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Abstract The title of this work represents a figurative counterpart of bridging the
topographical gap between Hongkong and Macao. Presently under construction, the
bridge that connects these two cities at opposite sides of the mouth of the Pearl
River is interrupted by a submersed tunnel, which is the actual research object of
this paper. By means of four different topics in the framework of the general sub-
ject of this contribution, reflected by its title, the scientific progress resulting from
multiscale structural analyses of tunnel linings is documented. The four topics are:
(a) microstructural analysis of impact and blast loading in tunnel linings, (b) mul-
tiscale analysis of thermal stresses in concrete linings due to sudden temperature
changes, (c) experiments and finite element modeling of concrete hinges in Mecha-
nized Tunneling, and (d) multiscale structural analysis of a segmented tunnel ring.

1 Introduction

The title of this work follows the one of a research project, sponsored by the Austrian
Science Fund. It reads as “Bridging the gap by means of multiscale structural analy-
sis” [1]. The ambitious goal of this project, in which the authors of this contribution
are involved, is quantification of the added value of multiscale analyses, notwith-
standing the explicit acknowledgment of scientific progress that manifests itself in
such analyses. The overriding research object is the 35.6km longHongkong-Zhuhai-
Macao Bridge, presently under construction. For shipping, the bridge is interrupted
by a 5.7km long tunnel below the bottom of the sea, representing the actual research
object. Figure1 shows the course of the bridge. Figure2 refers to the tunnel, which is
located between the West Artificial Island and the East Artificial Island (see Fig. 1).
A figurative counterpart of bridging the topographical gap between Hongkong and
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Fig. 1 Course of the Hongkong-Zhuhai-Macao-Bridge [1]

Fig. 2 Tunnel between the West Artificial Island and the East Artificial Island (see Fig. 1). Tunnel:
a longitudinal section, b typical tunnel element, c cross-section of a tunnel element [1]

Macao is the bridging of several orders of magnitude in multiscale structural analy-
ses. The intended assessment of the added value of such analyses requires a triad
of related results (see Fig. 3). The focus of the scientific work in the first half of
the aforementioned research project, which was started in Fall of 2015, has been
on multiscale analyses of tunnel linings. Selected results of this research work are
presented in this contribution.
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Fig. 3 Triad of results,
required for assessing the
added value of multiscale
analyses of tunnel linings [1]

2 Organization of the Paper

In the framework of the general subject of this paper the following four topics
are treated: (a) Microstructural analysis of impact and blast loading in tunneling
(Sect. 3), (b) Multiscale analysis of thermal stresses in concrete linings due to sudden
temperature changes (Sect. 4), (c) Experiments and FE modeling of concrete hinges
in Mechanized Tunneling (Sect. 5), (d) Multiscale structural analysis of a segmented
tunneling ring (Sect. 6). Section 7 contains a summary of this work, conclusions
drawn from the underlying research.

3 Microstructural Analysis of Impact and Blast Loading
in Tunneling

Current safety standards require that tunnels withstand exceptional loading events
such as e.g. impact and blast loads. Such events may result from traffic accidents,
e.g. from cars crashing into a tunnel lining, or from the detonation of Improvised
Explosive Devices. This has been the motivation to investigate concrete subjected
to high-dynamic loading rates. It is well known from the large database of available
test results that the strength of cementitious materials increases with increasing load-
ing rate. This strengthening is significant in the high dynamic testing regime, where
strain rates are typically larger than 1 s−1. The available experimental database has
resulted in several modeling attempts. The CEB-recommendation [2], the model of
Tedesco and Ross [3], and the model of Grote et al. [4] provide empirical formu-
lae for the high-dynamic compressive strength of cementitious materials. Mihashi
and Wittmann [5] as well as Bažant et al. [6] have developed models, based on the
assumption thatmicro-cracking depends on the strain rate. Cotsovos andPavlovic [7],
Li and Meng [8], and Gary and Bailly [9] have attributed the strength increase
with increasing strain rate to inertial confinement, which is a structural effect.
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Table 1 Experimental data from high-dynamic strength tests by Kühn et al. [11]

Specimen properties: fsta = 25.1MPa E = 32GPa ν = 0.2

h = 80mm ∅ = 50mm amax = 8mm ρ = 2400kg/m3

ε̇ [s−1] 136.6 150.1 185.5 190.0 202.7

fdyn [MPa] 95.1 104.2 119.2 125.7 142.5

Fischer et al. [10] have explained dynamic strengthening based on the quasi-static
strength and the duration of the failure process, lasting from the start of crack propaga-
tion to the disintegration of the tested specimen. Herein, the latter model is extended
towards consideration of uncertainty regarding the quasi-static strength. It is used to
re-analyze a recent high-dynamic test series on concrete, see Table1 and [11].

