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Abstract This article presents important challenges and progress toward the
management of data regarding the maritime domain for supporting analysis tasks.
The article introduces our objectives for big data—analysis tasks, thus motivating
our efforts toward advanced data-management solutions for mobility data in the
maritime domain. The article introduces data sources to support specific maritime
situation—awareness scenarios that are addressed in the datAcron [The datAcron
project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 687591 (http://datacron-project.eu).]
project, presents the overall infrastructure designed for managing and exploiting
data for analysis tasks, and presents a representation framework for integrating data
from different sources revolving around the notion of semantic trajectories: the
datAcron ontology.
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1 Introduction: Overall Objectives to Manage Mobility
Data

The datAcron project aims to advance the management and integrated exploitation
of voluminous and heterogeneous data-at-rest (archival data) and data-in-motion
(streaming data) sources so as to significantly improve the capacities of surveillance
systems to promote safety and effectiveness of critical operations for large numbers
of moving entities in large geographical areas. Challenges throughout the Big-Data
ecosystem of systems concern effective detection and forecasting of moving enti-
ties’ trajectories as well as the recognition and prediction of events due to entities’
trajectories and contextual data.
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Challenges emerge as the number of moving entities and related operations
increase at unprecedented scale. This, in conjunction with the demand for
increasingly more frequent data from many different sources and for each of these
entities, results in generating vast data volumes of a heterogeneous nature, at
extremely high rates, whose intertwined exploitation calls for novel big-data
techniques and algorithms that lead to advanced data analytics. This is a core
research issue that we address in the datAcron project. More concretely, core
research challenges in datAcron include the following:

e distributed management and querying of spatiotemporal RDF data-at-rest
(archival) and data-in-motion (streaming) following an integrated approach;

e reconstruction and forecasting of moving entities’ trajectories in the challenging
maritime (2D space with temporal dimension) and aviation (3D space with
temporal dimension) domains;

e recognition and forecasting of complex events due to the movement of entities
(e.g., the prediction of potential collision, capacity demand, hot spots/paths); and

e interactive visual analytics for supporting human exploration and interpretation
of the above-mentioned challenges.

Technological developments are validated and evaluated in user-defined chal-
lenges that aim at increasing the safety, efficiency, and economy of operations
concerning moving entities in the aviation and maritime domains. The main benefit
arising from improved trajectory prediction in the aviation use—case lies in the
accurate prediction of complex events, or hot spots, leading to benefits to the overall
efficiency of an air traffic-management (ATM) system. Similarly, discovering and
characterizing the activities of vessels at sea are key tasks to Maritime Situational
Awareness (MSA) indicators and constitute the basis for detecting/predicting vessel
activities toward enhancing safety, detecting anomalous behaviors, and enabling an
effective and quick response to maritime threats and risks.

In both domains, semantic trajectories are turned into “first-class citizens.” In
practice, this forms a paradigm shift toward operations that are built and revolve
around the notion of trajectory. For instance, in the MSA world, trajectories are
essential for tracking vessels’ routes, detecting and analyzing anomalous behavior,
and supporting critical decision-making. datAcron considers trajectories as first
class citizens and aims to build solutions toward managing data that are connected
by way of, and contribute to, enriched views of trajectories. In doing so, datAcron
revisits the notion of semantic trajectory and builds on it. Specifically, it is expected
that meaningful moving patterns will be computed and exploited to recognizing and
predicting the behavior and states of moving objects, taking advantage of the wealth
of information available in disparate and heterogeneous data sources, and integrated
in a representation in which trajectories are the main entities.

The objective of this section is to review the challenges of and recent progress
toward managing big data for supporting analysis tasks regarding moving objects at
sea (e.g., for predicting vessels’ trajectories, events, and/or support visual-analytics
tasks). Such data may be surveillance data but also data regarding vessels’
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characteristics, past events, areas of interest, patters of movement, etc. These are
data from disparate and heterogeneous sources that should be integrated, together
with the automatic computations of indicators that contribute to support maritime
experts’ awareness of situations.

The article presents the datAcron maritime-use case. It then presents the overall
datAcron infrastructure to manage big mobility data focusing on data-management
issues. It then presents the datAcron ontology for the representation of maritime
data towards providing integrated views of data for disparate sources focusing on
the notion of semantic trajectory.

