x = B>
(
BB>

)−1
(am − a) =

[
−0.4
−0.8

]

BKr = bm ⇒ K∗r = B>
(
BB>

)−1
bm =

[
0.2
0.4

]
The adaptive controller is given by

u = Kx (t)x+Krr −Θ> (t)Φ (x)

The adaptive laws are
K̇>x = γxxeB

Θ̇ = −γΘx2eB

The Simulink model and simulation results are as shown.
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7. The symmetric sigmoidal function

σ (x) =
1− e−x

1 + e−x

can be used to model a control actuator saturation, which frequently exists in real systems.
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Saturation occurs when a control actuator ceases to be effective. When there are more inputs than com-
mands, a control allocation strategy should be developed to allocate redundant control effectors in an
optimal manner so as to produce an output that tracks a command. Define y (u) as the output of a
control allocator as

y = V >σ
(
W>u

)
where y (u) ∈ Rn, V ∈ Rm × Rn, W ∈ Rp × Rm, and u ∈ Rp, p ≥ n.
V can be used to specify a saturation limit, while V >W> plays the role of a nonlinear B (u) matrix.
Develop an optimal control allocation strategy by computing the gradient of the following cost function
with respect to u, i.e, ∇Ju

J (u) =
1

2
ε>ε

where ε = y − r and r ∈ Rn is a command vector for which an optimal control vector u is to be found to
minimize the cost function.
Given r = 1 and

V =

[
0.75
0.5

]
, W =

[
1.2 0.8
0.5 1.5

]
Write a Matlab code to compute u using the steepest descent method with an adaptation rate ε = 0.1
and a number of iteration of n = 1000. Indicate the final value of u and plot u.

Solution:
The cost function is expressed as

J (u) =
1

2
ε>ε =

1

2

[
V >σ

(
W>u

)
− r
]>
ε

Evaluating the gradient of the cost function gives

∇Ju =
∂J

∂u
= Wσ

′ (
W>u

)
V ε

where

σ (x) =
1− e−x

1 + e−x

σ
′
(x) =

2e−x

(1 + e−x)
2
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The steepest descent method is expressed as

ui+1 = ui − ε∇Jui = ui − εWσ
′ (
W>ui

)
V ε

The solution is as shown and the final value of u is u =
[

1.2521 1.0228
]>

.
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8. Adaptive control can be used for disturbance rejection. Disturbances are usually time signals that may
have multiple frequency contents. Unlike unstructured uncertainty in the form of an unknown function
f (x), an unknown function of time f (t) should be approximated by a bounded function. This prevents
adaptive signals from blowing up in time. Both the sigmoidal and radial basis functions are bounded
functions, but a polynomial function is not. Consider a first-order system with an unknown disturbance

ẋ = ax+ b [u+ f (t)]

where a and f (t) are unknown, but b = 2. For simulation purpose, a = 1 and f (t) = 0.1 sin 2.4t −
0.3 cos 5.1t+ 0.2 sin 0.7t.
The reference model is given by

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = sin t.
Implement in Simulink a direct adaptive control using the least-squares gradient method to approximate
f (t) by a sigmoidal neural network with Θ (t) ∈ R5, W (t) ∈ R2 × R4 using the activation function
σ (x) = 1

1+e−x . Write down the neural net adaptive laws for kx (t), Θ (t), and W (t). All initial neural
net weights are randomized between 0 and 1. The initial condition for kx (t) is zero. Use Γx = 10I. Plot
e (t), ε (t), x (t) versus xm (t) with disturbance rejection, x (t) versus xm (t) without disturbance rejection,
kx (t), Θ (t), and W (t) for t ∈ [0, 40].

