
Chapter 2
Advanced Concepts

Abstract In this chapter we introduce elements of graph theory, graphs of compo-
nents, matrix formulation of Kirchhoff’s laws, matrix associated spaces, and Telle-
gen’s theorem.

2.1 Basic Elements of Graph Theory

A set of independent Kirchhoff’s laws for a given circuit – the so-called topological
equations – can be automatically found by relying on some concepts of graph theory,
that is, the studyofmathematical/geometrical structures, calledgraphs, used tomodel
pairwise relations between objects. Graph theory almost certainly began when, in
1735, Leonhard Euler1 solved a popular puzzle about the bridges of the East Prussian
city of Königsberg (now Kaliningrad) [1]. Nowadays, graph theory is largely used
in mathematics, computer science, and network science, but it can be applied in any
context where many units interact in some way, such as the components in a circuit.
Usually, a graph completely neglects the nature of each unit and of the interactions,
just keeping information about their existence.

A graph is a finite set of N nodes (or vertices or points), together with a set
of L edges (or branches or arcs or lines), each of them connecting a pair of
distinct nodes.

We remark that more than one edge can connect the same pair of nodes. In this
case, these edges are said to be in parallel. This implies that a pair of nodes can be
insufficient to identify an edge univocally. Moreover, the above definition excludes
the degenerate case of edges connecting one node to itself. Henceforth, we label the
nodes with numbers and the edges with letters/symbols.

1Leonhard Euler (1707–1783) was a Swiss mathematician, physicist, astronomer, logician, and
engineer who made important and influential discoveries in many branches of mathematics.
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Fig. 2.1 Example of
undirected (a) and directed
(b) graph with N = 5 and
L = 7

(a) (b)

In the simplest case, the edges are not oriented: in this case we have an undirected
graph, an example of which is shown in Fig. 2.1a. If the edges are oriented, they are
called arrows (or directed edges or directed arcs or directed lines) and we have a
directed graph or digraph. (See Fig. 2.1b.)

Order of a node: Number of edges connecting this node to other nodes.

For instance, in the figure node 1 has order 2, node 3 order 3, and node 5 order 4.
The specific shape of a graph is not relevant, according to the following definition.

Two (directed) graphs G1 and G2 are isomorphic if it is possible to establish
a bijective correspondence between:

• Each node of G1 and each node of G2

• Each edge of G1 and each edge of G2

such that corresponding edges connect (ordered) pairs of corresponding nodes.

Three examples of graphs isomorphic to the one of Fig. 2.1b are shown in Fig. 2.2.
For ease of comparison, we used the same labels for nodes and edges as in Fig. 2.1b;
in this case, the graph is not only isomorphic, but is essentially the same. Any
change in the labels would not affect the equivalences. The graphs shown in Fig. 2.3
are in turn isomorphic to the one of Fig. 2.1b. Some of the correspondences are
summarized in Table2.1. You can check your comprehension by finding the missing
correspondences.

Planar graph: A graph that can be embedded in the plane; that is, it can
be drawn on the plane in such a way that all its edges intersect only at their
endpoints.

In other words, any planar graph admits an isomorphic graph where no edges
cross each other. Some examples of planar graphs are shown in Fig. 2.4.



2.1 Basic Elements of Graph Theory 25

(a) (b) (c)

Fig. 2.2 Examples of isomorphic graphs (to be compared to Fig. 2.1b)

Fig. 2.3 Further examples
of isomorphic graphs (to be
compared to Fig. 2.1b)

(a) (b)

Table 2.1 Table of correspondences between elements of the isomorphic graphs of Figs. 2.1b, 2.3a,
and 2.3b

Graph

Fig. 2.1b Fig. 2.3a Fig. 2.3b

Graph element a ε u

b α w

c ζ z

d δ x

1 9 40

2 8 30

3 7 10

4 11 20

5 10 00

Star graph: A graph containing N − 1 nodes of order 1 and one node of order
N − 1.