2 Taming Big Data in the Maritime-Use Case: Motivation
and Challenges

The maritime environment has a huge impact on the global economy and our
everyday lives. Specifically, surveillance systems of moving entities at sea have
been attracting increasing attention due to their importance for the safety and
efficiency of maritime operations. For instance, preventing ship accidents by
monitoring vessel activity represents substantial savings in financial cost for ship-
ping companies (e.g., oil-spill cleanup) and averts irrevocable damages to maritime
ecosystems (e.g., fishery closure). The past few years have seen a rapid increase in
the research and development of information-oriented infrastructures and systems
addressing many aspects of data management and data analytics related to move-
ment at sea (e.g., maritime navigation, marine life). In fact, the correlated
exploitation of heterogeneous and large-data sources offering voluminous historical
and streaming data is considered as an emergent necessity given the (a) wealth of
existing data, (b) the opportunity to exploit such data toward building models of
entities” movement patterns, and (c) understanding the occurrence of important
maritime events.

It is indeed true that reaching appropriate MSA for the decision-maker requires
processing in real-time of a high volume of information of different nature,
originating from a variety of sources (sensors and humans) that lack veracity and
comes at high velocity. Different types of data are available, which can provide
useful knowledge only if properly combined and integrated. However, the corre-
lated exploitation of data from disparate and heterogeneous data sources is a crucial
computational issue.

The growing number of sensors (in coastal and satellite networks) makes the sea
one of the most challenging environments to be effectively monitored; the need for
methods for processing of vessel-motion data, which are scalable in time and space,
is highly critical for maritime security and safety. For instance, approximately
12,000 ships/day are tracked in EU waters, and approximately 100,000,000 AIS
positions/month are recorded in EU waters (EMSA 2012). Beyond the volume of
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data concerning ships’ positions obtained from AIS, these trackings might not be
always sufficient for the purposes of detection and prediction algorithms. Only if
properly combined and integrated with other data acquired from other
data/information sources (not only AIS) can they provide useful information and
knowledge for achieving the maritime situational awareness in support to the
datAcron maritime-use case.

The Maritime-Use Case for datAcron focuses on the control of fishing activities
because it fulfills many of the requirements for validating the technology to be
developed in datAcron: It addresses challenging problems deemed of interest for
the maritime operational community in general; it is aligned with the European
Union maritime policy and needs in particular; and it relies on available datasets
(unclassified, shareable) among the teams and others of interest in the research
community (e.g., AIS data, radar datasets, databases of past events, intelligence
reports, etc.). Moreover, it is of considerable complexity because it encompasses
several maritime risks and environmental issues such as environmental destruction
and degradation as well as maritime accidents, illegal, unreported, and unregulated
(IUU) fishing; and trafficking problems.

The support for processing, analyzing, and visualizing fishing vessels at the
European scale, although not worldwide, along with the capability of predicting the
movement of maritime objects and the identification of patterns of movement and
navigational events, shall improve existing solutions to monitor compliance with
the European common fisheries policy. In addition to the control of fishing activ-
ities, another core issue is safety. Fishing, even under peace conditions, is known as
one of most dangerous activities and is regularly ranked among the top five dan-
gerous activities depending on the years being considered. Safety does not concern
only fishing vessels themselves but also the surrounding traffic and more generally
all other human activities at sea.

The data to be used in datAcron comprise real and quasi-real data streams as
well as archival (or historical) European datasets supporting the fishing scenarios
specified. These usually need to be cleaned up from inconsistencies, converted into
standard formats, harmonized, and summarized.

The following list briefly summarizes typical datasets that are relevant to the
datAcron scenarios:

e automatic Identification System (AIS) messages broadcasted by ships for col-
lision avoidance;

e marine protected/closed areas where fishing and sea traffic may be (temporarily)

forbidden;

traffic-separation schemes and nautical charts useful to define vessel routes;

vessel routes and fishing areas estimated from historical traffic data;

registry data on vessels and ports;

records of past events such as incidents and illegal-activities reports; and

meteorological and oceanographic (METOC) data on atmospheric and sea-state

conditions and currents.
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Despite the urgent need for the development of maritime data infrastructures,
current information and database systems are not completely appropriate to manage
this wealth of data, thus also supporting the analytics tasks targeted in datAcron. To
address these limitations, we at datAcron put forward two major requirements.
First, the very large data volumes generated require the development of pre-filtering
data-integration process that should deliver data synopses in real-time while
maintaining the main spatio-temporal and semantic properties. Next, additional
ocean and atmospheric data, in conjunction to other data sources at the global and
local scales are often necessary to evaluate events and patterns at sea in the most
appropriate way, thus leading to additional data-integration issues [15].

In addition to the above-mentioned points, data measurements have an intrinsic
uncertainty, which may be addressed by proper data-fusion algorithms and clus-
tering in the preparation/preprocessing phase (by assessing the quality of data
themselves) and by combining measurements from complementary sources [15].

