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Abstract In recent years, astronomers have witnessed major progresses in the field
of stellar physics. This was made possible thanks to the combination of a solid
theoretical understanding of the phenomena of stellar pulsations and the availability
of a tremendous amount of exquisite space-based asteroseismic data. In this context,
this chapter reviews the basic theory of stellar pulsations, considering small,
adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with
a brief discussion of the solar oscillation spectrum, followed by the setting of the
theoretical problem, including the presentation of the equations of hydrodynamics,
their perturbation, and a discussion of the functional form of the solutions. Emphasis
is put on the physical properties of the different types of modes, in particular
acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface
(f-) mode solutions are also discussed. While not attempting to be comprehensive,
it is hoped that the summary presented in this chapter addresses the most important
theoretical aspects that are required for a solid start in stellar pulsations research.

1 Introduction

The study of stellar pulsations is revolutionizing our knowledge of the internal
structure and dynamics of stars and, as a consequence, also our understanding
of stellar evolution. This is made possible through the combination of a solid
theoretical understanding of the phenomena of stellar pulsations and the availability
of a tremendous amount of high-quality data, in particular that acquired from space
with satellites such as SOHO (Domingo et al. 1995), observing the Sun for over 20
years, and CoRoT (Baglin et al. 2006) and Kepler (Gilliland et al. 2010; Koch et al.
2010).

In this chapter I review basic aspects of the theory of stellar pulsations. Given the
limited space available, options had to be made on what to discuss. A more detailed
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view of the aspects considered here, as well as discussions of the issues that have
been left out can be found, e.g., in published books (Unno et al. 1989; Aerts et al.
2010), lecture notes (Gough 1993), as well as in other long reviews (Cunha et al.
2007; Basu 2016).

While this chapter is dedicated to the theory of stellar pulsations, it is interesting
and motivating to start by inspecting one of the main observational results in
this context, namely, the oscillation power density spectrum of the Sun. This is
shown in the upper panel of Fig. 1. The first aspect that catches the eye is that
the oscillation spectrum is composed of a number of discrete frequencies, whose
power is modulated over frequency, showing a close to Gaussian shape. This is
typical of oscillation spectra of solar-like pulsators in which modes are intrinsically
stable (meaning that small perturbations are damped) and continuously excited

Fig. 1 Power density spectrum of the Sun obtained from data acquired with VIRGO/SPM onboard
the SOHO satellite (Fröhlich et al. 1995; Jiménez et al. 2002). Top: The red line shows the power
spectrum density smoothed by 3�� and multiplied by 50, used to estimate �max. Bottom: A zoom
of the upper panel illustrating a few modes, identified by mode degree. The large frequency
separation, ��, and the small frequency separations between pairs of modes with degrees l D 0; 2,
ı�0, and pairs of modes with degrees l D 1; 3, ı�1, are also shown (figure courtesy of A. Santos)
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stochastically by convection. Other stellar pulsators, in which oscillations are
intrinsically unstable, with small perturbations growing due to some sort of coherent
excitation mechanism, will still show oscillation spectra composed of discrete
frequencies, but often a less regular pattern as a consequence of not all possible
frequencies being excited or observed. An important observable for solar-like pul-
sators is the frequency of maximum power, �max, shown in Fig. 1. There are different
approaches to derive it (Verner et al. 2011, and references therein) that usually
involve considering a heavily-smoothed version of the oscillation power spectrum.

The lower panel of Fig. 1 shows a close-up of the regular peak structure seen in
the upper panel. Here each mode is identified by a positive integer, the mode degree,
which will be discussed in detail in Sect. 2.3. Two main separations are identified
in the figure, namely, the large separation, ��, between consecutive modes of the
same degree and the small separation, ı�, between modes of similar frequency and
degree differing by two.

The large separation has been shown to scale as �� / p
� (Tassoul 1980),

where � is the mean density of the star. Moreover, the frequency of maximum power
has been suggested to scale with the surface gravity and effective temperature as
�max / gT�1=2

eff (Brown et al. 1991; Kjeldsen and Bedding 1995). Together, these
scaling relations provide two equations that can be used for a first estimate of the
stellar mass and radius, once the effective temperature is known, namely,
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where the overbar stands for a suitable average taken over the different pairs of
modes and solar values are marked by the index ‘ˇ’.

Finally, the small separation depends strongly on the sound speed in the stellar
core and is, thus, very sensitive to stellar age. These quantities shall be discussed
further in Sect. 5. Before that, I will introduce the pulsation equations in Sect. 2, and
discuss the corresponding solutions in Sects. 3–4.

2 Equations for Linear, Adiabatic Stellar Pulsations

In this section I set the problem of linear, adiabatic stellar pulsations. I start from the
equations of hydrodynamics for an inviscid fluid and then consider small, adiabatic
perturbations about a spherically symmetric, static equilibrium. Finally, I discuss
the functional form of the solutions on the sphere and the boundary conditions.

Let us assume that a gas can be treated as a continuum with thermodynamic
properties well defined at each position in space, r. Let f be a scalar property of the
gas. There are two ways of looking at the time evolution of f : (1) at fixed position
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Fig. 2 Eulerian versus Lagrangian descriptions. In the Eulerian description the evolution of the
property, f , of the gas is considered at fixed position, r0, by comparing f .r0; t0/ with f .r0; t1/,
while in the Lagrangian description the evolution is considered following the motion by comparing
f .r0; t0/ with f .r; t1/

r0 and (2) following the motion (see Fig. 2). The first corresponds to an Eulerian
description and the second to a Lagrangian description. Both perspectives are useful
and commonly used in the study of stellar pulsations. The two descriptions are
related by

df

dt
D @f

@t
C rf � dr

dt
� @f

@t
C v � rf ; (2)

where v is the velocity, d/dt is the time derivative following the motion (Lagrangian
description) and @=@t is the time derivative at fixed position (Eulerian description).
Likewise, for a vector quantity, F, the two derivatives are related by

dF
dt

D @F
@t

C .v � r/F : (3)

2.1 The Conservation Laws

The evolution of the properties of a fluid is described by a set of equations that
translate conservation laws. In what follows these equations are summarized under
particular conditions that will be discussed below. Conservation of mass, linear
momentum, and energy are expressed, respectively, by

d�
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D ��r � v ;
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C p

d .1=�/

dt
; (4)
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where � and p are, respectively, the fluid density and pressure, g is the acceleration
of gravity, Foth are other body forces, expressed per unit volume, that may act on
the fluid, besides gravity (e.g., the Lorentz force, if a magnetic field is present), and
E and q are, respectively, the internal energy and heat supplied to the system, both
per unit mass.

