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Abstract. Various estimators are proposed based on the preliminary
test and Stein-type strategies to estimate the parameters in a logistic
regression model when it is priori suspected that some parameters may
be restricted to a subspace. Two different penalty estimators as LASSO
and ridge regression are also considered. A Monte Carlo simulation exper-
iment was conducted for different combinations, and the performance of
each estimator was evaluated in terms of simulated relative efficiency.
The positive-part Stein-type shrinkage estimator is recommended for use
since its performance is robust regardless of the reliability of the sub-
space information. The proposed estimators are applied to a real dataset
to appraise their performance.
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1 Introduction

For the past few decades, simultaneous variable selection and estimation of sub-
model parameters has become popular. Many predictors exist to infer an inter-
esting response in the initial model. Some of these predictors may be inactive and
not influential; these should be excluded from the final model that represents
a sparsity pattern in the predictor space to achieve parsimony, flexibility and
reliability. Several researchers, following this information in statistical modeling,
have used either the full model or a candidate submodel.

The logistic regression model also called the logit model, is the most widely
used for an analysis of the independent binary response data in medical, engi-
neering, and other studies. This model assumes that the logit of the response
variable can be modelled by a linear combination of unknown parameters z}3
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where x| = (21, iz, -+ ,T4p) is a p x 1 vector of the p predictors for the i sub-
ject and B = (f1, B2, -+ ,0p) is a p x 1 vector of regression parameters. Detailed
information on logistic regression can be found in the books by Hilbe [8] and
Hosmer and Lameshow [10].

In this article, we consider the problem of estimating the logistic regression
model when the response variable may be related to many predictors, some
of which may be inactive. Prior information about inactive predictors may be
incorporated in the full model to produce the candidate submodel.

The pretest (preliminary test) estimation strategy, is inspired by Bancroft,
and the shrinkage estimation strategy, is inspired by Stein, efficiently combine
both full model and submodel estimators in an optimal way to achieve an
improved estimator. Numerous authors have discussed the pretest, shrinkage,
and penalty estimation strategies in many fields including Ahmed and Amezziane
[2], Ahmed and Yiizbas1 [4], Al-Momaniet et al. [5], Gao, Ahmed, and Feng
[6], Hossain, Ahmed, and Doksum [12], and Yiizbag: and Ahmed [16,17]. For a
logistic regression model, shrinkage estimators and three penalty estimators as
LASSO, adaptive LASSO and SCAD were considered by Hossain and Ahmed
[11] and Lisawadi, Shah, and Ahmed [13] considered the pretest estimation.

As we know, ridge regression (Hoerl and Kennard [9]) has been widely used
when there are many possible predictors to achieve the precision of an esti-
mate. Ahmed et al. [3] found that the ridge regression is highly efficient and
stable when there are many predictors with small effect. Hence, we suggest the
ridge regression for a logistic regression model. In this article, we propose the
pretest and shrinkage estimators in the logistic regression model when it is priori
suspected that parameters may be restricted to a subspace and compares the
resulting estimators to the classical maximum likelihood estimator as well as
the penalty estimators, i.e. LASSO estimator and ridge regression. Monte Carlo
simulation study is carried out using the simulated relative efficient to appraise
the performance of the proposed estimators.

To further illustrate the proposed estimators in the logistic regression model,
we apply the proposed estimator to the South African heart disease data set and
provide a bootstrap approach to compute simulated relative efficiency (SRE) and
simulated relative prediction error (SPE) of the estimators. The detail of this
data set will be described in the Sect. 4. Hossain, Ahmed, and Doksum [12] also
considered this data in the generalized linear model via the pretest estimator,
positive-part Stein-type shrinkage estimator, and three penalty estimators as
LASSO, adaptive LASSO, and SCAD The performance of these estimators are
evaluated in terms of simulated relative efficient (SRE).