3 Big-Data Management Challenges in datAcron

As already said, we at datAcron aim at recognizing and forecasting complex events
and trajectories from a wealth of input data, both data-at-rest and data-in-motion, by
applying appropriate techniques for Big-Data analysis. The technical challenges
associated with Big-Data analysis are manifold and are perhaps better illustrated in
[1, 2] where the Big Data—Analysis Pipeline is presented. As depicted in Fig. 1, five
major phases (or steps) are identified in the processing pipeline:

data acquisition and recording;

information extraction and cleaning;

data integration, aggregation, and representation;
query processing, data modeling, and analysis; and
data interpretation.

Data Acquisition

As already said, large volumes of high-velocity data are created in a streaming
fashion, including surveillance data and weather forecasts that must be consumed in
datAcron. One major challenge is to perform online filtering of this data in order to
keep only the necessary data that contain the useful information. To this end, we
apply data-summarization techniques on surveillance data, thus keeping only the

gt Extraction/ Integration/ :
Acquisition/ : - i =Y Analysis/ . h
> Cleaning/ *  Aggregation/ : Interpretation
Recording - 5 Modeling
Annotation Representation

Fig. 1 Major steps in the analysis of big data (from [1, 2])
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Fig. 2 Summarized trajectory: Critical points with specific meaning indicate important low-level
events at specific points

“critical points” of a moving object’s trajectory, which signify changes in the
mobility of the moving object. Such a summarized trajectory is shown in Fig. 2
comprising the low-level events detected as critical trajectory points. A research
challenge for datAcron is to achieve a data-reduction rate >90% without compro-
mising the quality of the compressed trajectories and, of course, the quality of
trajectories’ and events’ analysis tasks [14].

Another challenge in the data-acquisition phase is to push computation to the
edges of the Big Data—management system. To achieve this, we perform online data
summarization of surveillance data on the input stream directly as soon as it enters
the system. Moreover, we employ in-situ processing techniques, near to the
streaming data sources, in order to identify additional low-level events of interest
such as the entrance/leave of moving objects in specific areas of interest (such as
protected marine areas) and events requiring cross-streaming processing.

Information Extraction and Cleaning

Given the disparity of data sources exploited in datAcron, with miscellaneous data
in various formats for processing and analysis, a basic prerequisite for the subse-
quent analysis tasks is to extract the useful data and transform it into a form that is
suitable for processing. As a concrete example, weather forecasts are provided as
large binary files (GRIB format), which cannot be effectively analyzed. Therefore,
we extract the useful meteorological variables from these files, together with their



Taming Big Maritime Data to Support Analytics 21

spatio-temporal information, so that they can be later associated with mobility data.
These should be done in operational time (i.e., in milliseconds), enriching the
stream(s) of surveillance data.

In addition, surveillance data are typically noisy, contain errors, and are asso-
ciated with uncertainty. Data-cleaning techniques are applied in the streams of
surveillance data in order to reconstruct trajectories with minimum errors, which
will lead to more accurate analysis results with higher probability. Indicative
examples of challenges addressed in this respect include handling delayed
surveillance data and dealing with intentional erroneous data (spoofing) or
hardware/equipment errors, etc.

Data Integration, Aggregation, and Representation

Having addressed data cleaning, the next challenge is to integrate the heterogeneous
data coming from various data sources in order to provide a unified and combined
view. Our approach is to transform and represent all input data in RDF following a
common representation (i.e., the datAcron ontology), which was designed pur-
posefully to accommodate the different data sources. However, data transformation
alone does not suffice. To achieve data integration, we apply online link-discovery
techniques in order to interlink streaming data from different sources, a task of
major significance in datAcron.

In particular, the types of discovered links belong to different categories with the
most representative ones being (a) moving object with static spatial area, (b) mov-
ing object with spatio-temporal variables, and (c) moving object with moving
objects. In the first case, we monitor different relations (enter, exit, nearby) between
a moving object and areas of interest such as protected natural areas or fishing
zones. In the second case, we enrich the points of a trajectory with weather
information coming from weather forecasts. Finally, in the last case, we identify
relations between moving objects, e.g., two vessels approaching each other or
staying in the same place for unusually long period. By means of link discovery, we
derive enriched-data representations across different data sources, thereby providing
richer information to the higher-level analysis tasks in datAcron.

Query Processing, Data Modeling, and Analysis

Another Big-Data challenge addressed in datAcron relates to the scalable pro-
cessing of vast-sized RDF graphs that encompass spatio-temporal information.
Toward this goal, we designed and developed a parallel spatio-temporal RDF
processing engine on top of Apache Spark. Individual challenges that need to be
solved in this context include RDF-graph partitioning, implementing parallel query
operators that shall be used by the processing engine, and exploiting the capabilities
of Spark in the context of trajectory data.