The first of these equations, known as the continuity equation, expresses that the
rate of change of the mass within a given volume must equal, with opposite sign,
the mass crossing the surface that encloses that volume, per unit time. The second,
the equation of motion, expresses that the change in linear momentum of an element
of fluid must equal the force acting on it by its surroundings. It is written under the
assumption that the fluid is inviscid, which is a good approximation under stellar
conditions. The third equation translates the first law of thermodynamics and it
states that the change in the internal energy of a system must equal the heat supplied
to the system minus the work done by the system on its surroundings. This equation
can be written in different forms. A useful one, adopted below, is
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�
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where �1 and �3 are adiabatic exponents defined by the adiabatic derivatives,
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and T is the temperature of the fluid. From Eq. (5) one can further define the
adiabatic sound speed, c. Making the left-hand side equal to zero one finds:

c2 � dp

d�
D �1p

�
: (7)

Finally, it should be noted that the thermodynamic variables T, �, and p are not
all independent, but rather are related by the equation of state that can be expressed
as F .T; p; �/ D 0, where F is a function that depends on the conditions of the
fluid. Since in this chapter only adiabatic oscillations will be considered, the explicit
form of the equation of state will not be needed. However, this equation will still be
required if the reader is interested in deriving the temperature fluctuations associated
to the perturbations in the density and pressure.

2.2 Perturbative Analysis

Consider an equilibrium state that is: (1) static, meaning that there are no velocities
and all derivatives at fixed position are null (@=@t D 0) and (2) spherically
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symmetric, implying, e.g., that there is no rotation or magnetic fields. Then, in the
equilibrium, one has:

rp0 D �0g0 � ��0g0 Oar ; (8)

where the index ‘0’ is used to identify the equilibrium quantities and Oar is the unit
vector in the radial direction pointing outwardly from the centre of the star, making
the scalar g0 a positive quantity.

Now let us assume that the equilibrium is perturbed under the following
conditions: (1) the perturbations are adiabatic and (2) they are small, in the sense
that non-linear terms in the perturbations can be neglected.

The adiabatic condition implies the assumption that no heat is exchanged with
the element of fluid during the perturbation, a condition that is very closely satisfied
almost everywhere in the star. This can be seen by comparing the characteristic
timescales of pulsations, typically found in the range of minutes to a few days,
with the timescale for radiation that, except very close to the stellar surface, has
characteristic valuesmany orders of magnitude larger than the pulsation period (e.g.,
exceeding a million years in the Sun, when the Sun is considered as a whole).

Under the above conditions, let f be a scalar property of the gas, and f 0 and ıf be,
respectively, the Eulerian and Lagrangian perturbations to it. Then f D f0 C f 0 and
ıf D f 0 C � � rf0, where � is the displacement vector (� r � r0). Moreover, since
the perturbations are linear, the velocity of a given element of fluid is

v � d�

dt
� @�

@t
: (9)

Perturbing the system of equations (4) [with energy conservation expressed as in
Eq. (5)], using Eqs. (8) and (9), and integrating in time the equations of continuity
and energy, one finds that linear adiabatic perturbations about a static spherically
symmetric equilibrium are described by the following set of equations:

�0 D �r � .�0�/ ;

�0

@2�

@t2
D �rp0 � �0r�0 � �0r�0 ;

r2�0 D 4�G�0 ;

p0 C � � rp0 D �1;0p0

�0

�
�0 C � � r�0

�
: (10)

To reach the system of equations above, I have further defined the acceleration of
gravity in terms of the gravitational potential �, such that g D �r� and, accord-
ingly, considered in addition the Poisson equation that relates the gravitational
potential to the fluid density.

Taking the equilibrium quantities as known, one can identify four variables in
the system above (three scalars and one vector), namely �0, p0, �0, and �. These four
equations thus form a closed system that can be solved, with adequate boundary
conditions.
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2.3 Solutions on a Sphere

Consider the spherical coordinate system .r; �; '/ such that the variables �0; p0; �0; �

are expressed as functions of r; �; ' and t.
It can be shown by substitution (or derived by the technique of separation of

variables) that the system of equations (10) admits solutions of the type

f 0 .r; �; '; t/ D < ˚
f 0 .r/ Ym
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�

; (11)
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where f 0 stands for any of the scalar perturbations, 	r and 	h are, respectively,
the depth-dependent amplitudes of the radial and horizontal components of the
displacement and Oai are the components of the unit vectors of the spherical
coordinate system.

The time dependence of the solution is associated to the angular oscillation
frequency!. The sign in the exponential is arbitrary. Here it is chosen to be negative
to guarantee that in cases when ! is complex the growth rate (i.e., the imaginary
part of the frequency) is positive when the perturbation grows. The possible values
of ! are determined by imposing the boundary conditions that shall be discussed
later. In practice, since the equations were derived under the assumption that the
perturbations are adiabatic, so far as the boundary conditions are fully reflective (i.e.,
no energy is lost through the boundary), ! is real. That will be the only case
discussed in this chapter.

The angular dependence of the solutions is given by the spherical harmonic
functions Ym

l , characterized by the angular degree l (a non-negative integer), and
the azimuthal order m, an integer that takes values between �l and l. The angular
degree defines the number of surface nodes and the absolute value of the azimuthal
order defines the subset of those that cross the equator. This means that jmj defines
the orientation of that solution on the sphere, something that will be relevant for
the discussion below. An example of low-degree spherical harmonic functions with
identified values of l and jmj is shown in Fig. 3. Since Ym

l / Pm
l .cos �/eim' ,

where Pm
l are the associated Legendre functions, the sign of m defines whether the

associated solution is travelling eastwardly or westwardly in the chosen reference
frame. Given the negative sign adopted for the time-dependent part of the solution
the perturbations are found to vary as ei.m'�!t/. This means that in this case a
positive m corresponds to a solution travelling eastwardly. I note, however, that not
all literature adopts the same definition, since sometimes the opposite sign is chosen
for the exponent in the time-dependent exponential. Finally, from the properties of
the spherical harmonics, one has that

r2
hY

m
l D � l .l C 1/

r2
Ym
l � �
2

hY
m
l ; (12)
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Fig. 3 Examples of spherical harmonic functions, Ym
l , for mode degrees in the range l D 0–3.

For each mode degree, all possible non-negative values of m are shown. Red and blue show
perturbations of opposite sign

where 
h has been identified as the horizontal wavenumber of the perturbation when
the latter is interpreted, locally, as a plane wave.

