
Chapter 2
Linear Feedback Control

The by far most used control method in industry is the proportional-integral-
derivative or PID controller. It is currently claimed that 90 to 95% of industrial
problems can be solved by this type of controller, which is easily available as an
electronic module. It allies an apparent simplicity of understanding and a generally
satisfactory performance. It is based on a quasi-natural principle which consists of
acting on the process according to the error between the set point and the measured
output. Indeed, along the chapters of this first part, it will appear that numerous vari-
ants of PID exist and that improvements can often be brought either by better tuning
or by a different configuration.

2.1 Design of a Feedback Loop

2.1.1 Block Diagram of the Feedback Loop

Feedback control consists of a reinjection of the output in a loop (Fig. 2.2). The
output response y or controlled variable is used to act on the control variable (or
manipulated input) u in order to make the difference (yr − y) between the desired
or reference set point yr and the output y as small as possible for any value of any
disturbance d. The output y is linked to the set point yr by a system which forces the
output to follow the set point (Fig. 2.1).

If a fixed value of the set point is imposed, the system is said to be regulating or in
regulationmode; if the set point is variable (following a trajectory), the system is said
to be tracking the set point or in trackingmode or subjected to a servomechanism. The
trajectory tracking is often met, e.g. in the case of batch reactors in fine chemistry,
a temperature or feed profile is imposed or, in the case of a gas chromatograph, a
temperature profile is imposed on the oven temperature.
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Fig. 2.1 Process representation in open loop
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Fig. 2.2 Representation of a closed-loop process

Open-Loop System:

The vocabulary open or closed loop comes from the electricity domain. Thus, an
electrical circuit must be imagined, open when it is an open loop and closed for a
closed loop.

In the open loop (Fig. 2.1), the output value is not used to correct the error. The
open loop can work (theoretically) only if the process model is perfect and in the
absence of disturbances: in practice, many phenomena such as measurement errors,
noise and disturbances are superposed so that the use of the open loop is to be
proscribed. However, feedforward control (Sect. 6.6) is a special open-loop design to
counterbalance themeasured disturbances; inmany cases, it is coupledwith feedback
control.

Closed-Loop System:

The process of Fig. 2.2 presents an output y, a disturbance d and a control variable u.
In general, the shape of disturbance is unpredictable and the objective is to maintain
the output y as close as possible to the desired set point yr for any disturbance. A
control possibility is to use a feedback realized by a closed loop (Fig. 2.2):

• The output is measured using a given measurement device; the value indicated by
the sensor is ym .

• This value is compared to the set point yr , giving the difference [set point −
measurement] to produce the error e = yr − ym .

• The value of this difference is provided to themain corrector, the function of which
is to modify the value of the control variable u in order to reduce the error e. The
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corrector does not operate directly, but through an actuator (valve, transducer ...)
to which it gives a value ua .

Important remark: one acts on the actuator and modifies the control variable u only
after having noted the effect of the disturbance on the output. The set of the compara-
tor and the corrector constitutes the control system and is called a controller which
can perform regulation actions as well as tracking.

2.1.2 General Types of Controllers

A controller can take very different forms. In reality, it represents a control strategy,
that is to say, a set of rules providing a value of the control action when the output
deviates from the set point. A controller can thus be constituted by an equation or an
algorithm.

In this first stage, only simple conventional controllers are considered.

2.1.2.1 Proportional (P) Controller

The operating output of the proportional controller is proportional to the error

ua(t) = Kc e(t) + uab (2.1)

where Kc is the proportional gain of the controller.
uab is the bias signal of the actuator (= operating signal when e(t) = 0), adjusted so
that the output coincides with the desired output at steady state.

The proportional controller is characterized by the proportional gain Kc, some-
times by the proportional band PB defined by

PB = 100

Kc
(2.2)

in the case of a dimensionless gain. In general, the proportional band takes values
between 1 and 500; it represents the domain of error variation so that the operating
signal covers all its domain. The higher the gain, the smaller the proportional band,
and the more sensitive the controller. The sign of gain Kc can be positive or negative.
Kc can be expressed with respect to the dimensions of output ua(t) and input e(t)
signals, or dimensionless according to the case.

A controller can saturate when its output ua(t) reaches a maximum ua,max or
minimum ua,min value.

The controller transfer function is simply equal to the controller gain

Gc(s) = Kc (2.3)
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In the following, it will be noticed that the proportional controller presents the
drawback to creating a deviation of the output with respect to the set point.

2.1.2.2 Proportional-Integral (PI) Controller

The operating output of the PI controller is proportional to the weighted sum of the
magnitude and of the integral of the error

ua(t) = Kc

(
e(t) + 1

τI

∫ t

0
e(x) dx

)
+ uab (2.4)

For chemical processes, the integral time constant is often around 0.1 ≤ τI ≤ 60
min.

The integral action tends to modify the controller output ua(t) as long as an error
exists in the process output; thus, an integral controller can only modify small errors.
The transfer function of the PI controller is equal to

Gc(s) = Kc

(
1 + 1

τI s

)
(2.5)

Philosophy: the integral action takes into account (integrates) the past.
Compared to the proportional controller, the PI controller presents the advan-

tage of eliminating the deviation between the output and the set point owing to the
integral action.However, this controller can produce oscillatory responses and dimin-
ishes the closed-loop system stability. Furthermore, the integral action can become
undesirable when there is saturation: the controller acts at its maximum level and
nevertheless the error persists; the phenomenon is called windup. In this case, the
integral term increases largely, possibly without limitation, and it is necessary to stop
the integral action. An anti-windup device must be incorporated into PI controllers
(see Sect. 4.6.4).

2.1.2.3 Ideal Proportional-Derivative (PD) Controller

The operating output of the ideal PD controller is proportional to the weighted sum
of the magnitude and the time rate of change of the error

ua(t) = Kc

(
e(t) + τD

de(t)

dt

)
+ uab (2.6)

The derivative action is intended to anticipate future errors. The transfer function of
the ideal PD controller is equal to

Gc(s) = Kc (1 + τD s) (2.7)

http://dx.doi.org/10.1007/978-3-319-61143-3_4
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This controller is theoretical because the numerator degree of the controller transfer
function Gc(s) is larger than the denominator degree; consequently, it is physically
unrealizable. In practice, the previous derivative action is replaced by the ratio of
two first-order polynomials presenting close characteristics for low and medium
frequencies. Furthermore, an integral action is always added. The derivative action
has a stabilizing influence on the controlled process.

Philosophy: the derivative action takes into account (anticipates) the future.

2.1.2.4 Ideal Proportional-Integral-Derivative (PID) Controller

This type of controller is the most often used, however, in a slightly different form
from the ideal one which will be first presented. The operating output of the ideal
PID controller is proportional to the weighted sum of the magnitude, the integral and
the time rate of change of the error

ua(t) = Kc

(
e(t) + τD

de(t)

dt
+ 1

τI

∫ t

0
e(x) dx

)
+ uab (2.8)

The transfer function of the PID controller is equal to

Gc(s) = Kc

(
1 + τD s + 1

τI s

)
(2.9)

The previous remark on the physical unrealizability of the derivative action is still
valid.

Philosophy: owing to the derivative action, the PID controller takes into account
(anticipates) the future, and owing to the integral action, the PID takes into account
(integrates) the past.

