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1 Introduction

Robots are increasingly being used for tasks in unstructured real-world environments
and thus have to be able to deal with a huge variety of different terrains. As every ter-
rain has a distinct physical property, it necessitates an appropriate navigation strategy
to maximize the performance of the robot. Therefore, terrain classification is para-
mount to determine the corresponding trafficability. However, it is a highly challeng-
ing task to robustly classify terrain. Especially, the predominantly used vision-based
approaches suffer from rapid appearance changes due to various factors including
illumination variations, changes in weather, damping due to rain and camouflaging
with leaves. Accordingly, researchers have also explored the utilization of alterna-
tive modalities such as ladars or vibrations measured using accelerometers. Each of
these approaches have their own advantages and disadvantages. For example, opti-
cal sensors are quintessential when there is good illumination and distinct visual
features, while accelerometer-based approaches are ideal to classify terrains with
varying degrees of coarseness. However, the use of sound to classify terrains in
the past has not been studied in a comparable depth, even though sound produced
from vehicle-terrain interactions have distinct audio signatures even utilizable for
fine-grained classification. Most importantly, the disturbances that affect other light-
based or active sensors do not affect microphones, hence they can even be used as
a complementary modality to increase robustness. We believe that utilization of a
complementary set of sensing modalities is geared towards long-term autonomy.

In this paper, we present a novel multiclass terrain classification approach that
uses only audio from the vehicle-terrain interaction to robustly classify a wide range
of indoor and outdoor terrains. As in any pattern recognition task, the choice of fea-
tures significantly dictates the classification performance. Vehicle-terrain interaction
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sounds are unstructured in nature as several dynamic factors contribute to the signal.
Instead of using handcrafted domain specific features, our approach employs a deep
convolutional neural network (DCNN) to learn them. DCNNs have recently been
achieving state of the art performance on several pattern recognition tasks [13, 14,
18]. They learn unsupervised hierarchical feature representations of their input by
exploiting spatial correlations. The additional advantage of this is that the features
learned from this approach generalize effectively as DCNNs are relatively insensitive
to certain input variations.

The convolutional neural network architecture we introduce is built upon recent
advances in deep learning. Our network consisting of six convolution layers and
six cascaded cross channel parametric pooling layers is depicted in Fig. 1. In order
to make the learned feature representations invariant to certain signal variations
and also to increase the number of training samples, we performed a number of
transformations on the original signal to augment the data. We experimented with
several hyperparameters for our network and show that it significantly outperforms
classification methods using popular baseline audio features. To the best of our
knowledge, this is the widest range of terrain classes successfully classified using

Fig. 1 Overview of our terrain classification pipeline. Raw audio signal of the terrain interaction
is first transformed into its spectrogram representation and then piped into a DCNN for feature
learning and classification. MP refers to max pooling
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any proprioceptive terrain classification system. Additionally, our method achieves
state of the art performance in classification using a proprioceptive sensor. Audio
classification is susceptible to background noise to a great extent. We stress test
our network with additive white Gaussian noise (WGN) at varying signal to noise
ratios (SNR). We also perform noise aware fine-tuning to increase the robustness
and show that our network performs exceptionally well even on audio data collected
by the robot with a low quality mobile phone microphone which adds significant
environmental noise.

2 Related Work

The use of sound as a modality for classifying vehicle-terrain interactions has very
sparsely been explored. The following are the only related works using acoustics
for terrain classification. Ojeda et al. [17], used a feedforward neural network and
a suite of sensors for terrain classification, including a microphone, gyroscopes,
accelerometers,motor current andvoltage sensors, infrared, ultrasonics and encoders.
They had five terrain classes and their classifier achieved an average classification
accuracy of 60.3% using the microphone. They found that using the entire spectrum
gave them the same performance as using only 0–50Hz components of the discrete
fourier transform. The authors concluded that overall the performancewas poor using
the microphone, other than for classifying grass.