3.1 Prediction of High-Dynamic Strength,
Based on Quasi-Static Strength Data

3.1.1 Statistical Scatter of Quasi-Static Strength Values

While test repetitions are desirable in experimental mechanics in order to quantify
the dispersion of the investigated material properties, many researchers carry out
just one test, or they communicate only the mean value of results from several tests.
In both cases an estimation of statistical quantiles is impossible. As a remedy, it is
proposed herein to follow the Eurocode and to consider compressive strength values
of concrete to scatter according to a Gaussian distribution. In addition, the Eurocode
defines the characteristic strength for ultimate limit state design as the 5%-quantile
of the strength distribution. Concerning the compressive strength of concrete, the
5%-quantile is introduced as by 8MPa smaller than the mean strength determined
in laboratory testing. This approach is related to a standard deviation of the uniaxial
compressive strength amounting to ŝ = 4.865MPa.

Considering the compressive strength as a positive quantity, a lognormal distri-
bution is more appropriate to describe statistical properties. In order to convert the
standard deviation of the Eurocode to the one of the envisioned lognormal distribu-
tion, it is proposed to set the 5%-quantile of the Gaussian distribution equal to the
5%-quantile of the lognormal distribution. Denoting the mean strength value from
the experiments as f̂ and the standard deviation of the Eurocode as ŝ, the proposed
approach yields the sought standard deviation of the lognormal distribution as

s(ŝ, f̂ ) = u(5%) +
√
u(5%)2 − 2 · ln

(
1 + u(5%) · ŝ

f̂

)
, (1)
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whereu(5%) = −1.645 is the value that cuts an areaof 5%of the standardizednormal
distribution, exhibiting a vanishing mean value. Based on the standard deviation of
the lognormal distribution according to Eq. (1), any p-quantile of the lognormal
distribution can be quantified according to the following standard relation:

f (p) = exp
(
ln( f̂ ) + u(p) · s

)
. (2)

3.1.2 High-Dynamic Strength Modeling, Considering Uncertainty
of the Failure Mode

The present contribution follows Fischer et al. who developed a model for the
dynamic increase factor (DIF) of the compressive strength of cemetitious materials,
see [10]. Herein, the model is extended towards consideration of the experimental
dispersion of the quasi-static strength. Furthermore, it is shown that re-analysis of
high-dynamic strength tests requires careful consideration of the failure mechanism.
Along this line of research, it is assumed that macroscopic cracking starts—also
under high-dynamic compressive loading—once the stress level has reached the
quasi-static strength, and that the ultimate load of the specimen is reached, once the
first crack has propagated through the entire specimen such that it disintegrates into
pieces. In this context, it is noteworthy that the speed of cracks, propagating along
nanoscopic material interfaces, is equal to the Rayleigh wave speed [12], which is
only a little smaller than the shear wave velocity vs . With the static strength fsta ,
Young’s modulus E , and the strain rate ε̇, the DIF (dynamic strength increase factor)
is obtained as

DI F = fdyn
fsta

= 1 + ε̇ · E
fsta

· lc
vs

. (3)

In Eq. (3), lc stands for the relevant crack propagation length. It is equal to the length
alongwhich the relevant crackmust propagate in order to split the sample. Therefore,
lc depends on the geometrical properties of the tested specimen. Considering that
axial splitting is the typical failure mode under uniaxial compression, the ultimate
load sustained by the specimen is reached, once the crack size is equal to the height
h of the specimen. Realistic scenarios are bounded by the following two cases:
(a) if the relevant crack starts right at the interface between the specimen and the load
plate, the crack will grow along the total height h of the specimen, and (b) if cracking
starts at the center of the specimen, two crack edges will propagate simultaneously,
and each of them will cover a length equal to h/2.

According to the previous explanation, the dispersion of the high-dynamic
strength values results from two sources: (a) the uncertainty regarding the quasi-
static strength, see fsta in Eq. (3) as well as Sect. 3.1.1, and (b) the uncertainty
regarding the position from which the relevant crack starts to propagate, see lc in
Eq. (3). These uncertainties result in intervals of possible strength values, which are
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quite wide in the quasi-static regime, but form a rather narrow band in the high-
dynamic regime. When comparing Eq. (3) with experimental data, the only free
parameter is the relevant crack propagation length lc. It can be optimized such that
model-predicted DIF values, DI Fpred , agree in the best-possible fashion with their
experimental counterparts, DI Fexp, according to

Etot =
∣∣∣∣∣1n

n∑
i=1

DI Fpred,i − DI Fexp,i

DI Fmean
exp

∣∣∣∣∣ → min. (4)

In Eq. (4), n denotes the number of experimentally determined DIF values, and Etot

stands for the total prediction error.

