Nhan T. Nguyen

Model-Reference Adaptive Control

A Primer

Problem Solutions to Exercises and Suggested

Fram Questions

Springer






Chapter 2 Exercises

1. Consider the following PID control system with the actuator amplitude saturation and rate limiting:

it + x(
Q:Q—— PID -/ - > G(s) ©
Amplitude Rate
Saturation Limiter
5
Gls) = s2 4+ 5546

with k, = 15, k; = 8, and kg = 5 as the control gains. The actuator has both amplitude and rate limits
between -1 and 1.

a. Compute the characteristic roots of the ideal closed-loop system without consideration for actuator
amplitude saturation and rate limiting.

b. Construct a Simulink model for a sinusoidal input 7 (¢) = sin¢. Plot the input, the ideal output without
the actuator amplitude saturation and rate limiting, and the actual output for a simulation time ¢ = 10
sec. Also plot the actuator command signal u. (¢) and the control input signal to the plant w ().

c. Comment on the effect of rate limiting.

Solution:

a. The characteristic equation is
s° + (2¢wn + bka) s° + (w2 + bky) s+ bk; = 0

$3+ 305 +81ls+40=0

The roots are s1,23 = —0.6443, —2.2943, —27.0614.
b. The Simulink model is as shown.
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. Amplitude saturation causes an amplitude reduction and signal distortion, whereas rate limiting causes
a phase delay in the signal. This phase delay can potentially cause instability if the ideal closed-loop
system does not have a sufficient phase margin.



2. Given B .
0+cl4+2sinf—1=0

a. Find all the equilibrium points of the system for —7 < 0 (¢) < .

b. Linearize the system and compute the eigenvalues about all the equilibrium points.

c. Classify the types of the equilibrium points on a phase plane and plot the phase portraits of the
nonlinear system.

Solution:

a. Let 21 (t) = 0 (t) and x5 (t) = 6 (t), then the state-space representation is

T - )
o | | —cxe —2sinx; +1

The equilibrium points are

. T o7
=5
x5 =10
b. The Jacobian matrix is
J () = |:—2C(2)S$1 —1c}

For the equilibrium point (%, 0)

the linearized equation is

and the eigenvalues are

Al =

For the equilibrium point (%’T, O)

the linearized equation is .
| |01 1
To N \/g —C T

—ctVe2+4V3
2

and the eigenvalues are

Ao =

c. For the equilibrium point (%, O), consider the following cases:
i. ¢ = 0: the eigenvalues are purely imaginary. So the equilibrium point is a center.

ii. 0 < ¢ < 2v/V/3: the eigenvalues are a complex conjugate pair with negative real part. So the
equilibrium point is a stable focus.

iii. —2v/v/3 < ¢ < 0: the eigenvalues are a complex conjugate pair with positive real part. So the
equilibrium point is an unstable focus.

iv. ¢ > 2v/1/3: the eigenvalues are real and negative. So the equilibrium point is a stable node.
v. ¢ = —21/4/3: the eigenvalues are real and positive. So the equilibrium point is an unstable node.
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3. Repeat Exercise 2.2 for

Solution:

a. The equilibrium points are (0,0) and (1, 1).
b. The Jacobian matrix is

For the equilibrium point (0, 0)

the linearized equation is

and the eigenvalues are

Ao =41

For the equilibrium point (1,1)

J(1,1) = {_01(1)]

HEEHS

Ao = +i

the linearized equation is

and the eigenvalues are

c. The equilibrium point (0,0) is a saddle point. The equilibrium point (1, 1) is a center.
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4. Analytically determine the solution of the following nonlinear system:
&= |z|2?
with a general initial condition z (0) = xg.

a. Let zg = 1. Does the solution have a finite escape time? If so, determine it.
b. Repeat part (a) with 2o = —1.
c. Comment on the effect of initial condition on the stability of the system.

Solution:

a. The equation can be expressed as

-2 <0
i =[]z =0 x=0
> x>0

which has a general solution

o
\/ 1+2x2t z <0
x(t)=40 x=0
—=— >0

1/ 172w8t

The solution for 2o = 1 has a finite escape time at t = 5

Pl
b. The solution for £y = —1 does not have a finite escape time.
c. This problem illustrates that the stability of a nonlinear system is highly dependent upon the initial

condition.



Chapter 3 Exercises

1. Verify that the 1-norm of x € R"”
n
Izl = |l
i=1

satisfies the norm conditions.

Solution:
To verify ||z||, is a norm, note that ||z||; can be expressed as

n
lzlly = Y Jwil = lza] + el + - + |22
i=1

It is obvious that ||z[|; > 0 and |[z|;, = 0 if and only if x; = 0 Vi = 1,2,...,n. Thus [|z||, satisfies the
positivity and positive-definiteness conditions.Since

lelly = lawr| + [ows| + - - + |awn| = |af (Jz1] + [22] + - - + |2a])

then ||z||, satisfies the homogeneity condition.
Let y € R™. Then,
o +ylly =21+ va] + 22 + 2 + -+ + 20 + yn|

But
|z1 + y1] < |za] + |ya]
So
2 +ylly < |zl + vl + 22| + |2l + - + 2] + |yal = [z, + [yl

Thus, ||z||, satisfies the triangle inequality.

2. Compute analytically the 1-; 2-, infinity, and Frobenius norms of

1 0-2

A=|40 2

—-13 2

and verify the answers with Matlab using the function “norm”.
Note: Matlab may be used to compute the eigenvalues.

Solution:
The 1-, 2-, infinity, and Frobenius norms of
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are computed as follows

m
||A||1 :1?Ja§n§‘aij| :max(1+4+17372+2+2) =6

18 —3 4
A*A=ATA=1|-39 6
4 6 12

)\ma:v (A*A) =20

1Al oo :@iﬁzlaul =max (1+2,4+2,1+3+2)=6
]:

| Al = V/trace (A*A) = VI8 + 9 + 12 = V/39

The results agree with Matlab answers using “norm” function.

3. Decompose A into its symmetric part P and anti-symmetric part Q. Write the quadratic function V (x) =
x" Pz. Is V (x) positive (semi-)definite, negative (semi-)definite, or neither?

Solution:
A can be decomposed into a symmetric part and anti-symmetric part as

A=P+Q
where the symmetric part is

F 1o 37

1 2 2

P=_(A+A")=|20 %

2 35 2
L 2 2 J
and the anti-symmetric part is ) )

1 0 —2 —%

=—(A-AT) =20 -1

Q 2 ( ) 1 1 2
L2 2 d

w

Vi(z) = z' Px = x% +4x120 — 32123 + dT23 + 2x§

The eigenvalues of P are
A(P) = —3.1837, 2.4817, 3.7020

Therefore, P is neither positive or negative definite, and so is V' (z).

4. Given a set C C R?
C={zeR’: 2] +425-1<0}

Is C a compact set? Write the set notation for the complementary set C¢. Plot and illustrate the region in
R? that represents C.

Solution:
C is not a closed set so it is not a compact set. Its complementary set is

Co={zeR?: 2} +42} - 1>0}
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Geometrically, C is a region enclosed by an ellipse not including the boundary.

~ of C={zeR®*:2i+423-1<0}

5. For each of the following equations, determine if f () is locally Lipschitz at = xg or globally Lipschitz:
a. T =+vax2+1, 29=0.

b. &= —333, To = 1.
c. z

Va3 +1, 29 =0.

Solution:

a. T =+vxZ+1, 79 =0.

f' (z) is bounded for all z (t) € R since

lim ——— =41
z—+00 /2 +1

So f (x) is globally Lipschitz.
b. & = —$3, To = 1.

(@) =—a
f (z) = —32°

f' (x) is unbounded as  (t) — £oc. So f (z) is not globally Lipschitz. Since f (2o = 1) = —3 is well
defined, therefore f (z) is locally Lipschitz in the neighborhood of g = 1.

c. t=+Vx3+1,29=0.
f @)= Var 41

f () = _ 3t
2vVad +1
f (z) is unbounded as z(t) — 4oo and for # = —1. So f(z) is not globally Lipschitz. Since

f (zo=0) = 0 is well defined, therefore f(z) is locally Lipschitz in the neighborhood of zy = 1
sufficiently away from z = —1.
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Chapter 4 Exercises

1. Given
T1| |71 (x%—i—x%—l)—xg
To | |z 4 2o (z%+x§fl)

a. Determine all the equilibrium points of the system and linearize the system about the equilibrium
points to classify the types of equilibrium points.

b. Use the Lyapunov candidate function
V(z) =i + a3

to determine the types of Lyapunov stability of the equilibrium points and their corresponding regions
of attraction, if any.

Solution:
a. The equilibrium point is determined from
1 (x%Jrz%fl) —z2=0
T+ To (z%Jr:rg 71) =0
Multiplying the first equation by —z (t) and the second equation by z; (t) and adding them together
yield
i+ a3=0

Thus, the equilibrium point is at 7 = 0 and x5 = 0. There is only one equilibrium point.
The Jacobian is computed as

T (2) = 2?4+ 23— 1+ 222 2z120 — 1
1+ 2z129 2?2 + a5 — 1+ 223

o | —1-1
J(z*) = { 1 _1}
The eigenvalues are

The equilibrium point is a stable focus.
b. Choose the Lyapunov candidate function

V(x)::c%—kx%

Then,

13
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V (z) = 2w1dn + 2wads = 2a1 [1 (2F + @3 — 1) — @] + 212 [11 + @ (aF + 25 — 1)]
:2(xf+x§) (z%er% 71)

V (z) < 0 for all z (t) € R4 where R4 is the region of attraction
Ra={zeR*:ai+a5-1<0}

Thus, the equilibrium point is asymptotically stable for all x (t) € R 4.

1
j::x(—1+2sinx>

a. Determine the upper and lower bound solutions.
b. Use the Lyapunov candidate function

2. Given

subject to x (0) =1

V(z) = 2?
to determine the type of Lyapunov stability and the upper bound of V (z) as an explicit function of
time.
Solution:

a. Since —1 < sinz < 1, therefore

Thus

The bounded solutions are with z (0) =1
eIt <y (t) < e 3t
b. Choose the Lyapunov candidate function
V (z) = 2?

Then,
. 1
V (z) = 22i = 22° (—1 + 3 sinx) <—2?=-V(z)<0

Since V (z) < —V (x), the equilibrium point is exponentially stable. The upper bound solution of V (z)

’ V() <V (0)e?

where V (0) = 22 (0) = 1, so
V(t)<e

3. Use the Lyapunov candidate function
V(z) =2t + 32

to study stability of the origin of the system
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[551} _ {m_m(aﬁmgg]

& (z1 4 x2) (27 + 23

Solution:
V (z) is evaluated as

V ({E) = 2$1i’1+2$2i32 = 21’1 (xz - $1) (l’% + I§)+2$2 (1’1 + I’Q) (IE% + :c%) = -2 (I% — 21’1$2 — :c%) (IL‘% + I’g)

V(z) <0 if
x§—2x1x2—m§ >0

This inequality yields two solutions

x1>(1+\/§)x2

or

x1<(1—\@>x2

The equilibrium is a saddle point type as illustrated. So it is unstable.

)

///////

4. Given
T = Az

a. Calculate analytically P that solves
ATP+PA=-2]

01
=[5
and verify the result using the Matlab function “lyap”.

b. Determine if P is positive or negative (semi-)definite. What can be said about stability of the origin of
this system.

where

Solution:
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a. P is computed from the Lyapunov equation as

ATP+PA=—-21

0—4||pupi2 n P11 P12 0 1 _ -2 0
1 —4] [ p12 p22 P12 P22 —4 -4 0 —2

{ —3p12 p11 — 4p12 — 4]922] _ {—2 0 }

P11 —4p12 —4paa 2p12 — 8p22 0 -2
1
P12 = 1
2p12+2 5
-8 16
9
p11 = 4p12 + 4p22 = 1
9 1
p=[14]
116

The Matlab command “lyap(A’,-2*eye(2))” yields the same result.

b. P is computed as
0 —41|pu1pi2 L | P P2 01 _[-20
1 4 | |p12 p22 P2 P | | —44 0 -2

—8p12 pin+4pi2 —4pa2 | _ | -2 0
P11+ 4p12 —4p22 2p12 + 8poo 0 -2
1
P12 = Z
_ 2ppt2 5
D22 = 78 BT
9
P11 = —4p12 +4pax = 1
_9 1
SEE,
4 16

The eigenvalues of P are
A2 (P) = —2.2817, —0.2808

Since A1 (P) < 0, then P is negative definite. Choose a Lyapunov function
V(z)=—x Pz >0
Evaluating V (z) yields
V(z)=—i"Pr—x2 Pi=—a"A"Pzx—a"PAz = —a' (ATP + PA)z = 2z x>0

Since V (z) > 0, the equilibrium at the origin is unstable.

5. Given
1| | m (lf:c% fxg) + x5
ia| | —w1 + a2 (1—af —a3)
a. Use the Lyapunov candidate function
V(x) = 2% + 23

to determine the type of Lyapunov stability of the origin.
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b. Find an invariant set.
c. Solve for V (t) as an explicit function of time and plot the trajectories of V (t) for V' (0) = 0.01, 0.5, 1, 1.5, 2.

Solution:

a. Choose a Lyapunov function
V(z) = o + a3

Then,
V(z) =2 [z1 (1 -2 — 23) + 2] + 222 [~21 + 22 (1 —2f — 23)] =2 («F + 23) (1 — 2f — 23)
V (z) <0 for all 2 (t) € S where
S:{z(t)eRQ:V(x)<0:>mf+z§>1}

Since S does not include the origin, therefore the equilibrium is unstable in the sense of Lyapunov.
b. Let R be )
R:{x(t)eR2:V(x):o;»g(x):x%+x§—1:V(x)—1:o}

Then, .
glz)=V(z)==2V(2)[V(z)—-1=0

Therefore, R is an invariant set.
c. Since

V(z)= =2V (2)[V (z) — 1]

Then,
dv

V(-1

Using partial fraction, this can be expressed as

1 1
— — —)dv = —2dt
<V—1 V)

which yields the following general solution

= —2dt

B Vo
C Vo—(Vp—1)e2t

V(t)
Ast — oo, V (t) tends to a constant solution

lim V() =V(@eR)=1

t—o00
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6. Given
0 1 0

A=|-1-1-2
1 0 -1

Determine whether or not A is Hurwitz. If so, compute P using the Euler method to integrate the

differential Lyapunov equation

P
d—:PA+ATP+I
dr

subject to P (0) = 0, where 7 is time-to-go. Plot all 6 elements of P on the same plot and verify the result
at the final time-to-go with the Matlab function “lyap”.

Solution:
The eigenvalues of A are
A1,2,3 (A) = —1.8105, —0.0947 + 1.2837i

Thus A is Hurwitz. The numerical solution of P that solves
A"P+PA=-2I

is as shown where the solid lines are the numerical results by integrating the differential Lyapunov equation
backward in time and the dash lines are the results from the Matlab function “lyap”.
The numerical results check with the exact solution of P
1 40 13 10
P=-113 16 —11
10 —11 25
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7. Use the Lyapunov’s direct method to determine an ultimate bound of the solution z (¢) for the following
equation:
T =—x+costsint

subject to x (0) = 1. Plot the solution z (¢) for 0 <t < 20.