Remark 2.1 The previous theoretical controller is, in practice, replaced by a real PID
controller of the following transfer function

Gc(s) = Kc

(
τI s + 1

τI s

) (
τDs + 1

β τDs + 1

)
(2.10)

which is physically realizable.

Remark 2.2 It is often preferred to operate the PID controller by making the deriva-
tive action act no more on the error coming from the comparator but on the measured
output, under the theoretical form

ua(t) = Kc

(
e(t) + 1

τI

∫ t

0
e(x) dx − τD

dym
dt

)
(2.11)
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or practically

Ua(s) = Kc

(
1 + 1

τI s

)
E(s) −

(
Kc τDs
τD
N s + 1

)
Ym(s) (2.12)

Thismethodof taking into account the derivative action allows to avoidbrutal changes
of the controller output due to the error signal variation.

2.1.3 Sensors

This point may seem simple; indeed, in a real process, it is an essential element.
Without good measurement, it is hopeless to control the process well. The sensor
itself and the information transmission chain given by the sensor are concerned. The
common sensors that are met on chemical processes are:

• Temperature sensors: thermocouples, platinum resistance probes, pyrometers.
Temperature sensors can be modelled from the response they give to a temperature
step according to a first- or second-order models, sometimes with a time delay.

• Pressure sensors: classical manometers using bellows, Bourdon tube, membrane
or electronic ones using strain gauges (semiconductors whose resistance changes
under strain). Diaphragm pressure sensors use detection of the diaphragm position
by measurement of electrical capacitance. They are often represented by a second-
order model.

• Flow rate sensors: for gas flow such as thermal mass flow meters (based on the
thermal conductivity of gases, the gas flow inducing a temperature variation in
a capillary tube), variable area flow meters (displacement of a float in a conical
vertical tube); liquid flow such as turbine flow meters (rotation of a turbine),
depression flow meters as venturi- type flow meters (the flow rate is proportional
to the square root of the pressure drop), vortex flow meters (measurement of the
frequency of vortex shedding due to the presence of an unstreamlined obstacle),
electromagnetic flowmeters (for electrically conducting fluids), sonic flowmeters,
Coriolis effect flowmeters. Flow rate sensors have very fast dynamics and are often
modelled by an equation of the form

flow rate = a
√

ΔP

where the proportionality constant a is dependent on the sensor, and ΔP is the
pressure drop between the section restriction point and the outlet. These signals
are often noisy because of flow fluctuations and should be filtered before being
used by the controller.

• Level sensors: floats (lighter than the fluid), displacement (measurement of the
apparent weight of a half-submerged cylinder) through a pressure difference
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measurement, conductivity probes indicating liquid presence, capacitance detec-
tors for level variations.

• Composition sensors: potentiometers (chemical potential measurement of an ion
by means of a specific electrode), conductimeters (measurement of a solution con-
ductivity), chromatographs (separation of liquids or gases), spectrometers (visi-
ble, UV, infrared, etc.). Among these, chromatographs pose a particular and very
important problem in practice: the information provided by these apparatus arrives
a long time after the sampling, and thus, there exists a large time delay that must
be included in the model. This time delay can be the cause of a lack of mastering
or imperfect mastering of the process control.

In the absence of ameasurement concerning a given variable, if amodel of the process
is available, it is possible to realize a state observer called a software sensor. This
latter will use other available measurements to estimate the value of the unmeasured
variable, and it is comparable to an indirect measurement. The linear Kalman filter or
nonlinear (extended Kalman filter) is often used for this purpose (see Sect. 11.1.2.1
and 18.4.3). Chemical composition estimations are particularly concerned by this
type of sensor.

The transmitter is the intermediary between the sensitive element of the sensor
and the controller. It is a simple converter which is then considered as a simple gain,
ratio of the difference of the output signal (often transmitted in the range 4–20mA)
over the difference of the input signal given by the sensor.

The set sensor-transmitter can be considered as a global measurement device.

2.1.4 Transmission Lines

Traditionally, transmission lines were pneumatic. Nowadays, more and more often
they are electrical lines. In general, their dynamic influence on the process is neglected
except in the case of very fast phenomena, which is not very common in chemical
engineering.

2.1.5 Actuators

Actuators Considine (1999) constitute material elements which allow action by
means of the control loop on the process. For example, as a flow rate actuator, a
very common element is the pneumatic valve, operating as indicated by its name
with pressurized air. It could as well be mechanically operated by a dc or a stepping
motor (Fig. 2.3).

A valve is designed to be in position, either completely open (fail open, or air-to-
open) or completely closed (fail closed, or air-to-close) when the air pressure is not
ensured, which can happen in the case of an incident in the process. Consider the

http://dx.doi.org/10.1007/978-3-319-61143-3_11
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Fig. 2.3 Scheme of a typical
sliding stem valve

Sliding stem

case of a valve closed in the absence of pressure: when the air pressure increases on
the diaphragm, the spring is compressed and the valve plug pulls out from its seat,
thus increasing the passage section for the fluid, hence the flow rate. The inverse type
of valve (open in the absence of pressure) exists where the pressure increase makes
the valve plug go down (either because of the position of the air inlet with respect
to the diaphragm or because of the disposal of the seat and the valve plug) and thus
the cross section decreases. The choice of valves is generally made by taking into
account safety rules. There also exists motorized valves: rotating valves (butterfly,
ball). In general, the valve dynamics is fast. It must not be forgotten that the valve
introduces a pressure drop in the pipe. With respect to control, a valve should not be
operated too close to its limits, either completely open or completely closed, where
its behaviour will be neither reproducible nor easily controllable. Frequently, a valve
has a highly nonlinear behaviour on all its operating range, and it is necessary to
linearize it piecewise and use the constructed table for the control law.

For liquids, the flow rate Q depends on the square root of the pressure drop ΔPv
caused by the valve according to

Q = Cv

√
ΔP

d
(2.13)

where d is the fluid density (with respect to water), and Cv is a flow rate coefficient
such that the ratio (Cv/D2

v ) is approximately constant for liquids for a given type of
valve, Dv being the nominal valve diameter. Viscosity corrections are required for
Cv in the case of viscous liquids.

For gases or vapours, when the flow is subsonic, the volume gas flow rate is
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Q = 0.92C f Cv Pup (Y − 0.148Y 3)
1√

dg Tup
(2.14)

where Q is given in m3.s−1 at 15 ◦C under 1 normal atm, Pup is the upstream pressure
(in Pa), Tup is the upstream temperature, Y is the dimensionless expansion factor,
and dg is the gas density (with respect to air). C f is a dimensionless factor which
depends on the type of fittings of the valve and ranges from 0.80 to 0.98. Y is equal
to

Y = 1.63

C f

√
ΔP

Pup
(2.15)

When Y < 1.5, the flow is subsonic; when Y ≥ 1.5, the flow is sonic, i.e. choked.
When the flow is sonic, the volume gas flow rate is

Q = 0.92C f Cv Pup
1√

dg Tup
. (2.16)

The ratio q of the real flow rate Q to the maximum flow rate Qm

q = Q

Qm
(2.17)

can depend on the aperture degree x of the valve in several ways (Fig. 2.4). Denoting
the sensibility as σ = dq/dx , the latter can be constant (linear behaviour: case 1), or
increasewith x (case 2), or decreasewith x (case 3), or increase then decrease (case 4)
Midoux (1985). Often, three main types of valves are distinguished Thomas (1999):
with linear characteristics, with butterfly characteristics and with equal percentage
characteristics. Denoting the position of the valve positioner by x , the equations for
the valve constant are, respectively,

q= Q
Qm

x

1

2

3

4

Fig. 2.4 Influence of the aperture degree of a valve on its flow rate
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Linear: Cv = Cvs x

Butterfly: Cv = Cvs

(
1 − cos

(
π

2
x

))

Equal percentage: Cv = Cvs Rx−1
v

(2.18)

2.2 Block Diagrams, Signal-Flow Graphs, Calculation
Rules

The study of feedback control for single-input single-output processes is performed
in this chapter using Laplace transfer functions. It would be possible to do the same
technical realizations and their theoretical study based on state-space modelling. On
theother hand, the theoretical discussion andmathematical toolswouldbe completely
different. A sketch of the state-space study nevertheless will be presented.