Solution:
The adaptive controller is given by

u = kx (t)x+ krr −Θ> (t)Φ
(
W>t̄

)
The adaptive laws are

k̇x =
γxxε

b
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Θ̇ = −
ΓΘΦ

(
W>t̄

)
ε

b

Ẇ = −
ΓW t̄εV

>σ
′ (
W>t̄

)
b

where
t̄ =

[
1 t
]>

ε = âx+ bū− ẋ

â = am − bkx
ū = kxx+ krr

kr =
bm
b

The Simulink model and simulation results are as shown.
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9. Given the following plant
ẋ = −2x− z + u+ w

ż = −3z + 4u

y = x

where x (t) is the plant output, z (t) is an internal state, and w (t) = 1 is a constant disturbance

a. If a linear controller u (t) = kxx (t) is used, where kx is constant, express the transfer function from
w (t) to x (t). Find all values of kx for which the closed-loop plant is stable.

b. Find the equilibrium state x̄ as a function of kx from part (a). Suppose an adaptive regulator controller
is designed with the σ modification

u = kx (t)x

k̇x = −γ
(
x2 + σkx

)
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Find the minimum value of the modification parameter σmin to within 0.01 by finding the roots of a
polynomial in terms of k̄x for which one or more roots satisfies the values of kx in part (a). Calculate
k̄x and x̄.

c. Implement the adaptive controller in Simulink with σ = σmin − 0.05 and σ = 0.5 using the following
information: x (0) = 0, z (0) = 0, kx (0) = 0, and γ = 10 using a time step ∆t = 0.001 sec. Plot the
time histories of x (t) and θ (t) for t ∈ [0, 10] sec for both values of σ. Comment on the two responses.
Calculate k̄x and x̄ for σ = 0.5 analytically and compare them with the simulation results.

Solution:

a. The open-loop plant is expressed as

x =
−z + u+ w

s+ 2

z =
4u

s+ 3

x =
(s− 1)u+ (s+ 3)w

s2 + 5s+ 6

Let u (t) = kxx (t). Then, the transfer function from w (t) to x (t) is obtained as

x =
(s− 1) kxx+ (s+ 3)w

s2 + 5s+ 6

x

w
=

s+ 3

s2 + (5− kx) s+ 6 + kx

The closed-loop plant is stable for −6 ≤ kx ≤ 5.
b. The equilibrium state x̄ is found by setting s = 0 as t→∞

x̄ =
3

6 + kx

The equilibrium value of kx (t) of the σ modification is found by setting k̇x (t) = 0

k̄x = − x̄
2

σ
= − 9

σ
(
6 + k̄x

)2
This results in a third-degree polynomial

k̄3
x + 12k̄2

x + 36k̄x +
9

σ
= 0

For σ = 0.29, the roots are -7.9729, -2.4158, and -1.6112. For σ < 0.29, the real roots are less than -6.
Thus, σmin = 0.29, k̄x = −1.6112 and x̄ = 0.6836.

c. The Simulink model is as shown.
The closed-loop plant with σ = σmin − 0.05 = 0.24 is unstable due to parameter drift with kx → −∞
as t→∞. This validates the analytical result of σmin = 0.29, for which the system begins to be stable.
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The closed-loop plant with σ = 0.5 is completely stable as shown.
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The roots of the polynomial in part (b) are -7.5446, -3.8329, -0.6224. The feasible solution is k̄x =
−0.6224 which gives x̄ = 0.5579 since the first root would result in an unstable closed-loop plant, and
the second root would result in x̄ = 1.3844 that tends away from zero. The simulation results are
k̄x = −0.6215 and x̄ = 0.5575 which agree very well with the analytical results.

10. Given a first-order SISO system with a matched uncertainty

ẋ = ax+ b
(
u+ θ∗x2

)
subject to x (0) = x0, where a = 1 and b = 1 are known, and θ∗ = 2 is unknown.
An adaptive controller is designed using the optimal control modification adaptive law to enable the plant
to follow a reference model

ẋm = amxm + bmr

where am = −1, bm = 1, and r (t) = 1
The adaptive controller is given by

u = kxx+ krr − θ (t)x2

a. Express the closed-loop system with the nominal (non-adaptive) controller u = kxx in terms of the
reference model parameters am and bm. Determine whether or not the closed-loop system with the
nominal controller is unconditionally (globally) stable by explicitly integrating the plant model to find
the solution of x (t). If the closed-loop plant is not globally stable, find the stability condition imposed
on x0.

