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Abstract Internet of Robotic Things (IoRT) is a new concept introduced for the
first time by ABI Research. Unlike the Internet of Things (IoT), IoRT provides a
dynamic actuation and is considered as the new evolution of IoT. This new concept
will bring new opportunities and challenges, while providing new business ideas for
IoT and robotics’ entrepreneurs. In this work, we will focus particularly on two issues:
(1) connectivity maintenance among multiple IoRT robots, and (ii) their collective
coverage. We will propose (i) IoT-based, and (ii) a neural network control scheme to
efficiently maintain the global connectivity among multiple mobile robots to a desired
quality-of-service (QoS) level. The proposed approaches will try to find a trade-off
between collective coverage and communication quality. The IoT-based approach
is based on the computation of the algebraic connectivity and the use of virtual
force algorithm. The neural network controller, in turn, is completely distributed
and mimics perfectly the loT-based approach. Results show that our approaches are
efficient, in terms of convergence time, connectivity, and energy consumption.

Keywords IoT-based - Connectivity maintenance + IoRT - Neural network

1 Introduction

Nowadays, Internet of Things (IoT) technology begins to take an important place in
economic systems and in society daily life [5, 6, 12, 15, 16]. It has got a large success
in several application areas, ranging from smart city applications [4, 24] to smart grid
[25]. However, most of IoT applications are based only on static actuation. Later,
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adding an active role for actuators will be needed, in order to optimize the systems
where they are present. Robotic systems match very well to this new need, since
robots can sense and interact with their environment. Therefore, integrate robots as
a device in [oT is obvious.

1.1 Overview of Internet of Robotic Things

Internet of Robotic Things (IoRT) is anew concept introduced for the first time by ABI
Research [1]. It was defined as an intelligent set of devices that can monitor events,
fuse sensor data from a variety of sources, use local and distributed intelligence to
determine a best course of action, and then act to control or manipulate objects in
the physical world [1]. This new concept is expected to be the evolution of IoT and
robotics (Fig. 1).

In most of the time, the brain of robots and control mechanisms are local i.e.
on-board the robots themselves. However, in IoRT concept, the computation and the
control can be assigned to the cloud. In this case, Internet allows the IoRT robots
to be connected to the Cloud. With advances in robot operating system framework,
communication with the Internet is not complicated. It requires only a simple call of
an application programming interface (API).

Fig. 1 Internet of Robotic
Things
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Assigning the processing to the Cloud increases the data-processing and inter-
pretation capabilities. However, even if Cloud computing plays important role in
the IoRT concept, local and distributed computations are still required for real-time
applications or when the access to the Cloud is not feasible (e.g. after a disaster).

As mentioned before, local and distributed intelligence are also used to determine
a best course of action. Hence, intelligence is also a vital part for the IoRT concept.
The differents kinds of intelligences used in this work will be detailed in Sects.3
and 4.

1.2 Issues and Motivations

In various IoRT applications (e.g.: smart agriculture, smart environment monitoring,
smart exploration, smart disaster rescue, etc.), the use of mobile robots’ teams brings
many advantages over one powerful IoRT robot. As a matter of fact, a team of robots
can accomplish tasks more efficiently, faster and more reliable than a single robot
[7, 9, 22]. To carry out cooperative tasks, [oRT team members need to communi-
cate with each other, often via a wireless link (i.e. Wifi, Bluetooth). Maintaining
communication among multiple mobile IoRT robots is therefore a crucial issue.

Many approaches have been designed to maintain the connectivity of multi-robot
and multi-agent systems. These approaches can be classified into two groups i.e. (i)
local and (ii) global connectivity maintenance. With the local connectivity mainte-
nance, the initial set of edges which define the graph connectivity must be always
preserved over time. Unlike local connectivity maintenance, global connectivity
maintenance allows suppression and creation of some edges, as long as the over-
all connectivity of the graph is conserved. Different examples and results related to
these approaches can be found in [8, 10, 18, 19, 27, 28].

In Multi-Robot Systems, global connectivity maintenance is often used since
the local connectivity maintenance presents some restrictions. Besides connectivity
maintenance, the major problematic in global connectivity maintenance approaches
is how to maximize the network connectivity. Maximizing the connectivity is impor-
tant to ensure reliable communication between any pair of IoRT robots. Many works
based on graph theory were proposed in the literature to face this problematic. These
works are extensively used in multi-agent systems and are based on the maximization
of the algebraic connectivity. In this work, we try to migrate some of these ideas in
IoRT applications. Precisely, we will use the graph connectivity metric to maintain
the global connectivity of IoRT robots’ team, when they are in mobility.