When specialized packages for solving control problems (e.g. MATLAB�) are
used, it is very easy to find the state-space model equivalent to a transfer function.
Furthermore, it is possible to set blocks in series or in parallel, to do feedback loops,
either with transfer functions or in state space, and then to realize a complete block
diagram in view of a simulation. However, an important difference exists between
both approaches.When the studied systembecomes complicated, the numerical solv-
ing based on transfer functions gives worse and maybe erroneous results, compared
to the complete state-space solving. The reason is in the far more direct approach of
the phenomena in state space and their direct numerical solving.

Given a block diagram in which each block represents a transfer function, the
output of any block must be calculated with respect to the input of any other block.
Beyond the blocks of transfer functions, the block diagramuses summators, which do
the algebraic addition of inlet signals, and signal dividers, which separate a signal into
two or several signals of same intensity.Most of the common cases are represented in
Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11, and results are given in the transfer function
case and in the state-space case.

Calculation Rules with Laplace Transform

U1(s) +

+

+

−
U2(s) U3(s)

Y (s)

Fig. 2.5 Block scheme number 2

Fig. 2.6 Block scheme
number 1 G(s)

U(s) Y (s)
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U1(s)
G(s)

ȳ(s)+
− U2(s)

⇐⇒ G(s)

G(s)

Y (s)+
−

U1(s)

U2(s)

Fig. 2.7 Block scheme number 3 under two equivalent representations

G(s)
U(s) Y1(s)

Y2(s)

⇐⇒ G(s)

1/G(s)

U(s) Y1(s)

Y2(s)

Fig. 2.8 Block scheme number 4 under two equivalent representations

G1(s) G2(s)
U(s) Y1(s) Y2(s) ⇐⇒ G1(s) G2(s)

U(s) Y (s)

Fig. 2.9 Block scheme number 5 under two equivalent representations

G2(s)

G1(s)
+

−
U(s) Y (s) ⇐⇒

G1(s)−G2(s)
Y (s)U(s)

Fig. 2.10 Block scheme number 6 under two equivalent representations

G1(s)

G2(s)

U(s) +

±

U1(s)

Y2(s)

Y (s)

⇐⇒ G1(s)
1∓G1(s)G2(s)

U(s) Y (s)

Fig. 2.11 Block scheme number 7 under two equivalent representations
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For block scheme number 1 (Fig. 2.6), which contains two summators, the Laplace
transform equation is

Y (s) = U1(s) +U2(s) −U3(s) (2.19)

For block scheme number 2 (Fig. 2.5), which contains only one transfer function, the
Laplace transform equation is

Y (s) = GU (s) (2.20)

For block scheme number 3 (Fig. 2.7), which contains one transfer function and a
summator, the Laplace transform equation is

Y (s) = G (U1(s) −U2(s)) (2.21)

For block scheme number 4 (Fig. 2.8), which contains one transfer function and a
signal divider, the Laplace transform equations are

Y1(s) = GU (s) ; Y2(s) = U (s) (2.22)

For block scheme number 5 (Fig. 2.9), which contains two transfer functions in series,
the Laplace transform equation is

Y (s) = G1 G2U (s) (2.23)

For block scheme number 6 (Fig. 2.10), which contains two transfer functions in
parallel and a summator, the Laplace transform equation is

Y (s) = (G1 − G2)U (s) (2.24)

For block scheme number 7 (Fig. 2.11), which contains two transfer functions in a
feedback loop containing a summator with the feedback of sign ε (ε = +1 for a
positive feedback, ε = −1 for a negative feedback), the Laplace transform equation
is

Y (s) = G1

1 + ε G1G2
U (s) (2.25)

Calculation rules in state space

In state space, signals are directly considered with respect to the time variable and
each system or block number i is represented by the set of matrices (Ai , Bi ,Ci , Di ).
Recall that if a system can be represented by a strictly proper transfer function, the
matrix Di is zero and this is the case of most physical systems. Equations are given
in the case of single-input single-output systems.
Block scheme number 1

y(t) = u1(t) + u2(t) − u3(t) (2.26)
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Block scheme number 2 {
ẋ(t) = Ax(t) + B u(t)
y(t) = Cx(t) + D u(t)

(2.27)

Block scheme number 3
{
ẋ(t) = Ax(t) + B (u1(t) − u2(t))
y(t) = Cx(t) + D (u1(t) − u2(t))

(2.28)

Block scheme number 4
⎧⎨
⎩
ẋ(t) = Ax(t) + B u(t)
y1(t) = Cx(t) + D u(t)
y2(t) = u(t)

(2.29)

Block scheme number 5, two systems in series: equations for each block are the
following ⎧⎪⎪⎨

⎪⎪⎩

ẋ1(t) = A1 x1(t) + B1 u(t)
y1(t) = C1 x1(t) + D1 u(t)
ẋ2(t) = A2 x2(t) + B2 y1(t)
y(t) = C2 x2(t) + D2 y1(t)

(2.30)

Defining the global state vector, union of both state vectors:

x(t) =
[
x1(t)
x2(t)

]
(2.31)

one obtains for two systems in series

⎧⎪⎨
⎪⎩
ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
A1 0
B2 C1 A2

]
x(t) +

[
B1

B2 D1

]
u(t)

y(t) = [
D2 C1 C2

]
x(t) + D2 D1 u(t)

(2.32)

Block scheme number 6, two systems in parallel

⎧⎪⎨
⎪⎩
ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
A1 0
0 A2

]
x(t) +

[
B1

B2

]
u(t)

y(t) = [
C1 −C2

]
x(t) + (D1 − D2) u(t)

(2.33)

Block scheme number 7, feedback loop of sign ε:
the general case where D1 and D2 are not zero is first treated.
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The basic equations are the following

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1(t) = A1 x1(t) + B1 u1(t)
y(t) = C1 x1(t) + D1 u1(t)
ẋ2(t) = A2 x2(t) + B2 y(t)
y2(t) = C2 x2(t) + D2 y(t)
u1(t) = u(t) + ε y2(t)

(2.34)

Eliminating internal variables u1(t) and y2(t), one obtains

ẋ(t) =
[
ẋ1(t)
ẋ2(t)

]
=[

A1 + εB1D2C1 [I − εD1D2]−1 εB1C2 + B1D2D1C2 [I − εD1D2]−1

B2C1 [I − εD1D2]−1 A2 + εB2D1C2 [I − εD1D2]−1

]
x(t)

+
[
B1 + εB1 D2 D1 [I − εD1 D2]−1

B2 D1 [I − εD1 D2]−1

]
u(t)

y(t) =
[
C1 [I − εD1 D2]−1

εD1 C2 [I − εD1 D2]−1

]
x(t) + D1 [I − εD1 D2]−1 u(t)

(2.35)

When both transfer functions are strictly proper, and matrices D1 and D2 zero, equa-
tions can be simplified as

⎧⎪⎨
⎪⎩
ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
A1 εB1 C2

B2 C1 A2

]
x(t) +

[
B1

0

]
u(t)

y(t) = [
C1 0

]
x(t)

(2.36)

Mason Formula and Signal-Flow Graphs

TheMason formula allows us to quickly calculate global transfer functions for a block
scheme where each block represents a transfer function. A complicated scheme such
as in Fig. 2.12 is considered.