Complex event detection is also performed in datAcron where the objective is to
detect events related to the movement of objects in real-time.

Last, but not least, particular attention is set toward predictive analytics, namely,
trajectory prediction and event forecasting. Both short- and long-term predictions
are useful depending on the domain and in particular for maritime: A difficult
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problem is to perform long-term prediction. For instance, as far as trajectory pre-
diction is concerned, we may distinguish location prediction (where a moving
object will be after X number of hours) and trajectory prediction (what path will a
moving object follow in order to reach position P).

Interpretation

To assist the task of human-based interpretation of analysis results, as well as the
detection of patterns that may further guide the detection of interesting events—
tasks that are fundamental for any Big Data—analysis platform—datAcron relies on
visual analytics. By means of visual-analysis tools, it is possible to perform visual
and interactive exploration of moving objects and their trajectories, visualize
aggregates or data summaries, and ultimately identify trends or validate analysis
results that would be hard to find automatically.

4 Semantic Trajectories Revisited: An Ontology
for Maritime Data to Support Movement Analysis

Given the significance of trajectories, analysis methods (e.g., for the detection and
prediction of trajectories and events), in combination with visual analytics methods,
require trajectories to be (a) available at multiple levels of spatio-temporal analysis,
(b) easily transformed into spatio-temporal constructs/forms suitable for analysis
tasks, and (c) provide anchors for linking contextual information and events related
to the movement of any object. In doing so, representation of trajectories at the
semantic level aim to provide semantically meaningful integrated views of data
regarding the mobility of vessels at different levels of analysis.

The term “contextual information” denotes any type of information about enti-
ties that affect the behavior of an object (e.g., weather conditions or events of
special interest) as well as information about entities that are being affected by the
behavior of an object (e.g., a fishing or protected area). Moreover, the context of an
objects’ trajectory may include the trajectories of other objects in its vicinity. As
already said, surrounding traffic may entail safety concerns. The association of
trajectories to contextual information and events results in enhanced semantic tra-
jectories of moving objects.

Existing approaches for the representation of semantic trajectories suffer from at
least one of the following limitations: (a) there is use of plain textual annotations
instead of semantic links to other entities [3-5, 8, 10-12]; (b) only limited types of
events can be represented as resources [3—7]; (c) assumptions are made of the
structure of trajectories, thus restricting the levels of analysis and representations
supported [6, 9]; and (d) semantic links between entities are mostly application-
specific rather than generic [6, 7].
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Fig. 3 Core concepts and properties

Motivated by real-life emerging needs in MSA, we aim at providing a coherent
and generic scheme supporting the representation of semantic trajectories at dif-
ferent levels of spatial and temporal analysis: Trajectories may be seen as single
geometries, as arbitrary sequences of moving objects’ positions over time, as
sequences of events, or as sequences of trajectories’ segments each linked with
important semantic information. These different levels of representation must be
supported by the datAcron ontology.

The datAcron ontology is expressed in RDFS. The main concepts and properties
in this ontology are depicted in Fig. 3 and are presented in the next paragraphs.

Places: The concept of “place” is instantiated by the static spatial resources
representing places and regions of special interest. Places are related to any type of
trajectory (or segment), weather conditions, and events (by relations “within” or
“nearby”). “Place” is a generalization of Places of Interest (POIs) related to tra-
jectories and Regions of Interest (ROIs) [13] associated with a stop event of a
moving object.

A place is always related to a geometry with the property “hasGeometry.”

Semantic Nodes: For the representation of moving objects’ behavior at varying
levels of analysis in space and time, and in order to associate trajectories with
contextual information, we use the concept of “SemanticNode.” A semantic node
specifies the position of a moving object in a time period or instant or a specific set
of spatio-temporal positions of a single moving object. In the latter case, it specifies
an abstraction/aggregation of movement track positions (e.g., the centroid for a set
of positions) and can be associated with a place and a temporal interval when this
movement occurred. In both cases, a semantic node may represent the occurrence of
an event type.

More importantly, any instance of SemanticNode can be associated with con-
textual information known for the specific spatio-temporal position or ROL.

In addition, the semantic node may be associated with weather information
regarding the node’s spatio-temporal extent.

Trajectories: A trajectory is a temporal sequence of semantic nodes or trajectory
segments. The main properties relating trajectories to semantic nodes are
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“hasInitNode,” “hasLastNode” (representing the trajectory initial and last semantic
nodes, respectively) and ‘“consistsOf” (for relating trajectories to intermediate
semantic nodes). The property “hasNext” relates consecutive semantic nodes in a
trajectory to maintain the temporal sequence of nodes (Fig. 4).