Solution:
Choose a Lyapunov candidate function
V (z) = 2?
Then,
. 1
V (x) = 2z (—2 + costsint) = —22 4+ xsin 2t < —2|z| <|$| - 2)
. . 2 . 1
V(z) =2z = 22" + xsin2t < =2z| | |z| — 3

V (z) < 0if |z| > 3. So the ultimate bound is 1.
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8. Given a non-autonomous system
&= (—2+sint)x — cost

a. Show that the system is uniformly ultimately bounded by the Lyapunov theorem for non-autonomous
systems. Also determine the ultimate bound of ||z||.

b. Plot the solution by numerically integrating the differential equation and show that it satisfies the
ultimate bound.

Solution:

a. Choose a Lyapunov candidate function

V (z) = 2?
Then, _
V (z) = 2z& = 22 [(—2 + sint) x — cost]

Note that

—2+4+sint < -1

—2x cost < 2 ||z||
Therefore,

V(z) < =2 |z|* + 2 ||

We see that

V(z) <=2V (2) +2/V (x)
Let W =V = ||z Then, .
. Vv
W=—==-VV+1<-W+1
2V'V -
The solution of W (t) is
W (t) < (lwoll = 1) e™" +1
Thus
lim ||z|| = lim W(t)<1=R
t— o0 t—o0

Choose )
o3 (llzll) = 2[|=[I” — 2 ||=||
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Then, it follows that

V (2) < =3 ([l])
V (z) < 0 for ||z| > 1. Therefore, the solution z (t) is uniformly ultimately bounded with a Lyapunov
ultimate bound of 1.
b. The solution of z () is shown in the following plot. The largest value of ||z|| is 0.5112 which is less than
the Lyapunov ultimate bound.

1.5

15 . . . . . . .

9. Given
Tr=— (1 +sin2t)x+cost

a. Use the Lyapunov candidate function
V(z) = 2?

to determine the upper bound of V (z) as a function of V (z).

b. Let W = v/V. Solve for the inequality W (t) as an explicit function of time and determine the ultimate
bound of the system.

c. Show that the system is uniformly ultimately bounded.

Solution:

a. Given the Lyapunov candidate function
2
V(z) = 2% = ||z
V (z) is evaluated as
V(z) =2z [— (1+sin®t) z + cost] = —22° (1 4 sin®¢t)+2z cost < —2 2|2 +2 ||| = =2V (2)+2+/V (2)

Then, V (z) < 0 if ||z] > 1.
b. Let W = +/V = ||z||. Then,
Vo2V +2VV

= =-W+1
WV T 2V

W

The explicit solution is
W(t) < [W(0)—1]e " +1
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The ultimate bound is determined by
lim W (t)=|z]| <1=R
t—o0

Therefore, the ultimate bound is 1.

c. We show that the Lyapunov theorem for uniform ultimate boundedness for non-autonomous systems
is satisfied. Let ¢y (|z])) = allz]|® € KR and @5 (||lz]|)) = b||z||* KR where a < 1 and b > 1. Then,
o1 (I2]) € V (@) < g2 (Jal]) and V (2) < 0 for [l > 1. Furthermore, let s ([la) = 2|jo]> — 2 || €
KR. Then, V (z) < —s3(||z]|) for ||z|| > 1. Therefore, the solution is uniformly ultimately bounded.
Alternatively, the solution is uniformly ultimately bounded since 1% (z) < 0 outside the compact set
o]l < 1.

10. For the following functions:

a. f(t) =sin (e_tZ)
b. f (t) — e~ sin? ¢
Plot f () for t € [0,5]. Determine whether or not the limit of f () exists as ¢ — oo and f () is uniformly

continuous. If so, use the Barbalat’s lemma to show that f () — 0 as ¢t — oo and verify by taking the
limit of f (¢) as t — oo.

Solution:

a. f(t) = sin (e‘tz). The limit of f (¢) exists as ¢ — oo because lim;_, o sin (e_t2) = 0. Taking the

derivative

f) = —2te™" cos (€7t2>

To show that f (¢) is uniformly continuous, we need to determine if the limit of f(t) exists as t — 00
and that its derivative f (¢) is bounded. We see that the limit of f (¢) exists as t — co. Evaluating f (¢)
yields

ft)= —2¢"" cos (e_tQ) + 42" cos (e_tz) + 42672 sin (e_tz)

We see that f (t) is bounded as ¢ — oo. Therefore, f (t) is uniformly continuous. Then, according to
the Barbalat’s lemma, f (t) — 0 as ¢t — oo. This can easily be verified by taking the limit of f (¢) as
t — oo which gives lim;_, f (t) = 0.
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b. f(t) = e st The limit of f (£) does not exist. Taking the derivative

f(t) = —2sintcoste” sin® ¢
The limit of f (t) does not exists. So f (t) is not uniformly continuous.

2

c
- [
[

I
£06

w

11. Consider the following adaptive control system:

é=—e+0x

éz—xe

adaptive system is stable and that e (t) — 0 as t — co.

where e (t) = a,, (t) — z (t) is defined as the tracking error between a given explicit reference time signal
Z, (t) which is assumed to be bounded; i.e., z,, (t) € L, and the state variable x (t). Show that the
Solution:

Choose a Lyapunov candidate function
V (e, 0) = e*+ 62
Then, '
V (e,0) = 2e(—e+ 0x) + 260 (—xe) = —2€% <0
then

Since V (e, 0) is negative semi-definite, e (t) € Lo, and 6 (t) € Lo, i.€., they are bounded. Since V (e, §) < 0,

V(e(t—>oo),@(t—)oo))—V(e(to),ﬂ(to))—/tooV(e,Q)dt——Q/tooez(t)dt——2||e||§

V(e(t = 00),0(t—00)) = V(e(to) 0 (to)) = 2lell3 = € (to) + 67 (to) — 2|le]l5 < oo
So, V (e, 0) has a finite limit as ¢ — oco. Since ||e||, exists, therefore e (t) € Lo N L. Also
V (e,0) = —4e (—e + 0x)

Since e () € L2N Lo and 6 (t) € Lo by the virtue that V (e, 0) <0,and x (1) € Lo since e (t) € L2N Lo
and z,, (t) € Lo by assumption, then V (e, ) € L. Therefore, V' (e, 0) is uniformly continuous. It follows
from the Barbalat’s lemma that V (e,0) — 0 and hence e (t) — 0 as t — oo.
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Chapter 5 Exercises

1. Consider a first-order nonlinear SISO system with a matched uncertainty

where a is unknown but b is known, 6* is unknown, and ¢ (x) = z°.

t=ax+blu+ 69 ()

2

A reference model is specified by

T = QT + b7

where a,, < 0 and b, are known, and 7 (¢) is a bounded command signal.

a. Design and implement in Simulink a direct adaptive controller that enables the plant output z (t) to
track the reference model signal z,, (t), given b = 2, a,, = —1, b,,, = 1, and r (¢) = sin¢. For adaptation
rates, use 7, = 1 and v = 1. For simulation purposes, assume ¢ = 1 and 6* = 0.2 for the unknown
parameters. Plot e (t), x (t), z, (), u(t), and 0 (¢t) for ¢ € [0, 50].

b. Show by the Lyapunov stability analysis that the tracking error is asymptotically stable; i.e., e () — 0
as t — oo.

c. Repeat part (a) for r () = 1(¢) where 1 (¢) is the unit-step function. Plot the same sets of data as in
part (a). Comment on the convergence of k, (t) and 0 (¢) to the ideal values k} and 0*.

Solution:

a. Define the ideal gain & that satisfies one of the model matching conditions

a+ bk, = ap,
and the known gain k, that satisfies the other model matching condition
bkr = bm

since b is known. Numerically, k; = —1 and k, = 0.5.
The adaptive controller is then given by

u=ky (t)x + ko —0(t)z?

with the following adaptive laws: )
ky = v.xeb

0 = —~yaxleb

25
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The Simulink model of the adaptive controller is as shown.
The response of the adaptive controller with r (¢) = sin¢ is shown in the following plot. Note that the
parameters k, (t) and 6 (¢) converge to their ideal values k) and 6*.
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N—— ~~

bm

The closed-loop tracking error equation is obtained as

. Let kg (t) = ky (t) — k* and 6 (t) = 6 (t) — 0* be the estimation errors. Then, the closed-loop plant
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ézg'cm—g'c:ame—bl;gﬂgc—i—bégc2

Choose a Lyapunov candidate function

o 2 g2
1% (e,k‘m,e) =e? 4+ =4
Vo Y
Then,
e - _ Uirks 200 _ ko . o
\% (e, ke, 0) = 2e (ame — bkyx + b9x2> 4 T = ae? — 2k, | web— ZE | +20 | 2%eb+ —
x v Y Y

Substituting in the adaptive laws k, (t) = N.[g (t) and 6 () = é(t) yields
1% (e, /;m, 5) = 2a,e> <0

Since V (e, ks, é) is negative semi-definite, e () € Lo, ky (t) € Loo, and 0 (t) € Lo, i.e., all signals are
bounded. Also

oo

V (t = o0) = V (to) :/ V (e, ) dt:2am/ €2 (1) dt = 2, ||e]?

to to

So, V (e

K, 5) has a finite limit as ¢ — oco. Since ||e||, exists, therefore e (t) € L2 N L. Differentiating
1% (e, Nm 5) yields

1% (e, I;:I, é) = 4a,e (ame — bl;wx + béxg)

Since e(t) € L2 N Lo, kz (t) € Loo, and 6(t) € Lo by the virtue that V(e,l%x,é) < 0, and
z(t) € Lo since e(t) € L2 N Lo and zp, (1) € Lo because r (t) € Lo by assumption, therefore

V (e,fcm,@j € Loo. Therefore, V (e,l%z,é) is uniformly continuous. It follows from the Barbalat’s

lemma that V e,l%z,é — 0 which implies e(t) — 0 as ¢ — oo. Therefore, the tracking error is

asymptotically stable.

. The response of the adaptive controller with 7 (¢) = 1(t) is as shown in the following plot. The param-
eters k, (1) and 6 (t) do not converge to their corresponding ideal values in this case. This is due to
the fact the the Lyapunov stability proof only shows that e () — 0 as t — oo, but not k,(¢) or 0 (¢).
Therefore, MRAC does not guarantee parameter convergence.
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. Consider the following first-order plant
t=ax+blu+ 69 ()]

where a , b > 0, 0* is unknown, and ¢ (x) = 2. Design an indirect adaptive controller in Simulink by
estimating a, b, and 6* so that the plant follows a reference model

T = QT + b7

where a,, = —1, b,, = 1, and r () = sint. For simulation purposes, use a = 1, b = 1, §* = 0.1,
2(0) = 2, (0) =1,a(0) =0, b(0) = 1.5, v = 7 = 79 = 1. Also assume that a lower bound of b is
bp = 0.5. Plot the time histories of e (¢), = (t) vs. ., (t), @ (t), b(t), and 6 (¢) for t € [0, 50]

Solution:
The adaptive laws are _
a = —yqxe

l;— —ypue if ‘?)’ > by, or if }IA)‘ = by and ‘3‘ >0
esgn (b) otherwise, e = 0 > 0
0 = —796 (x) esgn (b)
The adaptive controller is given by

u=rky () +ke (t)r—0(t) ¢ ()

where

The Simulink model and simulation results are as shown.
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Derive direct MRAC laws for a second-order SISO system
§+20wny +wiy =bu+ 00 (y)]

where ¢ and w, are unknown, but b is known. Show by applying the Barbalat’s lemma that the tracking
error is asymptotically stable.

Design a direct adaptive controller for a second-order system using the following information: b = 1,
Cm = 0.5, wy, =2, by, =4, r () = sin 2t, and

26)= | 2]

For simulation purposes, the unknown parameters may be assumed to be ¢ = —0.5, w,, = 1, and ©*T =
[0.5 —0.1 }, and all initial conditions are assumed to be zero. Use I', = I'e = 100/. Plot the time histories
of e (t), x (t) vs. pm (t), K (t), and O () for t € [0,100].

Solution:
Assuming there exist ideal gains K and k) that satisfy the model matching conditions

Bk* = B,

0 1 0 0 1 0
St I (L2 ] IR I e B T

Since A,, and B,,, have the same structures as A and B, K} and k} actually exist. In fact, k£ can be used
as the command feedforward gain k, where

where

bm

k. =k =(B"B)" BB, = -

Define an adaptive controller as

w=K, )z +kr—07 (t)®(z)
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Let K, (t) = K, (t) — K* and O (t) = O (t) — ©* be the estimation errors, then the closed-loop plant
model is

i=|A+ BK:+BK, | z+ Bk.r — BO'& ()
N—_—— N~~~
A B

Then, the closed-loop tracking error equation is obtained as
6=ty —=2=Apne— BK,z+ BO'®(x)
Choose a Lyapunov candidate function
v (e, K., é) = Pe+ K, K] +6715'6
where P = PT > 0 solves the Lyapunov equation
PA+ATP=-Q

with Q = Q" > 0.
Then, . .

1% (e, K, é) =—e"Qe+2"P|-BK,z+ BO'® (x)} + 2K, K] +207 15160
Since e PB is a scalar quantity, then

2¢"PBK,x = 2K,ze' PB
2¢" PBO® (2) =20 ® (z) e PB

Thus, . .

1% (e, K., é) — —¢TQe+ 2K, (—xeTPB + F;lf(gj) +207 [qs (z)e" PB +I5'60
Setting the trace terms to zero yields the adaptive laws for K, (t) and O ()

K] = I,ze' PB
O=-Tod(z)e' PB
Therefore,
V (e,R000) = =€7Qe < ~Ain (Q)lel]* <0

Since V (e, K,, é) < 0, therefore e (t), K, (t), and O (t) are bounded. Then,

Vit=00) = Vo) [ €TQedt <V (1)~ Amin (@) el

to

So, V( i ) has a finite limit as t — oo. Since |e|| exists, therefore e (t) € L3N Lo, but ||€]] € Lo

/ ( K,, ) can be shown to be uniformly continuous by examining its derivative to see if it is bounded,
where

1% (e, K., é) =—¢"Qe—e'Qé=—e' (QA + ATQ) e—2e'Q {Ame — BK,z+ BO'® (z)

Since e (t), K, (t), and O (t) are bounded by the virtue that V (e,f(x, é) <0, z(t) is bounded because
e (t) and x,, (t) bounded, r (t) is bounded by the problem statement, and @ (z) is bounded because x () is
bounded, therefore V (e, K., é) is bounded. Thus, V (e, K., é) is uniformly continuous. It follows from
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the Barbalat’s lemma that V (e, K’m ©) — 0 and hence e (t) = 0 as t — oo. Therefore, the tracking error
is asymptotically stable.The Simulink model and simulation results are as shown.
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Notice that with I, = I'e = 1001, the signals are highly oscillatory and the parameter convergence for
O (t) is not obtained. Re-running the simulation with I, = I'e = 10I, the simulation results are much
more improved as shown in the following plots.