Figure 2.5 shows an example of a star graph with 5 nodes: node 5 has order 4; the
other nodes have order 1.
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(a)

(b)

Fig. 2.4 Examples of planar graphs

Fig. 2.5 Example of a star graph

Fig. 2.6 Examples of graphs for multiterminal components

2.1.1 Graphs of Components and Circuits

For a circuit, it is quite natural (even if this is not the only possible choice) to associate
the circuit nodes with graph nodes and the descriptive voltages with graph arrows.
By assuming the standard choice, this means that each graph arrow is associated with
a voltage oriented like the arrow and to a current oriented in the opposite direction.

Figure2.6 shows some examples of graphs for multiterminal components.



2.1 Basic Elements of Graph Theory 27

Fig. 2.7 Kuratowski graphs (a) (b)

By substituting each circuit component with its graph, we obtain the circuit graph.
For instance, the directed graph shown in Fig. 2.1b corresponds to the circuit of
Fig. 1.8.

2.1.2 Subgraph, Path, Loop, and Cut-Set

In this section we define some basic graph structures.

Subgraph: A subset of the elements of a given graph, obtained by removing
some edges and/or some nodes together with the corresponding edges.

A subgraph is in turn a graph. For instance, by removing edges a, d, f from the
graph of Fig. 2.1a, we obtain a subgraph which is in turn a star graph.

It has been shown [2] that a graph is nonplanar if and only if it is (or contains
a subgraph) a graph isomorphic to the ones shown in Fig. 2.7, independently of the
edge orientations.

Path: A subgraphmade up of a sequence of k−1 adjacent edges (the orientation
is not relevant) connecting a sequence of k nodes that, by most definitions, are
all distinct from one another.

In other words, a nondegenerate path is a trail in which all nodes and all edges are
distinct and then we have 2 nodes of order 1 (the first and the last) and k−2 nodes of
order 2. Figure2.8 shows some examples of paths (in grey) for the reference graph
of Fig. 2.1b.

A graph is connected when there is a path between every pair of nodes. Oth-
erwise it is disconnected.

http://dx.doi.org/10.1007/978-3-319-61234-8_1
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Fig. 2.8 Examples of paths (in grey)

Fig. 2.9 Example of a
disconnected graph (a) and
hinged graph (b)

(a)
(b)

An example of a disconnected graph is shown in Fig. 2.9a.

A connected graph is hinged when it can be partitioned into two subgraphs
connected by one node, called a hinge.

An example of a hinged graph is shown in Fig. 2.9b, where the hinge is node 3.

Loop: A subgraph containing only nodes of order 2, or a degenerate pathwhere
the first and last nodes are also of order 2, connected by an edge.

Figure2.10 shows some examples of loops for the reference graph of Fig. 2.1b.

Mesh: A loop of a planar graph not containing any graph elements either inside
(inner loop) or outside (outer loop).

Figure2.11 shows some examples of meshes for the reference graph of Fig. 2.1b.

Cut-set: A set of edges of a graph which, when removed, make the graph
disconnected.
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Fig. 2.10 Examples of loops (in grey)

(a) (b) (c)

Fig. 2.11 Examples of meshes (in grey): inner loops (a and b) and outer loop (c)

As stated in Sect. 1.5.2, a cut-set can be easily associated with a closed path (or
surface, for nonplanar graphs) crossing the cut-set edges. Actually, for each cut-set
there are two possible closed paths, as shown in the examples of Fig. 2.12 for the
reference graph of Fig. 2.1b.

Nodal cut-set: A cut-set such that one of the two disconnected parts of the
resulting graph is a single node.

Figure2.13 shows some examples of nodal cut-sets for the reference graph of
Fig. 2.1b.

2.1.3 Tree and Cotree

We now define the two basic graph structures used to find matrix formulations of
Kirchhoff’s laws.