This work addresses also the coverage issue. In general, coverage issue aims to
determine how well the sensing field is monitored or tracked by sensors. In literature,
Virtual Force Algorithm (VFA) was widely used to formulate this problem [31].
However, these methods have limitations since there are situations that do not allow
the systems to converge in a stable state [11]. We will present a new solution to this
problem later in this work.
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To summarize, in this work we address two problems i.e. (i) connectivity
maintenance, and (ii) collective coverage. However, it is interesting to mention that
maximizing these two parameters simultaneously is difficult (if not impossible).
Maximize the collective coverage may lead poor communication quality and con-
versely (i.e. a very good communication may lead poor coverage). It follows that
our goal is to capture the trade-off between collective coverage and communica-
tion quality. Leveraging on the above motivations, in this work, we propose two
motion control strategies which maintain global connectivity between IoRT robots
to a desired QoS level. The first approach is an IoT-based while the second is a
distributed trained neural network controller.

The main contribution of this work is the design of two approaches that have the
following properties:

e The first approach is IoT-based, IoRT robots works with a central object which
has high computation capability for network connectivity computing/monitoring
and for the robot motion decision;

e Our both approaches converge to the desired communication quality level,;

e Connectivity between any pair of IoRT robots is kept all along the deployment
procedure;

e Our approaches use a distributed virtual force algorithm when the access to the cen-
tral object is available and a distributed trained neural network controller otherwise.
Both strategies are computed locally and based only on the local neighborhood
information.

The rest of this chapter is organized as follows. Section2 provides some back-
grounds which include information on algebraic graph theory and neural networks.
Section 3 describes the IoT-based approach, while Sect. 4 details the neural network
approach. Section 5 provides the simulation results. Finally, Sect. 6 is dedicated to the
conclusions.

2 Backgrounds

2.1 Graph Representation and Eigenvalues

Multi-Robot Systems (MRS) can be represented by a graph G(V, E) where V is
the set of vertices representing each IoRT robot and E € V? is the set of edges. E
can be defined as: E = {(i, j) € V> |i # j A d(i, j) <R}, where d(i, j) is the
euclidean distance between i-th and j-th IoRT robots and R is the communication
range. Following the above definition, let N; be the one-hop neighborhood of the i-th
IoRT robot. Thus, N; is the set of IoRT robots which can exchange information with
TIoRT robot i. N; can be defined as follow:

Ni={jeV|dQj) =R} (D
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2.1.1 Definition 1
An undirected graph G is connected if there exists a path between each pair of
vertices.

In this paper, the graph G may evolve over time due to the IoRT robots motion
but has to be always connected.
2.1.2 Definition 2
Let define a matrix A € R"*". The scalar ) is an eigenvalue of A if there exists a
non-zero vector w such that

Aw=)\w )

The vector w is called eigenvector of A corresponding to A.

2.2 Laplacian Matrix and Algebraic Connectivity

Given a undirected graph G, its Laplacian matrix L is defined as:
L(G) =¥(G) — A(G) 3)

where:

e A(G) is the weighted adjacency matrix of graph G whose entries A;; is defined
as in [18]:

1 d(i, j) < Dy,
—5(d(i.j)=Dyp)
Ajj= Ve FDPu Dy, <d(i, j) <R “4)
0 d(i, j) > R

e W (G) is a diagonal matrix such as the components ¥; = > " | A;; along the
diagonal
e Dy, is the desired distance between each pair of IoRT robots.

The Laplacian matrix L(G) holds some interesting properties:

1. Let 1 be the column vector of all ones. Then, L1 = 0.
2. Let \;, i =1, ..., n the eigenvalues of the Laplacian matrix L(G).

e The eigenvalues of L(G) can be ordered such that

0= --- N\ )
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e )\, > 0 if and if only the graph G is connected. The second-smallest eigenvalue
Ay is called also algebraic connectivity of the graph G. The value of ), indicates
how weel connected the graph is.

Further details on graph theory and proof can be found in [13].