b. Express the optimal control modification adaptive law for θ (t). Use Section 9.5.3 to estimate the limiting
value of the modification parameter νmax to within 0.001. If applicable, express ϕ (‖x‖ , ‖xm‖ , ν, θ∗).
Then, νmax can be found by trial and error to be the largest value for which ϕ (‖x‖ , ‖xm‖ , νmax, θ∗) = 0

such that ‖x‖ > ‖xm‖. Express the ultimate bound of ‖e‖ and
∥∥∥θ̃∥∥∥ as a function ‖x‖, ν, and γ. Evaluate

them for γ = 500.
c. Implement the adaptive controller in Simulink with MRAC for which ν = 0 and the optimal control

modification with ν = νmax determined from part (b) using the following information: x (0) = 1,
θ (0) = 0, and γ = 500 with a time step ∆t = 0.001 sec. Plot the time histories of x (t), u (t), and θ (t)
for t ∈ [0, 10] sec for both MRAC and the optimal control modification. Comment on the responses of
the two adaptive controllers and compare the maximum tracking error ‖e‖ and maximum parameter

estimation error
∥∥∥θ̃∥∥∥ due to the optimal control modification to those determined from part (b).

Solution:

a. The closed-loop plant with the nominal controller is

ẋ = amx+ bθ∗x2

This equation can be integrated as

ˆ
dx

amx+ bθ∗x2
= t+ c

Using partial fraction, then

1

amx+ bθ∗x2
=

1

amx
− bθ∗

am (bθ∗x+ am)

Upon integration, we get
1

am
ln

bθ∗x

bθ∗x+ am
= t+ c

Using the initial condition, c is determined to be
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c =
1

am
ln

bθ∗x0

bθ∗x0 + am

The solution of x (t) is then obtained as

x =
amx0

(am + bθ∗x0) e−amt − bθ∗x0

If bθ∗x0 > 0 and am + bθ∗x0 > 0, then (am + bθ∗x0) e−amt will grow until it is equal to bθ∗x0 at which
time the solution is unbounded. The system has a finite escape time at

te = − 1

am
ln

(
bθ∗x0

am + bθ∗x0

)
If bθ∗x0 < 0 and am + bθ∗x0 < 0, then the system also has the same finite escape time.
Therefore, the closed-loop system with the nominal controller is not globally stable. The closed-loop
system is stable for bθ∗x0 > 0 and am + bθ∗x0 < 0 or bθ∗x0 < 0 and am + bθ∗x0 > 0 or am + bθ∗x0 = 0
and bθ∗x0 6= 0.

b. The optimal control modification adaptive law is

θ̇ = −γ
(
x2eb− νx4θb2a−1

m

)
Note that we implicitly choose p = 1 in the adaptive law. This implies that q = −2pam = 2 in the
Lyapunov equation. Since the closed-loop system with the nominal controller is not globally stable,
then we determine νmax from

ϕ (‖x‖ , ‖xm‖ , ν, θ∗) = −c1 ‖x‖2 + 2 (c1c2 + c5 ‖xm‖) ‖x‖+ 2c1c2 ‖xm‖ − c1 ‖xm‖2 + νc3c
2
4 ‖Φ (x)‖2

where c1 = q = 2, c2 = 0, c5 = q = 2, c3 = b2a−2
m q = 2, and c4 =

pb2|a−1
m ||θ∗|

b2a−2
m q

= |θ∗|
2 = 1.

‖xm‖ is determined by

‖xm‖ =

∥∥∥∥− bmam
∥∥∥∥ ‖r‖ = 1

Then,
ϕ (‖x‖ , ν) = −2 ‖x‖2 + 4 ‖x‖ − 2 + 2ν ‖x‖4

The limiting value is determined by trial and error to be νmax = 0.062 which corresponds to ‖x‖ =
1.8809 (see plot).
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The ultimate bounds are obtained as

‖e‖ ≥ r =

√
νc3c24 ‖x‖

4

c1
=
√
ν ‖x‖2 = 0.8809

∥∥∥θ̃∥∥∥ ≥ α = 2c4 = 2

‖e‖ ≤ ρ =

√
r2 +

α2

γ
= 0.8854∥∥∥θ̃∥∥∥ ≤ β =

√
γr2 + α2 = 19.7993

c. The Simulink model is as shown.