The last part of the solutions in Eq. (11) are the radial-dependent amplitudes.
For simplicity, radial-dependent parts of scalar perturbations have been named with
the same symbol as the full solutions. Using the full solutions separated as in
Eq. (11) in the system of equations (10), one can derive a set of equations governing
these amplitude functions. After eliminating the horizontal component of the
displacement by combining the continuity equation and the horizontal divergence of
the perturbed momentum equation, and eliminating the Eulerian perturbation to the
density through the adiabatic relation, one finds that the radial-dependent amplitudes
p0.r/, �0.r/, and 	r.r/, obey the following system of equations:
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Fig. 4 Lamb frequency, Sl (continuous lines), for l D 1 and l D 10, buoyancy frequency, N0

(dashed-dotted line), and critical frequency, !c (dotted line, displayed in the outer 50% of the stellar
radius only), for a model of the Sun, all divided by 2� . The left vertical axis shows dimensionless
values of these characteristic frequencies obtained by multiplying them by tdyn. The right vertical
axis indicates the true physical values

where two characteristic frequencies have been defined: the Lamb frequency, Sl; and
the buoyancy (or Brunt–Väisälä) frequency, N0. The squares of these quantities are
given, respectively, by

S2
l D l .l C 1/ c2

0

r2
; N2

0 D g0
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d ln p0

dr
� d ln �0

dr



: (14)

Examples of the Lamb frequency and buoyancy frequency are shown in Figs. 4 and 5
for a model of the Sun and a model of a star in the red-giant branch, respectively.
The buoyancy frequency is seen only where N2 > 0, which marks stellar layers that
are stable to convection.

A significant difference is found in the characteristic values of the Lamb
frequency in the two stars, as seen by comparing the scales on the right-hand side
vertical axes in Figs. 4 and 5. This is because this frequency scales approximately
with the inverse of the dynamical timescale of the star, tdyn D .R3=GM/1=2, hence
depending significantly on stellar radii. The vertical scale on the left-hand side of
each figure shows the characteristic frequencies in units of 1=tdyn, illustrating the
similarity of the Lamb frequency in the two stars once the scaling is accounted
for. The second aspect that calls attention in these figures is that the buoyancy
frequency in the more evolved star shows a much more significant contrast,
increasing significantly towards the stellar centre. This is a consequence of the
increasing density gradient in the innermost layers as the star evolves and the core
contracts. These structural differences between main-sequence and red-giant stars
have significant impact on the properties of their oscillations, as will be discussed
in Sect. 4.
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Fig. 5 Same as Fig. 4 but for a model of a star in the red-giant branch

There are a number of points that should be stressed in relation to the system of
equations (13):

• First, the system only contains total derivatives, reminding us that the variables
are the depth-dependent parts of the solutions only. In fact, the system of
equations (13) forms a system of linear, total differential equations of fourth
order for four unknown functions, namely, the depth-dependent amplitude
functions, 	r; p0; �0, and d�0=dr. We have, thus, at this point, reduced the original
3-dimensional problem into a 1-dimensional problem.

• The second point is that in the case of spherically symmetric perturbations
(l D 0), the perturbed Poisson equation can be integrated, reducing the system
to second order for the variables p0 and 	r . An important consequence, that will
not be explored here, is that it is then possible to combine the two first-order
differential equations to obtain a single second-order differential equation for the
displacement, that can then be cast in the form of a standard wave equation.
Moreover, Takata (2005, 2016) has shown that in the case of dipolar modes
(l D 1), momentum conservation can be used to derive an integral that again
reduces the system to second order. In the same work, the author has also argued
that integrals such as those found for the case of radial and dipolar modes do not
exist for any other mode degree.

• For other mode degrees, reduction of the system of equations (13) to a second
order system can be achieved by performing the Cowling approximation, which
consists in neglecting the perturbation to the gravitational potential. This approx-
imation is adequate for perturbations that vary on relatively short scales (much
smaller than the radius of the star). Since the integral solution of the Poisson
equation relates �0 to the integral of �0, the cancellation effect that results from
the integration when �0 varies on short scales, leads to �0 being small in that case.
While this reduction of the order of the system requires an approximation, it has
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proven to be extremely useful for the asymptotic analysis of the equations and, in
that way, a better understanding of the physical picture involved. I will get back
to this in Sect. 3.

• The fourth, and last point, that should be made is that while the coefficients in
the system of equations (13) depend on the mode degree, l, they are independent
of the mode azimuthal order, m. This is a consequence of our assumption that
the equilibrium state is spherically symmetric. In fact, under that assumption,
there is no preferential direction in the star and, so far as the boundary conditions
(to be discussed in Sect. 2.4) are also independent of m, the solutions must be
independent of the reference about which the spherical harmonic functions are
defined. Since m defines the orientation of the spherical harmonic on the sphere,
the equations and, hence, the solutions, must not depend on m. This means that
under this assumption the solutions will be degenerate in the azimuthal order.
That degeneracy, however, is broken (partially broken), in the presence of agents
that break (partially break) the spherical symmetry, such as, e.g., rotation or
magnetic fields.

2.4 Boundary Conditions

Of the four boundary conditions required to solve the problem set by the system of
equations (13), two will be defined at the stellar centre (r D 0) and two at the stellar
surface (r D R).

2.4.1 At the Stellar Centre

The boundary conditions at the stellar centre are derived by imposing that the
solutions are regular (do not diverge) there. By expanding the equations near r D 0

one finds that the regular solutions require p0 � O.rl/, �0 � O.rl/, and 	r � O.r˛/,
where ˛ D 1 for l D 0 and ˛ D l � 1 for l > 0. This means that, as r ! 0,

d�0

dr
� l

r
�0 ! 0 ;

dp0

dr
� l

r
p0 ! 0 ;

d	r

dr
� ˛

r
	r ! 0 : (15)

The three conditions above are not all independent. In fact, the condition on the
displacement can be derived from the other two by first noting that the gradient
of the thermodynamic variables in the equilibrium structure must be zero at the
centre of the star and, then, applying that knowledge to the perturbed equations.
Moreover, in that process one also finds that for non-radialmodes 	r D l	h, at r D 0.
The regularity of the solutions thus provides us with two independent boundary
conditions to apply at r D 0. One interesting point to notice is that the displacement
at the centre of the star is non-zero only for dipolar modes (l D 1). In all other cases
the centre of the star does not move. That such is the case can also be seen from
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symmetry arguments, as only for l D 1 modes one would recover the same non-zero
displacement vector at r D 0 independently from where the centre is approached.