More recently, Libby and Stentz [15] trained amulticlass sound-based terrain clas-
sifier that uses Support Vector Machines (SVMs). They evaluated the performance
of various features using extraction techniques derived from the literature survey as
input to the SVM. Their multidimensional feature vectors consists of spectral coeffi-
cients, moments and various other temporal as well as spectral characteristics. Their
classifier achieves an average accuracy of 78% over three terrain classes and three
hazardous vehicle-terrain interaction classes. They further increase the accuracy to
92% by smoothing over a window of 2 s.

A patent byHardsell et al. [8] describes an approach to terrain classification where
a classifier is trained on fused audio and video data. They extract scale invariant
transformation features from the video data and use Gaussian mixture models with
a time-delay neural network to represent the audio data. The classifier is then built
using expectation-maximization.

The use of contact microphones for terrain classification has also been explored.
Unlike air microphones that we use in our work, contact microphones pick up only
structure-borne sound. Brooks and Iagnemma [2] use a contact microphone mounted
on their analog rover’s wheel frame to classify terrain. They extract the log-scaled
Power Spectral Density (PSD) of the recorded vibrations and used them to train a
pairwise classifier. Their classifier with three classes, achieves an average accuracy
of 74%on awheel-terrain testbed and 85.3%on the test bed rover. They also present a
self-supervised classifier that was first trained on vibration data, which then provided
the labels for training a visual classifier [3].
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A number of methods have been developed for using accelerometer data to clas-
sify terrain [17, 19, 21]. Weiss et al. [21] use vibrations induced in the vehicles
body during traversal to classify the terrain. They train a seven class SVM with
features extracted from log-scaled PSD, discrete fourier transform and other statis-
tical measures. Their classifier produced an average accuracy of 91.8% over all the
classes. However, such approaches report a significant number of false positives for
finer terrains such as asphalt and carpet. For another similar application, Eriksson
et al. [5] employ a mobile sensor network system that uses hand selected features
from accelerometer data to identify potholes and other road anomalies. Their system
detects the anomalies over 90% of the time in real-world experiments.

There is a considerable amount of specialized audio features developed for speech
recognition and music classification, but it remains unclear which of these features
performs well for our application. We evaluated several traditional audio features
from our literature survey and compared them as baseline approaches. Libby and
Stentz [15] show that a combination of Ginna and Shape features perform the best
for classification of vehicle-terrain interactions. Gina features, based on the work
by Giannakopoulos et al. [6] is a 6D feature vector consisting of zero crossing rate
(ZCR), short time energy (STE), spectral centroid, spectral rolloff and spectral flux.
Shape features, based on thework byWellman et al. [22], characterize the distribution
of moments of the spectrum. It is a 4D feature vector consisting of spectral centroid,
standard deviation, skewness and kurtosis.

Ellis [4] use a combination of mel-frequency cepstral coefficients (MFCCs) and
chroma features. MFCCs are the most widely used features for audio classification
and Chroma features are strongly related to the harmonic progression of audio sig-
nals. We use a combination of twelve bin MFCC’s and twelve bin Chroma features
for comparison. Trimbral features have been a popular set of features for various
audio classification applications. Tzanetakis and Cook [20] use a 19D feature repre-
sentation consisting of means and variances of spectral centroid, rolloff, flux, ZCR,
low energy and means and variances of the first 5 MFCCs. For our final feature set
comparison, we use a combination of 13 bin MFCC’s, line spectral pair (LSP) and
linear prediction cepstral coefficients (LPCCs) [1]. We call this Cepstral feature set
in the later discussions.

3 Deep Convolutional Neural Network for Acoustic
Based Terrain Classification

One of the main objectives of our work is to develop a new deep convolutional neural
network architecture tailored to classifying unstructured vehicle-terrain interaction
sounds. In this section, we detail the various stages of our classification pipeline
shown in Fig. 1. Our approach can be split into two main stages. The first stage
involves processing the raw audio samples into short windowed clips, augmenting



Deep Feature Learning for Acoustics … 25

the samples and spectrogram transformation. The second involves training our deep
convolutional neural network with this data.

3.1 Preprocessing and Spectrogram Extraction

We first split the audio signals from each class into small “clips” of tw seconds. We
experimentally determine the shortest clip length that gives the best classification
performance. Feature responses from each of these clips are then extracted and added
as a new sample for classification.