3.2 Model Application to High-Dynamic Strength Data

In this contribution the model validation is extended to high-dynamic strength tests
performed by Kühn et al. [11] on concrete specimens. In the following, Eq. (3)
is used to analyze the experimental data, listed in Table1. Kühn et al. specify the
specimen properties, listed in Table1, and provided images showing the remaining
fragments of specimens after testing, see Fig. 4. Presumably, the remaining cone-
shaped fragments, with a height about one half of the specimen height, are caused
by a confinement, resulting from friction in the contact area between the specimen
and the pressure bar.

Fig. 4 a Illustration of the specimen fragments from [11], b validation of the model for high-
dynamic strength increase according to Eq. (3): comparison of measured dynamic strength-increase
factors from Kühn et al. [11] with corresponding model predictions obtained for the specimen
properties listed in Table1, and for h = 80mm



Bridging the Gap Between Concrete Microstructures and Tunnel Linings 29

The remaining fragments of the specimen show that cracks had to propagate
along a length lc ≈ h/2 in order to split the specimen, see Fig. 4a. Using this length
together with properties of the tested specimen (Table1) as input for Eq. (3) yields
model predictions that agree verywell with the experimental data, see the solid line in
Fig. 4b. The uncertainty regarding the quasi-static strength manifests itself in Fig. 4b
in the form of the dashed boundary lines.

3.3 Conclusions

The present study suggests that the propagation length, required for the first crack
to split a specimen under high-dynamic compression, has a great influence on the
ultimate load of the tested specimen. As for modeling, it was assumed that also
for high-dynamic loading, crack propagation starts at the quasi-static strength and
that the ultimate load sustained by the tested specimen increases with increasing
propagation length, required for the first crack to split the specimen. It is concluded
that, no matter how short a stress pulse exceeding the quasi-static strength may be,
tunnel linings will be damaged. Therefore, they need to be inspected carefully even
after non-catastrophic high-dynamic loading events. Furthermore, the model allows
to estimate the depth of the damage zone, provided the duration of the stress pulse
is known. It is equal to the period of time, during which the stress is larger than
the quasi-static strength, multiplied by the crack propagation speed, i.e. by the shear
wave velocity.

4 Multiscale Analysis of Thermal Stresses in Concrete
Linings Due to Sudden Temperature Changes

A change of the temperature of a concrete structure induces thermal eigenstrains. In
general, they result in thermal stresses which may lead to cracking of the mate-
rial. Instationary heat conduction, i.e. transient heat conduction, inevitably acti-
vates macroscopic thermal stresses. Kinematic constraints, preventing temperature-
induced deformations, also result in thermal stresses. Furthermore, the mismatch of
the thermal expansion coefficients of the concrete constituents (cement paste matrix
and aggregate inclusions) [13] gives rise to microscopic self-equilibrated stresses,
even if the concrete volume is free of macroscopic kinematic constraints.

A model for multiscale thermo-mechanical analysis is presented. Bottom-up
homogenization of the concrete allows for upscaling of elastic stiffnesses and of
thermal expansion coefficients of the concrete constituents. The resulting homoge-
nized properties of concrete serve as input for macroscopic thermal stress analysis.
Top-down stress concentration in turn provides access tomicroscopic thermal stresses
in the cement paste and the aggregates, as functions of both the macroscopic stresses
and a mismatch of microscopic thermal expansion coefficients. The proposed model
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is applied to stress analysis of a 3-D simply-supported concrete beam, subjected to
1-D heat conduction.

4.1 Multiscale Thermo-Mechanical Model of Concrete

Concrete is a matrix-inclusion composite, consisting of a cement paste matrix and
aggregate inclusions. Homogenized material properties of concrete, such as the
stiffness and the thermal expansion coefficient, are related to the corresponding prop-
erties of the constituents.

As the temperature increases (or decreases), the cement paste and the aggregates
expand (or contract) in accordance to their coefficients of thermal expansion, inducing
eigenstrains εe

cp and εe
agg , reading as

εe
cp = αcp ΔT 1 , εe

agg = αagg ΔT 1 , (5)

where αcp and αagg are the thermal expansion coefficients of the cement paste and
the aggregates, respectively. Corresponding eigenstresses of the cement paste and
the aggregates can be computed as

σ e
cp = −Ccp : εe

cp , σ e
agg = −Cagg : εe

agg , (6)

whereCcp andCagg are the elastic stiffness tensors of the cement paste and the aggre-
gates, respectively. The transition to the macroscopic scale of concrete is provided
by Levin’s theorem [14], containing the macroscopic stress tensor Σcon , the macro-
scopic strain tensor Econ , and the macroscopic eigenstrain and eigenstress tensors
Ee

con and Σe
con as

Σcon = Ccon : (Econ − Ee
con) = Ccon : Econ + Σe

con , (7)

with the homogenized stiffness tensor reading as

Ccon = fcp Ccp : Acp + fagg Cagg : Aagg , (8)

and with the homogenized eigenstress tensor reading as

Σe
con = fcp σ e

cp : Acp + fagg σ e
agg : Aagg , (9)

where fcp and fagg are the volume fractions of the cement paste and the aggregates
in the concrete, and Acp and Aagg are the strain concentration tensors of the cement
paste and the aggregates, which are estimated by means of the Mori-Tanaka method
[15].