2.4.2 At the Stellar Surface

As the density vanishes outside the star, at the surface the perturbation to the
gravitational potential must match continuously onto the physically-meaningful
solution of the Poisson equation for a vacuum field (vanishing at infinity). That
implies that �0 � O.r�l�1/ and thus, at r D R,

d�0

dr
D � l C 1

r
�0 : (16)

The second boundary condition to be applied at the surface depends on how
one treats the atmosphere of the star. If one assumes a free boundary, then one must
consider that the pressure at the boundary is constant and, hence, that the Lagrangian
pressure perturbation there is zero. In that case, a second boundary condition at
r D R is found in the form:

p0 C dp0

dr
	r D 0 : (17)

This condition is reasonable for low-frequency waves, as will be seen later. How-
ever, as the frequency of the waves increases, the details of the atmosphere become
more important for the solution. It is therefore common, when solving the pulsation
equations, to adopt a more adequate boundary condition, such as that derived from
the matching of the radial displacement solution onto the physically meaningful
analytical solution derived for an isothermal atmosphere. The analytical solution
can be derived assuming a plane-parallel isothermal equilibrium composed of an
ideal gas and with constant adiabatic exponent and mean molecular weight. Under
these assumptions, the sound speed is constant and so are the density and pressure
scale heights, i.e., the characteristic lengths associated with the variations of density
and pressure, given respectively by H D �dr=d log�0 and Hp D �dr=d logp0.
Moreover, in this case, the equilibrium pressure and density decrease exponentially
with height in the atmosphere �; p / expŒ.R � r/=H/�. Then, considering the system
of equations (13) under the Cowling approximation, the displacement is found to
have the form 	r / exp.
r/, where, for all cases that will be of interest to us,1
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: (18)

1Here the term that would dominate in the case of atmospheric gravity waves is being neglected,
as those will not be discussed in these lectures.



Theory of Stellar Oscillations 39

Combining the perturbed equation of mass conservation and the adiabatic condition
(first and fourth equations in the system of Eqs. (10)) with the solution for 	r, and
noting that in the isothermal atmosphere H D Hp, one finds an alternative boundary
condition to be applied at r D R [replacing Eq. (17)], namely,

p0 � �
�

�1;0p0
 C dp0

dr

�
	r D p0

H
.1 � �1;0
H/ 	r ; (19)

where r � � has been approximated by d	r=dr, implicitly assuming that the
perturbation varies much more rapidly in the radial than in the horizontal direction.

In Eq. (18) the critical frequency, !c, has been introduced, which in the isother-
mal atmosphere is constant and equal to c0=.2H/. It is important to note that when
! < !c, 
 is real and the physically meaningful solution corresponds to choosing
the negative sign, ensuring that the energy density, / �	2

r , decreases outwardly.
When ! > !c, 
 is complex and assuming no waves are being sent into the
atmosphere from outside, the imaginary part must be chosen to guarantee that
the wave travels outwardly. Considering the time-dependent part of the solution,
one finds that the radial component of the displacement goes as expŒi.˙
ir � !t/�,
where 
i D .!2=!2

c � 1/1=2. The outwardly travelling solution is thus obtained by
taking the positive sign in Eq. (18).

Under this boundary condition, waves with ! > !c will simply propagate away,
loosing their energy through the boundary.2 Here I am interested only in waves
that are fully trapped inside the star, loosing no energy through the boundary,
hence I will consider only the case when ! < !c. In the particular case when
! � !c the expression for 
 can be expanded and the boundary condition [Eq. (19)]
approximated by

p0 D p0

H

�
1 � �1

!2

4!2
c

�
	r : (20)

Finally, I note that as the frequency decreases, the second term inside the brackets on
the right-hand side of Eq. (20) gets smaller and this boundary condition approaches
the one defined in Eq. (17), justifying the adequacy of the latter in the case of
sufficiently low frequencies.

2.5 Eigenvalues

The system of equations (13) and associated boundary conditions constitute an
eigenvalue problem that needs to be solved numerically. The system admits non-
trivial solutions only for discrete values of the eigenvalues !. The discrete solutions

2In a real stellar atmosphere there can be partial reflection of the wave energy even when ! > !c.
Accounting for that would require modifying the atmospheric model and, thus, the outer boundary
condition accordingly.
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can be associated to an integer number n, denominated by radial order. Once the
depth-dependent amplitudes of the perturbations are computed, the full solutions
can be derived from Eq. (11).

In summary, the eigenvalues, ! D !.n; l;m/, of the 3-dimensional problem set
by the pulsation equations (10) (after separation of time) are characterized by three
quantum numbers, n, l, and m, where the absolute value of the first, jnj, is related to
the number of nodes of the perturbation along the radial direction, while the other
two, introduced in Sect. 2.3, are related to the angular dependence of the solutions,
in particular to the horizontal scale of the perturbation and its orientation on the
stellar surface. The discrete nature of the eigenvalues is clearly seen in the power
density spectrum of the Sun shown in Fig. 1.

As discussed before, in the absence of physical agents that break the spherical
symmetry of the problem, the solutions must be degenerate in m. Hence, in that
case one has ! D !.n; l/ and any linear combination of the 2l C 1 independent
solutions associated with the spherical harmonic of degree l, and differentm values,
is still an eigensolution for that eigenvalue.

A discussion of the full solutions obtained from numerical integration of the
pulsation equations will be presented in Sect. 4. First, however, it is useful to analyse
the second-order equation that is derived from the system of equations (13) under
particular approximations. That will be discussed in the next section.

3 Trapping of the Oscillations

The full solutions of the linear, adiabatic pulsation equations must be computed
numerically. Nevertheless, under the Cowling approximation, valid for large abso-
lute values of the radial order, jnj, or for large degree l, the system of equations (13)
reduces to second order on the variables p0 and 	r , namely,

1

r2

d

dr

�
r2	r

�� g0

c2
0

	r �
�
S2
l

!2
� 1

�
1

c2
0�0

p0 D 0 ;

dp0

dr
C g0

c2
0

p0 � �0

�
!2 � N2

0

�
	r D 0 : (21)

These equations can be combined to find a second-order wave equation for a single
variable. To do so, I follow the work of Deubner and Gough (1984), which, in
addition to the Cowling approximation, assumes that locally the oscillations can
be treated as in a plane-parallel layer under constant gravity, hence neglecting3 the
derivatives of r and g0. Let us introduce a new variable,

� D �
1=2
0 c2

0r � � ; (22)

3For a more general case in which these assumptions are not made, see Gough (1993).
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which through the adiabatic condition and the continuity equation can be seen
to be directly related to the Lagrangian pressure perturbation (ıp D ��

1=2
0 � ).