The response of the closed-loop system with the optimal control modification is as shown. The system
is guaranteed to be stable with ν = 0.062 whereas the closed-loop system with the nominal controller
is unstable since bθ∗x0 > 0 and am + bθ∗x0 > 0. Numerical evidence shows that the system is stable
up to a value of ν = 0.142.
The maximum tracking error is 0.3803. The Lyapunov stability analysis gives 0.8809 which is conser-
vative. The maximum value of θ (t) is 15.7238. So the maximum parameter estimation error is 13.7238.
The estimate from the Lyapunov stability analysis is 19.7993 which is also conservative.
The response of the closed-loop system with MRAC is highly oscillatory. This is a well-known behavior
of MRAC which acts as a nonlinear integral control that causes the crossover frequency to increase as
γ increases.
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11. Consider the equation of motion of an inverted pendulum constrained to move horizontally by a control
force u (t)

1

12
mL2

(
4− 3 cos2 θ

)
θ̈ − 1

2
mgL sin θ +

1

8
mL2θ̇2 sin 2θ + cθ̇ =

1

2
L cos θu (t− td)
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where m is the mass of the pendulum, L is the length, g is the gravity constant, c is the damping coefficient
which is assumed to be unknown, θ (t) is the angular position, u (t) is the control input which represents
the horizontal force at point O, and td is a time delay which represents the motor actuator dynamics.

a. Let x1 (t) = θ (t), x2 (t) = θ̇ (t), and x (t) =
[
x1 (t) x2 (t)

]>
. Derive the expressions for the nonlinear

dynamic inversion adaptive controller and the σ modification adaptive law to estimate the unknown
coefficient c in order to enable the closed-loop plant to track a reference model specified by

θ̈m + 2ζmωmθ̇m + ω2
mθm = ω2

mr

which can be expressed in general as

ẋm = Amxm +Bmr

b. Given m = 0.1775 slug, g = 32.174 ft/sec, L = 2 ft, c = 0.2 slug-ft2/sec, ζm = 0.75, ωm = 2, and
r = π

12 sin 2t. Implement the adaptive controller in Simulink with the following information: x (0) = 0,
ĉ (0) = 0, γ = 100 and a time step ∆t = 0.001 sec for the following cases: 1) the standard MRAC with
td = 0, 2) the standard MRAC with td = 0.01 sec, and 3) the σ modification with σ = 0.1. For each
case, plot the time histories of x (t) and xm (t) on the same plot, u (t), and ĉ (t) for t ∈ [0, 10] sec. Plot
in the units of deg for x1 (t), deg/sec for x2 (t), lb for u (t), lb-ft-sec for ĉ (t).

Solution:

a. The equation of motion can be expressed as

θ̈ =
12g sin θ − 3Lθ̇2 sin 2θ

2L (4− 3 cos2 θ)
+

6 cos θ

mL (4− 3 cos2 θ)

(
u− 2cθ̇

L cos θ

)

Let x1 (t) = θ (t), x2 (t) = θ̇ (t), and x (t) =
[
x1 (t) x2 (t)

]>
. Then,

[
ẋ1

ẋ2

]
=

[
x2

12g sin x1−3Lx2
2 sin 2x1

2L(4−3 cos2 x1)

]
︸ ︷︷ ︸

f(x)

+

[
0

6 cos x1

mL(4−3 cos2 x1)

]
︸ ︷︷ ︸

p(x)

u− 2cx2

L cosx1︸ ︷︷ ︸
ch(x)


ẋ = f (x) + p (x) [u− ch (x)]

The reference model is specified by
ẋm = Amxm +Bmr

Then, the dynamic inversion control is obtained as

u =
[
p> (x) p (x)