Features derived from spectrogram representations of audio signals have been
shown to outperform other standard features for environmental sound classification
applications [12]. Therefore in our approach, we extract the Short Time Fourier
Transform (STFT) based spectrogram of each clip in our dataset. We first block each
audio clip into M samples with 75% overlap between each frame. Let x[n] be the
recorded raw audio signal with duration of N f samples, fs the sampling frequency,
S(i, j)be the spectrogram representationof the 1-Daudio signal and f (k) = k fs/N f .
By applying STFT on length M windowed frame of signal, we get

X (i, j) =
N f −1∑

p=0

x[n] w[n − j] exp
(

−p
2πk

N f
n

)
, p = 0, . . . , N f − 1 (1)

A Hamming window function w[n] is used to compensate for Gibbs effect while
computing STFT by smoothing the discontinuities at the beginning and end of the
audio signal.

w[n] = 0.54 − 0.46 cos

(
2π

n

M − 1

)
, n = 0, . . . , M − 1 (2)

We then compute the log of the power spectrum as

Slog(i, j) = 20 log10(|X (i, j)|) (3)

We chose N f as 2,048 samples, therefore the spectrogram contains 1,024 Fourier
coefficients. By analyzing the spectrum, we found that most of the spectral energy
is concentrated below 512 coefficients, hence we only use the lower 512 coefficients
to reduce the computational complexity. The noise and intensity levels vary a fair
amount in the entire dataset as we collected data in different environments. There-
fore, we normalized the spectrograms by dividing by the maximum amplitude. We
compute the normalized spectrogram as S(i, j) = Slog(i, j)/maxi, j Slog(i, j). We
then compute the mean spectrum over the entire dataset and subtract it from the
normalized spectrogram to remove any temporal artifacts.



26 A. Valada et al.

We created additional training samples by applying a set of augmentation strate-
gies At on the audio signal in the frequency domain. Offsets in time and frequency
was used to perform shifting to transform the spectrogram. The transformations
were applied using 2D affine transform and warping, keeping the shape constant.
Furthermore we created more samples using time stretching, modulating the tempo,
using random equalization augmentation and by increasing as well as decreasing the
volume gain. We also experimented with frequency and time normalization with a
sliding window and local contrast normalization.

3.2 Network Architecture and Training

The extracted spectrograms in our training set are of the form S = {s1, . . . , sM }
with si ∈ R

N . Each of them are of size v × w and number of channels d (d = 1
in our case). We assume M to be the number of samples and yi as the class label
in one-hot encoding, yi ∈ R

C , where C is the number of classes. We then train the
DCNN by minimizing the negative log likelihood of the training data. Our network
shown in Fig. 1 has six Convolution layers, six Cascaded Cross Channel Parametric
Pooling (CCCP) layers, two Fully-Connected (FC) layers and a Softmax layer. All
the convolution layers are one dimensional with a kernel size of three and convolve
along the time dimension. We use a fixed convolutional stride of one. CCCP layers
follow the first, second and third convolution layers. CCCP layers was proposed by
Lin et al. [16] to enhance discriminability for local patches within the receptive fields.
CCCP layers are effectively employ 1×1 convolutions over the feature maps and the
filters learnt are a better non-linear function approximator. A max-pooling layer with
a kernel of 2, then follows the second and fourth CCCP layers. Max-pooling adds
some invariance by only taking the high activations from adjacent hidden units that
share the same weight, thereby providing invariance to small phase shifts in the
signal.

DCNNs that are used for feature learning with images are designed to preserve
the spatial information of objects in context, however for our application we are
not interested to localize features in the frame, rather we are only interested to
identify the presence or absence of features in the entire frame. Therefore, we added
three different global pooling layers after CCCP-9 to compute the statistics across
time. This global pooling approach is similar to that used for content based music
recommendation by Oord et al. [18]. For global pooling layers, we use max pooling,
L2 norm pooling and average pooling.We experimented with just one global pooling
layer and combinations of two global pooling layers and the accuracy dropped over
3% while compared to using all three global pooling layers. We also investigated the
effect of global stochastic pooling with the other three pooling combinations, but the
network did not show any significant improvement. Finally, a fully connected layer
is then used to combine outputs of all the global pooling layers.