Under the prior information about inactive predictors, the full parameter
vector (3 can be partitioned as 3 = (81, 55)" where 51 and (2 represent a p; x 1
active parameter and a py X 1 inactive parameter subvector, respectively, such
that p = p; + ps. Therefore, our interest lies in the estimation of the active
parameter subvector $; when the information on (5 is readily available. In other
words, this information about the inactive parameters may be used to estimate
the active parameter subvector 1 when their values are near to some specified
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value 3. Without the loss of generality, it is plausible that 82 may be set to a
zero vector, O = 0. Keep in mind that the candidate submodel estimator is more
efficient than the full model estimator when the candidate submodel is correct.
On the other hand, the submodel estimator may not be reliable and become
considerably inefficient when the candidate submodel incorrectly represents the
data at hand.

The remainder of this article is organized as follows; the model and the
efficient estimation strategies are proposed in Sect. 2, the results of a Monte Carlo
simulation study are reported in Sect. 3, real data applications are described in
Sect. 4, and finally, discussions and conclusions are presented in Sect. 5.

2 Model and Estimation Strategies

Let y1,y2, - ,yn be independent binary response variables which contain only
two possible outcomes, and x; = (1,22, - ,:Uip)/ is a p x 1 predictors vector
for the i*" subject and i = 1,2, --- ,n. The simplest idea would be to let z; be a
linear function of the predictors, suppose

Zi = X;ﬂa (1)

where 3 is a p x 1 vector of regression coefficients. Thus, the logistic regression
model assume that

)y o) e (xi9)
Py =1x;) =7 (2:) = 1+ exp(z) 1 + exp (X;ﬂ)

(2)

The log-likelihood function of the logistic regression model is given by

1) = Ey w{r)} + S0 -wm{i-x(xg)}.  ©

=1

The derivative of the log-likelihood function with respect to 3 is obtained by
solving the score equation:

ol (B - /

(9(ﬂ) = Z [yi - W(Xzﬂ)} x; =0. (4)

=1

2.1 The Unrestricted and Restricted Maximum Likelihood
Estimator

The unrestricted maximum likelihood estimator (UE) of the parameter vector 3
denoted by BUE is obtained by solving the non-linear score Eq. 4, and this can
be solved by using an iterative method like Newton-Raphson.

Under the certain regularity conditions of maximum likelihood estimator
(MLE), Gourieroux and Monfort [7] showed that 3UF is a consistent estimator
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of B and asymptotically normally distributed with a variance-covariance matrix
(I(B))~!, where I(f3) is the information matrix which is defined as

n

1(8) = Y m(x8) {1 - 7(x/8) } xix;. (5)

=1

The restricted maximum likelihood estimator (RE) of 3 denoted by ARE can
be obtained by maximizing the log-likelihood function (3) under the subspace
restriction By — 49 = 0.

2.2 The Linear Shrinkage Estimator

The linear shrinkage estimator (LS) of 3 denoted by 3%° is a linear combination
of the unrestricted and restricted estimator, that is

BES = ABRE 4+ (1N BYF A e 0,1], (6)

where A defines the degree of confidence in the given prior information and is a
fixed constant. The linear shrinkage estimator shrinks BUE toward BRE A =0,
then LS simplifies to an unrestricted estimator, while it simplifies to a restricted
estimator when A = 1. The performance of the linear shrinkage estimator is
better than the unrestricted and restricted MLE in some part of the parameter
space.

2.3 The Preliminary Test Estimator
The preliminary test estimator or pretest estimator (PT') of 5 denoted by [?P T
is defined as

BPT — BUE _ (BUE _ BRE) (L < Lna) s (7)

where I(.) is an indicator function, and .Z, , is the a-level critical value of the
exact distribution of a suitable test statistic .%, under Hy : 32 = 39. For testing
Hy : B2 = 39, the likelihood ratio statistic .%, is suggested:

L, = —2log iggzg —9 (z (BUE) .y (BRE)) , (8)

where [(BUF) and I(3RF) are values of the log-likelihood at the unrestricted and
restricted estimates, respectively. Under Hy, the distribution of .%,, converges to
Chi-square distribution with ps degree of freedom as n — oc.