The second-order system (21), under the approximations mentioned above, can be
manipulated to derive a wave equation for � ,

d2�

dr2
C 
2

r � D 0 ; (23)

where 
r is the local radial wavenumber given by


2
r D 1

c2
0

	
S2
l

�
N2

0

!2
� 1

�
C !2 � !2

c



; (24)

and the critical frequency is now given by

!2
c D c2

0

4H2

�
1 � 2

dH

dr

�
: (25)

Notably, kr depends critically on the three characteristic frequencies introduced
before, namely, Sl, N0 and !c. Examples of !c for a solar model and a red-giant
model are shown in Figs. 4 and 5, respectively. It is small in the stellar interior,
where the density varies on large scales, but it becomes large near the surface, where
structural variations take place on a much shorter scale.

3.1 Mode Propagation Cavities

If 
2
r were constant and positive, the solution would be oscillatory everywhere.

However, in a star 
2
r is a function of r, and one may generally expect it to be

positive in some region(s) and negative in others. Where it is positive, the solution is
locally wave-like (oscillatory in r) while where it is negative it is locally exponential.
Because 
2

r depends on !, the regions where wave-like solutions are found will
depend on the mode under consideration. When there is only one region of the
star where 
2

r > 0, the mode is said to be trapped there and that region is often
called the mode propagation cavity. Away from that cavity, where the energy of
the mode decreases exponentially, the mode is said to be evanescent. When 
2

r is
positive in more that one region of the star, separated by regions where it is negative,
the mode propagates in more than one cavity. However, often most of its energy is
concentrated in one of these cavities whose structure, in turn, is the most determinant
for the properties of the mode.

The radii at which 
2
r D 0 are called the turning points and define the edges of

the propagation cavities. Setting the left-hand side of Eq. (24) to zero, one finds a
second-order algebraic equation for !2, whose roots, !2

l;˙, are given by

!2
l;˙ D 1

2

�
S2
l C !2

c

�˙ 1

2

q�
S2
l C !2

c

�2 � 4S2
l N

2
0 ; (26)
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where the index l was used to recall that the roots depend on the mode degree
through their dependence on the Lamb frequency. Rewriting Eq. (24) as


2
r D 1

c2
0

�
!2 � !2

l;C
� �

!2 � !2
l;�
�

; (27)

one sees that modes propagate if

! > !l;C or ! < !l;� ; (28)

and modes are evanescent if

!l;� < ! < !l;C : (29)

Figure 6 shows the frequencies !l;˙ for a model of the Sun in what is usually
called a propagation diagram. Comparison with Fig. 4 shows the resemblance
between N0 and !l;�. The frequency !l;C, on the other hand, resembles Sl in the
deeper layers of the stellar model, but it is clearly dominated by !c in the outer
layers. Three modes, two at high frequency and one at low frequency, are illustrated
by the horizontal lines in Fig. 6. For each of these modes, the propagation cavity

Fig. 6 Propagation diagram for model S of the Sun (Christensen-Dalsgaard et al. 1996). The
frequencies !C (continuous thick lines) and !� (shaded-dotted thick lines) are shown for three
different values of mode degree, l. Note that in the outer layers (right-hand section of the plot),
the horizontal axis varies much slower than in the inner layers (left-hand section of the plot).
The arrow at the top marks r=R D 1. The horizontal lines mark four different frequencies
and are continuous where the mode is trapped. At the lowest end, we have a characteristic g-
mode frequency for this model, with � � 45 
Hz. At the highest end we have a frequency
� � 6000 
Hz that is too high to be trapped inside the star. In between, we have two p-modes,
one with l D 1; � � 1613 
Hz, and one with l D 30; � � 2936 
Hz. The left-hand side vertical
axis shows the range of values taken by these frequencies when they are scaled according to their
dependence on the dynamical timescale, while the right-hand side axis shows their true physical
values
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corresponds to the section in which the horizontal line is continuous. A fourth
frequency is marked, with � � 6000 
Hz, which is too high to correspond to a
trapped mode.

3.2 Acoustic Versus Internal Gravity Waves

Inspection of the propagation diagram shown in Fig. 6 points towards the existence
of two families of solutions, one at lower frequencies, where the mode cavity is
essentially determined by the buoyancy frequency, and one at higher frequencies,
where the propagation cavity is determined by the combination of the Lamb
frequency, in the deeper regions, and the critical frequency, near the surface. This
can also be seen by considering the lower and higher frequency limits of 
2

r in the
propagation region, as discussed below.

3.2.1 Acoustic Waves

Let us consider first the higher frequency limit, namely, the case when !2 � N2
0 ,

in regions where 
2
r > 0. Except near the surface, where !c becomes large, Eq. (24)

then gives


2
r � !2

c2
0

� l .l C 1/

r2
: (30)

Recalling that the last term on the right-hand side is 
2
h [cf. Eq. (12)], one finds that

j�j2 � 
2
r C 
2

h � !2

c2
0

: (31)

One thus has, for !2 � N2
0 , a dispersion relation of the type:

! � c0j�j ; (32)

which is characteristic of acoustic waves. These waves are maintained by the
gradient of the pressure perturbation, i.e., the first term on the right-hand side of
the perturbed momentum equation. Note that in this case the frequency of the mode
increases as 
 increases. Taking the radial order for this family of solutions as being
positive integers, n, one thus finds that the frequency of acoustic modes increases
both with increasing radial order, n, and with increasing degree, l.

Looking back at Eq. (30), one can further establish the lower turning point for the
acoustic modes, that defines the lower boundary of their propagation cavity. Setting
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2
r to zero implies !2 D S2

l , from which the lower turning point is found to be
defined by

r1;l D
p
l .l C 1/c0.r1;l/

!
; (33)

where the subscript l has been used to emphasize that the lower turning point
depends on the mode degree and it has been explicitly indicated that the value
of c0 is to be taken at the turning point. From Eq. (33), we see that the lower
turning point of acoustic modes depends strongly on the mode degree. As the mode
degree increases, the lower turning point gets closer to the surface, implying that the
propagation cavity of the mode becomes shallower. That is also evident in Fig. 6,
where one can see that the depth at which a horizontal line in the high-frequency
regime crosses lines of !l;C for different degrees, becomes smaller as the degree
increases. In addition, we see from Eq. (33), and also form inspection of Fig. 6, that
for a fixed mode degree, the lower turning point decreases as the mode frequency
increases. That means that higher frequency acoustic modes propagate deeper, for
fixed mode degree.