0.5

(=)

20

40

40

-2

-4

20

40

33



34

For Exercise 5.3, suppose b is unknown but b > 0 is known. Design an indirect adaptive controller in
Simulink. For simulation purposes, all initial conditions are assumed to be zero, except for w, (0) = 0.8
and b (0) = 0.6. For simplicity, use the unmodified adaptive laws for @, (¢) and b (¢). Use v, = ¢ =y = 10

and I'e = 101. Plot the time histories of e (t), () vs. T, (£), @n (£), (), b(t), and O (t) for ¢ € [0,100].

Solution:
The indirect adaptive laws are .
b= —w,ﬂeTP
: Yorie' P
Wp = —F——
20y,
. (’ygdslfbn — 'ywxlf) e' P
¢= 202

O = —I'o® (x)e' Psgnb

The adaptive controller is given by

u=K,(t)z+k (t)r—07 (t)(z)

L [0 1 . [o 0 1 0
L B B H e B e

K, = (BTB) " BT (4, - 4)

where

Ky — (BTB)_léTBm

The Simulink model and simulation results are as shown.
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Thus far, we have considered adaptive control with a matched uncertainty as a function of x. In physical
systems, an external disturbance is generally a function of ¢. Adaptive control can be used for disturbance
rejection if the disturbance structure is known. Suppose the matched uncertainty is a function of ¢, then all
the adaptive laws can still be used by just replacing @ (x) by @ (), assuming & (¢) is known and bounded.
Consider the following first-order plant:

T =ax+blu+ 6" ()

where a , b, and 6* are unknown, but b > 0 is known, and ¢ (f) = sin2t — cos4t. Design an indirect
adaptive controller in Simulink by estimating a, b, and 6* so that the plant follows a reference model

T = QLo + b7

where a,, = —1, b, = 1, and r(¢) = sint. For simulation purposes, use a = 1, b = 1, * = 0.1,
2(0) = 2, (0) =1, a(0) =0, b(0) = 1.5, v = 7 = 79 = 1. Also assume that a lower bound of b is
bo = 0.5. Plot the time histories of e (t),  (t) vs. z, (t), a(t), b(t), and 0 (¢) for ¢t € [0, 50].

Solution:
The indirect adaptive laws are '
a = —ygxe

i Jomae i )b‘ > bo, or if ‘b‘ — bpand &L > o

esgn (b) otherwise, e ~ 0 > 0

6= 706 (1) esen (b)

The adaptive controller is given by
u=ky(t)x+k-(t)r—0()o(t)

where




The Simulink model and simulation results are as shown.
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6. Derive direct MRAC laws for a MIMO system
&= Az + B [u+ oo ()]

where A is unknown, but B is known. Show by applying the Barbalat’s lemma that the tracking error is
asymptotically stable.

Given z (t) = [1 () 22 (t)]T, w(t) = [ug (t) ug (t)]T, P (z) = [aF 23

11
o= o]
design a direct adaptive controller in Simulink for the MIMO system to follow a second-order SISO system

specified by
Loy = Amx + B,r

0 1 0
A= 5 o) e [i]
For simulation purposes, the unknown parameters may be assumed to be

1 1] oo _Jo2 0
A‘{—1—1]’9 _[0 —0.1]

and all initial conditions are assumed to be zero. Use I, = I'9 = 101. Plot the time histories of e (t), x (t)
vS. Ty, (), K, (t), and O (¢) for t € [0,100].

where 7 (t) = sin 2t and

Solution:
Assuming that there exist K} and K, that satisfy the model matching conditions

A+ BK; = Ay,

BK, = B,

The adaptive controller is given by

u=K,(t)x+ K. -0 (t)®(z)
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Let K, (t) = K, (t) — K* and O (t) = O (t) — ©* be the estimation errors, then the closed-loop plant
model is
i=|A+4BK:+K, |+ BK,r — BOT®(x)
——— ~——
Am B
The closed-loop tracking error equation is obtained as
é=im—=2=Ane— BK,z+ BO'®(x)
Choose a Lyapunov candidate function
|4 (e, K., é) = e Pe + trace (f(mfglffg—) + trace (éTF@_1Q>

Then,

14 (e, K., é) = —¢'Qe+2"PB [—f(zx +67d (CE)] + 2trace (IN(IF‘,L,_IIL(;) + 2trace (@Tfé)
= —e' Qe + 2trace (f(w [—xeTPB + Fw_lf(gD + 2trace (éT [43 (z)e' PB + FéD
The adaptive laws are .
K] = T,ze' PB
O =-Tod(zr)e' PB
Thus

)

V (e, K0,0) = —¢TQe < ~Apin Q) lel* < 0

Since V (e, K, é) < 0, therefore e (t), K, (t), and O (t) are bounded. Then,

Vit 00) = Vo)~ [ €TQedt <V (1) ~ Amin (@) el

to

So, V( . ) has a finite limit as t — oo. Since |e|| exists, therefore e (t) € L3N Lo, but ||€]] € Lo

/ ( K, ) can be shown to be uniformly continuous by examining its derivative to see if it is bounded,
where

1% (e, K, é) =—¢"Qe—e'Qé=—e' (QA + ATQ) e—2e'Q {Ame — BK,z+ BO'® (z)

Since e (t), K, (t), and O (t) are bounded by the virtue that V (e,f(x, é) <0, z(t) is bounded because
e (t) and x,, (t) bounded, r (t) is bounded by the problem statement, and @ (z) is bounded because z () is
bounded, therefore V (e, K., é) is bounded. Thus, V (e, K., é) is uniformly continuous. It follows from

the Barbalat’s lemma that V (e, K., é) — 0 and hence e (t) — 0 as t — oco. Therefore, the tracking error

is asymptotically stable.
The Simulink model and simulation results are as shown.
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Chapter 6 Exercises

1. A process is represented by a set of data (¢,z,y) given in the Matlab file “Process_Data.mat” where the
output y (t) can be approximated by a 4 —th degree polynomial in terms of z (¢) with end point conditions
y = 0and Z—z = 0 at z = 0. Determine numerically the matrix A and vector B and solve for the coefficients
0;, i =2,3,4. Compare the result with the Matlab function “polyfit”.

Solution:
The output y (x) is approximated as follows:

y=0y+ 6+ 92.’172 + 931’3 + 941}4
Applying the end point conditions y (0) = 0 and y (0) = 0 results in §y = 0 and 6; = 0. Therefore,
§ = 022 4 032° + 0,2 = O T d (1)

where © = [92 03 04]T, b (x) = [:cz a3 x4]T
O is solved by the batch least-squares method as

©=A"'B
h
where N 4N 5<N 6
N . doim1 Ti i T ngﬂ 2
A= Z¢ ()P (2;) = Z}\?1 DINEE D PR
=1 >ie1 ﬁ? >t x: Dim1 %8
N

N T Zi:l ’L2y7'

B = st(xi)yi = | X1 v

i=1 Zizl $?yi

The solution is 8 = —0.5, §3 = 0.1, and 6, = 0.3. Matlab function “polyfit(x,y,4)” yields the same answer.
2. Write Matlab code to solve Exercise 6.1 using the least-squares gradient method with © (0) = 0 and

I' = 10. Plot 6; (t) versus t. Compare the result with that in Exercise 6.1.
Note that the Euler method for the least-squares gradient method is expressed as

9i+1 = @1 — AtI'® (:El) [@T (3?2) 91 — yz}
Solution:

The least-squares estimation by the least-squares gradient method is expressed as

43
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O=-I%(x) [0 (2)0 —y]
For I' = 101, © (t) does not quite converge to the correct values. Changing I' = 30I causes O (t) to

converge to the same values as those in Exercise 6.1.

0.2f

3. Determine if the following functions are persistently exciting (PE), and if so, determine T and «.

a. ¢ (t) = e~t. (Hint: find limit of 6 (t) as t — c0)
cos Tt

b. & (t) = [Smt

Solution:
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a. ¢ (t) = e t. Consider a scalar estimation error equation

0 =—6"(1)0
Then,
0 (t) = exp [—'y/ 62Td’7':| = exp [5 (6721& — 1)}
0
Ast — oo, 0 (t) = e % # 0. Thus, ¢ (t) is not PE and does not guarantee a parameter convergence.
b. & (t) = [Cf’”t} Then,
sin 7t

cos’mt  sinmtcosmt
sinwtcosmt  sin®t

D)D" (t) = [

The PE condition is evaluated as

1 t+T 1| + sin 27 (t+T') —sin 27t cos 27 (t+T)—cos 27t

- T —— |2 4 - 1

T / 4 (T) o (T) dr = T cos 27r(t+T)Icos 27t T sin 27r(t+TrT)fsin 27t
t - 4 2 4m

Let T = 1. Then, ¢ (z) is PE since

1 et - 1[Zo 110
_ — | 2 -
T/t b (1) (T)dT—T|:O g} =3 {01}

Thus, a = % The estimation error is exponentially stable and parameter convergence is guaranteed.

4. Consider a first-order system with a matched uncertainty
t=ax+blu+6"¢(t))

where a and 6* are unknown, but b = 2, and ¢ (¢) = sin¢. For simulation purposes, use ¢ = 1 and 6* = 0.2.
The reference model is given by
Ty = GmTm + by

where a,, = —1, b, =1, and r (t) = sint.
Implement in Simulink an indirect adaptive control using the recursive least-squares method with nor-

malization. All initial conditions are zero. Use R (0) = 10. Plot e (t), z (¢) versus z,, (t), a (t), and 0 (),
for t € [0, 40].

Solution: . .
Let 2(t) = [a(t) b0 (t)] and ¥ (z,t) = [« sint]| . Then, the RLS adaptive laws with normalization are
given by )
2=—RV¥ (z,t)e
Be_ RY (z,t)¥T (z,t) R
1+ VT (x,t) RV (z,1)
where
€= amT +b,r — 1T
—& b,
U= amb ax + an

The adaptive controller is given by
u=u—0(t)o(t)

The Simulink model and simulation results are as shown.
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Chapter 7 Exercises

1. Approximate
y = 0.1sin 0.4x + cos® 2z

where x (t) = sint for ¢t € [0,60], by a 4*"-degree Chebyshev polynomial using the least-squares gradient
method with I = 1001 and At = 0.001. Initialize © (¢) with zero. Plot O (t) versus ¢. Plot y (t) and ¥ (¢)
versus z (t) on the same plot. Compute the root mean square error between y (¢) and § (¢).

Solution:
O (t) and g are shown in the following plots. The root mean square error is 0.0058.
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2. Implement a sigmoidal neural network
j=f@)=Vie(W z+ W) +Vo=0"d (W z)
where
- 1
Cl+te
to approximate y (t) in Exercise 7.1 with © (t) € R3 W (t) € R? x R* and I'9 = Iy = 100 and
At = 0.001. The initial conditions © (0) and W (0) are to be generated by a random number generator.

Plot © (t) and W (t) versus t. Plot y (t) and g () versus z (¢) on the same plot. Compute the root mean
square error between y (¢) and ¢ ().

o (x)

Solution:
O (t) and § are shown in the following plots. The root mean square error is 0.0051.
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3. Consider a first-order system with a matched unstructured uncertainty
t=ax+blu+ f(x)]

where a and f (x) are unknown, but b = 2. For simulation purposes, @ = 1 and f (x) = 0.1sin 0.4x+cos? 2z.
The reference model is given by
T = QT + b7

where a,, = —1, b,,, = 1, and r (t) = sint.

Implement in Simulink a direct adaptive control using a least-squares gradient method to approximate
f (z) by a 4*"-degree Chebyshev polynomial. All initial conditions are zero. Use I' = 0.21. Plot e (t), x ()
Versus o, (t), ks (t), and O (t) for t € [0, 60].

Solution:
Let Q7 (t) = [ (t) 23 ()] = [bky (1) 40T ()] and ¥ (2,t) = [-2 &7 (2)]' where & (z) =

[1x22% -1 423 — 32 82* — 8z% + l]T. Then, the least-squares gradient adaptive laws are
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where

€= amT +by,r —1T

The adaptive controller is then given by

u="ky(t)x+kor—0" (t)P(z)

—I'U (z,t)e
0
ke = =
(2
o=

The Simulink model and simulation results are as shown.
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Chapter 8 Exercises

1. Consider a first-order SISO system
T=ar+bu+w

where w (t) is a bounded disturbance and w (¢) is an adaptive controller defined as

u = kyx
l'cgg = —%azzb
Suppose the solution of z (¢) is given by
r=t(1+1t)"

a. Analyze parameter drift behaviors of the closed-loop system by finding all values of p that result in
unbounded feedback gain k, (¢) and all values of p that result in a completely bounded system.

b. Implement the adaptive controller in Simulink using the following information: a =1, b =1, v, = 1,
x (0) =0, and k, (0) = 0 with a time step At = 0.001 sec for two different values of p: one for unbounded
k. (t) and the other for all bounded signals. Plot the time histories of x (¢), u (¢), w(t), and k, (¢) for
each of the values of p for ¢ € [0, 20] sec.

Solution:

a. x (t) is bounded if p < —1. k,, (¢) is evaluated as

t
ky — k2 (0) = —fywb/ (1 + T)2p dr
0

Let u =1+ 7, then

t
ky —ky (0) = —yzb [ (u—1)°u®du = —v,b
0

(14+0)*P -1 20 +)*2 -2 N (146 —1
2p+3 2p + 2 2p+1

Thus, k, (t) is bounded if 2p 4+ 3 < 0 or p < —%.
w (t) is obtained as
W= —ax — bkgz =pt (1+ )" " + (14 t)” —at (1 +t)°
- b{_7 .| @ )P 1 2014072 40P o

2+3 2p + 2 2p+1
w (t) is bounded if 3p+3 < —1orp < —% and p # —%, p#—1,p+# —%.
Thus, z () and w (t) are bounded but k; (t) is unbounded if —3 < p < —%. The system is completely
bounded if p < —%.

+lcz(0)}t(1+t)”
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b. The Simulink model and the simulation results are as shown.

Choose p = —1I for unbounded k, (t). Note that k, (t) is unbounded, but z (t), u(t), and w (t)
are bounded. Choose p = —2 for bounded closed-loop signals. The closed-loop system is completely
bounded.
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2. Consider a time delay second-order SISO system

J—y+y=u(t—ts)

where t; is an unknown time delay.
The unstable open-loop plant is stabilized with a linear derivative controller

u=k}y

where k) = —7.

a.

b.

Calculate analytically the cross-over frequency w and the time delay margin t; that corresponds to
neutral stability of the closed-loop system.

Now, suppose an adaptive controller is designed to follow the delay-free closed-loop system with the
linear derivative controller as the reference model

ym+6ym+ymzo

Let z (t) = [y(t) y(t)]T € R?, then the open-loop plant is designed with an adaptive derivative
controller
u=K,x

K] = —T,zz"PB

where K, (t) = [0 kq (t)] and I, = diag(0,7,) and v, is an adaptation rate.

Implement the adaptive controller in Simulink using the following information: @ = I, y(0) = 1,
9 (0) =0, and K, (0) = 0 with a time step At = 0.001 sec. Determine 7, . that causes the closed-loop
system to be on the verge of instability by trial-and-error to within 0.1 accuracy. Calculate kg4, that
corresponds to v, ... Plot the time histories of z (t), u (t), and kg4 (¢) for ¢ € [0, 10] sec.