Clearly, the pretest estimator takes the value of the unrestricted estimator
when the test statistic lies in a rejection region, otherwise, it takes the value of
the restricted estimator. This estimator has limits due to the large size of the
pretest.
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2.4 The Shrinkage Pretest Estimator

The shrinkage pretest estimator (SP) of 5 denoted by 5P is defined by replacing
the restricted estimator with the linear shrinkage estimator in Eq. (7), that is

BSP _ BUE _ (BUE _ BLS) (L0 < L) 9)
An alternative form of the estimator is
BSP _ BUE ) (BUE _ BRE) (L < L) (10)

Ahmed [1] found that the shrinkage pretest estimator significantly improves
upon the pretest estimator in terms of size «, and it dominates the unrestricted
estimator in a large portion of the parameter space. For A = 1, the pretest
estimators are used to estimate the parameter, while we use a UE as A = 0.
Generally, the estimators based on the pretest strategy are biased and inefficient
when the null hypothesis does not hold.

2.5 The Stein-Type Shrinkage Estimator

The Stein-type shrinkage estimator which combines the unrestricted and the
restricted estimator in an optimal way to dominate the unrestricted estimator.
The Stein-type shrinkage estimator (S) of 3 denoted by 37 is given as follows

B = (1= (-2 %) (P - ) =3, ()
alternatively,
B5 = BUF — (pp —2) £, (BUF — BRF) py = 3. (12)

For some insight to this estimator, we refer to Hossain, Ahmed, and Doksum
[12], Yiizbagi and Ahmed [17] among others. The Stein-Type shrinkage estimator
will provide uniform improvement over the unrestricted estimator. However, the
Stein-type shrinkage estimator tends to over-shrink the unrestricted estimator
towards the restricted estimator when the test statistic .Z, is very small in
comparison with ps — 2. To avoid the over-shrink behavior of this estimator,
the truncated version is suggested which is called the positive-part Stein-type
shrinkage estimator.

2.6 The Positive-Part Stein-Type Shrinkage Estimator

The positive-part Stein-type shrinkage estimator (S*) of 3 denoted by B35 isa
convex combination of the unrestricted and restricted estimator, that is

~

BT = BRE 4 (1= (-2 27 1) " (BUF - BRF) =3, (13)
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where a™ = max{0,a}. Alternatively, it can be written in the following conical
form as

BT =B (1— (12 -2) 2,7Y) (BYF = 57F) 1 (L0 < (2= 2)) 12 2 3. (14)

The positive-part Stein-type shrinkage estimator is particularly important to
control the over-shrinking inherent in 3.

2.7 The LASSO Estimator

Tibshirani [15] introduced the LASSO estimator of 3 which minimizes the neg-
ative log-likelihood in Eq. (3) under the L; constraint. It can be defined as

P
314880 — argming {l (B) +72 ﬁi|} ,7 >0, (15)
i=1

where A is the tuning parameter which controls the amount of a shrinkage. The
LASSO shrinks some coefficients to exactly zero. Therefore, LASSO procedure
performs variable selection and parameter estimation simultaneously.

2.8 The Ridge Regression Estimator

Hoerl and Kennard [9] proposed the ridge regression estimator of § which min-
imizes the negative log-likelihood in Eq. (3) under the Ly constraint. It can be
defined as

P
IBRIDGE:argminﬁ{_l(ﬁ)_FvZﬂf},f}/ZO, (16)

where A is a tuning parameter which controls the amount of shrinkage. The
ridge regression estimator always keeps all the predictors in the model; thus,
this estimator cannot produce a parsimonious model.

3 Monte-Carlo Simulation Studies

In this section, we carry out a Monte Carlo simulation to compare the perfor-
mance of the pretest, Stein-type and penalty estimators in terms of the quadratic
risk, namely mean squared error (MSE). Our simulations are based on a logis-
tic regression model with the sample size n = 250. A binary response data is
generated from the following model

ln(l pip > = x;08 = friaa + Potia + -+ Bpip, i=1,2,--- ,m, (17)
—pi

where p; = P(y; = 1|x;) and the predictor values x; have been drawn from a
standardized multivariate normal distribution.
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We consider the hypothesis Hy : 82 = 0. We partition the parameter vector
B as 8= (8;,0,) and where 3; and 33 represent a p; x 1 and a py x 1 vector,
respectively, such that p = p; + pa. We set the true value of 8 = (8], 05)" =
(8,,0) with 3} = (1.90, —1.05,0.25, —0.78).