This block scheme has two external inputs yr and d, and the transfer functions set
point-output Gyr and disturbance-output Gyd must be, respectively, calculated

Y (s) = Gyr Yr (s) + Gyd D(s) (2.37)

Each block is directed from input towards output and is called unidirectional. A loop
is a unidirectional path which starts and ends at a same point, and along which no
point is met more than once. A loop transmittance is equal to the product of the
transfer functions of the loop. When a loop includes summators, the concerned signs
must be taken into account in the calculation of the loop transmittance.
Rather than directly working on the block diagram such as it is currently described,
it is preferable to transform this scheme into a signal-flow graph, which contains the
topological information of the set of linear equations included in the block diagram.
The word signal-flow (or signal flow) means a flow of fluxes or signals.
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G1 G2 G3

yr e1 e2 e3 e4 e5 e6 y

G4

G6

G5

d

e7

+
−

+
−

+
+

+
+

+
+

Fig. 2.12 Block scheme of a closed-loop process

To operate, some characteristic definitions of signal-flow graphs must be added:

• A signal-flow graph is made of nodes and connecting branches (a line with an
arrow).

• A node is attributed to each variable which occurs in the system. The node i
represents the variable yi for example.

• For a branch beginning in i and ending in j , the transmittance ai j of the branch
relates variables yi and y j .

• A source is a node from where only branches go out.
• A sink is a node where only branches come in.
• A path is a group of connected branches having the same direction.
• A direct path comes from a source and ends in a sink; furthermore, no node should
be met more than once.

• A path transmittance is the product of the transmittances associated with the
branches of this path.

• A feedback loop Bi is a path coming from a node i and ending at the same node
i . Along a loop, a given node cannot be met more than once.

• A transmittance of a loop Bi is the product of the transmittances associated with
the branches of this loop.

• Loops Bi and Bj are nontouching when they have no node in common.

First, let us present some simple cases that allow us to understand signal-flow graphs
as well as the associated equations, which are all linear.
Additions:
Graph 2.13 corresponds to the linear equation

y3 = a1 y1 + a2 y2 (2.38)

and graph 2.14 corresponds to the linear equation
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Fig. 2.13 Signal-flow
graph: addition

y1

y2

y3

a1

a2

Fig. 2.14 Signal-flow
graph: addition

a1

a2

y2y1

Fig. 2.15 Signal-flow
graph: multiplication

y1 y3

y2a1 a2

Fig. 2.16 Signal-flow
graph: feedback

a1

y2y1

−a2

Fig. 2.17 Signal-flow
graph: feedback −a2

y2
y1

a1

y2 = (a1 + a2) y1 (2.39)

Multiplication:
Graph 2.15 corresponds to the linear equation

y3 = a2 y2 = a1 a2 y1 (2.40)

The transmittance of path from 1 to 3 is a1a2.
Feedback:
Graph 2.16 corresponds to the linear equation

y2 = a1 y1 − a2 a1 y2 =⇒ y2 = a1
1 + a1 a2

y1 (2.41)
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The transmittance of path from 1 to 2 is a1
1+a1 a2

.
Graph 2.17 corresponds to the linear equation

y2 = a1 y1 − a2 y2 =⇒ y2 = a1
1 + a2

y1. (2.42)

Then, the Δ characteristic function of the block scheme or determinant of the
signal-flow graph is defined as

Δ = 1 −∑
(transmittances of the loops),

+∑
(products of the transmittances of all nontouching loops
considered two by two),

−∑
(products of the transmittances of all nontouching loops
considered three by three),

. . .

Note that Δ is independent of the input and the output.

• Adirect path froman input ui to an output y j is any connection of directed branches
and of blocks between i and j such that no point is met more than once. The input
ui and the output y j are connected by k direct paths each having the transmittance
Ti jk . Let Δi jk also be the determinant of each direct path calculated according to
the previous formula, givingΔ by setting equal to 0 all transmittances of the loops
which touch the kth direct path from i to j (suppress all the nodes and the branches
of this direct path).

According to theMason formula, the transfer function of the input ui to the output
y j is equal to

Gi j =
∑ki j

k=1 Ti jk Δi jk

Δ
(2.43)

with
Y j (s) = Gi j Ui (s). (2.44)

The signal-flow graph corresponding to the previous block diagram 2.12 is given
in Fig. 2.18.

It might have been possible on this graph to merge E6 and Y : variables have here
been distinguished to make the sink Y clearly appear.

In this signal-flow graph, one wishes to calculate transfer functions from Yr (s)
to Y (s) and from D(s) to Y (s), respectively, Gry and Gdy . In this graph, five loops
exist with respective transmittances: G2G3G5, −G1G2G3, −G1G2G6, −G1G4 and
G4G5. There exist no two-by-two nontouching loops. The determinant of this graph
is thus equal to
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Yr(s) Y (s)

D(s)

1 1 G1 G2 G3 1 1

G4

e1 e2 e3 e4 e5 e6

e7

−G6

−1

G5
1

1

Fig. 2.18 Signal-flow graph corresponding to block diagram 2.12

Δ = 1 − (G2G3G5 − G1G2G3 − G1G2G6 − G1G4 + G4G5)

= 1 + G1G2G6 + (G2G3 + G4)(G1 − G5).
(2.45)

To find the transfer function Gry , two direct paths must be noticed, one is
re1e2e3e4e5e6y with transmittance Try1 = G1G2G3 for which Δry1 = 1, and the
other one is re1e2e3e5e6y with transmittance Try2 = G1G4 for which Δry2 = 1. The
transfer function Gry is thus equal to

Gry = G1G2G3 + G1G4

1 + G1G2G6 + (G2G3 + G4)(G1 − G5)
. (2.46)

To find the transfer function Gdy , there exist two direct paths: de7e3e4e5e6y with
transmittance Tdy1 = G2G3G5 for whichΔdy1 = 1, and the other is de7e3e5e6y with
transmittance Tdy2 = G4G5 for which Δdy2 = 1. The transfer function Gdy is thus
equal to

Gdy = G2G3G5 + G4G5

1 + G1G2G6 + (G2G3 + G4)(G1 − G5)
. (2.47)

Globally, one obtains

Y (s) = Gry Yr (s) + Gdy D(s) (2.48)
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2.3 Dynamics of Feedback-Controlled Processes

The block scheme of feedback control makes use of previously studied elements
with respect to their general operating principle. In the block scheme of the process
and control system (Fig. 2.19), independent external inputs are on one the hand the
set point yr (t) imposed by the user and on the other hand the disturbance d(t) not
mastered by the user; these inputs influence the output y(t). Indeed, the process could
be subjected to several disturbances. The process undergoes differently the action of
the control variable u(t) and of the disturbance d(t); thus, this corresponds to distinct
transfer functions denoted, respectively, by Gd(s) and Gp(s), so that, as a Laplace
transform, the output Y (s) is written as

Y (s) = Gp(s)U (s) + Gd(s)D(s) (2.49)

A summator will be used for the block representation. Instead of representing the
block diagram in time space, it is represented as a function of the Laplace variable s.