As for relating the thermal expansion coefficient of concrete, αcon , to the thermal
expansion coefficients of the constituents, i.e. to αcp and αagg , it is assumed that
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concrete can deform freely, such that the macroscopic stress tensor vanishes. For this
scenario, Eq. (7) yields

Σcon = 0 ⇒ Econ = Ee
con = −C

−1
con : Σe

con . (10)

The sought expression for αcon is obtained by setting Econ in Eq. (10) equal to
αconΔT 1 and inserting (5) into (6), followed by substituting the resulting expression
into (9), and, finally, by substituting the outcome together with (8) into (10). This
delivers, after division by ΔT ,

αcon 1 = [
fcpCcp : Acp + faggCagg : Aagg

]−1

: [
αcp fcp(Ccp : 1) : Acp + αagg fagg(Cagg : 1) : Aagg

]
. (11)

The thermal expansion coefficient αcon from Eq. (11) intervenes in macroscopic
thermal analysis of concrete structures.

After thermal analysis of a concrete structure, the macrostress Σcon and the tem-
perature change ΔT are known at every point of the structure. The scale transition
to the cement paste and the aggregates at all structural points is carried out as fol-
lows: starting from the temperature change ΔT and combining Eqs. (5), (6), and
(9), delivers the homogenized eigenstress tensor Σe

con . Inserting the latter together
with Eq. (8) into Eq. (7) allows for quantifying the macroscopic strains Econ . The
auxiliary strain E∞, representing the remote loading of the Eshelby problems, is
given in [15]. Then, the strains εcp and εagg are quantified as

εcp = E∞ , εagg = [I + P : (Cagg − Ccp)] : [E∞ − P : (σ e
agg − σ e

cp)] . (12)

The stresses σ cp and σ agg finally follow from the elasticity laws as

σ cp = Ccp : (εcp − εe
cp) , σ agg = Cagg : (εagg − εe

agg) . (13)

4.2 Multiscale Thermo-Mechanical Analysis
of a Simply-Supported Concrete Beam Subjected
to Sudden Cooling

4.2.1 Analytical Solution of Heat Conduction Problem

Multiscale thermo-mechanical analysis is carried out for a simply-supported con-
crete beam with a rectangular cross-section. Initially, the beam exhibits a uniform
temperature field, denoted as the reference temperature Tref , i.e.

T (z, t = 0) = Tref . (14)



32 E. Binder et al.

The structure is loaded by sudden cooling of the top surface, z = h, to zero-degree
centigrade, while the temperature at the bottom surface, z = 0, the beam remains at
Tref , i.e.

T (z = h, t) = 0 ◦C , T (z = 0, t) = Tref . (15)

Consideration of thermal insulation of the lateral surfaces results in 1-D heat con-
duction along the height of the beam, i.e. along the z-direction. Therefore, the heat
equation reads as

∂T

∂t
− a

∂2T

∂z2
= 0 , (16)

where a represents the thermal diffusivity of concrete.
The analytical solution of the heat conduction problem, defined in Eqs. (14)–(16),

is obtained as follows [16]:

T (z, t) = Tre f

[(
1 − z

h

)
+

∞∑
n=1

2(−1)n−1

n π
sin

(n π z

h

)
exp(−n2 π2 a t

h2
)

]
. (17)

4.2.2 Macroscopic and Microscopic Thermal Stress Analysis

A 3-D FE model of a simply-supported beam with the dimensions l × b × h =
2m × 0.4m × 0.3m is chosen for thermo-mechanical analysis. The stiffness tensor
and the thermal expansion coefficient of concrete are predicted by means of the
established multiscale model of concrete, see Eqs. (8) and (11).

The beam is loaded by temperature distributions according to Eq. (17), refer-
ring to the dimensionless time instants at/h2 ∈ [1, 10−1, 10−2], with a = 4.73 ×
10−7 m2/s. The distribution of the normal stresses along the height of the cross-
section in the middle of the beam,Σxx (z), is shown in Fig. 5a. Large thermal stresses
are obtained right after sudden cooling. They gradually decrease and finally vanish,
as the temperature profile along the height of the beam approaches the linear dis-
tribution. Tensile stresses appear close to the top and bottom surfaces of the beam,
while compressive stresses prevail in its middle part. Notably, because of overall
equilibrium of the structure, stress resultants in the form of a normal force and a
bending moment vanish at all instants of time.