Solution:

a. The closed-loop plant is

5=y )+ 0)
s2 — s+ 14 Tse~tas

Substituting s = jw into the characteristic equation in the denominator yields
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—w? — jw 41+ Tjw (coswty — jsinwty) =0
Then, separating the real and imaginary parts yields
—w? + 14 Twsinwty =0
—w + Twcoswty = 0 = coswty = %
The cross-over frequency equation is obtained as
w! = 50w? +1=0

The cross-over frequency and time delay are computed to be

50 502 — 4
W= 5 + \/T =1/ 25 4 4v/39 = 7.0697 rad /sec
1 1 1

1
tg = — cos ' = ——— cos™! = = 0.2019 sec
w 25 + 44/39 7

. The open-loop plan is expressed as

A B
The reference model is expressed as
Ym | _ | O 1| |ym
gm N -1-6 ym
———
Am

Let Q = I, then

The adaptive law then becomes

So the controller is simplified as
u="kq(t)y

: (1 1.

ka = =2y <2y + Gy)
The Simulink model and simulation results are as shown with the time delay t; = 0.2019 sec injected
at the input.
By trial and error, v,,,,, is determined to be 4.7, which corresponds to kg,,,,, = —6.8853. Note that
the linear system is unstable at k; = —7. The adaptive control result is in agreement with the result
of the linear system. The plots of x (¢), u (t), and kg (t) are as shown.
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3. For the Rohrs’ counterexample, stability of the closed-loop system is affected by the frequency of the
reference command signal r (t). Write the closed-loop transfer function from r (¢) to y (¢). Then, compute

the cross-over frequency w for the reference command signal

r=0.3+ 1.85sinwt

to give a 60° phase margin. Also compute the ideal feedback gain kj, corresponding to this phase margin.
Implement in Simulink the Rohrs’ counterexample using the same initial conditions k, (0) and k&, (0) with
vy =Y = 1 and At = 0.001 sec. Plot the time histories of y (t), u (t), ky (t), and k, (t) for ¢t € [0,60] sec.

Solution:
The open-loop plant is
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2 29u 458u
s+1s24+30s+229 s34 31s2 + 259s + 229

y pry
The initial value of the controller is
u="ky(0)y+ k- (0)r =—0.65y + 1.14r

Then,
_ 458(—0.65y 4 1.14r)

83 4 3182 + 2595 + 229

The closed-loop transfer function is obtained as

y 522.12
r s34 3152 + 2595 + 526.7

The phase margin can be determined from

3 (2 _
tam = w? — (w2 — 2alwy) w

— (2w, — a) w? — aw?
( n

which results in
WP+ V3 (2¢w, —a)w? — (wi — Qann) w + \/§aw,2L =0

Substituting in ¢ = %, a = —1, 2¢w, = 30, and w2 =229, we get
w® + 31V3w? — 259w — 229v/3 = 0
The solution is w = 5.5714 rad/sec. The feedback gain corresponding to this frequency is computed from

L |w? - (wfl — 2a§wn) w
bw2k,

¢ =wtqy =sin"~

This yields
w3 — (w,zl — Zann) w

ky = = —3.2021

bw? sin ¢

The Simulink model and simulation results are as shown.
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By changing the frequency of the reference command signal that corresponds to a 60° phase margin, the
closed-loop system is now stable, although the response is highly oscillatory. Note that &, (¢) tends to a
value of -3.2783 at 60 sec which agrees reasonably well with the theoretical value.






Chapter 9 Exercises

1. Consider a time-delay second-order SISO system

i+ 2(wny + wiy = bu (t — ta)

where b = 1, tg = % sec, and ¢ and w, are unknown but their actual values are —0.5 and 1 rad/sec,
respectively.
The system is designed to track a second-order reference model

ym. + 2memym + anym = me (t)

where ¢, = 0.5, w,,, = 2 rad/sec, b,, =4, and r (t) = 1, with an adaptive controller

u= K, (t)x + k.r

where z (£) = [y (t) 9 (1)] " and K, (£) = [k, (1) ka (1)].

a.

b.

Calculate the fixed-gain values of k and kg . to achieve a phase margin of 60° and a time delay
margin of 1/3 sec.

Define a convex set described by an ellipse that contains k, (¢) and kg (t)

k\> (ka\’
= (= M) 1<
g(kp,k‘d) (a> +<b <0
where a and b are to be determined from k

im0 g Design a projection method for the adaptive
controller to ensure robustness in the presence of time delay. Write down the adaptive law. Implement
the adaptive controller in Simulink using the following information: y (0) = 0, ¢ (0) = 0, K, (0) = 0,
and Iy = 0.2/ with a time step At = 0.001 sec. Plot the time histories of y (), u (), kp (¢) and kq (%)
for t € [0,600] sec. What happens when the projection method is removed from the adaptive law?

min min

min *

Solution:

a. The closed-loop transfer function is

y ket

r 824 2wps + w2 — kpetas — kgse~tas

The characteristic equation with s = jw yields the following:
—w?+ w,% — kpcoswty — kqwsinwtyg = 0

2Cwnw + kpsinwty — kqw coswtg = 0

61



62

The cross-over frequency is computed to be

Then,

Solving for k, and k4 gives

Pmin

kq

min

_9 _
w=—=m
tq
1 ™3
2
_ 1— — _—_— =
T+ 2k‘p 9 kqg=0
\/§ ™
—7T+7kp—§kd—0
2
- 1
T A o FTV3EL o
2
—m2y/3 - 3
= kg = 7”[2 TV gu50
v

b. The constraint function is

k, \? ki \?
ky ky) = P —-1<
9 (k. k) (k ) *(kd) =0

dkpkg

4k
22kd — kémm
kdmin dkpka
k2 k2

2 k2
Pmin 2d7nin

4k2

Pmin

4k3

d

kg

min

Pmin
Then,

2k,

2 2%k,

Vor, (K.) V790 () = | " | [552
k:gmin

4k2 8kypkqg

V'ge6 (©) Vge (O) = 1A =+ k2 pkg

Pmin Pmin min

The projection method for the adaptive law is

+ =4
kg'min ( klz)rn in

1 2
d
+

if g(K;) <0 orifg(K,)=0and — (meTPB)T Vi, (K;) <0

K F.’I;eTPB
T [I - %@2%] ze! PB  otherwise

The Simulink model and simulation results are as shown.

The response with the projection method exhibits high frequency chattering as k,, (t) and kq (¢) are forced
back into the compact set whenever the constraint is violated. This results in the switching behavior in the
k, (t) and kq (t) signals. When the projection method is removed from the adaptive law, the closed-loop

system becomes unstable as k, (t) and kq (t) exceed k

Pmin

and kg

min *
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2. Implement in Simulink the o modification and e modification for the Rohrs’ counterexample with the
reference command
r=0.34 1.85sin16.1¢

using the same initial conditions k, (0) and k, (0) with v, =+, =1, 0 = 0.2, and g = 0.2 and At = 0.001
sec. Plot the time histories of y (¢), u (t), k, (t)and k, (t) for t € [0,100] sec. Experiment with different
values of ¢ and p and determine by trial-and-error the values of o and p at which the system begins to
stabilize.

Solution:
For the Rohrs’ counterexample, different robust modification schemes can stabilize the closed-loop plant.
The o modification adaptive laws are given by

ky = vz (ye — oky)
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kr =y (re — ok;.)
The e modification adaptive laws are expressed as

ky = vz (ye — plel ky)

kr = (re — plel k)

The Simulink model and simulation results are as shown.
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The closed-loop system is stable with the ¢ modification (¢ = 0.2) as shown.
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The system is also stable with the e modification (1 = 0.2) as shown.
The modification parameters at which the closed-loop system begins to become stable are o = 0.12 and
p=0.17 for v, =, = 1.

. Consider a first-order SISO system
T =azr+bu+w

where a is unknown, b is known, and w is an unknown disturbance.
To prevent the parameter drift, the o modification is used in an adaptive regulator design

u=ky(z)x

ky = —Vy (be + akw)
Suppose x (t) is a sinusoidal response where x (t) = sint.

a. Derive the general time-varying disturbance w (¢) that produces the given response z (¢) in terms of a,
b, Yz, 0, and k, (0). Let a=1,b=1, v, =10, 0 = 0.1, 2 (0) = 0, and k, (0) = 0. Express w (t).

b. Implement in Simulink the control system with a time step At = 0.001 sec. Plot the time histories of
x(t), u(t), w(t) and k, (¢t) for t € [0, 20] sec.

c. Repeat part (b) with the standard MRAC by setting o = 0. Does the system exhibit the parameter
drift?

Solution:
a. ky (t) is evaluated as

d

7 (e%”tkz) = —fy,sbe%”‘”t:r2 = — v, beT=" sin? ¢
Using the following trigonometric identity
1 —cos2t
cos2t =1 —2sin?t = sin?¢ = B —

The ¢ modification adaptive law is integrated as



t
ek, — ky (0) = —%b / €77 (1 — cos 27) dT
0

D (oot gy 4 22D (a0 OS2+ 25in28) = 00
20 2 V202 +4
This results in
b Y2ab _ b vub(v,0 cos2t + 2sin 2t)
kp= ke (0) + —— — ——2 ——| e 7=t — = RAAL
[ 0)+355 2(7§a2+4)]e 20 2 (1202 + 4)
The disturbance that generates x = sint is then obtained as
b 20b b2
w =& — ax — bk,x = cost —asint — b [k‘w (0) + % % e+t gint + 0 sint

Y b? (7,0 cos 2t + 2sin 2t) sint
2 (202 4+ 4)

Let a=1,b=1, v, =10, 0 = 0.1, and k, (0) = 0. Then, the disturbance is expressed as
w = cost+4sint — de 'sint — (cos 2t + 2sin 2t) sint

b. The Simulink model is as shown.
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The closed-loop system is stable with the o modification as shown. The response of z (t) follows exactly
the signal sin¢.
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c. The system exhibits parameter drift of k, (¢) when the o modification is removed.
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t t
. Consider a linear system
&= Ax + Bu

y=Cx

Design a reference model for tracking the output y (t) with a reference command r (t) using the optimal
control approach and the following cost function:

tr
J = lim f/ [(CZ‘ —)"Q(Cz—r)+u Ru|dt
0

Derive the expressions for the optimal control gain matrices K, and K, for the closed-loop system

= (A+ BK,)z+ BK,r
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Given
. (12 n 2
Y714 |
y=[10]
r=sint — 2cos4t — 2e ! sin? 4t
Implement in Simulink the control system. Let @ = g and R = %. Determine a suitable value of g, K,

and K, such that \/i fotf (y —7)%dt < 0.05 for t € [0,10] sec. Initialize with = (0) = [ 2 1]T. Plot the
time histories of y (¢) and r (¢) on the same plot, and e (t) = y (t) — r (¢).

Solution:
The Hamiltonian function is defined as

H(z,u)==(Cz—r)" Q(Czx—r)+ %uTRu + AT (Az + Bu)

1
2
The adjoint equation is obtained as

A=-VH] =-CTQ(Cx—r)—A"X

subject to transversality condition A (tf) = 0.
The necessary condition of optimality is established by

VH! =Ru+B"A=u=—-R'B")\
We assume an adjoint solution of the form
A=Wz +V

Then,
A=Wz +W [Az — BR'BT Wz + V)| +V =-C"Q(Cx—1)— AT Wz +V)

This yields the following equations for infinite-time horizon optimal control
WA+ A"W —WBR'BTW+C"QC =0

V=(AT-WBR'B") ' CTQr
Therefore,
u= K,z + K,r
where
K,=—-R'B'W
K.=-R'BT (AT -WBR'B")" C"Q
The Simulink model is as shown.
By trial-and-error, ¢ = 59 results in \/i fotf (y —r)*dt = 0.0499 < 0.05 for ¢ € [0,10] sec. The corre-

sponding gain matrices are K, = [—59.5053 —0.9979] and K, = 58.9952. The response of y (t)and the
tracking error e (t) = y (t) — r (t) are shown in the following plot.
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5. Consider a time delay second-order SISO system
j—y+y=u(t—ta)

where t4 = 0.1 sec is a time delay.
The unstable open-loop plant is stabilized with an adaptive controller

u= K,x
where z (t) = [y () § (t) ] T eR? and K, (t) = [kp () ka (t) ], to achieve an ideal reference model

a. Express the optimal control modification adaptive law for K, (¢). Let I' — oo and @ = I, calculate the
equilibrium values of K (t) as a function of the modification parameter v.

b. Determine numerically the value of the modification parameter v to achieve the maximum time delay
margin to within 0.001. Compute the equilibrium values of K, (t) corresponding to this modification
parameter v. Implement the adaptive controller in Simulink with this modification parameter using
the following information: I" = 107, y (0) = 1, ¢ (0) = 0, and K, (0) = 0 with a time step At = 0.001
sec. Plot the time histories of x (¢), u (t), and K, (¢t) for t € [0, 10] sec.

c¢. Increase the adaptation rate to I = 10000I. Repeat the simulations with a time step At = 0.0001 sec.
Compare the steady-state values of K (t) at 10 sec with those results computed in part (b).
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Solution:

a. The optimal control modification adaptive law is

K] = -T2’ (P-vK]BTPA,')B

As I' — 0o, the equilibrium value of K, can be found by setting K, (t) = 0

.
5]

_ _ ]_ _ 1
PB-vK]BPA;'B= K] =~ (BTPA;'B)” ' PB=-[-1—
14 14

b. The controller with the equilibrium value of K, (t) is

1 1.
u=——y— —y+kr
v 3v
The closed-loop transfer function is
Y a kyr
—_ = G =
r () s2—s+1+ %e_tds + 31 se—tas

v

The characteristic equation with s = jw is
5 . 1 . 1 .
—w® —jw+ 1+ — (coswty — jsinwty) + 3,0 (coswty — jsinwty) =0

v v

which results in two equations
9 1 1
—w+ 14 —coswty + —wsinwty =0
v v

1 1
—w — —sinwty + —w-coswty =0
v 3v

The cross-over frequency and time delay margin are determined from the following equations

4 1 2 1 _
UJ_1+9? w” + 1—; =0

1 3v (4w? — 3
tg = Zcos™! [V(;J )
w w*+9

ty varies as a function of v as shown in the following figure.
The maximum time delay margin is ¢4 = 0.1676 sec for v = 0.096. The ideal equilibrium values of
K, (t) for the maximum time delay margin is K, = [—10.4167 —3.4722].
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The Simulink model is as shown. B
The closed-loop is completely stable with K, (¢) converging to the equilibrium values K, = [ —4.6046 —2.9598] .
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c. If I' increases to a larger value, say 10000/, K, (t) tends to the equilibrium values of K, =
[—10.4356 —3.4727] which agree very well with the analytical results in part (b). It is also noted
that the closed-loop system with a large adaptation rate for fast adaptation exhibits no high frequency
response as shown.
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6. Consider a first-order SISO plant as
t=ax+b(u+0"x+ w)
witha=—-1,b=1, 0* =2, and
w = cost + 4sint — de”'sint — (cos 2t + 2sin 2t) sint

This disturbance will cause a parameter drift when the standard MRAC is used in a regulator design.
An adaptive controller is designed as
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u=kyr—0(t)x—w(t)

to enable the plant to follow a reference model

T = QL + b1

where a,, = =2, by, =2, and 7 (¢) = 1.

a.

b.