Tree: A subgraph containing all the N nodes and N −1 edges of a given graph
and in which any two nodes are connected by exactly one path.

http://dx.doi.org/10.1007/978-3-319-61234-8_1
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(a) (b) (c)

Fig. 2.12 Examples of cut-sets (corresponding to the grey dashed closed paths)

Fig. 2.13 Examples of nodal cut-sets (corresponding to the grey dashed closed paths)

Owing to this definition, a tree cannot contain any loop.

Cotree: A subgraph associated with a tree, containing all the N nodes and the
L − N + 1 edges of the graph not contained in the tree.

Figure2.14 shows some examples of trees and cotrees for the reference graph of
Fig. 2.1b.

2.2 Matrix Formulation of Kirchhoff’s Laws

As stated at the beginning of Sect. 2.1, these basic elements of graph theory can
be used to formulate in a compact way (i.e., in matrix form) a set of independent
Kirchhoff’s laws for a given circuit. The goal is to find a complete2 set of independent
KVLs and KCLs, which are related to corresponding sets of independent loops and
cut-sets, respectively. A set of independent loops (cut-sets) is also called a basis of
fundamental loops (cut-sets).

2The set is complete if any further KVL or KCL equation is linearly dependent on the equations
belonging to the set.
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Fig. 2.14 Examples of trees (thick grey edges) and corresponding cotrees (thin black edges) for
the reference graph of Fig. 2.1b

Fig. 2.15 Tree (thick grey
edges) and cotree (black
edges) for the reference
graph of Fig. 2.1b

For planar graphs, the simplest choice for these bases is the set of L − N +
1 arbitrarily chosen meshes (which are independent loops) and the set of N − 1
arbitrarily chosen nodal cut-sets (which are independent cut-sets).

For generic graphs, a criterion to identify these bases refers to a tree and the
corresponding cotree. In the following, we use the graph, tree, and cotree shown in
Fig. 2.15.Moreover, henceforth Iq denotes the identity matrix of size q (i.e., the q×q
square matrix with ones on the main diagonal and zeros elsewhere) and 0q denotes
the null column vector with q elements.

2.2.1 Fundamental Cut-Set Matrix

Each cut-set containing one and only one edge of the chosen tree is part of a
basis of (N − 1) fundamental cut-sets. Each fundamental cut-set is oriented (in-
wards/outwards) like the corresponding tree edge and is labeled as Ck , where k
denotes the edge. Figure2.16 shows the basis of fundamental cut-sets for the con-
sidered example and the chosen tree.

Now, we can construct a matrix (of size (N − 1) × L), called the fundamental
cut-set matrix, where:

• Each row corresponds to exactly one fundamental cut-set (i.e., to the related tree
edge).

• Each column corresponds to one graph edge. The columns are ordered as follows:
first the cotree edges (ordered arbitrarily) and then the tree edges, in the same order
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Fig. 2.16 Basis of
fundamental cut-sets for the
considered example

as for the rows. In the example, we follow the alphabetical order for both edge
sets.

• Each matrix entry is set to:

0 If the edge on the column does not belong to the fundamental cut-set on the row
1 If the edge on the column belongs to the fundamental cut-set on the row and has
the same orientation

−1 If the edge on the column belongs to the fundamental cut-set on the row and has
the opposite orientation

In the considered example, the fundamental cut-set matrix is as follows.

A =

⎛
⎜⎜⎝

a c e b d f g

b 1 0 0 1 0 0 0
d 1 −1 0 0 1 0 0
f 1 −1 1 0 0 1 0
g 1 −1 1 0 0 0 1

⎞
⎟⎟⎠ = (

α|IN−1
)

(2.1)

We call i the column vector of descriptive currents associated with the oriented
edges of the graph and ordered exactly as are the columns of the cut-set matrix A;
that is, i = (ia ic ie ib id i f ig)T . It is easy to check that the rows of A are linearly
independent; that is, the rank of A is N − 1. This is a general property, due to the
way the fundamental cut-set matrix is set up and to the fact that each row is related
to one element of a basis of cut-sets.