The upper turning point of the acoustic modes is, in turn, determined by
comparing the oscillation frequency with the critical frequency, which near the
surface is much greater than Sl. There, one may approximate,


2
r � !2 � !2

c

c2
0

: (34)

Thus, one finds that 
r D 0 in the outer layers if

c0

2H

	
1 � 2

dH

dr


1=2

� ! ; (35)

which provides an implicit condition for the upper turning point of acoustic modes,
r2. Note that unlike the case of the lower turning point, to this approximation the
upper turning point of acoustic modes is independent of the mode degree.

The upper turning point of acoustic modes in a solar-like model is best seen
in the right-hand section of Fig. 6. For the lowest of the three frequencies in the
high-frequency regime (� � 1613 
Hz), the upper turning point is below the
photosphere, while for the second lowest (� � 2936 
Hz) it is at the photosphere.
For that reason, the former is significantly less sensitive to the details of the outer
layers than the latter. This is relevant because these layers are particularly difficult
to model. The oscillation frequencies derived from models are therefore affected
by the incomplete modelling of the outer layers and, as a result, show systematic
differences when compared with the observations. This is less so for the lower
frequency acoustic modes, which may, in that case, serve as an anchor with which to
get a handle on the systematic errors (assuming some kind of frequency dependence
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of these errors). The other point to notice is that there is a frequency above which
no trapping is possible. This has been discussed in Sect. 2.4.2, where the critical
frequency for a plane-parallel, ideal, isothermal atmosphere has been introduced.
Independently of taking the latter, or the more realistic critical frequency shown in
Fig. 6, it is clear that above �5:3mHz full trapping of the modes no longer occurs.
Since !c also scales with the inverse of the dynamical timescale (as seen when
comparing Figs. 4 and 5), the maximum expected observed frequency is strongly
dependent on the evolutionary state of the star.

3.2.2 Internal Gravity Waves

Let us now turn our attention to the low frequency limit of Eq. (24) in regions where

2
r > 0. Let us consider that !2 � S2

l throughout that propagation region and, in
addition, that !2

c � S2
l there. In that case k

2
r is given approximately by


2
r � S2

l

c2
0!2

�
N2

0 � !2
�

: (36)

Recalling that 
2
h D l.l C 1/=r2 D S2

l =c
2
0, we then find the dispersion relation

!2 � N2
0

1 C k2
r=
2

h

; (37)

which is characteristic of internal gravity waves. Internal gravity waves are main-
tained by the gravity acting on the perturbation to the density. If one considers
a slow upwards displacement of an element of fluid whose pressure is kept in
equilibriumwith the surrounding, buoyancy will respond to restore the fluid towards
the equilibrium position if its density is larger than that of the surroundings. That,
in turn, can lead to the oscillatory motion associated to gravity waves. Because
an element of fluid cannot move strictly vertically, there is always an horizontal
component of the motion, which, in turn, means that gravity waves can never be
associated to spherically symmetric perturbations, i.e., there are no gravity waves
of degree l D 0. Moreover, since buoyancy will only oppose to the motion of the
element of fluid where N2

0 > 0, i.e., in convectively stable regions, the gravity waves
will only propagate where there is no convection.

Looking back at the dispersion relation in Eq. (37), there are additional points
that should be noted. First, the frequency of gravity waves is always smaller than
N0. This just confirms the role of buoyancy in maintaining the dynamics of gravity
waves. The second point is that the frequency of gravity waves depends critically
on the shape of the perturbation. In fact, when the perturbation is “needle-like”,
meaning that K2

r =K2
h � 1, the frequency is higher, tending to N0 as that ratio tends

to zero. In the other limit, for wide perturbations with K2
r =K2

h � 1, the oscillation
frequency is smaller, tending to zero as the ratio becomes increasingly higher. This
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can be understood if we recall that the amount of material displaced horizontally
is larger in the latter case than in the former. This horizontal displacement, and
the horizontal pressure gradient that it originates, increases the effective inertia of
the element of fluid on which the buoyancy force is acting. The result is a smaller
acceleration of the element of fluid and, consequently, a smaller mode frequency.

It is worth emphasizing that the aspects discussed above are in striking contrast
with what was previously found for acoustic waves. Indeed, for acoustic waves
the frequency is found to depend essentially on the characteristic scale of the
perturbation, determined by the total wavenumber j�j, while for gravity waves
the frequency depends in addition, and very critically, on the relation between
the horizontal and vertical scales. Moreover, considering modes of a given degree
(hence fixing the horizontal scale), we find that the frequency of gravity waves
decreases with increasing 
r. Taking the radial orders n as negative integers, as
is commonly done for gravity waves, we see that their frequencies decrease with
increasing jnj, again in contrast with what was found earlier for acoustic waves.

Finally, from Eq. (36) we find that under the conditions assumed, gravity waves
propagate between the radii at which N0 D !. The latter thus provides an implicit
condition for the lower and upper turning points of these modes which to this
approximation are independent of the mode degree, l. This is, again, in contrast with
the case of acoustic modes, for which the lower turning point, and, hence, the extent
of the propagation cavity, was found to be strongly dependent on the mode degree.
For the case of a star like the Sun, we see from Fig. 6 that the lower frequency
gravity modes are essentially trapped between the centre of the star and the base of
the convective region. For the highest frequency gravity modes the upper turning
point gets smaller and the modes are trapped in deeper layers. For main-sequence
stars more massive than the Sun, the innermost layers are convectively unstable
and, thus, the cavity of gravity waves is bounded on the inner side by the edge of
the convectively unstable core. On the other hand, since the convective envelope
gets shallower for more massive stars, gravity waves there can propagate almost to
the stellar surface. In more evolved stars, the trapping region again depends on the
existence, or not, of convection in the core, as well as on the extent of the convective
envelope, which can get very deep, as happens, for instance, along the red-giant
branch. Moreover, the steep increase of the buoyancy frequency in the core of
evolved stars, such as that shown in Fig. 5, can lead to several cavities of propagation
for the same mode, in which case the analysis becomes more complex than in the
cases discussed above. I will get back to that case in the next section, where the full
numerical results of the pulsation equations shall be discussed. Table 1 provides a
summary of the properties of acoustic and gravity waves.