Calculate k,.. Express the adaptive loop recovery modification adaptive laws for 6 (t) and w (¢) using a
modification parameter 1 = 0.1.

Implement the adaptive controller in Simulink using the following information: x (0) = 0, 6 (0) = 0,
w(0) =0, and v = y,, = 100 with a time step At = 0.001 sec. Plot the time histories of x (¢), u (),
0 (t), and w (t) and W (t) together on the same plot for ¢ € [0, 100] sec.

Solution:

a.

b.

The adaptive controller with the adaptive loop recovery modification adaptive laws is given by
u=k,—0()x—w(t)
0= —7 (zeb+nb)

= _’Yweb

where k. Tm =1

Note that for the adaptive law for W (¢), ¢ (x) = 1 and ¢, () = 0. So it is simply just the standard
MRAC. The adaptive law for 6 (¢) is just the o modification since ¢ () = z and ¢, (z) = 1.

The Simulink model is as shown.
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The response of the closed-loop system with the adaptive loop recovery modification is stable as shown.
w (t) approximates the disturbance w (t) fairly well. 8 (¢) is bounded but does not converge to a steady-
state value.
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Consider a second-order SISO plant
§+ 2Cwng +wyy = bu (t — ta)

where ¢ = —0.5 and w,, = 1 rad/sec are unknown, b = 1 is known, and ¢4 is a known time delay.
Design an adaptive controller using the normalized MRAC without the projection method to allow the
plant to follow a reference model

Um + 2CmwWmYm + wgnym = b1 (t)

where ¢, = 3, wym =1, by, = 1, and r () = rosint.

a. Implement the adaptive controller in Simulink using the following information: t; = 0, 2 (0) = 0,
K, (0) =0, and I, = 100] with a time step At = 0.001 sec for the standard MRAC by setting R =0
with 7o = 1 and 7o = 100. Plot the time histories of y (t) and y,, (t), €1 (t) = ym (t) — y (), u (t), and
K, (t) for ¢t € [0,100] sec. Comment on the effect of the amplitude of the reference command signal on

MRAC.

b. Repeat part (a) for the normalized MRAC with R = I and ro = 100 for ¢, = 0 and t4 = 0.1 sec.

Comment on the effect of normalization on the amplitude of the reference command signal and time
delay.

Solution:

a. The plant is expressed as
= Ax + Bu(t — tq)

0 1 01 0
A== [20] 2= [N

The reference model is expressed as

where

Lo, = AT + B

0 1 0 1 0
An = —aguen] =[5 2s] 2= 1]

where 7 (t) = asint and



The standard MRAC adaptive controller with normalization is given by

where k, = 1.
The Simulink model is as shown.
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The response of the closed-loop system with the standard MRAC for rg = 1 and t4 = 0 is as shown.
The closed-loop plant does not seem to track the reference model very well.
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The response of the closed-loop system with the standard MRAC for ro = 100 and t; = 0 is as shown.
The closed-loop is unstable. Thus, unlike linear systems, the amplitude of the reference command signal
does affect the closed-loop stability.
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b. The response of the closed-loop system with the normalized MRAC (R = I) for ro = 100 and t; = 0 is as
shown. The closed-loop plant is completely stable with the tracking error tending to zero asymptotically.
The adaptive parameters are bounded.
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The response of the closed-loop system with the normalized MRAC (R = I) for ro = 100 and t4; = 0.1
sec is as shown. The closed-loop plant is still stable but the tracking error does not tend to zero. The
adaptive parameters are more oscillatory but still bounded.
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In conclusion, the normalization seems to be able to eliminate the effect of the amplitude of the
reference command signal as well as the time delay on the closed-loop stability. It is more robust than
the standard MRAC.

8. For the Rohrs’ counterexample, design a standard MRAC with the covariance adjustment method without
the projection method.

a. Implement the adaptive controller in Simulink using the following information: y (0) = 0, k, (0) =
—0.65, k- (0) = 1.14, v, (0) = - (0) = 1, and n = 5 with a time step At = 0.01 sec. Plot the time
histories of ky (t), ky (t), vy (t), and . (t) for t € [0,100] sec. Note: plot =, (t) and v, (t) with the
logarithmic scale in the y axis for better visualization.

b. Repeat part (a) with ¢ € [0,1000] sec. Do k, (¢) and k, (t) reach their equilibrium values or do they
exhibit a parameter drift behavior?

Solution:

a. The standard MRAC adaptive laws for k, () and k, (t) with the covariance adjustment method are

ky = vy (t) ye
ky =7, (t) e
Yy = =Yg
Yo = =y

The Simulink model is as shown.
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The response of the closed-loop system for ¢ € [0,100] sec is as shown. The closed-loop plant is stable
up to t = 100 sec, but k, (¢) and k, (t) do not appear to reach their equilibrium values. The adaptation
rates at ¢ = 100 sec are -y, (100) = 0.0189 and ~, (100) = 0.0011 which are quite small.
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b. The response of the closed-loop system for ¢ € [0,1000] sec is as shown. The closed-loop plant is still
stable up to ¢ = 1000 sec. k; (t) and k, (t) still do not appear to reach their equilibrium values. The
adaptation rates at ¢ = 1000 sec are v, (1000) = 0.0020 and -, (1000) = 0.0001 which are very small.
Nonetheless, 7, (t) and ~, (t) will always be positive as they tend to zero as t — oo. Therefore, k,, (t)
and k,. () will continue to drift forever eventually when k, (¢) reaches a limiting value at k, = —17.0306
whereupon the closed-loop system becomes unstable.
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9. Consider a first-order SISO plant
t=ar+b\[u(t—1ts) +0"¢(x)] +w

where a = —1 and b = 1 are known, A = —1 and #* = 0.5 are unknown, but the sign of A is known,
¢ (z) = 22, tg = 0.1 sec is a known time delay, and w (t) = 0.02 + 0.01 cos 2t
The reference model is given by

T = QT + b7

where a,, = =2, b,, = 2, and r (¢) = sint.

a. Design an adaptive controller using the standard tracking-error based optimal control modification
method. Express the adaptive laws.

b. Implement the adaptive controller in Simulink using the following information: z (0) = k, (0) = k- (0) =
0(0) =0 and v, = v = 79 = 20 with a time step At = 0.001 sec for the standard MRAC with v =0
and for the optimal control modification with v = 0.2. Plot the time histories of z (¢) and z,, () on the
same plot, u (t), ks (t), k- (t), and 6 (t) for ¢ € [0,60] sec.

Solution:

a. The adaptive controller is
u=ky(t)x+k (t)r—0(t)¢(x)

where the optimal control modification adaptive laws are given by

I%m = VX (esgn)\ + kaxba;ll) b

k, = y,r (esgn)\ + Vrkrrba;ll) b
0= —po () [esgn — vé () Oba;,'] b

b. The Simulink model is as shown.
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The response of the closed-loop system with MRAC is as shown. The closed-loop plant begins to
diverge. Note that reducing the adaptation rate will improve performance.
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The response of the closed-loop system with the optimal control modification is as shown. The closed-
loop plant is bounded, but the tracking is not as good. This is expected since the adaptive law achieves
robustness at the expense of tracking. The optimal control modification is more robust than the stan-
dard MRAC.
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10. For Exercise 9.9, suppose A is completely unknown.

a. Design an adaptive controller using the bi-objective optimal control modification method. Express the
adaptive laws.

b. Implement the adaptive controller in Simulink using vy = 7, = 20, = 0, and the rest of the
information in Exercise 9.9 along with the initial conditions A (¢ ) =1 and @ (t) = 0. Plot the time
histories of x (t) and ., (t) on the same plot, u (t), ks (), kr (t), 0 (¢), A(t) and @ (¢t) and w on the
same plot for ¢ € [0, 60] sec.

c. Comment on the results of Exercise 9.9 and Exercise 9.10. Which method seems to work better?

Solution:

a. The bi-objective optimal control modification adaptive laws are

kx = YaT (e + Z/uj\ba:nl> bA
l%r =T (e + Vuﬁba;bl) bA

- 9 S Q N -1

0 = —yx (e +ep +vurba,, —n {[u + 200 ()] Ab + w} a,, ) bA

A== [u+6¢ (z)] (ep -7 {[u + 200 (2)] \b + 121} a:nl) b
W=~y (ep -7 {[u—l— 206 ()] Ab + w} 1)
where the predictor error e, (t) = & (t) — « (¢) is computed from the predictor model
&= ami + (@ — am) x4+ bA[u(t —tg) + 0¢ ()] + b

b. The Simulink model is as shown.
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The response of the closed-loop system with bi-objective optimal control modification is as shown.
There are large initial transients as expected due to the control reversal. After 30 sec, the closed-loop
plant begins to follow the reference model. Note that A () converges to the true value. The other
adaptive parameters k, (t), k. (t), and 6 (¢) also tend to their true values of 1, -2, and 0.5, respectively.



The response of the closed-loop system

begins to diverge.
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with bi-objective MRAC is as shown. The closed-loop plant
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c. In general, the bi-objective optimal control modification works better than all the other methods in
Exercise 9.9 and Exercise 9.10 in the presence of input uncertainty. The parameter convergence of the
bi-objective optimal control modification is much better than all the rest.



Chapter 10 Exercises

1. Consider the equation of motion of an inverted pendulum

1 | .

gmLzﬂ - imgL sinf + cf = u (t —tg)

a. Expand sin @ using the Taylor series expansion about 6 (t) = 0 for the first two terms. Then, express
the equation of motion in the form of

i = Az + B [u(t —tq) —l—@*T@(x)}

where 1 (t) = 0(t), 22 (t) = 0 (t), x (t) = (@1 (t) 2 (t)]T, & (z) is comprised of the function in the
nonlinear term of the Taylor series expansion of sin# and the function in the damping term, and ©* is
a vector of parameters associated with @ () which are assumed to be unknown.

b. Given m = 0.1775 slug, L = 2 ft, ¢ = 0.2 slug-ft?/sec, t; = 0.05 sec, and 6 (0) = 6 (0) = 0. Using the
equation of motion in part (a), design an adaptive controller using the optimal control modification to
enable the closed-loop plant to track a reference model specified by

ém + 2<mwm0m + wyznam = wfnr

where (,, = 0.5, wy, = 2, and r = 5. Calculate K, and k.

c. Implement the adaptive controller in Simulink using the nonlinear plant with @7 (0) = [0} 0] and a
time step At = 0.001 sec for the standard MRAC with I" = 100 and the optimal control modification
with I = 100 and v = 0.5. Plot the time histories of z (t) and x,, (t) on the same plot, u (t), and © (1)
for t € [0,10] sec. Compare the closed-loop response with the optimal control modification to that in
Example 10.1. Does the linear nominal controller design in this problem appear to work as well as the
nonlinear nominal controller design in Example 10.17

Solution:

a. The Taylor series expansion of sin# about 6 = 0 for the first two terms is

. 63
s1n9:9—§

Then, the equation of motion is then approximated as

9'—39(0—193>+ 5 w(t —tg) — 3¢

2L 3! mL? mL?

or

85
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2L mL N——

T A T B D(x)
Note that the actual plant is

Vl}% xz %_ 5 }[u(ttd)c;@]

To 5% sinay

b. The reference model is expressed as
Loy, = AT + B

where

0 0 0
Am = {—wﬁl —QCme] » B = L}Zl]

The adaptive controller is designed using the approximated equation of motion as
u= K,z +kor—07"(t)d(z)
where )
O=-I'd(z)[e'P—vd' (v)OB'PA,'| B
A+ BK, = A,
Bkr = Bm
which yield

B . |
K, = (BTB) gt (A — A) = [0 mé;z} [_w2 3 ;% _%mwm}
m

2
= _mgL (w2, + 32 2¢,wp ] = [~6.6576 —0.4733]

2,2
k= (B"B)" BT Bn=|0m | [ 0 } = % = 0.9467

3 wm

c. The Simulink model is as shown.
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The response of the closed-loop system with MRAC is as shown. The closed-plant tracks the reference
model quite well.

0.4
0.3 7
g "
X 02 f !
< X, <
0.1 X
- - m
\
0 -0.2
0 5 10 10
t t
1 0.5
[ p—
0 0 :
] @
-1 -0.5
2 1
0 5 10 0 10

The response of the closed-loop system with the optimal control modification is as shown. The tracking
is slightly better than that with MRAC.
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The linear nominal controller with adaptive control works as well as the nonlinear nominal controller
in Example 10.1.

2. Implement a longitudinal dynamic model of an aircraft.
t=Ax+ B [u(t—td)+9*Tx]

where z (t) = [a(t) 0(t) q(t )} u(t) = 6 (t), and ©* = [0 0 9;]T, with the following information:
V = 795.6251 ft/sec ¥ =0, Zo = —642.7855 ft/sec?, Zs. = —55.3518 ft/sec?, M, = —5.4898 sec 2,
Ms, = —4.1983 sec™2, M, = —0.6649 sec™!, M, = —0.2084 sec™!, 6% = 0.5, 0; = —0.5, and tq = 0.1 sec.

a. Design an adaptive pitch attitude controller using the optimal control modification to enable the closed-

loop plant to follow a second-order reference model of the pitch attitude specified by (,, = % and

Wy = 2 rad/sec. Express the adaptive controller with the feedback gain values and the reference model.

b. Implement the adaptive controller in Simulink using the following information: z (0) = 0 and © (0) =0
with a time step At = 0.01 sec for: 1) the nominal controller, 2) the standard MRAC with I" = 500,
and 3) the optimal control modification with I' = 500 and v = 0.5. The reference command signal r (¢)
is a pitch attitude doublet specified in the following plot.
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For each controller, plot the time histories of each of the elements of x (t) and z,, (¢) on the same plot,
and u (¢) for t € [0, 30] sec. Plot in units of deg for « (t), 6 (¢), and . (¢), and deg/sec for ¢ (t). Comment
on the simulation results.

Solution:

a. The longitudinal dynamic model of the aircraft is evaluated numerically as

"=Az+Bu(t—ts) + 60 T ad

—0.8079 0 1 —0.0696 0.5
—5.3214 0 —0.8733 —4.1838 —0.5

where z (t) = [a(t) 0 (t) q(t)}—r, u(t) =06, (t), and O = [0, 0 Hq]T.
The adaptive pitch attitude controller is designed as

u= K,z +kr—0"(t)z

where
K, = [ka ko kq] = [—1.2719 0.9561 0.4673]

kr = —kg = —0.9561
The optimal control modification adaptive law for O (t) is
O=-I9(x)[e"P-vd" (2)OBTPA, ' B
Then, the reference model is established as
Lo, = Ao + B

where
—0.7194 —0.0665 0.9675

An=A+BK, = 0 0 1
0 —4.0000 —2.8284



0.0665
By, = Bk, = 0
4.0000

b. The Simulink model is as shown.
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The response of the closed-loop system with the nominal controller is as shown.
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The response of the closed-loop system with MRAC is as shown. The tracking is somewhat improved
over that with the nominal controller, but there are some oscillations in the pitch rate.
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The response of the closed-loop system with the optimal control modification is as shown. The tracking

is better than that with MRAC.
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The control signals produced by the nominal controller, MRAC, and optimal control modification are
as shown. The standard MRAC produces the largest elevator control surface deflection, whereas the
amplitude of the control signal due to the optimal control modification is nominally the same as that
due to the nominal controller. The large amplitude of the control signal due to MRAC can lead to

robustness issues.
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Suggested Exam Questions and Solutions

1. For the following systems, determine the equilibrium points. Use the Lyapunov’s direct method to deter-
mine the type of Lyapunov stability for each of the equilibrium points. Determine all the invariant sets
and the values of the Lyapunov function on the sets. If an equilibrium point is stable, conclude if it is
asymptotically stable, and if so, show whether or not it is also exponentially stable.

a.
i) _ | (w2 —m) (23423 -1)
To —(z1+32) (23 + 23 - 1)
b.
.1'31 o .13% — X9
ig - —T1 — T2 + 1
c.
i‘l _ Zo
o | | —x1 — (1+sinzy)zy
Solution:
a.