Various types of trajectories are supported such as “OpenTrajectory” where the
last semantic (terminal) node is not yet reached and “ClosedTrajectory,” in which
the last node is specified. Having said this, it should be noticed that criteria for
determining terminal positions are application and domain specific. A trajectory can
also be classified as “intendedTrajectory” specifying a planned or predicted tra-
jectory. Thus, each moving object, at a specific time, may be related to multiple
trajectories, actual or intended/predicted ones, and semantic nodes can be reused in
different types of trajectories, w.r.t. spatial and temporal granularity.

The properties “hasParent” and “hasSuccessive” relate a trajectory with other
trajectories, thus forming a structured trajectory. Specifically, the first property
relates a trajectory to its parent (the whole), and the second one relates the suc-
cessive trajectories (the parts).

For instance, Fig. 5 illustrates the trajectory of a vessel through ports Porto Di
Corsini, Durres, and Bari, and Fig. 6 demonstrates the corresponding structured
trajectory with its trajectory segments.

Trajectory segments have a starting and an ending semantic node and are
associated with a time interval and geometry.

Event: The “Event” concept is instantiated by spatio-temporal entities repre-
senting specific, aggregated, or abstracted positions instantiating a specific event
pattern. The instantiation of any such event pattern can be part of a preprocessing
task on raw data, or it can be done by a function applied to the RDF data, thus
resulting in the generation of new triples representing the recognized events. Thus,
an event is associated with a set of semantic nodes, which may be in temporal
sequence. Each event may be associated with one or more moving objects, and it
has spatial, temporal and domain-specific properties according to the properties of
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Fig. 6 A structured trajectory

semantic nodes and trajectories. It must be pointed out that a semantic node or a
trajectory can be specified to be associated to more than one event types (e.g.,
“Rendezvous” and “PackagePicking”).

Events are distinguished as to low-level and high-level events: The former are
those detected from raw trajectory data or from time-variant properties of a single
moving object disregarding contextual data. For instance, a “Turning” or an
“Accelerating” event is a low-level event because it concerns a specific object and
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can be detected directly from raw trajectory data. Figures 2 and 5 depict such
low-level events as trajectory “critical” points. High-level (or complex) events are
detected or predicted by means of features specifying movement and/or time-variant
properties, in addition to contextual ones, of moving objects. For example, the
detection of a “Fishing” event needs consideration of the type of the vessel and the
known fishing regions in addition to the vessel’s raw trajectory.

5 Concluding Remarks

The datAcron project aims to advance the management and integrated exploitation
of voluminous and heterogeneous data-at-rest (archival data) and data-in-motion
(streaming data) sources so as to address important challenges in time critical
domains, such as the maritime domain, for supporting analysis tasks. It is indeed
true that vast data volumes of heterogeneous nature, flowing at extremely high rates
—whose intertwined exploitation for supporting analysis tasks in the maritime
domain, is an emergent necessity—calls for novel big-data techniques and algo-
rithms that lead to advanced data analytics.

Toward achieving its objectives, datAcron considers semantic trajectories to be
“first-class citizens” following the paradigm shift towards operations that are built
and revolve around the notion of trajectory. Thus, datAcron revisits the notion of
semantic trajectory and builds on it. Specifically, it is expected that meaningful
moving patterns will be computed and be exploited to recognizing and predicting
the behavior and states of moving objects taking advantage of the wealth of
information available in disparate and heterogeneous data sources.

Given the significance of trajectories, analysis methods (e.g., for the detection
and prediction of trajectories and events), in combination with visual analytics
methods, require trajectories to be (a) available at multiple levels of spatio-temporal
analysis, (b) easily transformed to spatio-temporal constructs/forms suitable for
analysis tasks, and (c) able to provide anchors for linking contextual information
and events related to the movement of any object. Toward these objectives,
datAcron has devised a representation for trajectories at the semantic level, pro-
viding semantically meaningful integrated views of data regarding the mobility of
vessels at different levels of analysis.

Finally, as already mentioned, we address issues of all five major phases (or
steps) identified in the processing pipeline of a big-data architecture:

data acquisition and recording;

information extraction and cleaning;

data integration, aggregation, and representation;
query processing, data modeling, and analysis; and
interpretation.
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The design of the datAcron overall architecture reflects these issues and is in

close connection with requirements of the maritime domain.

Our current work focuses on data integration, aggregation, and representation as

well as on query processing, data modeling, and analysis. Methods aim toward
providing big-data solutions to these processing phases even during operational
times.
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