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) were inspired by the human brain and was
designed as a computational model to solve specific problems [2]. It’s architecture
is defined by (i) a basic processing element called artificial neuron, and (ii) the way
in which they are interconnected. The output value of a neuron is given by:

output = (O _wix; +b) = fF(W'X + b) (6)

where

x;: the inputs

w;: connections’ weights between x; and the neuron
W: weights’ vector

X: inputs’ vector

b: the bias

f: the activation function

The basic architecture of ANN contains three neuron layers: input layer, hidden layer
and output layer. In this case, the outputs of one layer become the inputs of next layer
[2]. A typical artificial neuron and a basic ANN are illustrated in Fig. 2.

A key element of an artificial neural network is its ability to learn. This meant that
ANN has to learn from a data set in order to match the inputs to the desired output.
During the learning process, weights and biases are adjusted till the desired output

Hidden layer

output
/
Xg W,

(a) Artificial neuron (b) Multilayered artificial neural network

Fig. 2 Architecture of an artificial neuron and a multilayered neural network
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will be reached. There are several learning algorithm but in this work we will use
the backpropagation algorithm [26].

2.4 Virtual Force Algoritm

Virtual Force Algorithm (VFA) is extensively used to solve the coverage problem
on robots and sensors networks. The main idea is to model each robot or sensor as a
particle in the potential field. The potential field exerts forces on the nodes nearby.
The force may be either attractive or repulsive force according whether they are close
or far to each other. If two nodes are placed closer than the desired distance Dy,
repulsive forces are exerted on each other. Otherwise, attractive forces are exerted if
two nodes are farther than D,;,. The repulsive force aims to avoid a poor coverage
while the attractive force ensures that a globally uniform node placement will be
achieved [31]. For any pairwise of node i and j, the mutual force F;; can be written
as the negative gradient of the potential field. So, we can build a potential function
Vij such as:

Fij = -VV; (7N

According to the traditional VFA, the force 17; is given as:

R (wa(d(i, j) — D). 8;), if d(i, j) > Dy
Fij =10, if d(i, j) = D ®)
(w(d(i, j) = Dyn), 0ij + ), if d(i, j) < Dy,

where:

e w, is the virtual force attractive coefficient

e w, is the virtual force repulsive coefficient

e 0;; is the orientation of the line segment from nodes

e Dy, is the desired distance between each pair of nodes
e d(i, j) is the euclidean distance between nodes i and j

This traditional VFA has limitations since there are situations that do not allow
the systems to converge in a stable state [11]. We will present a new modified version
of VFA in Sect. 3.

2.5 Ideal Deployment for Full Coverage

The problem of maximizing the coverage of robots and sensors network was
addressed in several works, using either virtual force algorithm [17, 21, 30, 31]
or geometrical approaches [3, 20, 29] which manage the pairwise distance between
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Fig. 3 Ideal deployment for B, oo
full coverage N/

any pair of node and locally arrange the network topology as a triangle tessellation.
In this work, we focus only on the virtual force algorithm, since geometry-based
approaches computation can only be done when the global location information of
all the nodes in the network is known. An ideal deployment structure is show in
Fig.3. It is worth to mention that the ideal deployment will be achieved if the pro-
posed approach converges to the desired distance D,;. There is no coverage hole in
an ideal deployment.

3 IoT-Based Approach

As we saw in the previous Section, an undirected graph is connected if and only
if A, > 0. Therefore, any strategy which maintains ), at positive values guarantees
global connectivity among multi-robot systems.

In this Section, we present an loT-based approach which is capable of maintaining
desired wireless communication coverage among neighboring robots.

The proposed approach uses a Central Object (C O) with high computation capa-
bility to compute and monitor the connectivity of the overall multi-robot system.
We assume that each IoRT robot knows its own position by using GPS or other
localisation system. Beacon messages are used to allow IoRT robots exchange their
positions with their one-hop neighbors. Each IoRT robot in the system applies a
modified version of VFA (as described on formula 9) to control its movement. This
computation is only based on the local neighborhood information. In order to keep
the desired distance and hence the desired connectivity quality with its neighbor, the
i-th ToRT robot should move away from the IoRT robot j € N; if d(i, j) < D;, and
should move close if d (i, j) > D,;. Dy, is the desired distance between each pair of

—
IoRT robots. This simple control law generates a vector position P;; such that the
—
i-th IoRT robot keeps the line of sight of the IoRT robot j. P;; is defined as:

(€))

ij =

= | 0.1 xkxAd,0;) ifd@,j)> Dyand Ad > €
(k x Ad, 8j;) ifd(,j) < Dyand Ad > ¢
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where:

o Ad =|d(i, j) — Dy |

e 0;; is the orientation of the line segment from robots i to j;

e k is the damping coefficient

e cisalowerbound of Ad. It will be used in order to avoid useless small movements.