Of course, the cut-set orientation depends on the choice of the corresponding
closed path (as stated in Sect. 2.1.2), but the resulting matrix is invariant, as can be
easily checked.

Property
The system of equations

Ai = 0N−1 (2.2)
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is a set of N − 1 independent KCLs for the circuit associated with the
graph, corresponding to the fundamental cut-sets related to the chosen tree.

For the circuit of Fig. 1.8 and for the choice of tree of Fig. 2.15, the set of inde-
pendent KCLs is:

Ai =

⎛
⎜⎜⎝
1 0 0 1 0 0 0
1 −1 0 0 1 0 0
1 −1 1 0 0 1 0
1 −1 1 0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ia
ic
ie
ib
id
i f
ig

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

ia + ib
ia − ic + id

ia − ic + ie + i f
ia − ic + ie + ig

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ (2.3)

Each row of the submatrix α contains information about the composition of the cut-
set which the row refers to: for example, the nonzero elements in the row d of α

indicate that Cd contains (in addition to d) the edges a and c; similarly, the row f of
α indicates that C f contains, in addition to f , the edges a, c, e.

We observe in passing that something similar can be observed for the columns
of α: for example, the nonzero elements of the column a indicate that b, d, f, g are
the tree edges forming a loop with a; similarly, the nonzero elements of the column
c indicate that the tree edges d, f, g form a loop with c. Therefore α also contains
topological information about the loops. This fact has major consequences on the
fundamental loop matrix structure, discussed soon.

2.2.1.1 A Particular Case

For the specific tree choice shown in Fig. 2.17, we obtain the basis composed by
nodal cut-sets only. Notice that the tree in this case is a star subgraph.

For this choice of tree, writing the cut-set matrix A according to the general rules,
the set of independent KCLs is as follows.

Ai =

⎛
⎜⎜⎝

1 0 0 1 0 0 0
−1 −1 0 0 1 0 0
0 −1 1 0 0 1 0
0 0 −1 0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ia
id
i f
ib
ic
ie
ig

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

ia + ib
−ia − id + ic
−id + i f + ie

−i f + ig

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ (2.4)

http://dx.doi.org/10.1007/978-3-319-61234-8_1
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Fig. 2.17 Choice of tree
(thick grey edges)
corresponding to a basis of
nodal cut-sets only (dashed
lines)

Fig. 2.18 Basis of
fundamental loops for the
considered example

This set of equations is completely equivalent to Eq.2.3.
This matrix is strictly related to the so-called incidence matrix.
You can check your comprehension by obtaining Eq.2.4 through linear combina-

tions of Eq.2.3.

2.2.2 Fundamental Loop Matrix

Each loop containing only one edge of a cotree is part of a basis of (L − N + 1)
fundamental loops. Each fundamental loop is oriented as is the corresponding cotree
edge and is labeled as Lk , where k denotes the cotree edge. Figure2.18 shows the
basis of fundamental loops for the considered example and the chosen tree.

Now, we can construct a matrix (of size (L−N +1)× L), called the fundamental
loop matrix, where:

• Each row corresponds to exactly one fundamental loop (i.e., to the related cotree
edge).

• Each column corresponds to one graph edge. The columns are ordered as in matrix
A.