Rectified linear units (ReLUs) have significantly helped in overcoming the vanish-
ing gradient problem. They have been shown to considerably accelerate the training
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compared to tanh units. We use ReLUs f (x) = max(0, x), after the convolution
layers and dropout regularization [10] on fully connected layers except the softmax
layer. We used a dropout probability of 0.5. We also experimented with Parameter-
ized Rectified Linear Units (PReLU) [9], which has shown to improve model fitting
but it drastically affected our performance compared to ReLUs.

We used Xavier weight initialization [7] for the Convolution, CCCP and FC
layers. The Xavier weight filler initializes weights by drawing from a zero mean
uniform distribution from [−a, a] and a variance as a function of the number of
input neurons, where a = √

3 / nin and nin is the number of input neurons. Using
this strategy enables us to move away from the traditional layer by layer generative
pre-training. Let f j (si ; θ) be the activation value for spectrogram si and class j , θ
be the parameters of the network (weights W and biases b). The softmax function
and the loss is computed as

P(y = j | si ; θ) = softmax( f (si ; θ)) = exp( f j (si ; θ))

K∑
k=1

exp( fk(si ; θ))

(4)

where P(y = j | si ; θ) is the probability of the j th class and the loss can be computed
as L(u, y) = −∑

k
yk loguk . Using stochastic gradient decent (SGD), we then solve

min
θ

N∑

i=1

L(softmax( f (si ; θ)), yi ) (5)

We use minibatch SGD with a momentum of 0.9 and a batch size of 128. Minibatch
SGD refers to a more efficient way of computing the derivatives before updating the
weights in proportion to the gradient, especially in large datasets such as ours. We
improve the efficiency by computing the derivative on a random small minibatch of
training samples, rather than the entire training set which would be computationally
exhaustive. Furthermore, we optimize SGD by smoothing the gradient computation
for minibatch t using a momentum coefficient α as 0 < α < 1. The update rule can
then be written as

Δwi j (t) = αΔwi j (t − 1) − ε
∂E

∂wi j (t)
(6)

We employ a weight decay of λ = 5 · 10−4 to regularize the network. We begin the
training with an initial learning rate of λ0 and reduced it every iteration by an inverse
learning rate policy as λn = λ0 ∗ (1 + γ ∗ N )−c. Where λ0 is the base learning rate,
N is the number of iterations and c is the power. We use c = 0.75 and γ = 0.1. We
determine the hyperparameter λ0 by experimenting with different rates in an initial
trial. The best performing rate of 10−2 was then ascertained. The entire training of
350K iterations (∼135 epochs) took about 4 days on a single GPU.
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3.3 Noise Aware Fine-Tuning

Classification performance is often strongly affected by noise from the environment.
Since the microphone is mounted on the robot and used in real-world environments,
it is inevitable that the recorded signals include the robot’s motor noise in addition
to environmental noise. Fortunately deep networks have good generalization to real-
world scenarios if they are trained with noisy samples. In order to quantify the
performance in the presence of noise, we added WGN to training samples at various
SNR’s and measured the classification accuracy. WGN adds a very similar effect as
various physical and environmental disturbances including wind and water sources.

From experiments detailed in Sect. 5.4, it can be seen that the classification per-
formance of our network quickly drops below SNRs of 40 dB. As a solution to this
problem, we augmented raw audio signals with additiveWGN at SNRs ranging from
50 dB to −10 dB, in steps of 10 dB. We then performed noise adaptive fine-tuning
of all the layers in our network with the training set containing both noised and
original samples. The weights and biases are initialized by coping from our original
model trained as described in Sect. 3.2. The new model is then trained by minimiz-
ing the negative log likelihood as shown in Eq. (5). We again use minibatch SGD
with a learning rate 1/10th of the initial rate use for training the network, 10−3. The
learning rate was further reduced by a factor of 10, every 20,000 iterations.