The value of X is set to 0.25, 0.50, and 0.75. The value of significance level a
is set to 0.01, 0.05, 0.10 and a higher value 0.35.

We now define the parameter A* representing the distance between the sim-
ulated model and the candidate submodel estimator by

A= (5-59) (5-59) =3 (8- )’ (18)

=1

where 0 = (ﬁ;,O) and [ is the true parameter in the simulated model.

Samples were generated using A* between 0 and 4.

The number of replications in the simulation was initially varied and it was
determined that NV = 1,000 iterations were adequate to obtain a stable result
for each combination of parameters.

Based on the simulated data, we estimated the MSE of all the proposed
estimators. The performance of the estimators was evaluated using the notion
of simulated relative efficient (SRE), which is the MSE relative to the MSE of
BUE. For any estimator 3*, the SRE of 3* with respect to SUF is defined as

SRE (BUE B*) _ SimulatedMSE(3YF)  Simulated Y7 (53; — @UE)Q
’ Simulated MSE(3*) Simulated S7_, (8 — 87)°
(19)

Keep in mind that an SRE is larger than the one that indicates the degree
of superior of the estimator 3* over BUF.

3.1 Model with Correct Candidate Submodel (A* = 0)

First, the case when the candidate submodel is assumed to be correct, is
A* = 0. Various choices of active and inactive predictors are provided for
(p1,p2) = (4,3),(4,5),(4,7),(4,10), and (4, 15), and the SRE results are reported
in Tables1, 2 and 3. The tuning parameter v of the two penalty estimators is
estimated using 10 fold-cross validation. The findings from Tables 1, 2 and 3 are
summarized as follows:

We note that SREs of all the estimators increase as the number of inactive
predictors 5 is increased for fixed A and a. Interestingly, the restricted estimator
is the best, and all estimators are superior to the unrestricted estimator for
all configurations except the ridge regression estimator. The linear shrinkage
estimator depends on the choice of A. Its SRE decreases sharply to 1 as A — 0
and approaches to SRE of the restricted estimator for higher value of A. The
SREs of the pretest estimators depend on the size of the test a. For small «,
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Table 1. The SREs of the estimators with respect to the UE for A = 0.25 at A* = 0.

Estimator Number of in active (pz2)

3 5 7 10 15
RE 1.693 1 2.104 | 2.735 | 3.544 | 6.120
LS 1.204 | 1.280 | 1.356 | 1.424 | 1.543

PT a=0.01]1.631|2.002|2.542 | 3.162 | 4.558
a=0.05]1.472|1.759|2.147 | 2.513| 3.037
a=0.10]1.369 | 1.606 | 1.804 | 2.108 | 2.398
a=0.35]1.128 | 1.238 | 1.312 | 1.368 | 1.441
SP a=0.01]1.190|1.263 | 1.335 | 1.396 | 1.489
a=0.05]1.152|1.220 | 1.283 | 1.333 | 1.393
a=0.10]1.125|1.187|1.227 | 1.278 | 1.325
a=0.35]1.049|1.088|1.109 | 1.125| 1.147

S 1.158 | 1.467 | 1.818 | 2.300 | 3.363
St 1.204 1 1.549|1.924 | 2.428 | 3.604
LASSO 1.226 | 1.293 | 1.470 | 1.819 | 2.383
Ridge 0.561 | 0.668 | 0.867 | 1.029 | 1.332

Table 2. The SREs of the estimators with respect to the UE for A = 0.50 at A* =0

Estimator Number of in active (p2)

3 5 7 10 15
RE 1.693|2.104 | 2.735| 3.544 | 6.120
LS 1.416 1 1.610 | 1.839 | 2.069 | 2.556

PT a=0.01]1.631|2.002|2.542 | 3.162 | 4.558
a=0.05]1.472|1.759|2.147 | 2.513| 3.037
a=0.10]1.369 | 1.606 | 1.804 | 2.108 | 2.398
a=0.35]1.128 | 1.238 | 1.312 | 1.368 | 1.441
SP a=0.01]1.384|1.566|1.773 | 1.968 | 2.315
a=0.05]1.298|1.454|1.622|1.765| 1.954
a=0.10]1.239|1.376 | 1.473 | 1.608 | 1.737
a=0.35]1.089|1.162 | 1.206 | 1.240 | 1.286