• Each matrix entry is set to:

0 If the edge on the column does not belong to the fundamental loop on the row
1 If the edge on the column belongs to the fundamental loop on the row and has
the same orientation

−1 If the edge on the column belongs to the fundamental loop on the row and has
the opposite orientation
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In the considered example, the fundamental loop matrix is:

B =
⎛
⎝

a c e b d f g

a 1 0 0 −1 −1 −1 −1
c 0 1 0 0 1 1 1
e 0 0 1 0 0 −1 −1

⎞
⎠ = (

IL−N+1| − αT
)

(2.5)

We call v the column vector of descriptive voltages associated with the oriented
edges of the graph and ordered exactly as are the columns of the loop matrix B; that
is, v = (va vc ve vb vd v f vg)T . It is easy to check that the rows of B are linearly
independent; this is a general property, due to the way the fundamental loop matrix
is set up and to the fact that each row is related to one element of a basis of loops.
For this reason, the rank of B is L − N + 1. When, as in this case, the ordering of
the tree edges is the same for the matrices A and B, the elements of A and B are
related very simply: the matrix part complementary to the identity submatrix is α in
A and −αT in B. This follows from the previously observed property concerning the
columns of α; that is, for any column j of α, the tree edges i with αi j �= 0 are the
constituents of the loop L j .

Property
The system of equations

Bv = 0L−N+1 (2.6)

is a set of L − N + 1 independent KVLs for the circuit associated with the
graph, corresponding to the fundamental loops related to the chosen tree.

For the circuit of Fig. 1.8 and for the choice of tree of Fig. 2.15, the set of inde-
pendent KVLs is as follows.

Bv =
⎛
⎝
1 0 0 −1 −1 −1 −1
0 1 0 0 1 1 1
0 0 1 0 0 −1 −1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

va
vc
ve
vb
vd
v f

vg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝
va − vb − vd − v f − vg

vc + vd + v f + vg
ve − v f − vg

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠

(2.7)

2.2.2.1 A Particular Case

For the star tree shown in Fig. 2.19, we obtain the basis composed by all the inner
loops.

http://dx.doi.org/10.1007/978-3-319-61234-8_1
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Fig. 2.19 Choice of tree
(thick grey edges)
corresponding to the basis of
all the inner loops (dashed
loops)

For this choice of tree, the set of independent KVLs is:

Bv =
⎛
⎝
1 0 0 −1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 −1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

va
vd
v f

vb
vc
ve
vg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝

va − vb + vc
vd + vc + ve
v f − ve + vg

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ (2.8)

This set of equations is completely equivalent to Eq.2.7. You can check your
comprehension by obtaining Eq.2.8 through linear combinations of Eq.2.7.

2.2.3 Some General Concepts on Vector Spaces and Matrices

A vector space V is a nonempty set of vectors such that, for any two vectors x1 and
x2 of V , any of their linear combinations β1x1 +β2x2 (β1, β2 ∈ R) is still an element
of V . The null element 0 is always a vector of V .

The dimension of V , denoted as dim(V ), is the maximum number of linearly
independent vectors in V and must not be confused with the number of components
of the elements of V .

A set of linearly independent vectors in V consisting of dim(V ) vectors is called
a basis for V .

Given p vectors x1, . . . , xp with the same number of components, the set of all
linear combinations

∑p
i=1 βi xi is a vector space called the span of these vectors. For

instance, the vector space V is the span of dim(V ) linearly independent vectors.
The span of a number of linearly independent vectors lower than dim(V ) generates
a subspace L of V . For instance, Fig. 2.20 shows an example for V ≡ R

3.
The vectors x1 and x2 (as well as all their linear combinations β1x1 + β2x2, with

β1, β2 ∈ R) lie in a plane L , which is a two-dimensional subspace of R3 passing
through the origin.
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Fig. 2.20 A
two-dimensional subspace
L in R

3

As stated above, it is important not to confuse the dimension of the vector space
(or subspace) with the number of components (the size) of its individual vectors,
because they are not necessarily the same. In the considered example, for instance,
the vectors x1 and x2 have three components, despite their belonging to the two-
dimensional subspace L .

In the following, we introduce some specific spaces and subspaces associatedwith
a matrix [3, 4], in order to provide (in the next section) a geometrical interpretation
of the matrix formulation of Kirchhoff’s laws, thus settling the basis for introducing
Tellegen’s theorem.