3.3 The Surface Gravity Waves

For completeness, in this section I will consider the case of perturbations obeying
ıp D 0, hence, � D 0. Going back to the system of equations (21), and considering,
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Table 1 Summary of the properties of acoustic and gravity waves discussed in this chapter

Acoustic waves Gravity waves

Maintained by the gradient of pressure
fluctuation

Maintained by gravity acting on density
fluctuation

Radial or non-radial Always non-radial

Propagate in convectively stable or unstable
regions

Propagate in convectively stable regions only

Propagation cavity strongly dependent on l Propagation cavity largely independent of l

Frequency increases with increasing n and
increasing l

Frequency always < max.N0/. It increases
with increasing l, and decreases with
increasing jnj

as before, that locally the oscillations can be treated as in a plane-parallel layer under
constant gravity, we find:

d	r

dr
� g0
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�
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� g0

2
h

!2

�
	r D 0 : (38)

For ıp D 0, the system above is satisfied by an exponential solution of the
type 	r D exp Œ
h .r � r0/�, where 
h D !2=g0. Here, r0 is a fiducial depth in
the vicinity of which the plane-parallel approximation is being made and g0 is the
gravitational acceleration at r D r0. Thus, the depth-dependent amplitude of the
solution in this case decays exponentially with depth and the dispersion relation is
! D p

g0
h. Moreover, under the approximations considered here, it is independent
of the stratification of the star. Since the characteristic scale of the amplitude decay
is 
�1

h , the plane-parallel approximation is particularly adequate when 
h, hence the
degree l of the mode, is not too small and the mode is concentrated near the surface
of the star.

This solution can be identified as a surface gravity wave, similar to a wave
propagating at the surface of a deep ocean. Since ıp D 0, r � � D 0 and the
fluid is not compressed during the perturbation.

4 Numerical Solutions to the Pulsation Equations

The full solutions to the pulsation equations and associated boundary conditions
must be computed numerically. In this section, I briefly discuss the range of
solutions obtained for a model of the Sun and discuss also a specific example for a
star in a different evolutionary state.
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Fig. 7 Left: Cyclic frequencies computed for a model of the Sun, as function of mode degree,
l. The discrete eigenvalues for each radial order have been joined by continuous lines with a
few examples of the radial order identified on the right-hand side and top of the figure. Right:
Frequencies of the Sun derived from 144 days of observations with the instrument MDI on board
the SOHO spacecraft. The depicted error bars correspond to 1000� . The dotted lines show the
model results, for comparison. Figure adapted from Christensen-Dalsgaard (2008c) and Aerts et al.
(2010)

The left panel of Fig. 7, adapted from Aerts et al. (2010), shows the cyclic
frequencies (=!=2�/ computed with the Aarhus adiabatic oscillation package
(ADIPLS; Christensen-Dalsgaard 2008a) for a solar model obtained with the Aarhus
STellar Evolution Code (ASTEC; Christensen-Dalsgaard 2008b). The discrete eigen-
values for each radial order have been joined by continuous lines with a few
examples of the radial order identified on the right-hand side and top of the
figure. Three families of solutions are identified in the figure: (1) The acoustic
(or p-) modes, at higher frequencies; (2) the gravity (or g-) modes, at lower
frequencies, and; (3) the f-mode, at intermediate frequencies. These correspond to
the cases discussed in the previous section, based on the analysis under the Cowling
approximation. For comparison, the eigenfrequencies of the real Sun, derived from
data acquired with the instrument MDI on board of the SOHO spacecraft are shown
on the right panel of the same figure, where the model results are overplotted
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as dotted curves. Only the p- and f-modes are seen in the real data. In fact, the
observation of gravity modes in the Sun has been a long-standing goal, but despite
all efforts and some claims of detection of signatures of g-modes and, possibly,
individual g-modes in the Sun (García et al. 2007; García 2010), the matter is still
not settled (Appourchaux et al. 2010).

A closer look at the different families of solutions displayed in Fig. 7 shows that
the behaviour of the solutions with changing radial order and mode degree also
follows what was found from the analysis in Sect. 3. For the p-modes, at fixed
degree, l, we can see an increase of the frequency with radial order. Likewise,
following a single line of fixed radial roder, n, we also see an increase of the
frequency with increasing degree. Both of these dependencies were expected from
the dispersion relation for acoustic waves derived earlier. Regarding the g-modes,
we can identify an upper bound to the frequency, which corresponds to the
maximum value of the buoyancy frequency in that model. In addition, I note that
there are no results for spherically symmetric modes, l D 0, as expected given that
the displacement associated with these waves can never be purely radial (always
involves a horizontal displacement of the fluid). Moreover, it is seen that at fixed
degree the frequency decreases with increasing absolute value of the radial order,
jnj, while at fixed radial order, the frequency increases with increasing degree. I
also note that the fact that the lines of g-mode solutions are very close to each other
implies that at fixed frequency the radial order increases very rapidly with increasing
mode degree. As for the case of p-modes, the numerical results discussed here are
in agreement with the dispersion relation for g-modes derived in Sect. 3. Finally,
the f-mode eigenfrequencies for moderate to high mode degrees (the ones for which
the plane-parallel approximation used in Sect. 3 is adequate), are found between the
p-mode and g-mode eigenfrequencies. Despite the resemblance of the high degree
f-mode solutions and the p-mode solutions I wish to recall that these modes obey
ıp D 0. Thus, the perturbation takes place without compression or refraction of the
fluid, reminding us that f-modes are not acoustic waves.

The trapping of the modes discussed in Sect. 3 can also be verified by inspection
of the numerical eigenfunctions. In Fig. 8 three examples of p-mode (left panel)
and g-mode (right panel) eigenfunctions are shown, for the solar model discussed
above. The quantity plotted, r3ıp, has the dimensions of energy and, in each case, it
is normalized to its maximum value. Inspection of the p-mode solutions shows that
the spherically symmetric pulsation (l D 0; top panel) propagates from the centre
to the stellar surface. One may then expected it to carry average information about
the entire star. In contrast, a p-mode of similar frequency but much higher degree
(l D 60; bottom panel) has its energy concentrated in the outer layers of the star.
This was expected from the analysis performed in Sect. 3, where it was found that
the propagation cavity of p-modes becomes shallower as the mode degree increases.
Looking now at the right panel we see that, in contrast with the p-modes, the energy
of the g-modes is concentrated towards the innermost layers of the star. The modes
are trapped below the convective envelope (marked by the vertical dotted line), in a
cavity that is mostly independent of mode degree. The modes shown have similar
frequency, so as anticipated from Fig. 7, even a small increase in mode degree results
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Fig. 8 Normalized eigenfunctions for a model of the Sun, as function of fractional radius. The
chosen eigenfunction, r3ıp, has the dimensions of energy and is normalized to its maximum value.
Left: Results for three p-modes: (a) (l D 0; n D 21; � D 3038:0 
Hz), (b) (l D 20; n D 14; � D
2939:2 
Hz), and (c) (l D 60; n D 9; � D 3043:2 
Hz). Right: Results for three g-modes: (a)
(l D 1; n D �5; � D 109:2 
Hz), (b) (l D 2; n D �10; � D 102:6 
Hz), and (c) (l D 3; n D
�14; � D 104:1 
Hz). The dotted line marks the base of the convective envelope (figure courtesy
of J. Christensen-Dalsgaard)

is a significant increase in the radial order, as seen from the increase in the number
of nodes when comparing the upper and lower panels on the right-hand side.