]−1
p> (x) [Amx+Bmr − f (x)] + ĉ (t)h (x)

where [
p> (x) p (x)

]−1
p> (x) =

[
0
mL(4−3 cos2 x1)

6 cos x1

]
The closed-loop plant becomes

ẋ = Amx+Bmr + c̃ (t) p (x)h (x)

Let

B =

[
0
1

]
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φ (x) =
12x2

mL2 (4− 3 cos2 x1)

Then,
p (x)h (x) = Bφ (x)

The tracking error equation is obtained as

ė = Ame−Bc̃φ (x)

Therefore, the adaptive law is obtained as

˙̂c = γ
[
φ (x) e>PB − σĉ

]
b. The Simulink model is as shown.

The response of the closed-loop system with MRAC with td = 0 is as shown. The closed-loop plant
asymptotically tracks the reference model exactly as expected. The estimate ĉ (t) converges to the true
value.
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The response of the closed-loop system with MRAC and td = 0.01 sec is as shown. The tracking of
θ (t) improves, but the closed-loop plant is on the verge of instability, as seen by the high frequency
response of θ̇ (t).
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The response of the closed-loop system with the σ modification and td = 0.01 sec is as shown. The
tracking is much better than that with MRAC.
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12. Given a longitudinal dynamic model of an aircraft with a matched uncertainty[
α̇
q̇

]
=

[
Zα
V̄

1

Mα + Mα̇Zα
V̄

Mq +Mα̇

] [
α
q

]
+

[
Zδe
V̄

Mδe +
Mα̇Zδe
V̄

](
δe (t− td) +

[
θ∗α θ

∗
q

] [ θ
q

])
with the following information: V̄ = 795.6251 ft/sec, γ̄ = 0, Zα = −642.7855 ft/sec2, Zδe = −55.3518
ft/sec2, Mα = −5.4898 sec−2, Mδe = −4.1983 sec−2, Mq = −0.6649 sec−1, Mα̇ = −0.2084 sec−1,
θ∗α = −5.4, θ∗q = −0.3, and td = 0.01 sec.

a. Design a nominal proportional-integral control

δe = kpα+ ki

ˆ t

0

(α− r) dτ + kqq

by finding the general expressions and the numerical values for kp, ki, and kq to enable the aircraft to
track a reference model of the angle of attack

α̈m + 2ζmωmα̇m + ω2
mαm = ω2

mr

where ζm = 0.75 and ωm = 1.5 rad/sec.

b. Let z (t) =
´ t

0
(α (t)− r (t)) dτ , provide the general expression and the numerical value for the reference

model of the aircraft as
ẋm = Amxm +Bmr

where x (t) =
[
z (t) α (t) q (t)

]>
.

c. Let Θ∗ =
[

0 θ∗α θ
∗
q

]>
. Design an adaptive angle-of-attack controller using the optimal control modi-

fication to enable the closed-loop plant to track the reference model. Express the adaptive controller
and the adaptive law. Given Q = 100I, select the modification parameter to guarantee stability of the
closed-loop plant by using the linear asymptotic property of the optimal control modification and the
following formulas to compute the crossover frequency and time delay margin for MIMO systems. Plot
ν versus td for ν ∈ [0, 5] and determine ν to within 0.01 for td = 0.01 sec
For a general time-delay system

ẋ = Ax+Bu (t− td)

with a linear controller
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u = Kxx

the crossover frequency and time delay margin can be estimated as

ω = µ (−jA) + ‖BKx‖

td =
1

ω
cos−1 µ (A)

µ (−BKx)

where µ̄ is a matrix measure quantity defined as

µ (C) = max
1≤i≤n

λi

(
C + C∗

2

)
for a general complex-value matrix C with its conjugate transpose C∗.

d. Implement the adaptive controller in Simulink using the following information: x (0) = 0, Θ (0) = 0,
Γ = 1000I, and ν determined from part (c) with a time step ∆t = 0.001 sec. The reference command
signal r (t) is a pitch attitude doublet specified in the following plot.
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Plot the time histories of each of the elements of x (t) and xm (t) on the same plot, and u (t) for
t ∈ [0, 30] sec. Plot in the units of deg-sec for z (t), deg for α (t) and δe (t), and deg/sec for q (t).