Let us consider a matrix Q ∈ R
m×n . We can write Q in terms of its columns as

Q = (q1 . . . qn). Let x denote any vector in Rn . The vector space

R(Q) = {
y ∈ R

m : y = Qx, x ∈ R
n
}

is called the range of Q. We can also write, in terms of the column vectors qi ,

R(Q) = span (q1, . . . , qn) .

In the general case, the linearly independent columns of Q can be a subset of
{q1, q2, . . . , qn}. It can be shown that the maximum number of linearly indepen-
dent columns of Q and the maximum number of its linearly independent rows are
equal. This common value r is the rank of Q. Then rank(Q) = rank(QT ) = r ≤
min(m, n) and dim(R(Q)) = r .

The set of all solutions to the homogeneous system Qz = 0,

N (Q) = {
z ∈ R

n : Qz = 0
}

is called the null space of Q (or kernel of Q).
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In the same way we can define the vector spaces associated with the transpose of
Q:R(QT ),N (QT ).

Two m-size vectors wR ∈ R(Q) and w0 ∈ N (QT ) are always orthogonal;
owing to the definition of R(Q), there must exist a vector x̄ such that wR = Qx̄ ,
thus wT

Rw0 = (Qx̄)Tw0 = x̄ T QTw0︸ ︷︷ ︸
0

= 0. An analogous result holds for two n-size

vectors xR ∈ R(QT ) and x0 ∈ N (Q).
These spaces are the main ingredients of two important results concerning the

decomposition of vectors:

1 Any vector x ∈ R
n , the domain space of Q, can be uniquely decomposed as

x = xR + xO , where xO ∈ N (Q) and xR ∈ R(QT ). Then N (Q) and R(QT )

are complementary and disjoint (N (Q) ∩ R(QT ) = ∅, empty set) subspaces of
R

n; that is, Rn is given by the direct sum (⊕) of the two subspaces:

R
n = N (Q) ⊕ R(QT ) and n = dim(N (Q)) + r.

The subspace N (Q) is an empty set if and only if r = n.

2 Any vector w ∈ R
m , the codomain space of Q, can be uniquely decomposed as

w = wR +wO , where wO ∈ N (QT ) and wR ∈ R(Q). ThenN (QT ) andR(Q)

are complementary and disjoint (N (QT )∩R(Q) = ∅) subspaces of Rm ; that is,
R

m is given by the direct sum of the two subspaces

R
m = N (QT ) ⊕ R(Q) and m = dim(N (QT )) + r.

The subspace N (QT ) is an empty set if and only if r = m.

To exemplify the above concepts, let us consider the matrix

Q =
⎛
⎝

q1 q2
2 0
0 1
1 1

⎞
⎠

which has m = 3, n = 2 and rank r = 2. Its column vectors q1, q2 define the plane
R(Q):

R(Q) = span(q1, q2) = Q

(
β1

β2

)
= β1q1 + β2q2; β1, β2 ∈ R.

Taking as reference the orthogonal directions a1, a2, a3, the vectors q1, q2 are
shown in Fig. 2.21. The plane R(Q) intersects the a1a3-plane along the line of q1
and the a2a3-plane along the line of q2.
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Fig. 2.21 The plane R(Q)

and the line N (QT )

associated with the (3 × 2)
matrix Q

Because dim(N (QT )) = m − r = 1, the complementary subspaceN (QT ) is a
straight line orthogonal to the plane R(Q). Denoting as p = (p1 p2 p3)

T a vector
along this line, we have

QT p =
(
2 0 1
0 1 1

) ⎛
⎝

p1
p2
p3

⎞
⎠ =

(
0
0

)
⇒

{
2p1 + p3 = 0
p2 + p3 = 0

Then the components p1, p2 can be expressed in terms of p3, that parameterizes
the points of the subspace. The vector p plotted in the figure corresponds to p3 = −2.

Finally, inasmuch as r = n, we have dim(N (Q)) = 0 (empty subspace) and
R(QT ) = R

n .