Other transfer functions indicate the functions of different devices:

• Measurement:
Ym(s) = Gm(s)Y (s) (2.50)

It must be noted that the measured variable ym(t) generally does not have the
same dimension as the corresponding output y(t). For example, if the output is a
temperature expressed in degreesCelsius, the variablemeasuredby a thermocouple
is inmV, and hence, the steady-state gain of the transfer function has the dimension
of mV/Celsius. Similarly, for any transfer function, the steady-state gain has unit

Set point

Km

Yrm(s)

+
−

E(s)
Gc(s)

Corrector
Ua(s)

Ga(s)

Actuator
U(s)

Gp(s)

Process

+
+

Gd(s)

Gm(s)

Measurement

Output

Disturbance

D(s)

Y (s)

Ym(s)

Yr(s)

Controller

Fig. 2.19 Block scheme of the closed-loop process
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dimensions. Moreover, the sensor may introduce dynamics given by the transfer
function Gm(s).

• Regulation:
Ua(s) = Gc(s)E(s) (2.51)

with E(s) being the error equal to

E(s) = Km Yr (s) − Ym(s) = Km Yr (s) − GmY (s) (2.52)

• Compensation of the measurement:

If the set point yr is expressed in the same units as the output y (pressure in bar,
temperature in C or K, ...), it is necessary to introduce a block to compensate the
measurement (Fig. 2.19) so that the measured output ym and the compensated set
point yrm have the same dimension (e.g. mA or mV), which is in general different
from the output one. The gain Km of the measurement compensation block is equal
to the steady-state gain of the measurement transfer function Gm .

It is also possible to express the set point yr (t) in the same units as the mea-
sured output ym(t), and in this case, it is not necessary anymore to compensate the
measurement (Km = 1).

In the case of measurement compensation, this pure gain Km is calculated by

Km = lim
s→0

Gm(s) = Gm(0) (2.53)

so that the compensated set point is equal to

Yrm(s) = Km Yr (s) (2.54)

• Actuator:
U (s) = Ga(s)Ua(s). (2.55)

From these equations, it is interesting to express the output Y (s) with respect to
the set point Yr (s) and the disturbance D(s). One obtains

Y (s) = Gp(s)Ga(s)Gc(s) E(s) + Gd(s)D(s) (2.56)

or, by expressing E(s),

Y (s) = Gp(s)Ga(s)Gc(s) [Km Yr (s) − Gm(s) Y (s)] + Gd(s)D(s) (2.57)
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Yr(s) Y (s)
Km 1 Gc Ga Gp 1 1

E(s) Ua(s) U(s) Y (s)

−Gm

D(s)

Gd

Fig. 2.20 Signal-flow graph corresponding to the block diagram of the feedback control (Fig. 2.19)

The process closed-loop response Y (s) is thus equal to

Y (s) = Gp(s)Ga(s)Gc(s) Km

1 + Gp(s)Ga(s)Gc(s)Gm(s)
Yr (s) + Gd(s)

1 + Gp(s)Ga(s)Gc(s)Gm(s)
D(s)

(2.58)
The first term represents the influence of a change of the set point Yr (s) and the
second term the influence of a change of disturbance D(s). The closed-loop transfer
function for a set point variation will be

Gset point = Gp(s)Ga(s)Gc(s) Km

1 + Gp(s)Ga(s)Gc(s)Gm(s)
(2.59)

and similarly the closed-loop transfer function for a disturbance variation

Gdisturbance = Gd(s)

1 + Gp(s)Ga(s)Gc(s)Gm(s)
(2.60)

The denominators of both closed-loop transfer functions are identical. These closed-
loop transfer functions depend not only on the process dynamics, but also on the
actuator, measurement device and the controller’s own dynamics.

The application of the Mason formula would give the previous expressions. The
signal-flow graph is given by Fig. 2.20.

In the present case, only one loop exists, and the graph determinant is equal to

Δ = 1 − (−GcGaG pGm) (2.61)

Between the set point and the output, only one direct path exists with transmittance:
T1 = KmGcGaG p and determinant Δ1 = 1, so that the transfer function from the
set point to the output is equal to

Y (s)

Yr (s)
= GcGaG pKm

1 + GcGaG pGm
(2.62)
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Gr Ga Gp

+

−

Gm

Fig. 2.21 How the “open loop” must be understood by opposition to the closed loop

Similarly between the disturbance and the output, only one direct path exists with
transmittance: T1 = Gd and determinant Δ1 = 1, so that the transfer function from
the disturbance to the output is equal to

Y (s)

D(s)
= Gd

1 + GcGaG pGm
. (2.63)

The calculation of the transfer functions can be resumed in this simple case in the
following manner:

The closed-loop transfer function is equal to [ product of the transfer functions
met on the path between an input and an output ] over [ 1 + the product of all transfer
functionsmet in the loop ]. So, between D(s) andY (s), onlyGd ismet,while between
Yr (s) and Y (s) we meet Km , Gc, Ga , Gp. In the loop, Gc, Ga , Gp, Gm are met. The
product Gc Ga G p Gm , which appears in the denominator of the closed-loop transfer
functions, is often called open-loop transfer function, as it corresponds to the transfer
function of the open loop obtained by opening the loop before the comparator as can
be done for an electrical circuit (Fig. 2.21). This open-loop transfer function acts as
an important role in the study of the stability of the closed-loop system.
Two types of control problems will be studied in particular:

Regulation:
The set point is fixed (Yr (s) = 0), and the process is subjected to disturbances. The
control system reacts so as to maintain y(t) at the set point value and tries to reject
the disturbances: it is also called disturbance rejection.

Tracking:
It is assumed (in order to simplify the study) that the disturbance is constant (D(s) =
0) while the set point is now variable; the problem is to maintain y(t) as close as
possible to varying yr (t).

2.3.1 Study of Different Actions

To display the influence of different actions, only first- and second-order systemswill
be studied. Moreover, to simplify calculations, it will be assumed that the transfer
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+

−
Gc Gp

Gd

d(t)

y(t)u(t)yr(t)

Fig. 2.22 Block diagram for the study of the action of the different controllers

functions of the actuator and of measurement are both equal to unity

Ga = 1 , Gm = 1 , Km = 1 (2.64)

resulting in simplified Fig. 2.22. For these first- and second-order systems with dif-
ferent types of controller, responses to steps of set point or disturbance are given in
Figs. 2.29, 2.30, 2.31, 2.32 and commented on in the following sections.

As an aside, to simplify, it will be assumed that the order of process transfer
function Gp and the order of the transfer function Gd dealing with the disturbance
are equal (which is by no means compulsory), but that these transfer functions have
different gains and time constants.