{j;l] _ { (2 = 21) (i + 23 — 1) }

o — (21 + x2) (sc% + a2 — 1)

The only equilibrium point is the origin at 7 = 0 and 5 = 0.
Choose a Lyapunov candidate function

V(z) =a? + 23
Then,
V(z) = 2z (20 — 21) (x] + 23— 1) — 225 (21 + 22) (2] + 25 — 1) = =2 (2] + 23) (27 + 23 — 1)
V (z) < 0 for all z (t) € S where
S={zeR*:2{+23-1>0}

which does not include the origin. Thus, the equilibrium point is unstable in the sense of Lyapunov.
Let Rq be

R1={x6R2:V(I)=O=>gl(x)=$%+x§=V(x):0}

Then, )

if and only if 21 (¢) = 0 and 25 (¢) = 0. Thus, R; is also an invariant set which only contains the origin.
Then, all trajectories in Rq must remain in R; at all times. Therefore,

93
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V(.’l?(t)ERl):O
Let R be
'RQZ{I€R2:V(I):Oégg(x):x%+x571:V(I)71:0}

Then,

Thus, Ry is also an invariant set and

lim V(z(t) e Ry) =1

t—o0

.i‘l . .ﬁg — X9
To | | —x1—x20+1
The equilibrium point is found by
T3 — Ty =0=x5=0o0rz}=1

r1+22—1=0=z]=1lorz] =0

So, there are two equilibrium points: one at zj = 1 and x5 = 0, and the other at 7 =0 and x5 = 1.
i. Stability of equilibrium point (1,0) - First, the system must be transformed so that the equilibrium
is at the origin. Let y; (t) = z1 (t) — 1 and ys (¢) = 2 (). Then,

[91] _ { Y5 — } _ [ Y3 — 1 }
Y2 i —1-y+1 —Yy1 — Y2
Choose a Lyapunov candidate function

V(y) =y +ys
Then,

V(y) =2y1 (y5 — y2) + 22 (—y1 — y2) = 25195 — 4192 — 2y3 = 2y2 (Y192 — 2y1 — Y2)

V (y) <0 for all y (t) € S where
S:{y(t)ERQ:V(y)SO#yl(yg—Z)ZygandyQSO, ory1 (Y2 —2) < ys andygzO}

Since the boundary of S goes through the origin, therefore the equilibrium is a saddle point and is
unstable.
Let Rq be

R1Z{?JERQZV(Q):0=>91(37):?J2=0}
Then,
Gy =t2=-yp—y2=0
if and only if y; (£) = 0. Thus, M; C Ry = {y (t) € R? : 1 (t) =0, y> (t) = 0} is an invariant set
which contains only the origin, and
Viy(t) e M1)=0
Let Ry be
Ry = {y(t) ER?:V (y) =0= g2 (y) = yiye — 2y1 — 4o :0}
Then,
g2 (y) = (2 = 2)0n + (1 = Vo = (42 = 2) (45 —92) — (51 = 1) (g1 +y2) # 0
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So R» is not an invariant set.
Stability of equilibrium point (0, 1)- Let y1 (t) = x1 (t) and yo (t) = 22 (t) — 1. Then,

| _ [ vty
Y2 —Y1 — Y2
Choose a Lyapunov candidate function
V(y) =y +ys
Then, .
V(y) = 2u1 (45 +y2) +2u2 (—y1 — y2) = 20195 — 205 = —2y3 (1 — 1)
V (y) <0 for all y (t) € S where

S:{y(t)ERQ:V(y)Soéylgl}

Since S includes the origin, therefore the equilibrium is stable in the sense of Lyapunov. § is also
the region of attraction.
Let R4 be

Ri={y(t) €R?: V (y) = 0= g1 (y) =3 = 0}
Then,
G (y)=92=-y1—y2=0
if and only if y; (t) = 0. Thus, My C Ry = {y(t) € R* : y1 (t) =0, y2 (t) = 0} is an invariant set

which contains only the origin, and

V(y(t)GMl):O

According to the corollary of LaSalle’s invariant theorem, the equilibrium point is asymptotically
stable.
Let Ry be

Ro={y(H) € R?: V() =0= g2 (y) =11 = 0}

Then,
W)= =-ys—y2=0

if and only if yo (t) = 0 or Y2 (t) = —1. Since M; already includes the origin, therefore My C Ro
is another invariant set that contains only the point y; (t) = 1 and y» (t) = —1, which in fact is the
first equilibrium point. Then,

V(y(t) e Mo) =12+ (—1)° =2
The equilibrium is not exponentially stable because

Vy)=-2920—-y1) £ -6V (y),B>0

T1| T2
o | | —x1— (1 +sinzy)

The origin is the only equilibrium point. Choose a Lyapunov candidate function

V(x):xf—i—x%

Then,

V (x) = 2z129 4 229 [—21 — (1 4 sinzy) 2] = —223 (1 +sinz;) < 0

The equilibrium is stable in the sense of Lyapunov.
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Let R be

Rlz{x(t)ERQ:V(x)zoégl(x):xgzO}

Then,
91 (l‘) = 562 = -1 — (1 +SiDI1)I2 =0

if and only if z; = 0. Thus, M C R = {x (t)ER?: 21 =0, 29 = 0} is the only invariant set which
contains only the origin, and
Ve M)=0

From the corollary of the LaSalle’s invariant theorem, the origin is asymptotically stable.
At first, it is tempted to conclude that the equilibrium is not exponentially stable because

V(z) = =222 (1 4 sinz;) < —222 £ =BV (y),B>0

However, this nonlinear system needs to be examined further. Notice that the nonlinear system is
bounded from below and above by stable linear systems in all cases where

€2 S.Cl - To T
[—x1—2x2} : [xJ B [—wl—(lﬂ—sinxl)xJ < [_xl] Vg >0

To .1'31 €2 L2
< = <
[—xl} - |:£U2:| [—zl—(1+sinx1)z2] = {—xl —21:2] Va2 <0

So, the stability of the original nonlinear system can be determined by the stability of the bounded
linear system. For a linear system
T = Ax

where A is Hurwitz, choose a Lyapunov candidate function
V(z)=z"Pz>0

where P = PT > 0 solves the Lyapunov equation
PA+ATP=-Q

where Q = Q" > 0.
Then, )
V(z)=di Pr+az Pi=x' (PA+ ATP) z=-2"Qr<0

Now, for any positive definite quadratic function, the following relationships apply
Amin (P) 2|* < 2T Px < Apaz (P) ||z
~Amaz (P) 2] < 2" P < —Apin (P) ||
“Amaz (Q) 2]* < —27Qx < —Amin (Q) |12

Therefore,

2 . .
V() < A (Q) ol £~ (@) 2= EVRL e vy Sin Chy

The solution of V' (z) as an explicit function of ¢ is

V(1) = V (t) exp [—”
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Therefore, the equilibrium point of a linear system with A Hurwitz is exponentially stable with a rate
of convergence of i‘\’”L(QP;. As a result, the equilibrium point of the original nonlinear system is also

maz (

exponentially stable.

2. Linearize the systems in problem 2 and determine the types of equilibrium points. Plot phase portraits.

Solution:
a.
1] _ [ (e2—m) (a3 +03 - 1)
) —(z1+32) (23 + 23 -1)
The Jacobian matrix is
— (22 + 23— 1) + 21 (w2 — 1) (2% + 23— 1) + 22 (z2 — 1)
— (23 23— 1) + 221 (21 + 20) — (2 + 23 — 1) + 222 (21 + 22)

J(x){

J($1=0,$2=0):|:1 1:|

Ao=1+i

The equilibrium is an unstable focus.

e

b&/
N———

ANS=—1
(\\‘%

-
-
ot
N

The Jacobian matrix is

i. Stability of equilibrium point (1,0)

Tl = 1,25 =0) = { 0 _1]



The equilibrium point is a saddle point.
ii. Stability of equilibrium point (0,1)

L——

5 8.

N =

—_
I

€2
—x1 — (1 +sinzy) xo

J(x):[ 0 1 }

The Jacobian matrix is

The equilibrium is a stable focus.
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3. Given the following system

ig 2 xro

1| —92+4sin’x; 1—sinzcoszy | [21
T | =14sinzicoszy —2 — cos?xo

Determine the stability of this system about the origin using the Lyapunov candidate function
1
V(z) = ix—rx

If asymptotically stable, determine if the origin is exponentially stable and find the rate of convergence
of ||| where 2 () = [a1 () 22 ()]

Solution:
Choose a Lyapunov candidate function

Viz)=za'a= % (23 + 23)

1% (z) = xi=— (2 — sin® xl) x% + (1 —sinz cosxa) 122 — (1 — sinx cos xa) T1x2 — (2 + cos? :vg) m%

=—(2—sin®2y) 2] — (2+ cos® zp) 25 < —af — 223 < -2 — 23 = -2V (z) <0

Thus, the origin is asymptotically stable. It is also exponentially stable.

_ 1 1 2 1 2
VSV O™ e sala= e’ < 5o )™

So the rate of convergence is 1.

4. Given a linear system
&= Ax+ Bh(t)

where z (t) = [@1 (t) 22 (t)}—r € R? and



100

A= {_i _22] B= H L h(t) = (1+e7) (sint + cost)

a. Compute P that solves the Lyapunov equation
PA+ATP=—-1

and also compute the eigenvalues of P to verify that P is positive definite.
b. Use the following Lyapunov candidate function

V(z)=x' Px

to compute V' (z). Establish an upper bound on V (z) in terms of ||z|, and then determine a lower
bound on ||z|| that satisfies V' () < 0 using the £, norm and the Cauchy-Schwartz inequality

ICDI < [[ClHID]

c. Find an analytical solution of an upper bound of the Lyapunov function V (¢) as an explicit function of
t from V (z) in part (b), given V (0) = 2, by utilizing the following relationship for a positive definite
function

Amin (P) |2|* < V (2) = 2T Pe < Anaz (P) |||

and the following variable transformation
W (t) =V ()

d. Find the ultimate bound of ||z| by finding the limit of V' (¢) as ¢ — oo. If an ultimate bound exists,
then the solution of z (¢) is uniformly ultimately bounded.

Solution:

a.

The solution yields

So, P > 0.
b. Choose a Lyapunov candidate function

2

1 1
V(z)=a"Pr= -2+ ~a3

2 4
Then,

V(z)=2" (PA+A"P)z+x"PBh(t)= —a x+ 2z PBh(t) < —|lz]|* + 2 || |[PB| |k )]

o= 53] 1] H%]H %

[l =1 +e™") (sint + cost)|| =

V(@) < — ol +2v2 2l = ~ Jl2l| (Jl2ll - 2v2)

But

So,



101

Viz)<0if
]| > 2v2
. Since
Amin (P) ||2]|? < =2 Pr< PYllz? & 1 ilz)? < < Diap?
min (P)[|z]” <V (2) = 2" Pr < Amaz (P) |l2]]” & 7 [|l2[I” < V (z) < 5 [|z]]
Then, ,
2] <4V (z) = ||lz[| < 2V/V (2)
Also,
2 2 1 2 1 2
—Amaz (P) 2" < =V (2) < =Amin (P) l2|” & —F l|lz]|” < =V (z) < = ||
Then,

Then, V (z) can be expressed as

V(z) < —|lz)® +2V2 2] < -2V (z) + 4/2V (2)

Let

Then,

Vig) _ V()

Ve = e~ o @)

Upon substitution, one gets
QW (x) W () < —2W?2 (2) 4 4V2W ()
Dividing both sides by 2W (z) > 0 yields
W (z) < W (z) +2v2

The solution of W (z) is
W(t) <W(0)e™ +2V2

Substituting back in terms of V (z) gives

VV () <V (0)et+2v2
Given V (0) = 2, then
V(t)<V2 (e7"+2)

or

V(t)<2(et+2)?
. The limit of V' () is

lim V (t) <8

t—o0
So the largest of V' (t) is equal to

Vmam =38
But
_ 2 1 2
Vinaz = Amaz (P) max||z||” = = max ||z|
x 2 =

Therefore,

1 2
B max lz]|” =8
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or

max ||z| = V16 =4
x
Thus, the ultimate bound of ||z|| is 4. Then, ||z|| is upper- and lower-bounded by

2V2 < |z <4

5. Consider a first-order nonlinear SISO system with a matched uncertainty
izam—l—b(u—i—@*xz)

where @ is unknown but b is known, and 6* is unknown.
A reference model is specified by
T = QT + b7

where a,, < 0 and b, are known, and 7 (¢) is a bounded command signal.

a. Design a direct adaptive controller that enables the plant output x (t) to track the reference model
signal x,, (t). Show by Lyapunov stability analysis that the tracking error is asymptotically stable; i.e.,
e(t) »>0ast— oo.

b. Implement the adaptive controller in Simulink, given b = 2, a,, = —1, b, = 1, and r (¢t) = sint. For
adaptation rates, use v, = 1 and v = 1. For simulation purposes, assume ¢ = 1 and 6* = 0.2 for the
unknown parameters. Plot e (t), = (t), 2 (t), u (t), and 6 (¢) for ¢ € [0,50].

c. Repeat part (b) for 7, = 10 and v = 10. Plot the same sets of data as in part (b). Comment on the
simulation results for parts (b) and (c) regarding the tracking of the reference model, the quality of
the signal in terms of the relative frequency content, and the convergence of k, (t) and 0 (t) as the
adaptation rates increase.

d. Repeat part (b) for r (¢) = 1(¢) where 1 (¢) is the unit-step function. Plot the same sets of data as in

part (b). Comment on the convergence of k, (t) and 6 (t) to the ideal values &} and 6*.

Solution:

a. Define the ideal gain £} that satisfies one of the model matching conditions
a+ bk = apn,

and the known gain k, that satisfies the other model matching condition

since b is known.
The adaptive controller is given by

u=ky (t)x + ko — 0 (t) 22

Let ky (t) = kg (t) — k* and 6 (t) = 6 (t) — 6* be the estimation errors. Then, the closed-loop plant
model is

i = | ax 4 bk’ 40k | © + bk, 7 — bhz?
am b

The closed-loop tracking error equation is obtained as
ézﬁcm—g’c:ame—bl;xx—i—béx?