4 Data Collection and Labeling

As we are particularly interested in analyzing the sounds produced from the vehicle-
terrain interaction on both indoor and outdoor terrains, we use the Pioneer P3-DX
platformwhich has a small footprint and feeblemotor noise. Interference fromnearby
sound sources in the environment can drastically influence the classification. It can
even augment the vehicle-terrain interaction data by adding its own attributes from
each environment. In order to prevent such biases in the data being collected, we use
a shotgun microphone that has a supercardioid polar pattern which helps in rejecting
off-axis ambient sounds. We chose the Rode VideoMic Pro and mounted it near
the right wheel of the robot as shown in Fig. 2. The integrated shock mount in the
microphone prevents any unwanted vibrations from being picked up.

We collected over 15h of audio data from a total of 9 different indoor and out-
door terrains. We particularly choose our terrain classes such that some of them
have similar visual features (Fig. 3a, h, i) and hence pose a challenge to vision based
approaches. The data was collected at several different locations to have enough gen-
eralizability, therefore even signals in each class have varying temporal and spectral
characteristics. The robots speed was varied from 0.1 to 1.0 ms−1 during the data
collection runs. The data was recorded in the lossless 16-bit WAV format at 44.1kHz
to avoid any recording artifacts. Experiments were conducted by recording at vari-
ous preamp levels and microphone mounting locations. There was no software level
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Fig. 2 The Pioneer P3-DX platform showing the shotgun microphone with the shock mount,
mounted close to the wheel

boost added during the final recordings as they also tended to amplify the ambient
noise significantly, instead the microphones 20dB hardware level boost was turned
on.

Wemanually label the data by looking at live tagswith timestamps from recordings
andweuse awaveformanalyzer tool to crop out any significant disturbances. The data
from each class was then split into overlapping time windows, where each window
is then used separately as a new data sample for feature extraction. As Libby et
al. mention in [15], choosing an appropriate length for the time window is critical,
as too short of a window might cut off a potential feature and by having too large
of a window we will loose the classification resolution. We also analyzed the effect
of different window sizes in our experiments. In order to train the classifier to be
generalizable to different locations with the same terrain, a ten-fold cross validation
approach was adopted. Furthermore, we ensured that all the sets and classes have
approximately the same number of samples to prevent any bias towards a specific
class.

5 Experimental Results

We performed the implementation and evaluations using the publicly available,
Caffe [11] deep learning toolbox and ran all our experiments on a systemwith an Intel
i7-4790K processor and a NVIDIA GTX 980M GPU. We used the cuDNN library
for GPU acceleration. For all the baseline comparisons and noise robustness tests,
we chose a clip window length of 300ms and performed ten-fold cross-validation.
The results from our experiments are described in the following sections.
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(a) Asphalt (b) Mowed
Grass

(c) Grass
Med-High

(d) Paving (e) Cobblestone

(f) Offroad (g) Wood (h) Linoleum (i) Carpet

Fig. 3 Terrain classes and an example spectrogram of a 2,000 ms clip (colorized spectrograms are
only shown for better visualization, spectrograms used for training are in gray scale)

5.1 Baseline Comparison

We chose two benchmark classifiers, k-Nearest Neighbors (kNNs) and SVMs. SVMs
performwell in high dimensional spaces and kNNs performwell when there are very
irregular decision boundaries. As a preprocessing step we first normalize the data to
have zero mean. We use the one-vs-rest voting scheme with SVM to handle multiple
classes and experimented with Linear and Radial Basis Function (RBF) kernels as
decision functions. We used inverse distance weighting for kNNs and optimized the
hyperparameters for both the classifiers by a grid-search using cross-validation. We
empirically evaluated six popular feature combinations described in Sect. 2, with
SVM and kNN. We used scikit-learn and LibSVM for the implementation. It was
ensured that the training and validation sets do not contain the same audio split or
the augmented clip. The results from this comparison are shown in Table1.