Microscopic stresses in the cement paste and the aggregates are quantified by the
established multiscale model, with the macroscopic stress tensor and the tempera-
ture distribution along the height of the beam as input. The average stresses in the
cement paste matrix and in the aggregate inclusions at the dimensionless time instant
at/h2=10−1 are shown in Fig. 5b. Compared to the aggregates, the tensile stresses in
the cement paste are larger, which increases the risk of microcracking of the cement
paste.
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(a) (b)

Fig. 5 Evaluation of a the macroscopic normal stresses Σxx for dimensionless time instants
at/h2 ∈ [1, 10−1, 10−2] and b the normal stresses of the homogenized concrete, the cement paste
and the aggregates at at/h2 = 10−1, along the height of the cross-section in the middle of the beam

4.3 Conclusions

A model for multiscale thermo-mechanical analysis of concrete structures was pro-
posed and applied to a simply-supported concrete beam, subjected to 1-D heat con-
duction. Considerable temperature-induced tensile stresses develop right after the
time instant of sudden cooling. Thereafter, they gradually decrease and finally van-
ish, as the heat conduction approaches the steady-state regime. Since the thermal
expansion coefficient of the cement paste is typically much larger than the one of
the aggregates, the cement paste matrix exhibits tensile stresses which are (a) larger
than the ones of the aggregates and (b) larger than the overall macroscopic stresses
of concrete. Therefore, the presented mode of multiscale modeling is highly recom-
mended for analysis focusing on the possibility of cracking of concrete tunnel linings
under thermal loading.

5 Experiments and FE Modeling of Concrete Linings
in Mechanized Tunneling

Primary linings in Mechanized Tunneling are made of precast reinforced concrete
segments. Such linings contain both longitudinal and circumferential segment-to-
segment interfaces which are referred to as concrete hinges. The linings are subjected
to external loads, resulting from the ground pressure and from the tunnel boring
machine. The overall safety of segmented linings is strongly related to the integrity
of segment-to-segment interfaces, which have to transmit both normal forces and
bending moments. The resulting relative rotation angles are of prime interest for
designers who typically rely on formulae by Gladwell [17] or Janßen [18]. Notably,
Janßen’s formulaewere derived fromolder ones byLeonhardt andReimann [19],who
developed design guidelines for concrete hinges used in integral bridge construction.
However, these guidelines refer to serviceability conditions, i.e. they do not provide
information on the bearing capacity of concrete hinges. This is the motivation for
the present contribution.
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5.1 Experimental Data from Testing of Concrete Hinges

The structural behavior of concrete hinges under eccentric compression was recently
studied by Schlappal et al. [20]. In the following, information is provided on themate-
rials and on the chosen geometric dimensions of the concrete hinges, furthermore,
on the test setup and on test results from eccentric compression up to the bearing
capacity. Notably, throughout this work compression is considered by a positive sign.

5.1.1 Materials and Test Specimens

The three tested concrete hinges were made of steel-reinforced concrete. Concrete
C35/45was producedwith a commercial cement,Viennese tapwater, andwith calcite
aggregates with amaximum size of 16mm. The cube compressive strength, fc,cube =
56.25MPa, and Young’s modulus, E = 34.75GPa, were determined 28days after
production, following the Austrian standards for testing of concrete. The steel quality
of the rebars was chosen as B550A.

The geometric shape of the tested concrete hinges compliedwith the design guide-
lines of Leonhardt and Reimann [19]. The overall width amounted to 25cm, the
height to 35cm, and the depth to 40cm, see Fig. 6a. The depth of the lateral and
the front-side notches amounted to 8.75cm and 5cm, respectively. Therefore, the
cross-section of the neck was equal to 7.5 × 30 cm2, see Fig. 6a. At the top and the
bottom of the concrete hinges, steel plates of two centimeter thicknesswere provided.
They ensured an effective distribution of the concentrated external line loads. Each
steel plate was welded to the neighboring reinforcement cage. The top and bottom
reinforcement cages were in turn connected by three pairs of crossed steel rebars
with cross-over points right at the center of the neck, see Fig. 6a.

8.75 7.50 8.75

14
3

41
2

2
35

front view

25

concrete

reinforcement
steel plates

40
30 55

side view

[cm]

(a) (b)

Fig. 6 a Geometric dimensions [20] and b boundary conditions [21] of the tested reinforced
concrete hinges
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5.1.2 Test Setup

The tests consisted of three nominally identical concrete hinges that were subjected,
one after another, to eccentric line loads, see Fig. 6b. This resulted in combined
compression and bending, whereby the bending moment M was equal to the applied
normal force N , times the eccentricity e:

M = N e . (18)

As for quantification of the displacements, inductive displacement sensors (LVDTs)
weremounted at the lateral surfaces of the concrete hinges. They permittedmeasuring
changes of the notch mouth opening displacements of the lateral notches.