2.2.4 The Cut-Set and Loop Matrices and Their Associate
Space Vectors

Consider a directed graph with L edges and N nodes. This graph can be arbitrarily
partitioned into a tree and its cotree. Such a partition leads to the definition of a cut-set
matrix A and a loop matrix B, as shown in Sects. 2.2.1 and 2.2.2. A current vector i
and a voltage vector v, both of size L , are said to be compatiblewith the graph if they
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Fig. 2.22 Matrix
A-relationships between
spaces for compatible
voltage and current vectors

satisfy the KCLs and KVLs, respectively, that is, if Ai = 0 and Bv = 0. Because
the structure of A (where m = N − 1 and n = L) is

(
α|IN−1

)
, from Ai = 0 we have

N − 1 independent scalar equations, which represent as many constraints on the L
elements of the vector i . Therefore, due to KCLs, the number of degrees of freedom
for the current elements of a vector i compatible with the graph is L − N + 1.

In terms of vector spaces, Ai = 0 means that i belongs to N (A), the null space
of matrix A, whose dimension is L − N + 1.

Consider now theKVLs Bv = 0,with B = (
IL−N+1|−αT

)
(wherem = L−N+1

and n = L). The vector v can be partitioned into two subvectors vC and vT , which
contain the L − N + 1 voltages on the cotree edges and the N − 1 voltages on the
tree edges, respectively:

v =
(
vC
vT

)
(2.9)

Owing to this partition, the KVLs Bv = 0 can be recast as IL−N+1vC −αT vT = 0;
that is, vC = αT vT . Then, we directly obtain:

v =
(
vC
vT

)
=

(
αT

IN−1

)
vT = AT vT . (2.10)

It follows that each vector v of voltages compatible with the graph can be obtained
through a product AT vT . Thismeans that v ∈ R(AT ), whose dimension is N−1. The
values of the N − 1 components of the subvector vT can be assigned independently,
therefore the voltage elements of a compatible vector v can be chosen with N − 1
degrees of freedom, due to KVLs, which impose L − N + 1 constraints on the L
components of v.

Figure2.22 summarizes all these results and also highlights the roles of the ma-
trices A and AT as operators for the passage between the subspaces of RL and the
space RN−1.
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(a) (b)
(c)

Fig. 2.23 Case Study: a graph; b, c spaces N (A) and R(AT ) for compatible current and voltage
vectors

Case Study
Consider the very simple graph (L = 3, N = 2) shown in Fig. 2.23a.

Taking the edge a as the (only) tree edge and the edges b, c as cotree edges,
the fundamental cut-set matrix A is

A = ( b c a

a −1 −1 1
)

(2.11)

Therefore, KCL reduces to a single scalar equation:

i =
⎛
⎝
ib
ic
ia

⎞
⎠ ; Ai = −ib − ic + ia = 0 (2.12)

The three components ib, ic, ia of any current vector i compatible with the
graphmust fulfill theKCL constraint ia = ib+ic, which leads to the expression
for the two-dimensional subspace N (A):

i =
⎛
⎝

ib
ic

ib + ic

⎞
⎠ = ib

⎛
⎝
1
0
1

⎞
⎠ + ic

⎛
⎝
0
1
1

⎞
⎠ . (2.13)

In the above expression, the values of ib, ic play the role of span coefficients.
Denoting by b, c, a the orthogonal directions spanning the R

3 space as
shown in Fig. 2.23b, N (A) is the plane that intersects the plane ic = 0 along
the straight line ia = ib and the plane ib = 0 along the straight line ia = ic.
All the vectors i ∈ R

3 compatible with the graph lie on the plane N (A).
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The voltage vector

v =
⎛
⎝
vb
vc
va

⎞
⎠ (2.14)

can be partitioned according to Eq.2.9; in particular, we have vT = va . With
this in mind, and recalling Eq.2.10, any vector v compatible with the graph
can be obtained as

v = AT vT =
⎛
⎝

−1
−1
1

⎞
⎠ va (2.15)

or, in a more general formulation highlighting the parametric role of the term
va , as

v = pβ; p =
⎛
⎝

−1
−1
1

⎞
⎠ ; β ∈ R. (2.16)