The best performing baseline feature-classifier combination was Cepstral features
using a linear SVM kernel, although the performance using Trimbral features are
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Table 1 Classification accuracy of several baseline feature extraction approaches on our dataset

Features SVM Linear SVM RBF k-NN

Ginna 44.87 ± 0.70 37.51 ± 0.74 57.26 ± 0.60

Spectral 84.48 ± 0.36 78.65 ± 0.45 76.02 ± 0.43

Ginna and Shape 85.50 ± 0.34 80.37 ± 0.55 78.17 ± 0.37

MFCC and Chroma 88.95 ± 0.21 88.55 ± 0.20 88.43 ± 0.15

Trimbral 89.07 ± 0.12 86.74 ± 0.25 84.82 ± 0.54

Cepstral 89.93 ± 0.21 78.93 ± 0.62 88.63 ± 0.06

DCNN (ours) 97.36 ± 0.12

closely comparable. This feature set outperformed Ginna and Shape features by over
9%. Ginna and Shape features using an SVM RBF kernel was the best performing
combination in the work by Libby and Stentz [15]. The worst performance was from
Ginna features using an SVM RBF kernel. It can also be seen that the feature sets
containing MFCCs show comparatively better results than the others.

Our DCNN yields an overall accuracy of 97.36 ± 0.12%, which is a substantial
improvement over the hand-crafted feature sets. We get an improvement of 7%
over the best performing Cepstral features and 12% over Ginna and Shape features
using the same clip length of 300ms. Furthermore, using a clip window size of
500ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach. This strongly demonstrates the potential for using
sound to classify vehicle-terrain interactions in a variety of environments.

5.2 Overall DCNN Performance

To further investigate classification performance of our network we computed the
confusion matrix, which helps us understand the misclassifications between the
classes. Figure4 shows the confusion matrix for ten-fold cross validation.

The best performing classes were carpet and asphalt, while the most misclassified
was offroad and paving, which were sometimes confused with each other. Both
these classes have similar spectral responses when the clip window gets smaller than
500ms.Our system still outperforms all baseline approaches bywidemargin.We also
compared the per-class recall as it gives an insight on the ratio of correctly classified
instances. Figure5 shows the per-class recall using ten-fold cross validation. The
network achieves an overall recall of 97.61%.
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Fig. 4 Confusion matrix of our approach for ten-fold cross validation, using an audio clip length of
300ms. The network seemed to get mostly confused with Offroad and Paving, as well as Linoleum
and Wood

5.3 Varying Clip Length

We compared the average cross-validated accuracy of our network using varying
audio clip lengths and execution times. Each clip is essentially a new sample for
classification, therefore the shorter the clip, the higher is the rate at which we can
infer the terrain. In addition, the shorter the clip, the faster is the execution time.
For an application such as ours, fast classification and execution rates are essential
for making quick trafficability decisions. Table2 shows the overall classification
accuracy using the DCNN approach with various window sizes.

From the above table it can be seen that the deep network approach significantly
outperforms classification using hand-crafted feature sets. We get an improvement
of 7% over the best performing Cepstral features and 12% over Ginna and Shape
features using the same clip length of 300ms. Furthermore, using a window size of
500ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach.
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Fig. 5 Per-class recall of our network on ten-fold cross validation, using an audio clip length of
300ms. The class with the lowest recall was Paving

Table 2 Classification accuracy of our system at varying audio clip lengths and the corresponding
time taken to process though the pipeline

Clip Length (ms) 2000 1500 1000 500 300

Accuracy (%) 99.86 99.82 99.76 99.41 97.36

Time (ms) 45.40 34.10 21.40 13.30 9.15

5.4 Robustness to Noise

For real-world applications such as ours, robustness to noise is a critical property.
Howevermodels can only be insensitive to noise up to a certain level.We analyzed the
effect of Gaussian white noise on the classification performance at several SNRs as
shown in Fig. 6. It can be seen that for some classes such as carpet, grass and cobble,
the performance decreases exponentially at different intensities, while for others such
as linoleum and asphalt, the performance seems to be affected marginally compared
to others. On the other extreme, wood and paving show remarkable robustness for
SNRs upto 20dB, thereafter the performance drops to zero. This can be attributed
to the fact that spectral components are much wider for the classes that show more
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Fig. 6 Per-class precision of our network when subject to different levels of white Gaussian noise.
The levels mentioned in the legend are SNRs

Table 3 Influence of white Gaussian noise onto the classification rate. SNR is in dB and accuracy
is in percent. The standard deviations were less than 1%

SNR 40 30 20 10 0 –10

Before FT 91.42 76.45 70.66 45.06 41.91 32.01

After FT 99.49 99.12 98.56 97.97 97.09 95.90

FT = Fine-tuning

robustness and for the −10dB SNR, only the classes that have certain pulses still
over the noise signal are recognizable.