As for studying the development of tensile cracking as a function of e and N ,
a reasonable value of e had to be defined. In this context, the design guidelines of
Leonhardt and Reimann [19] were followed. They are applicable to eccentricities up
to as a/3 = 25mm, where a denotes the width of the neck. The guidelines take into
account that for max e = a/3 tensile cracking will extend across half of the neck
width, i.e. right to the center of the concrete hinge.

5.1.3 Eccentric Compression up to the Bearing Capacity

The measured relation between the increasing eccentric normal force and the corre-
sponding relative rotation angle of the concrete hinges is shown in Fig. 7. Once the
normal force exceeded 200kN, the relative rotation angle increased superlinearly
with increasing loading. When it exceeded 15mrad, the loading could no longer be
increased significantly. The bearing capacity of each one of the three tested concrete
hinges was equal to approximately 700kN. This refers to a bending moment, equal
to approximately 17.5kNm, see Eq. (18), considering e = 25mm.

Fig. 7 Comparison of
measurements from
eccentric compression tests
[20] with numerical results
from three-dimensional FE
simulations [21] and with
relationships by Gladwell
[17], Leonhardt and Reimann
[19], and Janßen [18]

relative rotation
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5.2 FE Simulations of the Tested Concrete Hinges

The experimental observations, described in Sect. 5.1, were analyzed bymeans of the
FEM by Kalliauer et al. [21]. Geometrically linear FE simulations were performed
in order to gain insight into the structural behavior of concrete hinges, based on
quantification of stress states inside their volume, which is typically inaccessible in
experimental testing.

5.2.1 2-D FE Simulations for Quantification of the Stress Triaxiality
in the Neck Region

In order to gain insight into the triaxiality of the compressive stresses in the neck
region, 2-DFE simulationswere carried out, considering a plane strain state in the x-z
plane containing the center of the concrete hinge (Fig. 6b) The characteristic ratio of
the principal stresses in the neck region was 1.00 : 0.45 : 0.30. The characteristic
triaxial compressive stress state σ can be formulated as

σ = σ� ·
[
1.00 ex ⊗ ex + 0.45 ey ⊗ ey + 0.30 ez ⊗ ez

]
, (19)

where σ� denotes the principal compressive normal stress in the loading direction.
This confinement results in a significant strengthening of concrete relative to its
uniaxial compressive strength.

5.2.2 Micromechanics-Assisted Updating of Input Parameters
for 3-D FE Simulations

3-D FE simulations based on default input values do not deliver quantitatively reli-
able results. In particular, the initial structural stiffness and the bearing capacity are
overestimated. This indicates pre-existing damage of the concrete hinges. Model
updating consists of identifying suitable values of Young’s modulus, the uniaxial
tensile strength, the fracture energy, and the triaxial compressive strength. In order
to reduce the number of free parameters from four to two, a multiscale model for
tensile softening of concrete was used [22]. It establishes quantitative links between
the increasing crack density, on the one hand, and the corresponding reductions of the
elastic stiffness, the tensile strength, and the fracture energy of concrete, on the other
hand. This results in micromechanics-assisted FE simulations of concrete hinges. In
addition, pre-existing damage indicates the necessity to reduce the triaxial compres-
sive strength of concrete. This can be achieved by increasing the input parameter λt ,
which quantifies the ratio between the auxiliary uniaxial tensile strength f ′

t of the
Menétrey-Willam failure surface and the actual uniaxial tensile strength ft of the
Rankine failure surface. Based on the default input parameter λt = 2, the Menétrey-
Willam failure surface suggests that the triaxial compressive strength σ�u is equal
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to 5.65 times the uniaxial compressive strength. Increasing the value of the input
parameter λt in the framework of sensitivity analysis, delivers Menétrey-Willam
failure surfaces with decreasing slopes in the ξ − ρ diagrams, where by xi and rho
are proportional to the first invariant of the stress tensor and to the square-root of the
second invariant of the stress deviator, respectively. It is found that λt = 8.5 allows
for reproducing the experimentally obtained bearing capacity of the tested concrete
hinges in a qualitatively and quantitatively satisfactory fashion, see Fig. 7.

5.3 Conclusions

Researchers working in Mechanized Tunneling are interested in relative rotation
angles, developing across concrete necks, subjected to compression and bending.
Models with predictive capacity are needed in order to develop powerful simula-
tion tools for segmented tunnel linings. To support such a development, a combined
experimental-computational study on concrete hinges subjected to eccentric com-
pression was performed. FE simulations allowed for quantifying the triaxial com-
pressive stress state prevailing in the neck region and for reproducing the nonlinear
structural behavior right up to the bearing capacity. Existing guidelines do not con-
sider the nonlinear behavior of concrete hinges under eccentric compression, see the
linear functions in Fig. 7. The presented research results are expected to support the
future development of a structural simulation tool for segmented tunnel linings.