In order to overcome the problem in the traditional VFA, we set the attractive coef-
ficient w, to one tenth of repulsive coefficient k (w, = 0.1 x k).

When the i-th [oRT robot has more than one neighbor, its new position is calculated
as the summation of the position decisions with respect to all the neighbors:

P =>F, (10)

JEN;

After calculating their new positions, each IoRT robot sends the computed position
to the Central Object (C O). Then, C O computes the algebraic connectivity A, of the
IoRT robots network according to the formula 3. The central object C O allows each
IoRT robot to move to their new positions if and only if A\, > 0. This guarantees
that global connectivity is always kept all along the deployment procedure. It is
important to note that IoRT robots and CO can communicate to each other through
an IoT platform.

The following algorithm summarizes our approach:

Algorithm 1 IoT-based (runs every t units of time)
Phase I: Neighbor Discovery

MyNeighbor = FindNeighbor(Robotld)

Phase II: Compute the position F; between two robots
= .
Compute P;; using Formula 9
Phase I1I: Compute the new position ﬁ

—
Compute P; using Formula 10

Phase I'V: Compute algebraic connectivity
Compute A, of the dynamic Laplacian matrix L(G)
Phase V: Deployment

if \» > 0 then
—
move to P;
else
do not move
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4 ANN-Based Approach

As we mentioned before, the connection to the central object is not always possible.
For example, a rescue operation may be difficult after a disaster when the access to
the central node is not available. An approach which easily adapts to any type of
situation and environment is more than necessary.

To meet this need, we provide an ANN-based technique which can perfectly
mimic the behaviors of IoT-based approach. The ANN-based approach is completely
distributed and is trained from a set of data. The data set is obtained by using the IoT-
based approach and we use backpropagation algorithm to train ANN. The trained
ANN is constituted by 2 input units and 1 output unit. The 2 input units are d (i, j) and

0;j, while the output is F,: Therefore, the trained ANN is executed locally for each
IoRT robot to control its movement according to its neighbor’s distance d (i, j) and
angle 6;;. When the position F; is estimated, the new position ﬁ of the IoRT robot
is computed by using the formula 10. Then, the collective movement of all [oRT
robots will allow our trained ANN converge to the desired distance D;;,. The global
connectivity will also keep if our ANN is well trained (i.e. if training error equals
zero or near to zero). The algorithm below illustrates our ANN-based approach:

Algorithm 2 ANN approach (runs every t units of time)
Phase I: Neighbor Discovery

MyNeighbor = FindNeighbor(RobotId)

Phase II: Estimate the position 17),/ between two robots
?,, = trained_ann(d(i, j), 0;j)

Phase I1I: Compute the new position ﬁ

Compute ﬁ using Formula 10

Phase IV: Deployment

—
move to P;

5 Evaluation and Discussion of the Results

In this Section we first describe the simulation parameters and then provide the sim-
ulation results of our approaches. We are interested in studying how our approaches
converge to the desired distance D, between any pair of IoRT robot (hence to the
desired communication quality matching D,;). We will see also how the density of
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IoRT robots influences the traveled distance of a robot. The importance of taking
into account the algebraic connectivity before taking a movement decision will be
also highlighted. Our approaches will be compared to the approach described in
[21] called hereafter EVFA (Extended Virtual Force-Based Approach). EVFA was
designed by its authors to overcome the connectivity maintenance and nodes stacking

Table 1 Simulation parameters

Physical Propagation model Two ray ground
Error model Real
Antennas gain Gt=Gr=1
Antennas height ht=hr=1m
Communication range 250m
Statistics Number of samples 100
Simulation time 3000s
Confidence Interval 95%
Mobility Computation of the new position see formula (8)
Damping coefficient k 0.5
Dy 212m
ANN Layer number 4
Input number 2
Output number 1
Neuron’s number in hidden layers 15
Desired Error 0.00001
Max epochs 10000
Activation function sigmoid symmetric
Learning rate 0.2
Training algorithm backpropagation
Topology Topology width 3000m
Topology height 3000m
e IR = e I =—
E 20000 f\ ANN-based —+ 500 f\ 1
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A A & 200( ]
T | \ | . — —
& so0f | | . 100l P ]
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P s~ GR P -
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(b) Robot step
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(a) Traveled distance

Fig. 4 Traveled distance and robot step according to the robots number
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problems in the traditional Virtual Force Algorithm (VFA). Unlike our approaches,
EVFA is based only on the orientation force and the judgment of distance force
between node and its one-hop neighbors.