Solution:

a. Given

δe = kpα+ ki

ˆ t

0

(α− r) dτ + kqq

Substituting δe (t) into the equation for α̇ (t) yields

α̇ =
Zα
V̄
α+ q +

Zδe
V̄

[
kpα+ ki

ˆ t

0

(α− r) dτ + kqq

]
Differentiating α̇ (t) results in



123

α̈ =
Zα
V̄
α̇+ q̇ +

Zδe
V̄
kpα̇+

Zδe
V̄
ki (α− r) +

Zδe
V̄
kq q̇

=

(
Zα
V̄

+
Zδe
V̄
kp

)
α̇+

(
1 +

Zδe
V̄
kq

)
q̇ +

Zδe
V̄
ki (α− r)

To track the reference model, the angle-of-attack dynamics must be

α̈ = −2ζmωmα̇− ω2
m (α− r)

Therefore, the control gains can be computed by equating terms which results in

Zα
V̄

+
Zδe
V̄
kp = −2ζmωm ⇒ kp =

−2ζmωm − Zα
V̄

Zδe
V̄

1 +
Zδe
V̄
kq = 0⇒ kq = − 1

Zδe
V̄

Zδe
V̄
ki = −ω2

m ⇒ ki = − ω
2
m

Zδe
V̄

Numerically, kp = 20.7287, ki = 32.3414, and kq = 14.3740

b. Let z (t) =
´ t

0
(α (t)− r (t)) dτ , then the plant model becomes

 żα̇
q̇

 =

0 1 0
0 Zα

V̄
1

0 Mα + Mα̇Zα
V̄

Mq +Mα̇

 zα
q


+

 0
Zδe
V̄

Mδe +
Mα̇Zδe
V̄

δe (t− td) +
[

0 θ∗α θ
∗
q

]  zα
q

+

−1
0
0

 r
which is expressed in general as

ẋ = Ax+B
[
u (t− td) +Θ∗>x

]
+ Cr

where

A =

0 1 0
0 −0.8079 1
0 −5.3214 −0.8733

 , B =

 0
−0.0696
−4.1838

 , Θ∗ =

 0
−5.4
−0.3

 , C =

−1
0
0


Let u (t) = δe (t). Then, the nominal controller is

u =
[
ki kp kq

]  zα
q

 = Kxx

The nominal closed-loop plant becomes

ẋ = (A+BKx)x+ Cr

The reference model is then chosen as the nominal closed-loop plant. Therefore,

ẋm = Amxm +Bmr

where Bm = C and



124

Am = A+BKx

=

 0 1 0
−ω2

m −2ζmωm 0(
Mδe +

Mα̇Zδe
V̄

)
ki Mα + Mα̇Zα

V̄
+
(
Mδe +

Mα̇Zδe
V̄

)
kp Mq +Mα̇ +

(
Mδe +

Mα̇Zδe
V̄

)
kq


=

 0 1 0
−2.25 −2.25 0
−135.3101 −92.0462 −61.0111


c. The adaptive controller is

u = Kxx−Θ> (t)x

The closed-loop plant becomes
ẋ = Amx+Bmr −BΘ̃>x

The error equation is
ė = Ame+BΘ̃>x

Therefore, the optimal control modification adaptive law is

Θ̇ = −Γx
(
e>P − νx>ΘB>PA−1

m

)
B

The asymptotic solution of the optimal control modification adaptive law is

BΘ>x =
1

ν
P−1A>mPe =

1

ν
P−1A>mP (xm − x)

Then, the asymptotic closed-loop plant with time delay is

ẋ = Ax+BKxx (t− td)−BΘ> (t− td)x (t− td) +BΘ∗>x+Bmr (t)