2.3.2 Influence of Proportional Action

As the controller is proportional, its transfer function is

Gc = Kc (2.65)

2.3.2.1 First-Order Systems

A first-order system is described by a differential equation such as

τp
dy(t)

dt
+ y(t) = u(t) (2.66)

where y(t) is a deviation variable such that y(0) = 0 and (dy/dt)0 = 0.
The process transfer function linking the output Laplace transform Y (s) to the

input Laplace transform U (s) is equal to

Gp(s) = Kp

τp s + 1
(2.67)
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The transfer function for the disturbance is also assumed to be first-order

Gd(s) = Kd

τd s + 1
(2.68)

The output Y (s) for any set point Yr (s) and any disturbance D(s) is thus equal to

Y (s) = Kp Kc

τp s + 1 + Kp Kc
Yr (s) + Kd

τd s + 1

τp s + 1

τp s + 1 + Kp Kc
D(s) (2.69)

If we set s → 0 (equivalent to an infinite time) in the transfer functions, the closed-
loop transfer functions are, respectively, equal to the closed-loop steady-state gains
(use of the final value theorem) for the set point yr and the disturbance d

K ′
p = Kp Kc

1 + Kp Kc
(2.70)

K ′
d = Kd

1 + Kp Kc
(2.71)

The closed-loop gain K ′
p is modified compared to the open-loop gain Kp; K ′

p tends
towards 1 when the controller gain is large. The closed-loop gain relative to the
disturbance K ′

d is lower than the open-loop gain Kd and tends towards 0 when the
controller gain is large. The closed-loop response is still first-order with respect to
set point and disturbance variations.

The open-loop time constant is τp; in closed loop, concerning set point variations,
it is equal to

τ ′
p = τp

1 + Kp Kc
(2.72)

thus, it has decreased; the response will be faster in closed loop than in open loop.
Consider the response to a step variation of set point (tracking) or disturbance

(regulation):

Tracking study:
The set point change is a step of amplitude A

Yr (s) = A

s
(2.73)

The disturbance is assumed constant or zero (D(s) = 0). The closed-loop response
(Fig. 2.23) to a set point step is then equal to

Y (s) = Kp Kc

τp s + 1 + Kp Kc

A

s
= K ′

p

τ ′
p s + 1

A

s
(2.74)
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Fig. 2.23 Response of a first-order system (Kp = 5, τp = 10) to a set point unit step (proportional
controller with increasing gain: Kc = 1, 2, 5)

To get the time response y(t), Y (s) is decomposed into a sum of rational fractions,
the first corresponding to the forced response Y f (s) and the second to the natural
response Yn(s)

Y (s) = A
K ′

p

s
− A

K ′
p τ ′

p

τ ′
ps + 1

= Y f (s) + Yn(s) (2.75)

hence
y(t) = AK ′

p

(
1 − exp(−t/τ ′

p)
) = y f (t) + yn(t)

with: y f (t) = AK ′
p; yn(t) = −AK ′

p exp(−t/τ ′
p)

(2.76)

Figure2.23 was obtained for a unit step of a set point. The asymptotic value of the
output presents an offset with the set point; if the controller gain Kc is increased,
this offset decreases (Fig. 2.23). In practice, other transfer functions must be taken
into account: actuator and measurement, so that this set may not behave exactly
as a first-order process and present, e.g. a time delay, nonlinearities or neglected
dynamics. The choice of too large gains for the proportional controller may render
the closed-loop behaviour oscillatory or unstable. A high gain decreases the response
time, imposing a more important demand to the actuator: the control variable u(t)
varies more strongly and more quickly so that it can reach its limits, and it is then
saturated.

Regulation study:
Recall that the transfer function for the disturbance was taken to be first-order as that
of the process, but with different gain Kd 	= Kp and time constant τd 	= τp.
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Consider a disturbance step variation of amplitude A

D(s) = A

s
(2.77)

The set point is assumed constant (regulation). The closed-loop response (Fig. 2.31)
to a step disturbance is then equal to

Y (s) = Kd

τds + 1

τps + 1

τps + 1 + KpKc

A

s
(2.78)

To get the time response y(t), Y (s) is decomposed into

Y (s) = A

(
Kd

1 + Kp Kc

1

s
+ Kd τd (τp − τd)

τd (1 + Kp Kc) − τp

1

τds + 1

+ Kd Kp Kc τ 2
p

(τp − τd (1 + Kp Kc)) (1 + Kp Kc)

1

τps + 1 + Kp Kc

)

= A

(
c1
s

+ c2
τds + 1

+ c3
τps + 1 + Kp Kc

)
(2.79)

hence the closed-loop response

y(t) = A
[
c1 + c2 exp(−t/τd) + c3 exp(−t (1 + Kp Kc)/τp)

]
(2.80)

In the absence of a controller, the process is stable and the output tends towards AKd .
When the proportional controller is introduced, the process remains stable; for a unit
step disturbance, the output tends towards a new limit AK ′

d and deviates with respect
to the set point from this value AK ′

d .
When the gain of the proportional controller increases, the deviation output-set

point decreases and the influence of the disturbance decreases too.
Consider now a disturbance impulse variation of amplitude A. The closed-loop

response to this disturbance is then equal to

Y (s) = A
Kd

τds + 1

τps + 1

τps + 1 + KpKc
(2.81)

Application of the final value theorem gives

lim
t→∞ y(t) = lim

s→0
[s Y (s)] = 0 (2.82)

Thus, impulse disturbances are rejected by a simple proportional controller.

2.3.2.2 Second-Order Systems

Again, the actuator and measurement gains and transfer functions are taken to be
equal to 1.
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In the case of a second-order system, the process transfer function is

Gp(s) = Kp

τ 2
p s

2 + 2 ζp τp s + 1
(2.83)

Assume that the transfer function for the disturbance is also second-order

Gd(s) = Kd

τ 2
d s

2 + 2 ζd τd s + 1
(2.84)

The output Y (s) for any set point Yr (s) and any disturbance D(s) is equal to

Y (s) = Kp Kc

τ 2
p s

2 + 2 ζp τp s + 1 + Kp Kc
Yr (s)

+ Kd

τ 2
d s

2 + 2 ζd τd s + 1

τ 2
p s

2 + 2 ζp τp s + 1

τ 2
p s

2 + 2 ζp τp s + 1 + Kp Kc
D(s)

(2.85)

Tracking study:
In Eq. (2.85), only the term of the set point variation is concerned. For a set point
step variation of amplitude A, Yr (s) becomes A/s, and Y (s) is decomposed into a
sum of two fractions, the natural response of order 2 corresponding to the first factor
of the previous expression and the forced response in 1/s. The closed-loop transfer
function remains second-order as in open loop. The period and the damping factor
are modified

τ ′
p = τp√

1 + Kp Kc
ζ ′
p = ζp√

1 + Kp Kc
(2.86)

The steady-state gain becomes

K ′
p = Kp Kc

1 + Kp Kc
. (2.87)

Like for the first-order system, a deviation between the set point and the asymptotic
response exists (Fig. 2.30), which is all the more important as the gain is low.

