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Abstract. Humans are increasingly interacting and collaborating with robotic
and intelligent agents. How to make these interactions as effective as possible
remains, however, an open question. Here, we argue that consistent understand-
ings of the environment on the part of the human and agent are critical for their
interaction and basing these understandings on only the objective features of
sensory inputs may be inadequate. To that end, the current paper presents a novel
approach to more integrated characterizations of the sensory environment that
encompass objective and subjective features of sensory inputs. We propose that
an approach to signal and behavioral estimation consistent with the control and
communication theoretic perspective of Cybernetics could inform human robot
interaction (HRI) applications. Specifically, we offer a potential path forward for
quantifying similarity in stimulus events that can lead to consistent understand-
ings of the environment, which when applied to HRI can enhance human-agent
communication in HRI applications.
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1 Introduction

In recent years, the US Army has seen an increased integration of highly skilled Soldiers
with advanced technologies, with a significant emphasis in future interactions with
robotic and other intelligent agents. To support these efforts, we have adopted the
conceptual framework of Cybernetics. This transdisciplinary approach, popularized
most notably by [1], is the “scientific study of control and communication in the animal
and machine.” Cybernetics, therefore, encompasses the disciplines of control theory and
communication (a.k.a., information) theory, as a general approach to understanding
closed-loop, feedback systems [2, 3].

Feedback can be defined generally as the information that is generated by a system’s
control actions and the resulting interactions with the external environment, which when
sensed by the system can then be utilized in planning and executing future actions. In a
complex system, such as the human brain, feedback operates at multiple levels; for
example, feedback influences internal affective or physiological states, or the
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interactions among single or small clusters of neurons. At the cognitive level, feedback
influences intention and shapes action “closing” the loop that moves from intention to
action, to sensing the outcome of action, to the comparison of an outcome to the original
intention, and provides information to make appropriate adjustments in further action.
This closed loop circularity is essential to “cybernetic” systems as it enables adaptation
under complex and dynamic conditions.

However, understanding the mechanisms underlying the incorporation of feedback
into higher-level human behaviors, such as decision-making, is more conceptually chal-
lenging than such an idealized loop might suggest. Human sensation and perception is
often incomplete, inaccurate, and ambiguous, and it is not always possible to extract all
of the information needed to support behavior directly from immediate sensing of the
environment. This can create conditions of undesirable uncertainty about one’s rela-
tionship with the environment. In the face of this uncertainty, humans likely weigh the
input from multiple modalities, and can use the combined or integrated perceptual result
to guide action. The information that underlies this weighting in a highly complex real
world interaction remains an open question. The answer to this question, of course, can
depend strongly on the situational context, and humans are generally quite flexible in
their putative information processing strategies. When a human must communicate their
intentions to an agent, the information encoded in flexible combinations of modalities,
stimulus features, and assumptions or expectations that typically serve human-to-human
communications well are not available for decoding by the agent. This lack of effective
communication can lead to significant misunderstandings between human users and the
systems they rely on for successful task performance.

Here, we suggest, that in human-agent teaming situations, for effective communi-
cation between an agent and their human counterpart it is likely critical that their under-
standings of the environment be consistent with each other. For example, humans and
robots, depending on their relative size, may understand the same physical objective
differently: For a micro-autonomous system, a shoebox would be a significant obstacle,
whereas for their human counterpart, it would not. However, for both the human and
robot, the shoebox may pose a threat, because something could be contained within it
that neither of their visual sensors would be able to detect. This is just a single example
of the difficulties human-agent teams could face while navigating a complex and
dynamic environment. However, creating consistent representations of the everyday
environment is no small feat given the differences in sensing and perceptual architectures
between humans and the myriad potential artificial agents with which they might team.
The representations that typically underlie such understandings in robotic and other
intelligent agent applications still mainly reflect low-level, quantitative aspects of their
physical sensory inputs. By contrast, as argued above, understanding the environment
for humans does not just comprise mappings of the immediate physical domain. Human
representations, instead, typically reflect the integration of the more objective informa-
tion based on current sensory inputs with more subjective information that strongly
depends on assumptions or expectations derived from previous experiences in other
contexts, which is difficult, if not impossible, to directly measure.