As a solution to this problem, we fine-tuned our trained model on samples with
additive Gaussian white noise as described in Sect. 3.2. Table3 shows the average
cross-validated recognition accuracy of our network at different SNR, before and
after fine-tuning. Our fine-tuned model significantly outperforms our base model on
a wide range of SNRs. The best performing classes were mowed grass, linoleum,
asphalt, wood and carpet, with over 99% accuracy in all the SNRs shown in Table3.
Paving, cobble and offroad classes yielded a recognition accuracy of about 95%,
averaged over all the SNRs. The only class that was slightly negatively affected by
the fine-tuningwaswood at SNRof 20dB,where therewas a 0.2% loss in recognition
performance.

We also tested our fine-tuned model on the test set with no noise samples and the
average accuracy over all the classes was 99.57%, which is a 2.21% improvement
over our base models performance, clearly showing that noise adaptive fine-tuning is
a necessary step. This improvement can be attributed to the fact that by augmenting
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Fig. 7 The map on the left shows the trajectory taken by the robot during a classification test run
using a mobile phone microphone. The variation in speed along the path is indicated in red and
wider red points denote slower speed. The graph on the right shows the classification result, along
with the corresponding probabilities for the path shown in the map. True positives are shown as
green markers and false positives are shown are red markers

Fig. 8 Confusionmatrix for classification runs using data from amobile phonemicrophone. Paving
and Cobble show decreased performance due to false positives with Offroad and Grass

the signals with noise samples, we provide the network some prior knowledge about
the distribution of the signals which boosts the recognition performance. The only
significant misclassification was in the offroad class, which was 1% of the times
misclassified as paving. The other classes had almost negligible misclassifications.

To further stress test our network, we collected noisy samples in a new environ-
ment using a mobile phone that also tagged each sample with a GPS location. The
mobile phone has a condenser microphone, which unlike the shotgun microphone
that we used before, collects sounds from every direction, thereby adding consider-
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able amount of background noise. One of the test paths that the robot traversed is
shown in the map in Fig. 7. The figure also shows then variation in speed (0–2ms−1)
along the path. Thicker red lines in the map, indicate slower speed. Our network
achieved an accuracy of 98.54% on the mobile phone dataset. This shows the recog-
nition robustness, not only to real-world environments but also invariant to the type
of microphone. In addition, the graph in Fig. 7 shows the false positives and true
positives along the traversed path. It can be seen that most of the false positives are
in the paving class and this primarily occurs when the speed is above 1ms−1 and
the height of the paving is highly irregular, thereby misclassifying as offroad. Inter-
estingly, there is also significant fluctuations in the class probabilities of the false
positives along the paving path when the speed is below 1ms−1.

Figure8 shows the confusion matrix for the entire mobile phone microphone
dataset which contains about 2.15h of audio data. The classes that show a dip in
performance are paving, cobblestones and offroad. The paving class shows a non-
negligible false positive rate as it is often misclassified as offroad. Part of this mis-
classification is due variation in speed and the false positives in the terrain transition
boundaries.

6 Conclusion

In this paper, we introduced a novel approach that uses only sound from vehicle-
terrain interactions to robustly classify a wide range of indoor and outdoor terrains.
We evaluated several baseline audio features and presented a new deep convolutional
neural network architecture that achieves state-of-the-art performance in proprio-
ceptive terrain classification. Our GPU-based implementation operates on 300ms
windows and is 1,800 times faster than real-time, i.e., our system can classify a years
worth of audio data in roughly 4.8h. Additionally, our experiments in classifying
audio signal corrupted with white Gaussian noise demonstrate our networks robust-
ness to a great extent. We additionally show that our network fine-tuned with noisy
samples performs exceptionally well even at low signal-to-noise ratios. Furthermore,
our empirical evaluations with an inexpensive low-quality microphone shows that
our approach is invariant to the type ofmicrophone and can handle significant amount
of real-world noise.
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