S 1.158 | 1.467 | 1.818 | 2.300 | 3.363
St 1.204 | 1.549 | 1.924 | 2.428 | 3.604
LASSO 1.226 | 1.293 | 1.470 | 1.819 | 2.383

Ridge 0.561 | 0.668 | 0.867 | 1.029 | 1.332
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Table 3. The SREs of the estimators with respect to the UE for A = 0.75 at A* =0

Estimator Number of in active (p2)

3 5 7 10 15
RE 1.693 1 2.104 | 2.735 | 3.544 | 6.120
LS 1.597|1.927 | 2.381 | 2.913 | 4.354

PT a=0.01]1.631|2.002|2.542 | 3.162 | 4.558
a=0.05]1.472|1.759|2.147 | 2.513 | 3.037
a=0.10]1.369 | 1.606 | 1.804 | 2.108 | 2.398
a=0.35]1.1281.238 | 1.312 | 1.368 | 1.441
SP a=0.01]1.546 | 1.848|2.245|2.669 | 3.556
a=0.05]1.413|1.655|1.953 | 2.227 | 2.616
a=0.10]1.326 | 1.53 |1.6891.9252.159
a=0.35]1.116 | 1.215| 1.278 | 1.326 | 1.392

S 1.158 | 1.467 | 1.818 | 2.300 | 3.363
St 1.204 1 1.549|1.924 | 2.428 | 3.604
LASSO 1.226 | 1.293 | 1.470 | 1.819 | 2.383
Ridge 0.561 | 0.668 | 0.867 | 1.029 | 1.332

the pretest estimator is comparable to that of the restricted estimator. On the
contrary, its SRE decreases as the size increases.

Moreover, the performance of the shrinkage pretest estimator depends on
the choice of A and «. Its performance becomes poorer with an increase in and
a decrease in A. Unsurprisingly, the pretest estimator outperforms the linear
shrinkage estimator at A* = 0. As we would expect, the positive-part Stein-
type shrinkage estimator outperforms the Stein-type shrinkage estimator in any
situation.

Similar results are observed for the LASSO estimator which performs better
than the estimator based on the Stein-type strategy for small ps. On the other
hand, the estimator based on the Stein-type strategy is preferable when there
are many inactive predictors. However, the ridge regression estimator does not
perform well, but its performance slowly improves as the number of inactive
predictors increases.

3.2 Model with Correct and Incorrect Candidate Submodel
(A* >0)

The penalty estimators are not included in the A* > 0 case because these
estimators do not take advantage of the fact that the regression parameter lies
in the subspace G2 = 0. In this case, the simulation model has an active coefficient
vector 31 = (0.5, —1.5,0.2) and inactive coefficient vector B2 = (84, a) where 4
is a scalar and assumes various values; thus, A* = (64)2 when the candidate
submodel is used. We choose 6, = 0,0.1,0.2,0.3,0.4,0.5,0.8,1.0, 1.5, and 2.0



28 O. Reangsephet et al.

and a is k x 1 zero vector with different dimensions, & = ps — 1 to be the
number of inactive predictors in the model and we use p, = 5,7,10, and 15in
the simulations.

The choice of a was fixed to be 0.01, 0.05, 0.10, A = 0.75 and n = 250. SREs
of the proposed estimators are are reported in Table 4 are graphically represented
in Figs. 1, 2 and 3. The findings are summarized as follows:

The restricted estimator 3RF outperforms all the estimators at and near
A* = 0. In contrast, as A* becomes larger than zero, the relative efficiency of
BRE as well as the linear shrinkage estimator decrease and become unbounded.
However, the relative efficiency of all the other estimators remains bounded and
approaches to 1. These show that an incorrect candidate submodel is fatal to
the restricted and linear shrinkage estimators.