The subjective attributes of human perceptual experiences conceived of here as
cognitive features that vary across individuals, but with values bounded by prior
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information from experience within relevant behavioral contexts. For example, the
subjective experience of a cognitive feature, such as the perceived pleasantness of the
sound of a car’s engine, may be low for someone unfamiliar with the loud and inter-
mittently impulsive mechanical noise. However, when that engine sound has become
associated with the returning home of a spouse or parent at the end of the day, those
previous experiences might positively influence the perceived pleasantness of the input.
In turn, this influence may also change subjective experiences across a variety of
contexts. The example provided here is meant to illustrate that the influences of subjec-
tive experience on the representations that are fundamental to understanding in complex
environments are likely pervasive. Still, the challenging task of quantifying subjective
stimulus attributes is an area of research that has been somewhat lacking, with even less
information available on how one would apply or translate this research in the context
of enhancing human-robot interactions (HRI).

1.1 Objectives of This Paper

This paper will briefly discuss the relative strengths and weaknesses of human and
systems approaches to stimulus classification from visual, auditory, and multimodal
inputs. We will highlight the relatively limited research that compares human and agent
performance on common tasks and discuss how these comparisons can support the
development of better models of interaction between humans and agents. We then
describe our work on characterizing the sensory environment, which has thus far focused
largely on auditory environment quantification. This research on human performance in
the context of subjective stimulus attributes is discussed with an eye towards using such
an approach to improve models of multisensory integration for HRI applications.

2 Comparing Human and Machine Classification Approaches

One critical skill required for successful navigation of the environment is the ability to
detect, localize, and recognize objects and boundaries. Using vision, humans perform
this task seemingly effortlessly, while object localization and recognition in machine
vision is resource-intensive and cannot yet match human performance in all conditions.
For example, in a direct comparison of a robotic machine vision algorithm and human
classification, [4] found that humans were 1.7% more accurate. This difference in accu-
racy may seem small, however, the source of accuracy differences was revealing.
Specifically, when the algorithm made classification errors, it was found to be due to
image features that humans typically have no difficulty processing, such as view point
and color invariance [4, 5]. The algorithm also had difficulty classifying images that
were graphic or symbolic representations of real objects (i.e. drawing of a coffee cup,
or an image of a stuffed bear). Despite these limitations, machine vision is improving
rapidly and there are emerging examples where Deep Learning approaches have
exceeded the best human performance for specific image data sets. For example, [6]
showed machine image classification for the ImageNet 2012 classification dataset that
exceeded the best-reported human performance by more than 5%.
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In audition, there are also examples of machine algorithms classifying environmental
sound events; however, in almost every case the stimulus set is restricted to a homoge-
neous class of events, such as the detection and localization of gunfire events, [7, 8].
Under these conditions human and algorithm classification performance was compa-
rable. However, in the majority of real world environments, the input event distribution
is much more varied than that used in these studies. This is a pervasive issue for current
machine language solutions: in application domains where the behavioral space intrins-
ically involves greater variety, machine language approaches cannot yet match human
performance. For example, in speech recognition, the domain where the majority of
auditory machine learning applications have been developed [9], humans typically do
better than implemented machine approaches in terms of accuracy of recognized speech
[10, 11]. However, as with machine vision, machine speech recognition systems are
rapidly improving; a very recent application of machine learning approaches by Micro-
soft has yielded parity with humans in transcribing speech from the NIST 2000 speech
test set [12].

Multimodal machine learning classifiers have also had demonstrated success, but
with limited comparison to human performance. Importantly, in multimodal classifica-
tion, the addition of redundant, as well as potentially unique, information from another
modality is one obvious way to improve machine classification. For example, adding
audio to visual information can improve classification by increasing bandwidth, accu-
racy, and decreasing processing time by using converging evidence to support classifi-
cation of environmental objects under difficult or ambiguous conditions. Examples
include the audio-visual classification of speech [13] and audio-visual and textual senti-
ment analysis [14], where in both cases the additional sensory cues led to better classi-
fication performance.