Regulation study:
As the influence of disturbance is studied, the second term of Eq. (2.85) is taken
into account. The closed-loop response remains second-order as in open loop. The
proportional controller is not sufficient to reject the disturbance: a deviation between
the set point and the asymptotic value still exists (Fig. 2.32).

A proportional controller does not change the order of the process; the steady-
state gain is modified, decreased in two cases (a/ if Kp > 1, or b/ if Kc > 1/(1 − Kp)

when Kp < 1): the time constants also decrease.
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2.3.3 Influence of Integral Action

The study is similar to that realized in the case of the proportional controller and will
be consequently less detailed.

The transfer function of a PI controller is equal to:

Gc(s) = Kc

(
1 + 1

τI s

)
. (2.88)

2.3.3.1 First-Order Process and Influence of Pure Integral Action

Though integral action is never used alone, in this section, in order to characterize its
influence, we first assume that the controller is pure integral and has the following
transfer function

Gc(s) = Kc

τI s
(2.89)

In the case of a first-order process, the response Y (s) to a set point or disturbance
variation is equal to

Y (s) =
Kp

1 + τp s

Kc

τI s

1 + Kp

1 + τp s

Kc

τI s

Yr (s) +
Kd

1 + τd s

1 + Kp

1 + τp s

Kc

τI s

D(s) (2.90)

or

Y (s) = 1
τp τI

K p Kc
s2 + τI

K p Kc
s + 1

Yr (s) + Kd

τd s + 1

(τp s + 1) τI s

τI τp s2 + τI s + Kp Kc
D(s)

(2.91)
The integral controller has modified the system order: the transfer function of the
closed-loop system is now of order 2, i.e. larger by one unity than the order of the
open-loop system. The natural period of the closed-loop system is equal to

τ ′
p =

√
τp τI

K p Kc
(2.92)

and the damping factor

ζ ′
p = 1

2

√
τI

τp K p Kc
(2.93)

As the response of a first-order process in open loop becomes second-order in closed
loop, its dynamics is completely different. According to the value of the damping
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factor ζ ′, the response will be overdamped, or underdamped, possibly explosive.
If the controller gain is increased, keeping constant the integral time constant, the
natural period and the damping factor decrease, and thus, the response will be less
sluggish, but the displacement will move progressively from overdamped responses
towards oscillatory responses.

It is interesting to study the tracking, i.e. the response to a set point variation. The
set point undergoes a step variation of amplitude A

Yr (s) = A

s
(2.94)

hence

Y (s) = 1
τp τI

K p Kc
s2 + τI

K p Kc
s + 1

A

s
(2.95)

To find the asymptotic behaviour, the final value theorem gives

lim
t→∞ y(t) = lim

s→0
[s Y (s)] = A (2.96)

Thus, the limit of y(t) is equal to A, the set point value. We thus find the important
result that the integral action eliminates the asymptotic deviation. The value of the
set point is reached faster when the gain is high, but at the expense of oscillatory
responses. According to the type of controlled variable, it is preferable to rather
choose an overdamped response (not going beyond the set point, e.g. for a chemical
reactor which could undergo runaway above some safety temperature) or oscillatory
(rapidly reach a state close to the set point).

Let us study in a similar way the regulation and thus the influence of a disturbance.
Consider a disturbance step change of amplitude A that could not be rejected by the
proportional controller

D(s) = A

s
(2.97)

hence

Y (s) = Kd

τd s + 1

(τp s + 1) τI s

τI τp s2 + τI s + Kp Kc

A

s
(2.98)

The final value theorem gives

lim
t→∞ y(t) = lim

s→0
[s Y (s)] = 0 (2.99)

Thus, step-like disturbances which were not rejected by a proportional controller are
perfectly rejected owing to the integral action.

Of course, impulse disturbances are also rejected by the PI controller.
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2.3.3.2 First-Order Process with PI Controller

The transfer function of the PI controller is equal to

Gc(s) = Kc

(
1 + 1

τI s

)
(2.100)

hence the general closed-loop response to set point and disturbance variations

Y (s)=
Kp

1 + τp s
Kc

(
1 + 1

τI s

)

1 + Kp

1 + τp s
Kc

(
1 + 1

τI s

) Yr (s) +
Kd

1 + τd s

1 + Kp

1 + τp s
Kc

(
1 + 1

τI s

) D(s)

(2.101)
or

Y (s) = τI s + 1
τp τI

K p Kc
s2 + τI

K p Kc + 1

Kp Kc
s + 1

Yr (s)+

Kd

τd s + 1

τI

K p Kc
s (1 + τp s)

τp τI

K p Kc
s2 + τI

K p Kc + 1

Kp Kc
s + 1

D(s)

(2.102)

Compared to the proportional action alone, the order of each transfer function out-
put/set point or output/disturbance increases by one unit.

Previously drawn conclusions for the integral action alone remain globally true:

• In tracking, during a set point step variation (Fig. 2.29), the output tends towards
the set point even for low controller gain.

• In regulation, impulse disturbances are of course rejected, but also step distur-
bances (Fig. 2.31).

To be convinced, it suffices to use the final value theorem.

2.3.3.3 Second-Order Process

Similarly, in the case of a second-order process in open loop, the closed-loop output
with a pure integral controller would be of the immediately next order, i.e. a third-
order.

The PI controller used in the case of the tracking corresponding to Fig. 2.24 leads
to oscillations all the more important for the second-order system in that the integral
time constant is lower and thus that the integral gain increases. The deviation with
respect to the set point is cancelled by the integral action either for a set point variation
(Fig. 2.30), or a disturbance variation (Fig. 2.32). With the overshoot increasing with
the integral gain, it will be frequently necessary not to choose too large an integral
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Fig. 2.24 Response of a second-order system (Kp = 5, τp = 10, ζp = 0.5) to a set point unit step
with influence of the integral time constant (PI controller Kc = 2, τI = 10 or 20 or 100). When τI
increases, the oscillation amplitude decreases

gain. In those figures, the gain and the integral time constant have not been optimized,
as the objective was only to display the influence of the integral action.

2.3.4 Influence of Derivative Action

The transfer function of a pure ideal derivative controller is equal to

Gc(s) = Kc τD s (2.103)

This transfer function is improper, and the ideal PID controller (Fig. 2.25) of transfer
function

Gc(s) = Kc

(
1 + 1

τI s
+ τD s

)
(2.104)

is not realizable, as the numerator degree is larger than the denominator degree
because of the ideal derivative action term. If this controller were used as such, it
would amplify high-frequency noise because its amplitude ratio is unlimited at high
frequency (see frequency analysis, Chap. 5).

The following study simply aims to demonstrate the characteristics of pure deriv-
ative action.

http://dx.doi.org/10.1007/978-3-319-61143-3_5
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Fig. 2.25 Block diagram of
the ideal PID controller

Kc

1
τIs

τDs

1

E(s) Ua(s)
+
+

+

2.3.4.1 First-Order Process and Pure Derivative Action

In the case of a first-order process, if one only looks at the influence of derivative
action with the controller given by Eq. (2.103), the response Y (s) to a set point or
disturbance variation is equal to

Y (s) =
Kp

τp s + 1
Kc τD s

1+
Kp

τp s + 1
Kc τD s

Yr (s) +
Kd

τd s + 1

1+
Kp

τp s + 1
Kc τD s

D(s)

= Kp Kc τD s

(τp + Kp Kc τD)s + 1
Yr (s) + Kd

τd s + 1

τp s + 1

(τp + Kp Kc τD)s + 1
D(s)

(2.105)
Transfer functions are first-order as in open loop, and thus, the derivative action has
no influence on the system order. On the other hand, the derivative action introduces
a lead term in the numerator. The closed-loop time constant is equal to

τ ′
p = τp + Kp Kc τD (2.106)

and thus is increased with respect to the open loop; the closed-loop response will be
slower than the open-loop one, and this effect increases with the derivative controller
gain. Thiswill help to stabilize the process if the latter shows tendencies to oscillations
in the absence of the derivative action.