The pretest estimator is much better than the shrinkage pretest estimator
when the candidate submodel is correct, i.e. A* = 0. On the contrary, the shrink-
age pretest estimator does well relative to the pretest estimator in a small part
of the parameter space. However, the SRE of both pretest and shrinkage pretest
estimators approaches to one as A* moves away from zero, but after becoming
inferior to BV, and later at some point, they join the SRE of one from below.
In addition, they outshine the estimator based on Stein-type strategy where A*
is near zero and for small and moderate ps. The estimators based on Stein-type
strategy are superior to the unrestricted estimator in the entire range of A* espe-
cially their gain in risk reduction is impressive as po increases. Lastly, we found
that the estimators based on Stein-type strategy perform better than all other
estimators in the wider range of A* and these estimators are little impacted by
severe departure from the restriction.

4 Real Data Example: South African Heart Disease Data

In this section, we apply the proposed estimators to the South African heart
disease data set. Rousseauw et al. [14] described a retrospective sample of males
in a heart-disease high-risk region of the Western Cape, South Africa. This study
comprised over 462 samples and the set of variables is described in Table 5.

We notice that the condition index (CI) value is calculated as 392.718 which
implies the existence of multicollinearity in this data set. After applying the
variable selection procedure based on AIC criterion, BIC criterion, and LASSO,
the results are given in Table 6.

Table 6 shows that the candidate submodel based on AIC and BIC criteria
contains 5 active predictors, while LASSO selection procedure contains 7 active
predictors. Hence, we will consider the candidate submodel with 5 active pre-
dictors that is tobacco, famhist, 1dl, typea, and age. The restricted subspace is
ﬂé = (ﬁadiposityy ﬂobesity; ﬁalcohola ﬂsbp) = (0, 0; 07 0)7]7 = 9,171 = 5; and P2 = 4.

To examine the performance of the proposed estimators for the candidate
submodel, we draw m = 250 bootstrap rows with replacement N = 1,000 times
from the data. The performance of the proposed estimators with respect to the



A Comparison of Pretest, Stein-Type and Penalty Estimators 29

Table 4. The SREs of RE, LS, PT, SP, S, and S+ with respect to the UE for A = 0.75