Choose a Lyapunov candidate function
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Then,

. o ) ) 2~x;x 2~; ) ;x ) *
|4 (e, ke, 9) = 2e (ame — bk,x + b@x2> + % + ? = 2a,e? — 2k, (a:eb — j) + 260 <x2eb + 3)

The adaptive laws are then obtained as )
ky = yozeb

0 = —~yaxleb
Then,
1% (e, l~cm, é) = 2ame2 <0

Since V (e,l;x,é) is negative semi-definite, e (t) € Lo, ks (t) € Lo, and 0 (t) € L, i.e., they are
bounded. Also,

o0

V (t — 00) — V (to) :/ 1% (e, k:y@) dt = 2am/ ¢ (t) dt = 2am |le|)?

to to

So, V (e, l;:wé) has a finite limit as ¢ — oco. Since ||e||, exists, therefore e (t) € L3N L.
Differentiating 1%4 (e, 12:9;, é) yields

Vv (e7 I%m é) = 4a,e (ame — bl%mx + b§x2>

Since e (t) € Lo N Lo, ks () € Loo, and O (t) € Lo by the virtue that V (e, ke, é) <0, and z (t) € Loo
since e (t) € Lo N Lo and x,, (t) € Lo because 7 (t) € L, therefore Vv (e,fcz,é) € Ls. Thus,

1% (e, ka, é) is uniformly continuous. It follows from the Barbalat’s lemma that V (e, kg, é) — 0 which

implies e (t) — 0 as t — oo. The tracking error is asymptotically stable.
b. The Simulink model of the adaptive controller is as shown.
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—l_ Wanual Switch Reference Madel To Workspace
Step
P +
7 .
Ll
e
» x
Controller
Plant To Workspace
| PO |
O[P)=2
phi=x"2
-q—I‘
-
P
]
» theta theta Adaptive Law
» ot loc Adaptive Law
To Workspaced
The ideal, unknown feedback gain is kj = —1.

The response of the adaptive controller for 7, = 1 and vy = 1 is as shown.

-1.5
0

. The response of the adaptive controller for «, = 10 and 7y = 10 is as shown.
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As the adaptation rates v, and 7y increase, the tracking error reduces more rapidly and the plant model
tends to the reference model at a faster rate. However, there is an increase in the frequency content
as the adaptation rates increase. The parameters k, (¢) and 6 (¢) also converge more rapidly to their
corresponding ideal values as the adaptation rates increase.

d. The response of the adaptive controller for v, = 10 and vy = 10 is as shown.

0.4 1.5
0.2
1
€
[ 0 x
<
0.5
-0.2
—x - %
-0.4 0
0 10 20 30 40 50 0 10 20 30 40 50
1 t
0 1
-0.5
~ @ 0.5
T | S
-1.5 0
0 10 20 30 40 50 0 10 20 30 40 50

The parameters k, (¢) and 0 (t) do not converge to their corresponding ideal values in this case. This is
due to the input signal r (¢) not possessing a quality known as “persistent excitation”, which is required
for parameter convergence. A persistently exciting signal possesses a sufficient frequency content in
order to excite the plant, so that there is a sufficient response of the plant output for the adaptive law
to correctly estimate the plant parameters.

. Given a first-order nonlinear system
& = ax + Bu + cx?

where z (t) € R, u (t) € R?, a is an unknown constant, B = [1 2] is known, and c is an unknown constant.
The reference model is specified as
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T = QT + b7

where a,, = —1, b, =1, and r (t) = sint.
Express the system in the form of a matched uncertainty

i=ar+Bu+60" o ()]

Determine K, K, and ©*. Write down the adaptive laws for K, (¢) and © (¢). Implement the controller
in Simulink. Use v, = 7o = 1. Assume all initial conditions to be zero and a = 1, ¢ = 0.2 for simulation
purpose. Plot e (t), x (t) versus z,, (t), K, (t), and © (t) for t € [0, 40].

Solution:
The plant can be written as

& =ar+ Bu+ BB' (BBT)_1 cx’ =axr+ B [u+ @*TxQ]
where
«T _ T -1 _ 10.04
6T =BT (BBT) 'e= {0.08
The ideal control gains can be computed from the model matching conditions as

a+BK!=a, = K!=DB" (BBT)‘1 (G —a) = {0‘4]

-0.8

BEK, =by = K =B (BBT) by = [8'3]

The adaptive controller is given by
v=K, )z +K7r—0" (t)®(x)

The adaptive laws are )
K, = v,zeB
6= —voz’eB

The Simulink model and simulation results are as shown.
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. The symmetric sigmoidal function
1—-e*

S l4e®

can be used to model a control actuator saturation, which frequently exists in real systems.

o (x)
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Saturation occurs when a control actuator ceases to be effective. When there are more inputs than com-
mands, a control allocation strategy should be developed to allocate redundant control effectors in an
optimal manner so as to produce an output that tracks a command. Define y (u) as the output of a
control allocator as

y=V'eo (WTu)

where y (u) e R™, Ve R™ xR*, W € R? x R™, and u € RP, p > n.

V can be used to specify a saturation limit, while VTW T plays the role of a nonlinear B (u) matrix.
Develop an optimal control allocation strategy by computing the gradient of the following cost function
with respect to u, i.e, V.J,

1
J(u) = §6T6

where € = y — 7 and r € R™ is a command vector for which an optimal control vector u is to be found to
minimize the cost function.
Given r = 1 and

0.75 1.20.8
v=[a5 ] w=oz13)

Write a Matlab code to compute u using the steepest descent method with an adaptation rate ¢ = 0.1
and a number of iteration of n = 1000. Indicate the final value of v and plot u.

Solution:
The cost function is expressed as

Evaluating the gradient of the cost function gives

Ay

T
VJM—%—WO' (W u)Ve
where .
o(z) = l1+e
, 27"
a (x):: D)
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The steepest descent method is expressed as
Uipr = u; — eVy, = u; —eWo (WTui) Ve

The solution is as shown and the final value of u is u = [1.2521 1.0228] T.

1.4 T T T T

- 2

0 200 400 600 800 1000
Iteration

8. Adaptive control can be used for disturbance rejection. Disturbances are usually time signals that may
have multiple frequency contents. Unlike unstructured uncertainty in the form of an unknown function
f (z), an unknown function of time f (¢) should be approximated by a bounded function. This prevents
adaptive signals from blowing up in time. Both the sigmoidal and radial basis functions are bounded
functions, but a polynomial function is not. Consider a first-order system with an unknown disturbance

t=ax+blu+ f(t)]

where a and f (¢) are unknown, but b = 2. For simulation purpose, a = 1 and f(¢) = 0.1sin2.4¢t —
0.3c0s5.1t +0.2sin0.7¢.
The reference model is given by

T = QT + DT

where a,, = —1, b, =1, and r (t) = sint.

Implement in Simulink a direct adaptive control using the least-squares gradient method to approximate
f(t) by a sigmoidal neural network with © (t) € R®, W (t) € R? x R* using the activation function
o(x) = H% Write down the neural net adaptive laws for k; (t), © (t), and W (¢). All initial neural
net weights are randomized between 0 and 1. The initial condition for k, (t) is zero. Use I, = 10I. Plot
e(t), e(t), = (t) versus x,, (t) with disturbance rejection, x (t) versus z,, (¢) without disturbance rejection,
ks (t), © (t), and W (¢) for t € [0, 40].

Solution:
The adaptive controller is given by

u=rky(t)x+kr—0" (t)® (W't

The adaptive laws are
Yz L€

ke = 22
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where
F=[1¢]"

e=axr+bu—1z

a=a,, — bk,

u=kyx+ k,r
b
k, = —
b

The Simulink model and simulation results are as shown.
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9. Given the following plant
T=-2r—z4+utw
z=—-3z+4u
y=x

where z (t) is the plant output, z (¢) is an internal state, and w (¢t) = 1 is a constant disturbance

a. If a linear controller u (t) = k,x (t) is used, where k, is constant, express the transfer function from
w (t) to x (t). Find all values of k, for which the closed-loop plant is stable.
b. Find the equilibrium state Z as a function of &, from part (a). Suppose an adaptive regulator controller
is designed with the ¢ modification
u=ky(t)x

kw = — (332 + crk;x)
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Find the minimum value of the modification parameter ¢,,;, to within 0.01 by finding the roots of a
polynomial in terms of k, for which one or more roots satisfies the values of k, in part (a). Calculate
k, and .

c. Implement the adaptive controller in Simulink with ¢ = g,,,;, — 0.05 and ¢ = 0.5 using the following
information: z (0) = 0, 2z (0) = 0, k; (0) = 0, and v = 10 using a time step At = 0.001 sec. Plot the
time histories of z (¢) and 6 (¢) for ¢ € [0,10] sec for both values of o. Comment on the two responses.
Calculate k, and Z for o = 0.5 analytically and compare them with the simulation results.

Solution:

a. The open-loop plant is expressed as

—z+utw
5+ 2
4u
Cs+3
(s—Du+(s+3)w
- s2+5s+6
Let u (t) = kg (t). Then, the transfer function from w () to x (¢) is obtained as

(5= kpr+(s+3)w
B s24+55+6

T _ s+3
w824+ (5—ky)s+6+k,
The closed-loop plant is stable for —6 < k; < 5.
b. The equilibrium state Z is found by setting s =0 as t — oo

T =

6+ ks

The equilibrium value of k, () of the ¢ modification is found by setting k, (£) = 0

This results in a third-degree polynomial
7.3 7.2 7. 9
ki + 12k + 36k, + — =0
o

For o = 0.29, the roots are -7.9729, -2.4158, and -1.6112. For ¢ < 0.29, the real roots are less than -6.
Thus, Gmin = 0.29, k, = —1.6112 and Z = 0.6836.

¢. The Simulink model is as shown.
The closed-loop plant with ¢ = 0,,;, — 0.05 = 0.24 is unstable due to parameter drift with k, — —o0
as t — oo. This validates the analytical result of ¢,,;, = 0.29, for which the system begins to be stable.
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The roots of the polynomial in part (b) are -7.5446, -3.8329, -0.6224. The feasible solution is k, =
—0.6224 which gives T = 0.5579 since the first root would result in an unstable closed-loop plant, and
the second root would result in £ = 1.3844 that tends away from zero. The simulation results are

k, = —0.6215 and T = 0.5575 which agree very well with the analytical results.

10. Given a first-order SISO system with a matched uncertainty
:b:ax+b(u+0*x2)

subject to x (0) = xg, where a = 1 and b = 1 are known, and 6* = 2 is unknown.
An adaptive controller is designed using the optimal control modification adaptive law to enable the plant
to follow a reference model

T = QLo + b7

where a,, = —1, b, =1, and r (¢t) = 1
The adaptive controller is given by
u = kpx + kv — 0 (t) 2*

a. Express the closed-loop system with the nominal (non-adaptive) controller v = k,x in terms of the
reference model parameters a,, and b,,. Determine whether or not the closed-loop system with the
nominal controller is unconditionally (globally) stable by explicitly integrating the plant model to find
the solution of x (¢). If the closed-loop plant is not globally stable, find the stability condition imposed
on rg.

b. Express the optimal control modification adaptive law for 0 (¢). Use Section 9.5.3 to estimate the limiting
value of the modification parameter v,,, to within 0.001. If applicable, express ¢ (||z]|, [|[zm]| , v, 0%).
Then, Vy,q. can be found by trial and error to be the largest value for which ¢ (||z]| , ||Zm ]| ; Ymaz,0*) =0
such that ||z|| > ||zm]|. Express the ultimate bound of ||e|| and Hé as a function ||z, v, and . Evaluate
them for v = 500.

¢. Implement the adaptive controller in Simulink with MRAC for which v = 0 and the optimal control
modification with v = v, determined from part (b) using the following information: z (0) = 1,
6 (0) = 0, and v = 500 with a time step At = 0.001 sec. Plot the time histories of x (t), u (¢), and 0 (¢)
for ¢t € [0, 10] sec for both MRAC and the optimal control modification. Comment on the responses of
the two adaptive controllers and compare the maximum tracking error ||e|| and maximum parameter

estimation error

6 H due to the optimal control modification to those determined from part (b).

Solution:
a. The closed-loop plant with the nominal controller is
& = amx + b0*z?

This equation can be integrated as

/diz_H
am® + b0* 22 ¢

Using partial fraction, then

1 1 bo*

am@ + 00* 22 apr  anm (b0*x + am,)

Upon integration, we get
1 bo*x

o ln——"
am nb@*x—i—am te

Using the initial condition, ¢ is determined to be
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1 bo* o

‘= am nb@*xo+am
The solution of x (t) is then obtained as

amTo
(am + bO*xg) e~ amt — bl*xg

Tr =

If b0*xo > 0 and a,, + b0*zg > 0, then (a,, + b0*xg) e~ 2t will grow until it is equal to b@*x¢ at which
time the solution is unbounded. The system has a finite escape time at

" 1 1 b@*xo
e=——In{ —-—
am am + b0*xg
If b0*x¢ < 0 and a,, + b8*xg < 0, then the system also has the same finite escape time.
Therefore, the closed-loop system with the nominal controller is not globally stable. The closed-loop
system is stable for b6*xy > 0 and a,,, +b0*xy < 0 or b0*zy < 0 and a,, + b0*xg > 0 or a,, + b0*xy =0

and bf*zy # 0.
. The optimal control modification adaptive law is

6=—y (a:er — 1/334962a;ll)

Note that we implicitly choose p = 1 in the adaptive law. This implies that ¢ = —2pa,, = 2 in the
Lyapunov equation. Since the closed-loop system with the nominal controller is not globally stable,
then we determine v,,4, from

o (2] lemll v, 67) = = ll2]|* + 2 (crea + ¢5 |wm) l2] + 2e1e2 |@m]| = 1 [lzm]|* + vese] @ (2)|?
2| —1|(p* N
where ¢; =q=2,c =0, c5 = ¢ =2, c3 = b%a,,’q = 2, andc;;z%,zflz |02| =1

||z is determined by

b,
ml|l = || =1
ol = -2 1

Then,
2 4
o (lzll,v) = =2zl + 4]zl — 2+ 2v |||

The limiting value is determined by trial and error to be viq, = 0.062 which corresponds to ||z] =
1.8809 (see plot).

0.5 T T T
0 - =
-0.5¢ 4
S

1 4
-1.5F .
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—v=0.063

) 1 1 1
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The ultimate bounds are obtained as
4
L — v la]? = 0.8809
Cc1
HHNH > o =2c4 =2

2
lell < p= /72 + % — 0.8854

Hé” < B =712+ a?=19.7993

c. The Simulink model is as shown.
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The response of the closed-loop system with the optimal control modification is as shown. The system
is guaranteed to be stable with v = 0.062 whereas the closed-loop system with the nominal controller
is unstable since b0*xy > 0 and a,, + b0 g > 0. Numerical evidence shows that the system is stable
up to a value of v = 0.142.

The maximum tracking error is 0.3803. The Lyapunov stability analysis gives 0.8809 which is conser-
vative. The maximum value of 0 () is 15.7238. So the maximum parameter estimation error is 13.7238.
The estimate from the Lyapunov stability analysis is 19.7993 which is also conservative.