=
(
A+BΘ∗>

)
x+

[
BKx +

1

ν
P−1A>mP

]
x (t− td)−

1

ν
P−1A>mPxm (t− td) +Bmr (t)

The cross-over frequency and time delay margin are computed as

ω = µ
(
−j
(
A+BΘ∗>

))
+

∥∥∥∥BKx +
1

ν
P−1A>mP

∥∥∥∥
td =

1

ω
cos−1 µ

(
A+BΘ∗>

)
µ
(
−BKx − 1

νP
−1A>mP

)
=

ν

νµ (−j (A+BΘ∗>)) + ‖νBKx + P−1A>mP‖
cos−1 νµ

(
A+BΘ∗>

)
µ (−νBKx − P−1A>mP )

The plot of ν versus td is as shown.
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For td = 0.01 sec, ν = 0.82. Note that this value is a conservative estimate, but it does guarantee
stability of the closed-loop plant for any td ≤ 0.01 sec. Also note that a conservative estimate of the
maximum time delay margin that the closed-loop system can tolerate is 0.0122 sec.

d. The Simulink model is as shown.

The response of the closed-loop system with the adaptive controller is as shown. The closed-loop plant
tracks the reference model very well.
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13. Given a longitudinal dynamic model of a damaged aircraft

α̇ =

(
Zα
V̄

+∆Aαα

)
α+ q +

(
Zδe
V̄

+∆Bα

)
δe (t− td)

q̇ =

(
Mα +

Mα̇Zα
V̄

+∆Aqα

)
α+ (Mq +Mα̇ +∆Aqq) q +

(
Mδe +

Mα̇Zδe
V̄

+∆Bq

)
δe (t− td)

a. Design an ACAH hybrid adaptive flight controller for the pitch axis to enable the aircraft to follow a
reference model

q̇m = −ωq (qm − r)

by providing the expressions for the hybrid adaptive controller, the least-squares gradient parameter
estimation of ∆Aqα, ∆Aqq, ∆Bq, and the optimal control modification adaptive law to handle the
residual tracking error.

b. Implement the hybrid adaptive flight controller in Simulink using the same aircraft parameters from
Exam Problem 12 and the following additional information: td = 0.02 sec, ζq = 0.75, ωq = 2.5 rad/sec,
∆Aαα = 0.1616 /sec, ∆Aqα = 2.1286 /sec2, ∆Aqq = 0.5240 /sec, ∆Bα = −0.0557 /sec, ∆Bq = −2.5103

/sec2, α (0) = 0, q (0) = 0, ∆Âqα (0) = 0, ∆Âαα (0) = 0, ∆B̂q (0) = 0, R = 1000I, Γ = 1000I, and
ν = 0.1 with a time step ∆t = 0.001 sec. The reference command signal r (t) is a pitch rate doublet
specified in the following plot.
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c. Simulate three cases: 1) nominal controller, 2) only direct MRAC, and 3) hybrid adaptive control with
both direct MRAC and indirect least-squares gradient adaptive control. For each case, plot the time
histories of each of the elements of α (t), θ (t) , q (t) and qm (t) on the same plot, and u (t) for t ∈ [0, 30]
sec. In addition, plot Θ (t) for case 2; and ∆Âqα (t), ∆Âqq (t), ∆B̂q (t) for case 3. Plot in the units of
deg for α (t), θ (t), and δe (t), and deg/sec for q (t).

Solution:

a. The pitch rate equation is used for the hybrid adaptive controller design as

q̇ =

(
Mα +

Mα̇Zα
V̄

+∆Aqα

)
α+ (Mq +Mα̇ +∆Aqq) q +

(
Mδe +

Mα̇Zδe
V̄

+∆Bq

)
δe (t− td)

The estimated plant model is expressed as

˙̂q =

(
Mα +

Mα̇Zα
V̄

+∆Âqα

)
α+

(
Mq +Mα̇ +∆Âqq

)
q +

(
Mδe +

Mα̇Zδe
V̄

+∆B̂q

)
δe

The desired pitch acceleration is
q̇d = q̇m + ū− uad

where

ū = kp (qm − q) + ki

ˆ t

0

(qm − q) dτ

uad = ∆Θ>Φ (q, α, δe)