p2|A*|RE |LS |PT SP S S+
a=001la=0.05a=0.10a=0.01|a=0.05|a=0.10
5 0.0/2.581|2.311|2.428 2.057 1.806 2.195 1.909 1.705 1.597|1.726
0.1]1.328|1.611|1.141 1.046 1.016 1.299 1.139 1.082 1.279|1.309
0.2/0.884|1.227/0.836 0.882 0.907 0.976 0.957 0.960 1.187|1.195
0.30.666|0.988|0.773 0.873 0.920 0.882 0.928 0.954 1.150|1.152
0.4/0.54 |0.833/0.795 0.910 0.958 0.879 0.947 0.975 1.126|1.127
0.5]0.452/0.7160.863 0.948 0.968 0.917 0.967 0.980 1.111/1.111
0.8/0.309/0.515/0.958 0.988 0.996 0.973 0.992 0.998 1.088|1.088
1.0/0.255|0.434 |0.984 1.000 1.000 0.989 1.000 1.000 1.081|1.081
1.5/0.184/0.322|1.000 1.000 1.000 1.000 1.000 1.000 1.074|1.074
2.0/0.152]0.269|1.000 1.000 1.000 1.000 1.000 1.000 1.070|1.070
7 10.0]3.065|2.66 |2.873 2.477 2.079 2.523 2.232 1.924 1.9592.147
0.1/1.701|1.962|1.406 1.215 1.147 1.550 1.286 1.197 1.499|1.540
0.2/1.183|1.548|1.000 0.973 0.975 1.140 1.042 1.021 1.349|1.359
0.3]0.909/1.29 |0.876 0.927 0.955 0.985 0.978 0.984 1.282/1.284
0.4/0.748|1.116|0.857 0.939 0.963 0.938 0.971 0.981 1.240|1.241
0.5]0.643/0.993/0.891 0.962 0.979 0.944 0.979 0.989 1.217|1.217
0.8/0.449/0.735/0.969 0.991 0.996 0.981 0.994 0.997 1.169|1.169
1.0/0.376|0.632|0.989 0.997 1.000 0.993 0.998 1.000 1.155|1.155
1.5/0.278/0.483|1.000 1.000 1.000 1.000 1.000 1.000 1.139|1.139
2.0/0.222]0.394|1.000 1.000 1.000 1.000 1.000 1.000 1.129|1.129
10/0.0/4.693|3.702|3.987 3.087 2.396 3.277 2.680 2.175 2.612|2.942
0.1/2.43 |2.661|1.982 1.531 1.366 2.124 1.604 1.414 1.94412.048
0.2]1.669|2.124|1.301 1.135 1.074 1.499 1.230 1.135 1.686|1.730
0.3]1.263|1.755]1.029 0.991 0.983 1.197 1.079 1.037 1.569 |1.584
0.4/1.024|1.510|0.911 0.931 0.949 1.048 0.997 0.99 1.485|1.49
0.5/0.868|1.335|0.857 0.926 0.955 0.974 0.974 0.983 1.433|1.434
0.8/0.610|1.001|0.890 0.959 0.980 0.942 0.977 0.989 1.326 1.327
1.0/0.508|0.858|0.928 0.980 0.992 0.959 0.988 0.995 1.300|1.300
1.5/0.3680.648 |0.996 1.000 1.000 0.998 1.000 1.000 1.262|1.262
2.0/0.295|0.529|1.000 1.000 1.000 1.000 1.000 1.000 1.236|1.236
15/0.0/6.502|4.665 | 4.986 3.510 2.651 3.879 2.976 2.372 3.58 [3.961
0.1/3.570|3.566 | 2.568 1.735 1.462 2.570 1.742 1.469 2.569|2.662
0.22.466|2.926 | 1.575 1.258 1.164 1.703 1.310 1.197 2.163|2.196
0.3/1.906|2.506 | 1.219 1.083 1.046 1.330 1.132 1.075 1.949|1.956
0.4/1.549|2.188|1.062 1.018 1.011 1.152 1.053 1.029 1.818|1.819
0.5/1.323|1.951/0.993 0.993 0.992 1.057 1.017 1.005 1.712|1.713
0.8]0.927/1.503/0.971 0.992 0.997 0.991 0.997 0.999 1.560|1.560
1.0/0.793|1.331/0.984 0.995 0.998 0.993 0.998 0.999 1.500|1.500
1.5/0.574|1.015|0.999 0.999 1.000 0.999 0.999 1.000 1.423|1.423
2.0]0.458/0.827|1.000 1.000 1.000 1.000 1.000 1.000 1.380/1.380
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Fig.1. SREs of RE, LS, PT, SP, S, and ST with respect to the UE when the candidate
subspace misspecifies B4 as zero as of A* = (ﬁ4)2. Here, p1 = 3, a = 0.01.
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Fig. 2. SREs of RE, LS, PT, SP, S, and S+ with respect to the UE when the candidate
subspace misspecifies 4 as zero as of A* = (81)°. Here, p1 = 3, a = 0.05.
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Fig. 3. SREs of RE, LS, PT, SP, S, and S+ with respect to the UE when the candidate
subspace misspecifies 84 as zero as of A* = (B4)2. Here, p1 = 3, a = 0.10.

Table 5. List of variables

Variable

‘ Description

Response variable

Chd

‘ Coronary heart disease

Predictor variable

Tobacco | Cumulative tobacco (kg)

Famhist | Family history of heart disease, a factor with levels absent and present
Ldl Low density lipoprotein cholesterol

Typea Type-A behavior

Age Age at onset

Adiposity | Adiposity

Obesity | Obesity

Alcohol | Current alcohol consumption

Sbp Systolic blood pressure

Table 6. Full and candidate sub-models for South African heart disease data

Selection criterion | Response | Active predictor

Full model Chd tobacco, famhist, 1dl, typea, age, adiposity, obesity,
alcohol, sbp

LASSO Chd tobacco, famhist, 1dl, typea, age, obesity, sbp

AIC,BIC Chd tobacco, famhist, 1dl, typea, age
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unrestricted estimator is evaluated by simulated relative efficiency (SRE) and
simulated relative prediction error (SPE) of the estimators which is defined as:

SRE (BUE’ B

and SPE (BUE,B*) -

Simulated >-Y_, (5frue - BzUE>

)  Simulated P (ﬂfrue - B )

Simulated 1", (Yi - W(X/iBUE))

Simulated >, (Yi - W(X’iﬁ*))

i=1,2,---  m.