These direct comparisons between human and machine performance are useful in
assessing advances in machine performance and potentially identifying where further
advancements may occur. However, another approach to understanding the differences
between human and machine performance is to examine their capabilities in the context
of collaboration. One robust example of human-agent collaboration is the Human-
Autonomous Image Labeler (HAIL) developed by the US Army Research Laboratory.
The performance of the HAIL system depends critically on both human and computer
vision systems [15]. Specifically, it takes advantage of the capability for rapid, but
sometimes inaccurate classification of tens of thousands of images by computer vision
agents, and couples that with the capability for very accurate, but much slower classi-
fication by human agents. The outcome is a very accurate and fast classification of a
large set of images [15, 32] that, instead of highlighting the limitations of human and
machine performance, takes advantage of the respective strengths of human and auton-
omous agents to increase the performance of the “system” as a whole.

2.1 The Problem of Similarity

Classification performance by intelligent agents, humans, or human agent teams is, in
many cases, negatively impacted when the to-be-classified content is highly similar to
background or distractor information [16]. Although some image algorithms excel at
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classifying highly similar images, such as those that could be part of the same fine-
grained (local level) category, many developed algorithms tend not to be robust to
suboptimal viewing conditions and could still produce significant classification errors.
Multimodal cuing could aid classification by using auditory information to disambiguate
highly similar visual inputs and support discrimination; for example, two dogs of
different breeds likely have distinctive barks.

Indeed, for humans, it is well-known that visual task performance is often augmented
by the presence of auditory information. This multisensory enhancement effect [see 19]
is possible due, to the fact that many objects in the environment are only fully described
by the combination of distinct auditory and visual features. This suggests that processes
for audiovisual integration can capitalize on informational redundancy to reduce uncer-
tainty in perceptual estimates, enhancing the resultant representation of the world and
making it both more coherent and more robust [17, 18]. More generally, human percep-
tual systems combine and integrate information from their multiple different sensory
modalities, which reduces the variance and, generally, increases the reliability of percep-
tual estimates that support the higher cognitive functions, including decision making.

There is clearly value in adapting these strategies for HRI applications, yet it remains
unclear whether multisensory perception based solely on current sensory inputs provide
adequate information for complex decision making. Indeed, [4, 33] (see also [18] for
review) have shown that some of the efficient and robust sensory combinations and
integrations underlying humans’ higher-level perceptual capabilities rely on represen-
tations of prior experiences, and that these subjective attributes may not be easily trans-
lated from human to non-human systems. For example, in social interactions using text-
based communication (i.e., IM), the presence of punctuation can influence perceived
sincerity of a comment in younger users who are used to crafting text in the absence of
traditional punctuation [20]. Similarly, in reading, the same words can convey different
senses of urgency depending on the contextual framing provided by story narration. A
reader can perceive the activity of a character as urgent if the narrator uses language that
suggests fast movements, but perceived urgency is limited when the narrator uses
language to suggest slower movements or does not describe the rate of activity [21].

3 Characterizing the Sensory Environment

As discussed above, humans use information from multiple modalities to reduce uncer-
tainty in perceptual estimates, which supports efficient decision-making. Multisensory
integration is often biased based on previous experiences with a given object in a partic-
ular context [19]. This bias can manifest in two opposing ways, as a performance decre-
ment or as a performance enhancement, depending on how the information available is
combined or integrated with prior information from previous experience in the repre-
sentation of the current situation. However, as alluded to above, sometimes complex
and high dimensional, experience-based factors can be difficult to define and are resistant
to direct measurement.