The regions where modes propagate depend directly on the stellar structure and,
hence, are different for stars of different masses or different evolutionary states.
In Sect. 2.3 I have pointed out that as the star evolves beyond the main sequence,
and the core contracts, the buoyancy frequency increases significantly towards
the centre. This results in the appearance of mixed modes, i.e., modes that are
maintained by gravity acting on density perturbations in the deep interior, and by
the gradient of the pressure perturbation in the outer layers. An example of such
a mode computed for the model shown in Fig. 5 is shown in Fig. 9. Two mode
cavities can be identified, in the inner and outer layers of the star, respectively,
separated by an evanescent region where the solution is not oscillatory. Despite
the latter, coupling does exist between the two cavities and in a general case the
solution is different from what would be found if the two cavities were considered
independently of each other.
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Fig. 9 Same as Fig. 8, for a dipole mode with frequency � D 51:20 
Hz, in a model of a star
in the red-giant branch. The vertical, dashed lines show the position of the two turning points
bounding the evanescent region, namely, r2 and r3. The outermost turning point, r4 , is also shown,
while the innermost turning point, r1, is outside the plotted range. The g-mode cavity is located
between the unseen r1 and r2, and the p-mode cavity is located between r3 and r4. Figure adapted
from Cunha et al. (2015)

5 Discussion

As mentioned from the outset, a number of aspects of the theory of stellar pulsations
had to be left out of these notes in the interest of space. In what follows, I identify
issues that I find particularly important and that are discussed in detail in the books
and lecture notes mentioned in the introduction.

To start with, it should be pointed out that it is possible to perform an asymp-
totic analysis of the second-order pulsation equations derived under the Cowling
approximation to find approximate eigenvalues and eigenfunctions for modes of
high radial orders and low degree. That has been performed in different ways by
different authors (Vandakurov 1968; Tassoul 1980; Unno et al. 1989; Gough 1993).
In the case of p-modes, the eigenfrequencies in this limit are found to be well
approximated by

�nl '
�
n C l

2
C 1

4
C ˛

�
��0 � ŒAl.l C 1/ � ı�

��2
0

�nl
; (39)
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is the inverse sound travel time across a stellar diameter, and
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: (41)

Here, ˛ is a slowly varying function of frequency determined by the reflection
properties near the surface and ı is a small correction term predominantly related
to the near-surface region. To leading order, Eq. (39) predicts the uniform spacing
between frequencies of consecutive modes of the same degree, corresponding to the
large frequency separation, ��, observed in Fig. 1. Also, we see that modes of odd
degree fall halfway between modes of even degree. The first term in Eq. (39) cancels
out when subtracting the frequencies of modes of consecutive orders and degrees
differing by two. That combination then gives the small frequency separation, ı�,
also seen in Fig. 1, and which is found to be

ı�nl D �n l � �n�1 lC2 ' �.4l C 6/
��0

4�2�nl

Z R

0

dc

dr

dr

r
; (42)

where the small term c.R/ in Eq. (41) has been neglected. From Eq. (42) we see that
the small separation is particularly sensitive to the innermost layers, as a result of
the r�1 dependence of the integrand. Other small separations and ratios of small to
large separations are often considered in asteroseismology. In particular, the ratios
(Roxburgh and Vorontsov 2003; Cunha and Metcalfe 2007) have the advantage
that they are essentially independent of the inadequately modelled surface layers
of the stars.

In the case of high radial order, low-degree g-modes, the first-order term of the
asymptotic analysis predicts a uniform spacing in mode period, ˘nl, rather than in
frequency. In this case, we have (e.g., Tassoul 1980; Smeyers and Moya 2007):

˘nl ' ˘0p
l.l C 1/

�
n C ˛l;g

�
; (43)

where

˘0 D 2�2

�Z r2

r1

N
dr

r

��1

: (44)

The phase ˛l;g depends on whether the core of the star is radiative or convective,
depending on mode degree in the first case but not in the latter. In the case of a
radiative core one can write ˛l;g D l=2 C ˛g, where ˛g is independent of mode



Theory of Stellar Oscillations 53

degree. Note, however, that in both cases there is a strong dependence on mode
degree of the period spacings between modes of the same degree and consecutive
orders, due to the term Œl.l C 1/��1=2 in Eq. (43). This is in contrast with the case of
p-modes for which the asymptotic large separation is, to first order, independent of
mode degree.

Another important aspect that has been left out of this chapter is the impact on
the oscillation spectrum of rotation and magnetic fields. A perturbative analysis
of the impact of rotation on pulsations can be found, e.g., in Aerts et al. (2010),
while the impact of an internal magnetic field can be found, e.g., in Gough (1993).
Non-perturbative analyses of these phenomena, required in the cases of fast rotation
or magnetic fields that permeate the stellar surface, are discussed by Lignières
et al. (2006), Reese et al. (2006) and Cunha and Gough (2000), Cunha (2006),
respectively.

The ultimate goal of stellar pulsations studies is to infer information about
the physics and dynamics of stellar interiors from the asteroseismic data. That
is commonly achieved through forward modelling, a method that is intrinsically
model-dependent, or, in optimal cases, through inverse techniques, in which the
solutions are not restricted to those of a set of models.

Finally, I note that no word has been said about the driving of the pulsations,
with the exception of a brief reference, in Sect. 1, to the fact that modes can be
intrinsically stable, as in solar-like pulsators, or unstable, as in classical pulsators.
This topic is, however, well out of the scope of the present notes and I, thus, refer
the interested reader to the literature listed in Sect. 1, and references therein.
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