Note that SPE is less than one; this means the unrestricted estimator is doing
better. This study assumed the empirical distribution F based on 462 actual
observations to be the true distribution and the resulting logistic regression
coefficient B’s to be the true parameter values. We assumed a = 0.01 and A =
0.50. The results of the point estimates, standard errors, SREs, and SPEs of the
estimators are shown in Table 7.

Table 7 reveals that the restricted estimator is the best, and all the estima-
tors outperform the unrestricted estimator. The performance of linear shrink-

Table 7. Estimates (first row) and standard errors (second row) of the coefficients for
active predictors. The SRE and SPE columns give the relative efficiency and relative
prediction error of the estimators with respect to UE, respectively.

Estimator | Bobacco | Btamnist | Bid1 | Beypea | Bage | SRE | SPE
UE 0.084 0.948 0.186 | 0.042 | 0.048 | 1.000 | 1.000
0.041 0.340 0.0870.018 |0.018
RE 0.083 0.917 0.167 | 0.038 | 0.052 | 2.156 | 1.364
0.039 0.324 0.0770.017 |0.015
LS 0.085 0.933 0.176 1 0.040 | 0.050 | 1.653 | 1.360
0.040 0.330 0.079 1 0.018 |0.015
PT 0.084 0.922 0.170 1 0.039 |0.051 | 1.836 | 1.230
0.039 0.329 0.079 1 0.018 | 0.016
SP 0.085 0.935 0.178 1 0.040 | 0.050 | 1.507 | 1.274
0.040 0.333 0.0810.018 |0.016
S 0.084 0.938 0.180 1 0.041 |0.049 | 1.309 | 1.156
0.040 0.334 0.0820.018 |0.016
S+ 0.084 0.938 0.180 | 0.041 |0.049 | 1.361 | 1.191
0.040 0.334 0.0820.018 |0.016
LASSO 0.071 0.788 0.147 /1 0.029 |0.042 | 1.360 | 1.051
0.038 0.353 0.083 1 0.020 |0.014
Ridge 0.072 0.761 0.146 1 0.028 | 0.035 | 1.552 | 1.210
0.030 0.311 0.068 1 0.018 |0.015
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age, pretest, and shrinkage pretest estimators is dominated by the restricted
estimator as our data in the resampling scheme are generated from an empirical
distribution where the candidate submodel is correct, that is A* = 0.

Furthermore, the positive-part Stein-type shrinkage estimator outshines the
LASSO estimator when there are moderate or relatively large numbers of the
inactive predictor in the model. In fact, the true parameter values are not exactly
zero, and there is the multicollinearity problem. Unsurprisingly, the ridge regres-
sion estimator performs well. Lastly, the LASSO estimator shows good perfor-
mance in terms of SRE but not in terms of SPE because of the instability
estimation.

5 Discussion and Conclusions

In this article, we compared various estimators based on pretest and Stein-type
strategy and two penalty estimators to the unrestricted and restricted maximum
likelihood estimators in the context of the logistic regression model under the
restriction of parameter. We established the properties of the proposed estima-
tors via Monte Carlo simulation study.

By using Monte Carlo simulation study, we found that the performance of a
restricted maximum likelihood estimator depends heavily on the quality of the
candidate submodel. The restricted maximum likelihood estimator is the best
estimator when the candidate submodel is correct or nearly correct. For any sce-
nario, the estimators based on Stein-type strategy outperform the unrestricted
maximum likelihood in the entire parameter space, especially the truncated ver-
sion of the Stein-type shrinkage estimator. On the contrary, the performance of
the estimators based on the preliminary test procedure lacks this property. The
LASSO estimator is preferable to the Stein-type estimators when the number
of inactive predictors is small. In contrast, the Stein-type estimators dominate
the LASSO estimator only when the number of inactive predictors is relatively
large. The ridge regression cannot produce a parsimonious model, thus the ridge
regression estimator does not perform well when the model is sparse. However,
the positive-part Stein-type shrinkage estimator is robust. It would be interest-
ing, therefore, to investigate the relative performances of adaptive LASSO and
smoothly clipped absolute deviation (SCAD) estimators. We will leave this for
further consideration.
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