The response of the closed-loop system with MRAC is highly oscillatory. This is a well-known behavior
of MRAC which acts as a nonlinear integral control that causes the crossover frequency to increase as
v increases.
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11. Consider the equation of motion of an inverted pendulum constrained to move horizontally by a control
force w (t)

1 .1 1 . .1
ﬁmL2 (4 - 3 cos? 9) 6 — imgL sin 6 + gmL202 sin26 + cf = §L cosOu (t —tq)
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where m is the mass of the pendulum, L is the length, g is the gravity constant, ¢ is the damping coefficient
which is assumed to be unknown, € (¢) is the angular position, u (t) is the control input which represents
the horizontal force at point O, and t4 is a time delay which represents the motor actuator dynamics.

a. Let x1 (t) = 0 (1), 22 (t) = 0 (t), and z (t) = [@1 (t) 22 (t)]—r. Derive the expressions for the nonlinear

dynamic inversion adaptive controller and the o modification adaptive law to estimate the unknown
coefficient ¢ in order to enable the closed-loop plant to track a reference model specified by

Oy + 2memém + wgﬂm = wfnr
which can be expressed in general as

T = ATy + By

b. Given m = 0.1775 slug, g = 32.174 ft/sec, L = 2 ft, ¢ = 0.2 slug-ft?/sec, ¢, = 0.75, w,, = 2, and
r = {5 sin 2t. Implement the adaptive controller in Simulink with the following information: x (0) = 0,
¢(0) =0, v =100 and a time step At = 0.001 sec for the following cases: 1) the standard MRAC with
tq = 0, 2) the standard MRAC with ¢4 = 0.01 sec, and 3) the ¢ modification with ¢ = 0.1. For each
case, plot the time histories of z (t) and x,, (t) on the same plot, u (¢), and ¢é (¢) for ¢ € [0, 10] sec. Plot
in the units of deg for x (t), deg/sec for x5 (t), Ib for u (t), Ib-ft-sec for é(t).

Solution:

a. The equation of motion can be expressed as

j_ 12gsin0 — 3L6%sin 20 N 6cos 2c0
2L (4—3cos26) mL (4 — 3cos?0) Y

Let 21 (t) = 0 (), 2o (t) = 0 (t), and z (t) = [@1 (t) 22 (t)}T. Then,

[ 0 } 2cxs
+ 6 cosxy u

T N L2 .
. - 12gsin x1 —3Lx3 sin 2x1

T2 2L(4—3cos? x1) mL(4—3cos2xy) L cos 1
f(x) p(x) ch(z)

&= f(x)+p(x)|u—ch(x)]

The reference model is specified by
T, = AT + B

Then, the dynamic inversion control is obtained as
=[p" “'pT (@) [Ama + Bor — ¢ (t) h
u=[p (@)p)] p (@)[Anz+Bur— f(z)]+ct)h(2)
where

P @) p @) T (@) = [o mElteota)

6 cosxq

The closed-loop plant becomes
&= Apmx+ Bpr+é(t)p(x)h(x)

Let



Then,

The tracking error equation is obtained as

Therefore, the adaptive law is obtained as

b. The Simulink model is as shown.

¢ () =

].2:132

mIL? (4 —3cos? xy)

p(x)h(z) = B ()

é = Ape — Bég (x)

=7 [¢ () e PB — o

\

Sine Wave
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The response of the closed-loop system with MRAC with ¢t; = 0 is as shown. The closed-loop plant
asymptotically tracks the reference model exactly as expected. The estimate é(¢) converges to the true

value.
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The response of the closed-loop system with MRAC and t; = 0.01 sec is as shown. The tracking of
¢ (t) improves, but the closed-loop plant is on the verge of instability, as seen by the high frequency

response of 6 (t).
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The response of the closed-loop system with the ¢ modification and t; = 0.01 sec is as shown. The
tracking is much better than that with MRAC.
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12. Given a longitudinal dynamic model of an aircraft with a matched uncertainty

Zfe 0
VoL be (t—t 0: 60*
M;, + M Zs, ( ( ) + [ q] [q})

\%

Ze 1

Q| % Ot+
q| | Mo+ M M+ My | | g

with the following information: V' = 795.6251 ft/sec, ¥ = 0, Z, = —642.7855 ft/sec?, Zs, = —55.3518
ft/sec?, M, = —5.4898 sec™2, M;, = —4.1983 sec™2, M, = —0.6649 sec™t, My = —0.2084 sec™!,
05 = —5.4,0; =—0.3, and 4 = 0.01 sec.

a. Design a nominal proportional-integral control
t
Je :k:pa—l—k:i/ (v = r)dr + kyq
0

by finding the general expressions and the numerical values for ky, k;, and k, to enable the aircraft to
track a reference model of the angle of attack

O + 2CmWm G + wfnam = wfnr
where ¢, = 0.75 and w,, = 1.5 rad/sec.
b. Let z () = fg (a (t) — r (1)) dr, provide the general expression and the numerical value for the reference
model of the aircraft as
T = AT + B

where z (t) = [z (t) a(t) ¢ (t)]T

c. Let OF = [0 o, 0, }T. Design an adaptive angle-of-attack controller using the optimal control modi-
fication to enable the closed-loop plant to track the reference model. Express the adaptive controller
and the adaptive law. Given @ = 1001, select the modification parameter to guarantee stability of the
closed-loop plant by using the linear asymptotic property of the optimal control modification and the
following formulas to compute the crossover frequency and time delay margin for MIMO systems. Plot
v versus tq for v € [0, 5] and determine v to within 0.01 for t4 = 0.01 sec

For a general time-delay system
&= Ax+ Bu(t —tg)

with a linear controller
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u=K,x
the crossover frequency and time delay margin can be estimated as
w=T7(—jA) + | BK:|

1 B4
tg = — [ S —
a = = cos T (CBK)

where [ is a matrix measure quantity defined as

7 (C) = max \; (C—;C )

1<i<n
for a general complex-value matrix C' with its conjugate transpose C*.
d. Implement the adaptive controller in Simulink using the following information: z (0) = 0, © (0) = 0,

I' = 10001, and v determined from part (c) with a time step At = 0.001 sec. The reference command
signal 7 (¢) is a pitch attitude doublet specified in the following plot.

4} i

0 5 10 15 20 25 30
t, sec

-6

Plot the time histories of each of the elements of z (t) and z,, (t) on the same plot, and wu (¢) for
t € [0,30] sec. Plot in the units of deg-sec for z (t), deg for a (t) and 0, (t), and deg/sec for ¢ (¢).

Solution:
a. Given .
Je :k‘poz—I—k;i/ (a—71)dr + kqq
0
Substituting J. (¢) into the equation for & (¢) yields

= Zog yqq By —i—k:/t( —r)ydr+k
« — (Y = 6] f o rVdT
v e 7280 0 ad

Differentiating ¢ (t) results in
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R/ /S /T Zs,, .
G = ?a—i—q—l— 7 kpd + 71@»(04—7“)4— 7 kqq
Zo | Zs, . Zs, . Zs,
To track the reference model, the angle-of-attack dynamics must be
& = —2(mWmd — w2, (@ —7)
Therefore, the control gains can be computed by equating terms which results in
e Z(ge 2Cmwm — Za
?-i- 7 kpz—Qmem@kpva
v
Zs, 1
1+ 7 kq=O=>kq=—Zéc
v
Z w?
ki = —wn = ki =~
v
Numerically, k, = 20.7287, k; = 32.3414, and k, = 14.3740
b. Let z (t) = fg (a (t) — 7 (t)) dr, then the plant model becomes
z 0 1 0 z
al =10 ZT/‘L 1 o
q 0 Mo + MeZa M, + My | | g
ZO z -1
+ - Se(t—ta)+[0050:] || | +] 0 |7
MsZs,
M5E + T& q O
which is expressed in general as
= Ax+ B [u(t—td)—&—é*—rx} +Cr
where
0 1 0 0 0 -1
A= 1[0-0.8079 1 ,B=1-0.069|,0"=|-54|,C=]0
0 —5.3214 —0.8733 —4.1838 -0.3 0

Let u (t) = d¢ (t). Then, the nominal controller is

z
u=[kiky kq] || = Ky
q

The nominal closed-loop plant becomes

t=(A+BK,;)z+Cr
The reference model is then chosen as the nominal closed-loop plant. Therefore,

Lo, = AT + B

where B,, = C and
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A = A+ BE,
0 1 0
= _wgn _QCme 0
(M5, + Moo Y by My + MiZo 4 (My, + 250 ) by My + Mo+ (My, + 252 ) &,
0 1 0
—| —225  —225 0

—135.3101 —92.0462 —61.0111

¢. The adaptive controller is
u=K,z— 0" (t)z

The closed-loop plant becomes R
&= Az + B,y — BO 'z

The error equation is ~
¢ = Ane+ BOTx

Therefore, the optimal control modification adaptive law is
©=-Tz(e'P—vz'©OB'PA,') B
The asymptotic solution of the optimal control modification adaptive law is

BOTx = %P*A,Tnpe = %P*IA,THP (T — )
Then, the asymptotic closed-loop plant with time delay is
&= Az 4+ BK,x (t —tq) — BO" (t —tg)x (t —ty) + BO* Tz + B,r(t)
= (A+B6*")z+ |BK, + iP‘lALP} x(t—tg) — %P‘lA;me (t —taq) + By (t)

The cross-over frequency and time delay margin are computed as
1
w=T7(—j(A+B6*")) + HBKx + PlA;PH
v
L (A+Be™T)

M= G(CBK, - LPIALP)

v 1 VA (A+ BO*T)
I (—vBK, — P-TA] P)

T Vi(—j (A+ BO" ) + |vBK, + P 1AL P’

The plot of v versus tg is as shown.
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For t; = 0.01 sec, v = 0.82. Note that this value is a conservative estimate, but it does guarantee
stability of the closed-loop plant for any t; < 0.01 sec. Also note that a conservative estimate of the
maximum time delay margin that the closed-loop system can tolerate is 0.0122 sec.

d. The Simulink model is as shown.

u .‘i y > > Xm
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Clock
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> u P+
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* - ” :
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'I Plant To Workspace
Controller
» Theta Theta Adaptive Law
To Warkspace3

The response of the closed-loop system with the adaptive controller is as shown. The closed-loop plant
tracks the reference model very well.
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13. Given a longitudinal dynamic model of a damaged aircraft

. Zo, Zs
= (22 + AA,, =+ AB, | 0. (t—t
& <V+ >a+q+<v + ) (t —ta)

My Z, MyZ
§= (Ma+ % +AAW) a4 (My + My + AAyy) g + (M(;e + ‘_/‘58 +ABq> Se (t —ta)

a. Design an ACAH hybrid adaptive flight controller for the pitch axis to enable the aircraft to follow a
reference model

QW = —Wy (qm - T)

by providing the expressions for the hybrid adaptive controller, the least-squares gradient parameter
estimation of AAy,, AAgq, ABg, and the optimal control modification adaptive law to handle the
residual tracking error.

b. Implement the hybrid adaptive flight controller in Simulink using the same aircraft parameters from
Exam Problem 12 and the following additional information: ¢4 = 0.02 sec, {; = 0.75, w, = 2.5 rad/sec,
AAye = 0.1616 /sec, AAy, = 2.1286 /sec?, AA,, = 0.5240 /sec, AB, = —0.0557 /sec, AB, = —2.5103
Jsec?, a(0) = 0, ¢(0) = 0, Ady (0) = 0, Ady, (0) = 0, AB, (0) = 0, R = 1000, I" = 10001, and
v = 0.1 with a time step At = 0.001 sec. The reference command signal 7 (¢) is a pitch rate doublet
specified in the following plot.
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c. Simulate three cases: 1) nominal controller, 2) only direct MRAC, and 3) hybrid adaptive control with
both direct MRAC and indirect least-squares gradient adaptive control. For each case, plot the time
histories of each of the elements of « (¢), 0 (¢), ¢ (t) and gy, (t) on the same plot, and u (¢) for ¢ € [0, 30]
sec. In addition, plot © (t) for case 2; and Ad,q (1), AdAy, (t), AB, (t) for case 3. Plot in the units of
deg for «a (t), 0 (t), and d. (t), and deg/sec for ¢ (t).

Solution:

a. The pitch rate equation is used for the hybrid adaptive controller design as

MsZ, MsZ,
j= (Ma + % + AAqa> a+ (Mg + My + AAyy) g+ <.7\45‘1 + T‘sc + ABq> O (t —tq)

The estimated plant model is expressed as

MyZ,
1%

. . ) M7, .
§= (Ma + + AAqa> ot (My+ Mo+ Adyy) a+ (Mac §A ABq> e

The desired pitch acceleration is
Gd = Gm + U — Uqq

where .
a:kp(qm_Q>+ki/ (gm —q)dr
0

Ugg = AOT P (g, 0, 0¢)
A6 = -T'd(q,a,6.) [e" PB—vdT (¢,0,0.) cAOBPA,'| B
kp = 2¢qwq
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The dynamic inversion controller is then obtained as
da — (Mq + Mg, + AAqq) q— (Ma + MaZa 4 AAqa> o
B M, + = + AB,

de

where AAy, (t), AAgq (1), and AB, (t) are estimated by an indirect least-squares gradient adaptive law

as .
6 = —RP(q,0,0,)€"
where
€=¢qq—{q
Ady,
0= |AA,
AB,

b. Let Zp, () = [Om (£) ¢m (t) ] T, then the reference model can be expressed as
&= Am,T + B, 7

Gm = C (Amq:c + qur)

where
0 1 0 1
A= [0 ] = [0 -55)
0 0
B, = [wq] - {2.5}
C=[01]
Let z (t) = [a(t) z(t)]T, then
t= (A, +AA) 2+ (B, + AB.) u (t — ty)
G=D[(A, + AA) 2z + (B. + AB.) u (t — tg)]
where
Ze 01 —-0.80790 1
Mg + MaZa 0 M, + M, —5.3214 0 —0.8733
AAua 00 0.16160 0
AA, = 0 0 0 |= 0 0 0
AAy 0 AAy, 2.1286 0 0.5240
Z
‘e —0.0696
B, = 0 = 0
M, + MaZs. —4.1838
AB, —0.0557
AB.=| 0 | = 0
AB, —2.5103
D=1[001]

The nominal controller is expressed as
u=K.e

where e (t) =z, (t) — z (¢) and



129

K. = [k k,] = [6.253.75]

. The Simulink model is as shown.
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The response of the closed-loop system with the nominal controller is as shown. The closed-loop plant

does not follow the reference model well. The pitch rate response oveshoots the reference pitch rate
significantly.
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The response of the closed-loop system with the direct MRAC is as shown. The pitch rate response
improves, but there are still some overshoots.
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The response of the closed-loop system with the hybrid adaptive control is as shown. The tracking
improves significantly with the pitch rate response tracking the reference pitch rate very well.
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The parameter convergence of the estimates of AA,,, AA,., and AB, due to of the direct MRAC is
as shown. The estimates of AA,y, AAyq, and AB,; do not seem to converge to the true values.
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B+AG

The parameter convergence of the estimates of AAyy, AAyq, and AB, due to of the indirect least-
squares gradient adaptive control is as shown. The estimates of AAg,, AAqq, and AB, converge to
their steady state values which are close to the true values. The error in the parameter convergence is
due to the presence of the time delay in the system.

O+AO