We assess our techniques w.r.t. (i) the algebraic connectivity, (ii) the robot traveled
distance, (iii) the average distance, and (iv) the QoS level expressed in terms of
RSSI (Received Signal Strength Indicator). Simulations have beeen carried out for
a variable number of robots (i.e. from 5 to 50 robots) in an area of 3 x 3 km.

5.1 Simulation Parameters

All the algorithms in this paper were implemented in version 2.29 of Network Simu-
lator with patch from [14] that reflect a realistic channel propagation and error model.
The patch is used in order to provide the effect of interference and different thermal
noises to compute the signal to noise plus interference ratio (SINR) and accounting
for different bit error rate (BER) to SINR curves for the various codings employed
[23]. Table 1 summarizes the parameters used in the simulations.

: 1
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% 4 — 8000 ANN-based —&

L ] @
2 |eseecccocosssoeeses g 40
E g ] ® 6000} 30 f—— i
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- S 4
% 2| 2 000t 94
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SR e i T
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Fig. 5 Simulation results obtained with 5 robots moving in 3 x 3km area
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5.2 Simulation Results

All of the following results are the average of 100 times simulations and we assume
that the topology is totally connected at the beginning of the simulation.

We can observe in the Figs. 5, 6, 7 and 8(a) that IoT-based approach always kept the
global connectivity since it always take account the algebraic connectivity constraint.
Unlike IoT-based, EVFA has a connectivity problem when the robots density is low
and this can explain why EVFA traveled a lot when the number of robot is less than
15 (see Fig. 4(a)). The goodness of connectivity is observed in EVFA when the robots
density is higher (i.e. greater than 15 robots). However, as we mentioned before our
goal is not to maximize the algebraic connectivity but just to keep it always greater
than zero. This condition is enough to keep the global connectivity.

Figures 5, 6, 7 and 8(c) and (d) illustrate the convergence of our algorithms to
the desired distance and the desired communication quality (RSSI) throughout the
simulation. We can notice that our approaches converge quickly to the aforemen-
tioned parameters which is not always the case for EVFA. We can see also that ANN
mimics perfectly the behaviours of the IoT-based approach. This is due to the fact
that our neural network has been well trained.

. 1 . .
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= — 80000 ANN-based —&— -
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Fig. 6 Simulation results obtained with 10 robots moving in 3 x 3km area
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Fig. 7 Simulation results obtained with 25 robots moving in 3 x 3km area

Figures 5, 6, 7 and 8(b) depict the distance traveled by a robot during the simulation
time. By considering the relationship between energy and traveled distance, we can
say that our approaches are energy efficient as compared to EVFA. However, it is
observed that ANN consumes a bit more than Iot-based approach. This is because
ANN has made a bit more step' to converge (see Fig.4).

As a conclusion, it is worth to say that the global connectivity is reached with
ANN approach since it was well trained and inherited the characteristics of IoT-based
approach.

It should be noted that the coverage rate strongly depends on the initial network
topology. If initially the robots are very close to each other, the convergence to
the desired distance enlarges the collective coverage. Else, if the distances between
robots are initially bigger than the desired distance, the coverage rate will decrease
but the communication quality will improved. This has been proven but we omit it
in this paper for lack of space.

Each robot increments its counter when it decides to move. In this paper, robot step is defined as
the average of the maximum counter value achieved by one robot during the simulation.
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Fig. 8 Simulation results obtained with 50 robots moving in 3 x 3km area

6 Conclusions

In this paper, we implemented a IoT-based and an ANN control scheme to main-
tain global connectivity among multiple IoRT robots. The proposed approaches
tried to capture the trade-off between network coverage and communication quality
expressed as RSSI level. The proposed algorithms allow the whole IoRT robot net-
work converges to the desired distance, and hence the desired communication quality.
Through extensive simulation we showed that our approaches outperform the EVFA
approach proposed in [21], in terms of traveled distance and convergence time. More-
over, our proposed methods always maintain the global connectivity throughout the
simulation.
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