6 Multiscale Structural Analysis of a Segmented
Tunnel Ring

Areal-scale test of a segmented tunnel ring, see Fig. 8,whichwas carried out at Tongji
University [23], is re-analyzed. The tested ring consisted of 6 reinforced concrete
segments. The diameter of the ring amounted to 6.2m. The ring was subjected to
anisotopic loading, imposed by 24 hydraulic jacks up to the Ultimate Limit State
(ULS). The convergences in both the vertical and the horizontal direction as well
as the displacement/rotation discontinuities at the interfaces of the segments were
measured. Cracking of concrete was observed during the test.

The test provided valuable insight into the progressive failure and the bearing
capacity of segmented tunnel linings. However, real-scale tests on segmented tunnel
rings are expensive and time-consuming.Thiswas themotivation for the development
of a structural analysis model, reproducing real-scale tests. To this end, a multiscale
model for concrete [22] and transfer relations for structural analysis of segmented
tunnel rings [24] are combined, resulting in multiscale structural analysis of such
rings.
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Fig. 8 Setup of a real-scale
test of a segmented tunnel
ring at Tongji University [23]

6.1 Multiscale Model of Concrete

The microstructure of the concrete is considered to be hierarchically organized in six
length scales, i.e. the solid calcium-silicate-hydrates (C-S-H), the hydrate gel, the
hydrate foam, the cement paste, the mortar, and the concrete. The elastic stiffness
and the fracture energy of the C-S-H, known from molecular dynamics simulations
documented in the literature, are upscaled via the hierarchically-organized scales to
the material scale of concrete [22]. In this way, Young’s modulus, Poisson’s ratio,
and the tensile strength of the homogenized concrete are obtained as [25]

Ehom
c = 43.57GPa , (20)

νhom
c = 0.2424 , (21)

ft = 3.17MPa . (22)

6.2 Hybrid Analysis of the Segmented Tunnel Ring, Based on
Transfer Relations

The transfer relations express the vector of the state variables at an arbitrary cross-
section with the angular coordinate ϕ as the product of a transfer matrix and the
vector of the state variables at the initial cross-section (index “i”) ϕi = 0. They read
as [24]
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,

(23)

where u, v, and θ stand for the radial displacement, the tangential displacement, and
the cross-sectional rotation, respectively; M , N , and V are the bending moment, the
axial force, and the shear force, respectively; E I , E A, and R denote the bending
stiffness, the extensional stiffness, and the radius of the neutral axis of the arch,
respectively. Notably, the complete list of the nonzero elements of the transfer matrix
Ti j is available in [24]. The top six elements of the last column of the transfer matrix
in Eq. (23) contain so-called load integrals, representing the solutions for the radial
point loads and for the interfacial dislocations. As an example, the load integral of
the radial displacement for a radial point load P reads as [24]:

uL (ϕ) = 1

2

(
PR

E A
+ PR3

E I

) [
(ϕ − ϕp) cos(ϕ − ϕp) − sin(ϕ − ϕp)

]
H(ϕ − ϕp) , (24)

where P and ϕp denote the jack force and its circumferential position, respectively,
and H(ϕ − ϕp) stands for the Heaviside function. The load integral of the radial
displacement for interfacial discontinuities happening at circumferential position φ j
reads as [24]:

uL (ϕ) = [
Δu j cos(ϕ − ϕ j ) + Δv j sin(ϕ − ϕ j ) + RΔθ j sin(ϕ − ϕ j )

]
H(ϕ − ϕ j ),

(25)

where Δu j , Δv j and Δθ j , are the interfacial discontinuities of the radial displace-
ment, the circumferential displacement, and the cross-sectional rotation, respectively.
The expressions for the remaining five load integrals are also available in [24]. The
prescribed point loads, P , the measured interfacial displacement/rotation disconti-
nuities, Δu j , Δv j , Δθ j , and ϕ j , appearing in the load integrals, e.g. Eqs. (24) and
(25), serve as input for the “hybrid analysis”.

The state variables at the initial cross-section are determined as follows: Measur-
ing ϕ from the middle cross-section of the crown segment and specifying the transfer
relations (23) for ϕ = 2π provides a relation between the vectors of the state vari-
ables at the initial and the final (index “f”) cross-section. The compatibility of the
deformations of the closed ring requires u f = ui , v f = vi , θ f = θi . These three
conditions permit determination of the static variables at the initial cross-section, i.e.
of Mi , Ni , and Vi . The kinematic state variables at the initial cross-section, ui , vi ,
and θi , refer to rigid body motions. Therefore, they may be set equal to zero or to
arbitrary non-zero values.
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Fig. 9 Comparison of the convergences obtained from the simulation and the measurements [24]

(a) (b) (c)

Fig. 10 Analysis results referring to the 4th load step at which cracking of concrete started: a bend-
ing moment distribution; b axial force distribution; c shear force distribution [24]