In the human multisensory perception literature, Bayesian approaches have emerged
as an important tool in understanding how multimodal sensory cues can be integrated.
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There are a number of examples where Bayesian maximum likelihood estimation (MLE)
models predict multisensory integration [9, 20, 22, 23]. Maximum likelihood estimation
models of multisensory integration [22] (also known as Bayesian inference models)
maximize the maximum a posteriori (MAP) estimate associated with a particular
response by dynamically updating the maximum likelihood functions associated with
the sensory cues. Across trials, the resultant MAP predictions are weighted sums of the
unimodal sensory inputs, where the weight reflects the relative cue uncertainty gathered
from previous trials. However, the Bayesian priors are theoretical values that estimate
the magnitude of the impact of previous experiences with a given set of multimodal cues
and these estimates are not necessarily based on the real distribution of experiences. It
is not clear how well this approach would extend to dynamically changing multimodal
cues, or even if this approach could scale up to real world audio visual events. A prereq-
uisite to evaluate the possibility of quantifying experience-based factors using a Baye-
sian approach would be a better understanding of the physical and perceived signal
qualities of stimuli in the environment. [24] found that informational and contextual
factors affect listeners’ ability to identify environmental sounds. For example, they
found that the presence of a competing background, particularly a background with
overlapping information reduced sound identification accuracy. Similar effects have
emerged in our own work, [25] found that identification accuracy was better when
sounds had a clear originating event (“concrete”) than when the link between the sound
generating object and the sound produced was less obvious (““abstract”).

The results of [24, 25] suggest that subjective and contextual factors convey impor-
tant task relevant information. To better understand the content of environmental sounds,
and the interaction between these subjective factors and object stimulus parameters
researchers have applied stimulus classification techniques to environmental sound
perception. These techniques offer a method for addressing possible limitations in the
way Bayesian priors are estimated for real stimulus events. [26] used listener defined
similarity scores, as well as objective measures of spectral and temporal features of
sounds, to create a classification space for a large set of common environmental sounds.
Dickerson et al. [27] extended this approach by using prior subjective ratings of stimulus
similarity to characterize human listener performance on a variety of different behavioral
tasks. It is possible that data of this nature could be used to improve Bayesian estimation
techniques and could provide consistent and meaningful feedback about the environ-
ment to both human and non-human intelligent agents. In several related experiments,
we have further extended our understandings of and approaches to quantifying the rela-
tionship between informational and contextual effects using the construct of similarity.
[28] found that, for change discrimination, similarity in perceived loudness influenced
the likelihood of noticing that an element within a scene had changed. This effect of
similarity also manifested in the identity relationships among the 25 signals in their
stimulus set, with a linear relationship found between the likelihood of change discrim-
ination and the overall similarity (defined via user rating and a multidimensional scaling
(MDS) analysis) of the sounds in the stimulus set. This relationship between identifia-
bility, similarity, and perceptual performance is not particularly compelling on its own;
the well-established informational masking literature would likely predict some of these
effects [29]. However, this becomes more compelling when we examine the robustness
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of these trends across changes in methods and paradigms. [27] found that similarity
among sounds in a scene affected both change discrimination and change localization
performance, where increasing similarity decreased accuracy. [30] found that this effect
extended to performance on cued-recall tasks, as well. It was further revealed that a
complex interaction exists between user ratings of identifiability and similarity and later
memory performance: Sound sources group together based on identifiability and cate-
gory membership, but sounds within a tightly clustered group were more poorly recalled.
The work from our group, along with Bayesian approaches to multisensory integra-
tion suggests that subjective information quantified in the manner discussed in this paper
provides a tractable method for including subjective information in Bayesian prior esti-
mation. By using this type of information in the development of machine sensing
approaches, it becomes possible for man and machine to have a deeper and more consis-
tent understanding of their operational environment, potentially reducing the workload
associated with communicating information between agent and human teammate.

4 Conclusions and Future Directions

The research highlighted here suggests that in order to accurately and meaningfully
represent the environment to both man and machine, more information than the direct
sensory stream may be required. By quantifying subjective attributes, such as similarity,
that relate complex features across objective and subjective perceptual estimates,
researchers can develop a better understanding of the feedback that guides behavior
under the complex and dynamic conditions of the real world. Additionally, the research
summarized here converges on emerging perspectives in multisensory integration, that,
rather than separating out each sensory stream for modular and potentially parallel
processing, the auditory and visual information are processed together as a holistic object
[31]. This perspective suggests that there may be value in the further uncertainty reduc-
tions and saliency gains in including subjective factors in the characterization of stimulus
events. Future research will focus on continuing to evaluate how humans and intelligent
agents complete tasks in isolation and in cooperation in order to uncover the stimulus-
related objective and subjective factors producing efficient and accurate behavior.
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