∆Θ̇ = −ΓΦ (q, α, δe)
[
e>PB − νΦ> (q, α, δe)σ∆ΘBPA

−1
m

]
B

kp = 2ζqωq

ki = ω2
q

Am =

[
0 1
−ki −kp

]
, B =

[
0
1

]

∆Θ =

 εAqqεAqα
εBq

 , Φ (q, α, δe) =

 q
α
δe


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The dynamic inversion controller is then obtained as

δe =
q̇d −

(
Mq +Mα̇ +∆Âqq

)
q −

(
Mα + Mα̇Zα

V̄
+∆Âqα

)
α

Mδe +
Mα̇Zδe
V̄

+∆B̂q

where ∆Âqq (t), ∆Âqα (t), and ∆B̂q (t) are estimated by an indirect least-squares gradient adaptive law
as

Θ̇ = −RΦ (q, α, δe) ε
>

where
ε = q̇d − q̇

Θ =

∆Âqq∆Âqα
∆B̂q


b. Let xm (t) =

[
θm (t) qm (t)

]>
, then the reference model can be expressed as

ẋ = Amqx+Bmqr

q̇m = C
(
Amqx+Bmqr

)
where

Amq =

[
0 1
0 −ωq

]
=

[
0 1
0 −2.5

]
Bmq =

[
0
ωq

]
=

[
0

2.5

]
C =

[
0 1
]

Let z (t) =
[
α (t) x (t)

]>
, then

ż = (Az +∆Az) z + (Bz +∆Bz)u (t− td)

q̇ = D [(Az +∆Az) z + (Bz +∆Bz)u (t− td)]

where

Az =

 Zα
V̄

0 1
0 0 1

Mα + Mα̇Zα
V̄

0 Mq +Mα̇

 =

−0.8079 0 1
0 0 1

−5.3214 0 −0.8733


∆Az =

∆Aαα 0 0
0 0 0

∆Aqα 0 ∆Aqq

 =

0.1616 0 0
0 0 0

2.1286 0 0.5240



Bz =

 Zδe
V̄
0

Mδe +
Mα̇Zδe
V̄

 =

−0.0696
0

−4.1838



∆Bz =

∆Bα0
∆Bq

 =

−0.0557
0

−2.5103


D =

[
0 0 1

]
The nominal controller is expressed as

ū = Kee

where e (t) = xm (t)− x (t) and
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Ke =
[
ki kp

]
=
[

6.25 3.75
]

c. The Simulink model is as shown.

The response of the closed-loop system with the nominal controller is as shown. The closed-loop plant
does not follow the reference model well. The pitch rate response oveshoots the reference pitch rate
significantly.
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The response of the closed-loop system with the direct MRAC is as shown. The pitch rate response
improves, but there are still some overshoots.
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The response of the closed-loop system with the hybrid adaptive control is as shown. The tracking
improves significantly with the pitch rate response tracking the reference pitch rate very well.

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t, sec

α
, 

d
e

g

0 10 20 30
0

5

10

t, sec

θ
, 

θ
m

, 
d

e
g

 

 

0 10 20 30
−4

−2

0

2

4

t, sec

q
, 

q
m

, 
d

e
g

/s
e

c

 

 

0 10 20 30
−2

−1

0

1

2

t, sec

δ
e
, 

d
e

g

q q
m

θ
θ

m

The parameter convergence of the estimates of ∆Aqq, ∆Aqα, and ∆Bq due to of the direct MRAC is
as shown. The estimates of ∆Aqq, ∆Aqα, and ∆Bq do not seem to converge to the true values.
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The parameter convergence of the estimates of ∆Aqq, ∆Aqα, and ∆Bq due to of the indirect least-
squares gradient adaptive control is as shown. The estimates of ∆Aqq, ∆Aqα, and ∆Bq converge to
their steady state values which are close to the true values. The error in the parameter convergence is
due to the presence of the time delay in the system.
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