Therefore, any vector v such that Bv = 0 is proportional to the vector p.
It is easy to verify that p is orthogonal to any vector i ∈ N (A), as shown
in Fig. 2.23c. The way to prove it is based on the observation that, being
ia = ib + ic, we can write i as (ib ic (ib + ic))T and then:

pT i = (−1 − 1 1)

⎛
⎝

ib
ic

ib + ic

⎞
⎠ = 0. (2.17)

You can check the correspondence of these results with the general ones
shown in Fig. 2.22.

In a similar fashion, denoting by iC and iT the subvectors containing, respectively,
the L−N +1 cotree currents and the N −1 currents through the tree edges, we have

i =
(
iC
iT

)
(2.18)

which enables us to recast theKCLs Ai = 0 asαiC+ IN−1iT = 0; that is, iT = −αiC .
With this in mind, we obtain

i =
(
iC
iT

)
=

(
IL−N+1

−α

)
iC = BT iC . (2.19)

Therefore, each current vector i compatiblewith the graph can be obtained through
a product BT iC . This means that the current elements of any compatible vector i can
be chosenwith the L−N+1 degrees of freedom representing the size of the subvector
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Fig. 2.24 Matrix
B-relationships between
spaces for compatible
voltage and current vectors

iC ; moreover, i ∈ R(BT ). Because Bv = 0means that v belongs toN (B), the space
R

L can be thought of as partitioned into the two subspacesR(BT ) andN (B). This
partition is shown in Fig. 2.24, which highlights the roles of the matrices B and BT

as operators for the passage between the subspaces of RL and the space RL−N+1.
The properties presented in this section are the basis for Tellegen’s theorem,which

is treated in the next section.

2.3 Tellegen’s Theorem

Theorem 2.1 (Tellegen’s theorem) In a directed graph, any compatible voltage vec-
tor v is orthogonal to any compatible current vector i .

Proof To prove this, just consider that, thanks to the compatibility assumption, we
have

vT i = (AT vT )T i = vTT Ai︸︷︷︸
0

= 0. (2.20)

�

Tellegen’s theorem is one of the most general theorems of circuit theory [5]. It
depends only on Kirchhoff’s laws and on the circuit’s topology (graph), and it holds
regardless of the physical nature of the circuit’s components or the waveforms of
voltages and currents, and so on. Therefore the voltages and currents that are used
for Tellegen’s theorem are not necessarily those actually present in a given circuit. By
introducing specific assumptions about the physical properties of the components,
waveforms and so on, Tellegen’s theorem is the starting point to obtain, usually in a
direct way, various specific and useful results. In the next chapters we show that for
many circuit properties, the proof that can be given by relying on Tellegen’s theorem
is simpler than others and its range of validity is more clearly demonstrated.
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(a) (b)

Fig. 2.25 Problems 2.1 (a) and 2.2 (b)

(a) (b) (c)

Fig. 2.26 Problems 2.3 (a, b) and 2.4 (c)

2.4 Problems

2.1 Choose a tree for the nonplanar graph shown in Fig. 2.25a and find the corre-
sponding fundamental cut-set and loop matrices.

2.2 Determine the number of KCLs and KVLs necessary to solve the circuit shown
in Fig. 2.25b. Hint: Consider the component connections to the lowest wire as a
single node (dot).

2.3 Assume that you can measure the voltages of another circuit whose graph is
shown in Fig. 2.26b. Is it possible to determine current i in Fig. 2.26a by measuring
current i3 in the same circuit? How?

2.4 Determine the number of fundamental loops, fundamental cut-sets, and tree
edges for the graph shown in Fig. 2.26c.
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