In order to validate the simulation approach, the normal stresses of the concrete
and the two orthogonal convergences are computed and compared to the experi-
mental results. The computed stresses exceed the tensile strength of concrete (see
Eq. (22)) at the 4th load step, which agrees perfectly well with the corresponding
experimental observation that cracking was first observed at this load step [23]. This
proves the usefulness of the model. In addition, the model-predicted convergences
agree very well with measurements, as follows from the quadratic correlation coeffi-
cient, amounting to r2 = 0.9995, see Fig. 9. Notably, this comparison is a non-trivial
assessment of the predictive capabilities of the model, (a) since the experimentally
measured convergences are independent of the input of the model, and (b) since the
model does not involve any fitted parameters.

Figure10 shows the distributions of the bendingmoments, the axial forces, and the
shear forces along the axis of the ring. Figure11 illustrates the deformed configuration
of the segmented tunnel and the stress-to-strength ratio of concrete [24].
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Fig. 11 Deformed configuration and stress-to-strength ratio of concrete at the 4th load step; the
magnification factors of the cross-sectional dimensions and the displacements are 1 and 100, respec-
tively [24]

6.3 Conclusions

A multiscale micro-fracture-mechanics model permits upscaling of the elastic
stiffness and the tensile strength from the molecular to the material scale. “Hybrid
analysis” provides a shortcut to avoid the challenge of conventional structural analy-
sis, involving identification of the constitutive relations of the interfaces between
the segments. Up to the stage of concrete cracking, the proposed analysis approach
reproduced the experimental observations. It increases the insight into the structural
behavior of the tested tunnel ring.

The presentwork is viewed as the first step towards amultiscale-hybridmethod for
the design of segmented tunnel linings. In order to consider cracking in a straightfor-
ward manner, a softening law of concrete on the basis of micro-fracture-mechanics
is desirable. As for design-oriented calculations, the interfacial dislocations are
unknown. The development of a reliable model of the interfacial behavior is a topic
of ongoing research, see also Sect. 5.

7 Summary and Conclusions

The structural behavior of tunnel linings is strongly influenced by thematerial behav-
ior of concrete. The latter results etiologically from thermo-hygro-chemo-mechanical
processes, occurring at the microstructure of the hierarchically organized material.
This is the motivation for multiscale structural analysis, which aims at relating the
causes at microstructural material scales to the effects at macrostructural scales of
tunnel linings. It consists of three steps: (a) Identification of the microstructural
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processes, influencing the structural behavior. (b) Upscaling of the microstructural
processes to the material scale of concrete. (c) Performing structural simulations,
based on multiscale models of concrete. The four topics addressed in the present
contribution are related to different stages of multiscale structural analysis.

Concrete failure under impact loading refers to crack propagation along
nanoscopic material interfaces [10, 26]. Cracking starts, once the static strength
is reached. The speed of the crack propagation is equal to the Rayleigh wave speed
[12]. During cracking, i.e. during the evolution of concrete failure, the impact load
can be further increased, thus resulting in high-dynamic strengthening. In the present
contribution, the probabilistic version of the describedmultiscalemodelwas success-
fully applied to re-analysis of a series of high-dynamic tests regarding the uniaxial
compressive strength of concrete [11].

When concrete is subjected to temperature changes, homogenization techniques
for eigenstrains are used for scale transitions [15]. Mismatching thermal expansion
coefficients of the cement paste and the aggregates, respectively, are upscaled to
the effective thermal expansion coefficient of the concrete. Stresses imposed on the
concrete are downscaled to average stresses of the cement paste and the aggregates,
respectively. Applying this model in the context of multiscale structural analysis,
it was shown that sudden cooling of a concrete structure is particularly harmful,
because tensile stresses are concentrated in the cement paste, thus increasing the risk
of cracking of concrete.

Multiscale structural analysis may be carried out with standard FE software and
the phenomenological material models implemented therein. This became possible
by involving a multiscale model for tensile failure of concrete, which uses a crack
density parameter as the damage variable. The model establishes relations between
the Young’s modulus, the tensile strength, and the fracture energy of concrete. This
enables a significant reduction of fitting parameters in the typical case that default FE
input values do not allow for reproducing the measured structural behavior reliably,
thus raising the need for model updating techniques.

Multiscale structural analysis was also applied to a real-scale test on a segmented
tunnel ring. Stiffness and strength of the concrete were quantified by means of the
aforementioned multiscale material model. As for the structural analysis, the pre-
scribed external loading and the measured discontinuities of displacements/rotations
at the segment-to-segment interfaces served as input for analytically derived transfer
relations for circular segmented tunnel linings. This allowed for a hybrid analysis of
the experiment without the need to describe the nontrivial behavior of the segment-
to-segment interfaces.
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