2.3.4.2 First-Order Process with Real PID Controller

Compared to the PI controller previously studied, a physically realizable deriva-
tive action is introduced by the following real PID controller (Fig. 2.26) of transfer
function

Gc(s) = Kc

(
τI s + 1

τI s

) (
τDs + 1

β τDs + 1

)
(2.107)
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+

Fig. 2.26 Block diagram of the real PID controller given by Eq. (2.107)

Fig. 2.27 Block diagram of
the real PID controller given
by Eq. (2.108)

Kc
1

τIs

τDs
τD
N

s+1

1

E(s) +

+

Ua(s)

which is physically realizable. This transfer function can be seen as the filtering
of an ideal PID controller by a first-order filter. In the case of a pneumatic PID
controller, β is included between 0.1 and 0.2. For the electronic PID controller, one
sets 0 < β � 1.

A real PIDcontroller (Fig. 2.27) can also respond to the following slightly different
equation, which is frequently used

Gc(s) = Kc

⎛
⎜⎝1 + 1

τI s
+ τDs

τD

N
s + 1

⎞
⎟⎠ (2.108)

In the case of studied first-order processes, the derivative action in the PID controller
does not seem to add an important effect with respect to integral action alone, as the
studied process already presents a closed-loop overdamped behaviour with the PI
controller. If for other parameter values the closed-loop behaviour had been under-
damped, the addition of derivative action would have allowed considerable decrease
of oscillations which would have become acceptable as in the following case of the
second-order process (Fig. 2.28). The influence of the derivative action is clearer
in response with respect to a disturbance step variation (Fig. 2.31) than in response
with respect to a set point step variation (Fig. 2.29). It is shown that the overshoot is
decreased. The derivative action thus brings a stabilizing influence with respect to
integral action (Fig. 2.30).
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Fig. 2.28 Response of a second-order system (Kp = 5, τp = 10, ζp = 0.5) to a set point unit
step (real PID controller with influence of the derivative time constant τD : Kc = 2, τI = 20, τD =
0.1 or 1 or 10, β = 0.1). When τD increases, oscillations decrease

2.3.4.3 Second-Order Process

In the case of a second-order process and pure integral action, the response Y (s) to
a set point variation is equal to

Y (s) = Gp Kc τD s

1 + Gp Kc τD s
Yr (s) = Kp Kc τD s

τ 2 s2 + 2 ζ τ s + 1 + Kp Kc τD s
Yr (s)

(2.109)
The closed-loop response is second-order as it was in open loop. The derivative
controller does not modify the order of the response

Y (s) = Kp Kc τD s

τ 2 s2 + (2 ζ τ + Kp Kc τD)s + 1
Yr (s) (2.110)

In this case, the time constant τ remains the same while the damping factor of the
closed-loop response is modified with respect to the open-loop damping factor and
becomes

ζ ′
p = 2 ζp τ + Kp Kc τD

2 τ
(2.111)

The response is thus more damped in closed loop than in open loop, and this damping
increases with the gain Kc of the derivative controller and with the derivative time
constant.
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Fig. 2.29 Comparison of the influence of the controller type on the response of a first-order sys-
tem (Kp = 5, τp = 10) to a set point unit step. (Proportional: Kc = 2 (top). Proportional-integral:
Kc = 2, τI = 20 (middle). Real proportional-integral-derivative: Kc = 2, τI = 20, τD = 1, β =
0.1 (bottom))

Globally, the same effect is noticed with a real PID controller of transfer function
given by Eq. (2.107).

Compared to the integral action which cancels asymptotic deviation but leads to
strong oscillations, the addition of real derivative action strongly decreases oscilla-
tions which become acceptable, all the more so as the derivative time constant τD is
higher (Fig. 2.28). However, it must be noted that the increase of derivative action



112 2 Linear Feedback Control

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

y

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

y

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

y

Fig. 2.30 Comparison of the influence of the controller type on the response of a second-order sys-
tem (Kp = 5, τp = 10, ζp = 0.5) to a set point unit step. (Proportional: Kc = 2 (top). Proportional-
integral: Kc = 2, τI = 20 (middle). Real proportional-integral-derivative: Kc = 2, τI = 20, τD =
1, β = 0.1 (bottom))

tends to increase measurement noise and that this effect is not wished, so that a too
large value of τD must be avoided in practice. The derivative action brings a stabi-
lizing effect with respect to integral action. The overshoot is also decreased. These
two effects are clear in the study of the influence of either a set point step variation
(Fig. 2.30) or a disturbance step variation (Fig. 2.32).
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Fig. 2.31 Comparison of the influence of the controller type on the response of a first-order
system (Kp = 5, τp = 10 : Kd = 2, τd = 2) to a disturbance unit step. (Proportional: Kc = 2
(top). Proportional-integral: Kc = 2, τI = 20 (middle). Real proportional-integral-derivative: Kc =
2, τI = 20, τD = 1, β = 0.1 (bottom))

2.3.5 Summary of Controllers Characteristics

A proportional (P) controller contains only one tuning parameter: the controller gain.
The asymptotic output presents a deviation from the set point, which can be decreased
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Fig. 2.32 Comparison of the influence of the controller type on the response of a second-order
system (Kp = 5, τp = 10, ζp = 0.5 : Kd = 2, τd = 2, ζd = 0.25) to a disturbance unit step. (Pro-
portional: Kc = 2 (top). Proportional-integral: Kc = 2, τI = 20 (middle). Real proportional-
integral-derivative: Kc = 2, τI = 20, τD = 1, β = 0.1 (bottom))
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by increasing the controller gain. The use of too large gains can make the process
unstable due to neglected dynamics or time delays.

A proportional-integral (PI) controller presents the advantage of integral action
leading to the elimination of the deviation between the asymptotic state and the set
point. The response is faster when the gain increases and can become oscillatory. For
large values of the gain, the behaviour may even become unstable. The decreasing
of the integral time constant increases the integral gain and makes the response
faster. Because of the integral term, the PI controller may present a windup effect
if the control variable u becomes saturated. In this case, the integral term becomes
preponderant and needs time to be compensated. It is preferable to use an anti-windup
system (Sect. 4.6.4).

The proportional-integral-derivative (PID) controller presents the same interest as
the PI with respect to the asymptotic state. Furthermore, the derivative action allows
a faster response without needing to choose too high gains as for a PI controller. This
derivative action thus has a stabilizing effect.

The ideal PID controller is indeed replaced by a real PID controller, the transfer
function of which given by Eq. (2.107) or (2.108) is physically realizable. In the
case of a pneumatic PID controller, β is included between 0.1 and 0.2. For the PID
electronic controller, one sets 0 < β � 1.
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